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Abstract

Persistent entropy of persistence barcodes, which is based on the Shannon entropy, has
been recently defined and successfully applied to different scenarios: characterization of the
idiotypic immune network, detection of the transition between the preictal and ictal states in
EEG signals, or the classification problem of real long-length noisy signals of DC electrical
motors, to name a few. In this paper, we study properties of persistent entropy and prove its
stability under small perturbations in the given input data. From this concept, we define three
summary functions and show how to use them to detect patterns and topological features.

1 Introduction
In the last decade, correct and efficient interpretation of data has become a key problem in science
and industry. In this context, topological data analysis (TDA) attempts to create reliable methods
based on topological features of spaces in order to obtain useful information from data sets. Intu-
itively, topological features can be seen as qualitative geometric properties relating the notions of
proximity and continuity.

The standard workflow is the following: Start with a data set, for example a point cloud,
endowed with some notion of proximity (usually a metric) depending on the kind of information
we want to obtain. Then, create a simplicial complex and a filter function on it to encapsulate
this information. A nested sequence of increasing subcomplexes is then computed using the filter
function. Calculate the homology groups of each simplicial complex (intuitively, each element of the
homology groups represents a “hole" in the simplicial complex). Finally, treat all these homology
groups together as the subject of study, leading to the key concept of persistent homology.

Persistent homology summarizes hidden structural features of the given data set and can be
compactly represented using persistence barcodes [5], diagrams [12] and, more recently, landscapes
[3]. There exist stability results showing that these representations are robust under small per-
turbations of the given data (see, for example, [11]). During the last decade, this approach has
been successfully applied in many areas (see, for example, [14]). Nowadays, there exist numerous
softwares to compute persistent homology and its representations. A nice study of the performance
of different available softwares is made in [21].

Persistence barcodes, diagrams or landscapes (endowed with a metric) are normally used to
compare different given data sets. Nevertheless, using a scalar function instead of a metric space
could be easier to interpret for people not being familiar with this topic. Actually, this function
may be used not only for comparing different spaces but also for obtaining topological properties
from them. Persistent entropy [8, 23] based on Shannon entropy [25] is a perfect candidate for this
approach. Some applications of persistent entropy are given, for example, in [23], [20], [24] and
[2]. Persistent entropy is used in [1] to distinguish topological features from noise. Nevertheless,
it seems that there is a lack of stability results guaranteeing the reliability of persistent entropy
(although first steps in this direction have already been done, for example, in [24, 1]). The main
objective of this paper is proving such a stability result of persistent entropy.

The simplicity of persistent entropy is at the same time its main virtue and its main weakness.
For this reason, in this paper, we define a new stable summary function which may be used to
describe persistence barcodes. Finally, two modified versions of this summary function are created
in order to detect topological features and patterns of point clouds embedded in a manifold.
Examples illustrating the usefulness of these new functions are also given.
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The paper is organized as follows: After reminding the existing theory regarding persistent
homology and persistent entropy in Section 2, we provide stability results of persistent entropy
in Section 3. In Section 4, we introduce three summary functions derived from the concept of
persistent entropy and study their stability. Examples showing the applicability of these functions
are also given. The paper ends with a section devoted to conclusions and future work.

2 Background
In this section, we give a quick overview about how algebraic topology is applied to data analysis
and recall the definition of persistent entropy. An instructive book showing the main algebraic
topology tools for data analysis is [11]. A general introduction to algebraic topology can be found
in [15].

As explained in the introduction, to apply topological tools to data analysis, we first need to
“encode" the information provided by the data into a simplicial complex.

Definition 2.1 (Abstract simplicial complex). Let S be a finite set. A family of subsets K of S is
an abstract simplicial complex if for every subsets σ ∈ K and µ ⊂ S, we have that µ ⊂ σ implies
µ ∈ K. A subset in K of m+ 1 elements of S is called an m-simplex.

In other words, if two subsets of a simplicial complex K have elements in common, then their
intersection is a simplex in K formed by these common elements.

This combinatorial object have a geometrical interpretation. Consider S as a set of points of
Rn. Fix m ≤ n. An m-simplex σ is a subset of m+1 affinely independent points of S, denoted by
σ = 〈x0, . . . , xm〉. A 0-simplex is a point of S, a 1-simplex is a segment joining two points of S,
a 2-simplex is a filled triangle, a 3-simplex is a filled tetrahedron and so on. When the finite set
S represents some data, its nature may establish some relation depending on the context. We can
use this to enrich the information carried by the complex, using the concept of filtration.

Definition 2.2 (Filtration). A f ilter on a simplicial complexK is a monotonic function f : K → R
satisfying that µ ⊂ σ implies f(µ) ≤ f(σ). A filtration on K, obtained from f , is the sequence of
simplicial complexes

(
Kt

)
t∈R where Kt = f−1(−∞, t].

Note that, because of the monotonicity of f , the set Kt is a simplicial complex for all t, and
t1 ≥ t2 implies that Kt1 ⊇ Kt2 . The parameter t will be called time. The next definition is an
example of filtration and require S to be a metric space.

Definition 2.3 (Vietoris-Rips filtration). Let S be a finite set of points endowed with a distance
ds. The Vietoris-Rips filtration of S is the sequence

(
Rips(S, t)

)
t∈R obtained from the filter func-

tion f([x0, . . . , xm]) = maxi,j dS(xi, xj) where, for each t ∈ R, the simplices of the Vietoris-Rips
simplicial complex Rips(S, t) are defined as:

σ = 〈x0, . . . , xm〉 ∈ Rips(S, t)⇔ dS(xi, xj) ≤ t for all i j.

2.1 Persistent homology and persistence barcodes
Homology groups of a simplicial complex provides a formal interpretation of its geometric “holes".
Persistent homology captures the variation of the homology groups of the simplicial complexes in
a filtration. This information can be represented using persistence barcodes.

Given a simplicial complex K, an m-chain c is a formal sum of m-simplices in K. That is,
c =

∑k
i=1 aiσi where, for 1 ≤ i ≤ k, σi is an m-simplex in K and ai is a coefficient in an unital

ring R. Usually, R = Z/2Z and then ai ∈ {0, 1} satisfies that ai + aj = 0 iff ai = aj = 0 or
ai = aj = 1, for 1 ≤ i, j ≤ k. In order to relate the m-chains of a given simplicial complex K with
its m-dimensional "holes" we need the boundary operator ∂m. If 〈x0, . . . , xm〉 is an m-simplex in
K then,

∂m〈x0, . . . , xm〉 =
m∑
i=0

〈x0, . . . , xi−1, xi+1, . . . , xm〉.

We can extent this definition to any m-chain by linearity. Note that ∂m−1 ◦ ∂m = 0 or, in other
words, the boundary of a boundary is null. The "holes" of K are detected from chains whose
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Figure 1: Top: example of a filtration F . Bottom: 0-th and 1-st persistence barcodes of F .

boundary is zero without being a boundary themselves. The m-dimensional homology group of K
is then defined as the quotient group

Hm(K) =
Ker ∂m

Img ∂m+1
,

and its m-dimensional Betti numbers as βm = rank Hm(K). Intuitively β0 is the number of
connected components of K, β1 the number of 2-dimensional holes, β2 the number of cavities and
so on.

In order to study the variation of homology groups of the simplicial complexes in a given
filtration, we need the concept of persistent homology.

Definition 2.4 (Persistent homology). Let F =
(
Kt

)
t∈R be a filtration. For each t ∈ R, let

Hm(Kt) be the m-dimensional homology group of Kt. For every a ≤ b and m, consider the
function va,bm : Hm(Ka) → Hm(Kb) induced by the inclusion Ka ↪→ Kb. The family of homology
groups

(
Hm(Kt)

)
t∈R together with the functions

(
va,bm

)
t∈R is called the m-th persistent homology

of the filtration F .

Remark 2.5. Let [σ] be a class of the quotient group Hm(Kt). Let t1 = sup{ a : (va,tm )−1[σ] = ∅}
and t2 = inf{ a : vt,am [σ] 6= 0}. Then, t1 ≤ t ≤ t2. In other words, a generator σ of the class [σ]
appears in t1 and keeps “alive" (as an image of the functions v) until the moment t2 where its
image becomes 0. Then, [σ] is a persistent homology class and t1 and t2 are its birth and death
times.

In this paper, we assume that rank Hm(Kt) < ∞ for all t,m and that the total number of
persistent homology classes is finite. The information obtained by persistent homology can be
represented, for example, via persistence barcodes or diagrams.

Definition 2.6 (Persistence barcodes). Let H be the m-th persistent homology of a filtration F .
For each m-th persistent homology class α in H, let t1(α) and t2(α) be its birth and death times.
Then, H can be encoded as a multiset of intervals

{
[t1(α), t2(α)]

}
α∈H. This multiset is the m-th

persistence barcode of F . Let B denote the space of all possible persistence barcodes.

An example of persistence barcode is showed in Figure 1.
If the birth and death times of persistent homology classes of H are encoded as points in R2

(i.e.,
{
(t1(α), t2(α))}α∈H ⊂ R2) then we obtain a multiset of points which is called the persistence

diagram of F .
Persistence barcodes (or diagrams) can be used to classify spaces that change along time (en-

coded as a filtration). In order to compare two different persistence barcodes for such classification
task, we need to define a metric on B.

Definition 2.7 (Wasserstein distance). Consider A,B ∈ B and 1 ≤ p ≤ ∞. Define the p-th
Wasserstein distance as

dp(A,B) =

(
min
γ

∑
i=1

max
{
|xai − xbγ(i)|

p, |yai − ybγ(i)|
p
}) 1

p

,
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where γ is any bijection between the multisets A = {[xai , yai ]}
na
i=1 and B = {[xbi , ybi ]}

nb
i=1. In case

na 6= nb, we can add intervals of zero length ([t, t]) until both multisets A and B have cardinal
nmax = max{na, nb}. The limit case p =∞ is called the bottleneck distance and is given by

d∞(A,B) = min
γ

max
i

(
max

{
|xai − xbγ(i)|, |y

a
i − ybγ(i)|

})
.

Observe that we have replaced the inf and sup terms in the original definition of Wassertein
and bottleneck distance [11, p. 180-183] by min and max terms because, in this paper, persistence
barcodes have always a finite number of intervals.

Remark 2.8. When yai = ybγ(i) =∞ we will assume |yai − ybγ(i)| = 0 so the max function takes the
maximum of the finite values only.

We finish this section with some well-known stability results, supporting the idea that similar
inputs produce similar outputs. The second theorem is a consequence of the first one.

Theorem 2.9 ([9]). Let f, g : X → R be two tame Lipschitz functions on a metric space X whose
triangulations grow polynomially with constant exponent j ≥ 1. Then, there are constant C ≥ 1
and k ≥ j such that the p-th Wasserstein distance between their corresponding m-th persistence
barcodes, A and B, satisfies that for every p ≥ k.

dp(A,B) ≤ C||f − g||1−
k
p

∞ .

When p = ∞, the constant C is no longer necessary, obtaining the most commonly used
simplified version which appears in [11, p. 183].

Proposition 2.10 ([11, p. 183]). Let K be a simplicial complex and let f, g : K → R be two
monotonic functions. If A,B ∈ B are their corresponding m-th persistence barcodes, then

d∞(A,B) ≤ ||f − g||∞.

Theorem 2.11 ([6]). Consider two finite metric spaces (X, dX), (Y, dY ). Let A,B be the two
m-th persistence barcodes obtained, respectively, from Rips(X, t)|t∈R and Rips(Y, t)|t∈R. Then
d∞(A,B) ≤ dGH(X,Y ), where dGH denotes the Gromov-Hausdorff (GH) distance.

We could conclude that bottleneck distance gives simple expressions for the stability results
and seems the best distance to work with.

2.2 Persistent Fntropy
Persistent entropy was first introduced in [8] and formally defined in [23]. The idea of persistent
entropy is to somehow apply Shannon entropy to persistence barcodes.

Since classical Shannon entropy is defined for finite probability distribution, {(p1, . . ., pn):
p1 + · · ·+ pn = 1, 0 ≤ pi ≤ 1} then, we first need to normalize persistence barcodes.

Definition 2.12 (Persistent entropy). Consider a persistence barcode A = {[xai , yai ]}
na
i=1 where

maxi{yi} <∞. Persistent entropy of A is:

E(A) = −
na∑
i

`ai
La

log

(
`ai
La

)
,

where `ai = yai − xai and La = `a1 + · · ·+ `ana
.

The maximum possible value of persistent entropy E(A) is log(na) and is reached when all
intervals of A have the same length (the uniform distribution in probability terms). The minimum
value is 0 and coincides with the case when there is only one interval (i.e. na = 1). In general,
the greater the number of intervals is and the more homogeneous they are, the greater persistent
entropy is.

Persistent entropy is only defined here for persistence barcodes with intervals of finite length
(also called finite intervals). Later, we will discuss what can be done when intervals of infinite
length (also called infinite intervals) are present in the barcode.
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3 Stability of persistent entropy
In this section we provide some stability results regarding persistent entropy guaranteeing that
given two persistence barcodes with small Wasserstein or bottleneck distance, their corresponding
persistent entropy will be similar. Before proceeding with this task, we clarify through definitions
and lemmas some concepts related with persistent entropy, which have not been treated rigorously
so far. This allows us to link well-known Shannon entropy stability results of finite probability
distribution with the new concept of persistent entropy.

3.1 Preliminary lemmas
In this subsection, we will define the subspaces and norms we are going to use in the sequel, and
provide some relations between them.

From now on, given two persistence barcodes A = {[xai , yai ]}
na
i=1 and B = {[xbi , ybi ]}

na
i=1, denote

nmax = max{na, nb}, `ai = yai − xai , La =
∑na

i `ai , `bi = ybi − xbi , Lb =
∑nb

i `ai , Lmax = max{La, Lb}
and Lmin = min{La, Lb}.

Remember that the value of dp(A,B) is reached for a concrete bijection γ between A and B
(see Definition 2.7).

Remark 3.1. For simplicity of notation, in several proofs, we will sort the intervals of the persis-
tence barcodes A and B in such a way that the bijection γ, for which the equality

dp(A,B) =

(
n∑
i=1

max
{
|xai − xbγ(i)|

p, |yai − ybγ(i)|
p
}) 1

p

will be reached when γ is the identity: γId(i) = i.

We first recall a well-known lemma regarding p-norms.

Lemma 3.2. Let x ∈ Rn and p, q ∈ R. Let ||x||p = (
∑n
i=1 |xi|p)

1
p and ||x||∞ = max{|xi|}. If

1 ≤ q < p ≤ ∞ then ||x||p ≤ ||x||q ≤ n
1
q−

1
p ||x||p.

Now we introduce some useful subspaces of the space B of persistence bacodes.

Definition 3.3 (Sets BF ,B0,BN ). Define:

• the set of persistence barcodes with finite length intervals as
BF = {A ∈ B : ∀[xai , yai ] ∈ A, yai <∞};

• the set of persistence barcodes whose intervals were born at the origin as
B0 = {A ∈ B : ∀[xai , yai ] ∈ A, xai = 0};

• the set of persistence barcodes with “normalized" intervals as
BN = {A ∈ B : ∀[xai , yai ] ∈ A,

∑
i y
a
i − xai = 1}.

Now let us extend Lemma 3.2 to the Wasserstein distance.

Corollary 3.4. Let dp be the p-th Wasserstein distance for persistence barcodes. If A,B ∈ BF
and 1 ≤ q < p ≤ ∞ then dp(A,B) ≤ dq(A,B) ≤ n

1
q−

1
p

max dp(A,B).

Proof. Sort the intervals of A and B such that γId(i) = i as in Remark 3.1. Then, the second
inequality can be proven as follows:

dq(A,B) =

(
min
γ

∑
i

max
{
|xai − xbγ(i)|

q, |yai − ybγ(i)|
q
}) 1

q

≤

(∑
i

max
{
|xai − xbi |q, |yai − ybi |q

}) 1
q

≤

(
n

1
q−

1
p

max

∑
i

max
{
|xai − xbi |p, |yai − ybi |p

}) 1
p

= n
1
q−

1
p

max dp(A,B).

The first inequality dp(A,B) ≤ dq(A,B) can be proven in an analogous way.
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Each persistence barcode in the space B0 ∩BN ⊂ BF can be identified with a finite probability
distribution {pi}i, which is the original domain of Shannon entropy. When we compute persistent
entropy on barcodes in BF , we are indirectly using the following projections as lemma 3.6 shows.

Definition 3.5 (Projections π, ψ′ and ψ). Define:

π : BF → B0 ∩ BF where A = {[xai , yai ]} 7→ π(A) = {[0, yai − xai ]};

ψ′ : B0 ∩ BF → B0 ∩ BN where A = {[0, `ai ]} 7→ ψ′(A) =

{[
0,
`ai
La

]}
;

ψ : BF → B0 ∩ BN where ψ = ψ′ ◦ π.

Examples of these projections are showed in Figure 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

BF Dimension 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

BN Dimension 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

B0 Dimension 1

ψ

π ψ′

Figure 2: Examples of projections π, ψ′ and ψ.

Lemma 3.6. If A ∈ BF then E(ψ(A)) = E(A).

The result below states that when we translate the intervals of given persistence barcodes A
and B to the origin, the distance between them may double.

Lemma 3.7. If A,B ∈ BF and 1 ≤ p ≤ ∞ then dp(π(A), π(B)) ≤ 2dp(A,B).

Proof. Sort the intervals of A and B such that γId(i) = i as in Remark 3.1. Then, as π(A) =
{0, yai − xai } and π(B) = {0, ybi − xbi}, we have:

dp(π(A), π(B))p = min
γ

nmax∑
i=1

max
i

{
0, |(yai − xai )− (ybγ(i) − x

b
γ(i))|

p
}

= min
γ

nmax∑
i=1

|(yai − xai )− (ybγ(i) − x
b
γ(i))|

p ≤
nmax∑
i=1

|(yai − xai )− (ybi − xbi )|p

≤
nmax∑
i=1

(
|(yai − ybi )|+ |(xbi − xai )|

)p ≤ nmax∑
i=1

(
2max

{
|xai − xbi |p, |yai − ybi |p

})
= 2pdp(A,B)p.

In order to fix what we consider "big" or "small" error, we give a general definition of the
relative variation with respect to the average length.

Definition 3.8 (Relative error). The relative variation for the p-th Wasserstein distance with
coefficient 1 ≤ p ≤ ∞ of A,B ∈ BF is given by

rp(A,B) =
2n

1− 1
p

max dp(A,B)

Lmax
=

2dp(A,B)

`p

where `p = Lmax/n
1− 1

p
max can be seen as a weighted average, depending on p, of the length of the

intervals. For example, for p = ∞, `p is the standard average of the length of the intervals, and
for p = 1, it is just the sum.
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Let us see how projection ψ affects to the distance dp.

Lemma 3.9. If A,B ∈ BF then dp
(
ψ(A), ψ(B)

)
≤ 4n

1− 1
p

max dp(A,B)
Lmax

= 2rp(A,B).

Proof. Consider π(A) = {(0, `ai )}
na
i=1 and π(B) = {(0, `bi )}

nb
i=1. Then,

dp
(
ψ(A), ψ(B)

)p
= min

γ

nmax∑
i=1

∣∣∣∣∣ `aiLa − `bγ(i)

Lb

∣∣∣∣∣
p

= min
γ

nmax∑
i=1

∣∣∣∣∣`
a
iLb − `bγ(i)La

LaLb

∣∣∣∣∣
p

.

Note that `ai or `bi might be 0 if intervals [t, t] were needed for creating each bijection γ. If we sort
the intervals of A and B such that γId(i) = i as in Remark 3.1, we obtain

dp
(
ψ(A), ψ(B)

)p ≤ nmax∑
i=1

∣∣∣∣`aiLb − `biLaLaLb

∣∣∣∣p .
We can suppose without loss of generality that Lmax = La ≥ Lb. We have two cases: `aiLb ≥ `biLa
and `aiLb ≤ `biLa. In the first case:∣∣∣∣`aiLb − `biLaLaLb

∣∣∣∣p = (`aiLb − `biLaLaLb

)p
≤
(
`aiLb − `biLb

LaLb

)p
=

(
`ai − `bi
La

)p
.

The other case (i.e., when `aiLb ≤ `biLa) is slightly more difficult. First, using Lemma 3.2 we have:

0 ≤ La − Lb =
nmax∑
i=1

`ai − `bi ≤
nmax∑
i=1

|`ai − `bi | ≤ n
1− 1

p
max

(
nmax∑
i=1

|`ai − `bi |p
) 1

p

.

Therefore, La ≤ Lb + n
1− 1

p
max

(∑nmax

i=1 |`ai − `bi |p
) 1

p . Using this expression, we obtain:

∣∣∣∣`biLb − `aiLaLaLb

∣∣∣∣p ≤
`

b
i

(
Lb + n

1− 1
p

max

(∑nmax

i=1 |`ai − `bi |p
) 1

p

)
− `aiLb

LaLb


p

=

`bi − `ai
La

+
`bin

1− 1
p

max

(∑nmax

i=1 |`ai − `bi |p
) 1

p

LaLb

p

.

This last value gives us a greater bound than the one before. Using it as the worst possible scenario
we obtain:

dp(ψ(A), ψ(B))p = min
γ

nmax∑
i=1

∣∣∣∣∣`
b
γ(i)

Lb
− `ai
La

∣∣∣∣∣
p

≤
nmax∑
i=1

 |`bi − `ai |
La

+
`bin

1− 1
p

max

(∑nmax

i=1 |`ai − `bi |p
) 1

p

LaLb

p

≤

nmax∑
i=1

|`bi − `ai |
La

+

nmax∑
i=1

`bin
1− 1

p
max

(∑nmax

i=1 |`ai − `bi |p
) 1

p

LaLb

p

=

nmax∑
i=1

|`bi − `ai |
La

+
n
1− 1

p
max

(∑nmax

i=1 |`ai − `bi |p
) 1

p

La

p

≤

2
n
1− 1

p
max

(∑nmax

i=1 |`ai − `bi |p
) 1

p

La

p

=
2pnp−1maxdp(π(A), π(B))p

Lpa
.
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In the third line we have used |x|p + |y|p ≤ (|x| + |y|)p for p ≥ 1 and in the fourth, Lemma 3.2.
Finally, eliminating the exponent p in both sides of the inequality, writing Lmax instead of La and
applying Lemma 3.7 we obtain:

dp(ψ(A), ψ(B)) ≤ 2n
1− 1

p
max dp(π(A), π(B))

Lmax
≤ 4n

1− 1
p

max dp(A,B)

Lmax
= 2rp(A,B).

3.2 Persistence barcodes with infinite intervals
As mentioned in Definition 2.12, persistent entropy is defined only for persistence barcodes with
intervals of finite length. Nevertheless, it is quite common to find persistence barcodes with infinite
intervals in practice and, depending on the application, they might be important or not. If they
are, it will be interesting to define projections B → BF that preserve the information carried by
them. As we are seeking stability results, these projections must keep a control on the distance.
A common approach is to change the infinite intervals by finite ones. For example, in [24] the
endpoints of infinite intervals in each persistence barcode is sent to the maximum endpoint of
the finite intervals of that barcode plus a constant. In this subsection, we formally define this
projection and prove that, despite the distance between persistence barcodes might be modified
by it, the variation can be controlled.

Definition 3.10 (Projection τ). Let A,B ∈ B and let ua and ub be, respectively, the maximum
endpoints of their finite intervals. Fix C ≥ 0. Define projection

τ : B → BF where A = {(xai , yai )} 7→ τ(A) = {(xai , zai )}

being zai = ua + C if yai =∞ and zai = yai otherwise.

Recall that if the number of infinite intervals in A and B is different, then dp(A,B) = ∞. In
other case, we have the following result.

Lemma 3.11. If two persistence barcodes A,B ∈ B have the same number m∞ of infinite intervals
then, for any p being 1 ≤ p ≤ ∞, projection τ satisfies that

dp(τ(A), τ(B)) ≤ (dp(A,B)p +m∞ d∞(A,B)p)
1
p .

Proof. Sort the intervals of A and B in such a way that their first m∞ intervals are the infinite
ones and for the rest, γId(i) = i as in Remark 3.1. We have:

dp(τ(A), τ(B))p = min
γ

nmax∑
i=1

max
{
|xai − xbγ(i)|

p, |zai − zbγ(i)|
p
}

≤
nmax∑
i=1

max
{
|xai − xbi |p, |zai − zbi |p

}
=

m∞∑
i=1

max
{
|xai − xbi |p, |ua − ub|p

}
+

nmax−m∞∑
i=1

max
{
|xai − xbi |p, |yai − ybi |p

}
=

m∞∑
i=1

max
{
|xai − xbi |p, |ua − ub|p

}
+ dp(A,B)p −

m∞∑
i=1

|xai − xbi |p

=

m∞∑
i=1

max
{
0, |ua − ub|p − |xai − xbi |p

}
+ dp(A,B)p ≤ m∞|ua − ub|p + dp(A,B)p.

In the third equality, we have used that max
{
|xai − xbi |p, |∞ − ∞|

}
= |xai − xbi |p by definition

(see Remark 2.8). Now, we only have to prove that |ua − ub| ≤ d∞(A,B). Assuming, without
loss of generality, that ua ≥ ub, suppose ua − ub > d∞(A,B), as there was at least one interval
with endpoint ua. Then, there exists another endpoint x in B matched with ua by the bottelneck
distance with |ua − x| ≤ d∞(A,B). Then,

ua − x ≤ d∞(A,B) < ua − ub ⇒ ub < x.

By definition, x ≤ ub leading to a contradiction.
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Another possible approach consists on sending the infinite intervals to a fixed value common
for all persistence barcodes we are dealing with at that moment. The more importance we want
to give to these intervals, the greater this value should be.

Definition 3.12 (Projection φ). Let {Aj}j ⊂ B be a finite family of persistence barcodes and let
C be a constant greater than the maximum length of all finite intervals in the persistence barcodes
of the given family. Fix p being 1 ≤ p ≤ ∞. Define projection

φ : B → BF where Aj = {(xji , y
j
i )} 7→ φ(Aj) = {(xji , z

j
i )},

being zji = C if yji =∞ and zji = yji otherwise.

The following lemma guarantees that projection φ does not increase (Wassertein or bottleneck)
distance between persistence barcodes.

Lemma 3.13. Consider a finite family of persistence barcodes {Aj}j ⊂ B. Then projection φ
satisfies that dp(φ(Aj), φ(Ah)) ≤ dp(Aj , Ah), ∀j, h.
Proof. Fixing the bijection γ which gives the exact value of dp(Aj , Ah) we can deduce that
dp(φ(Aj), φ(Ah)) will be at most dp(Aj , Ah), since there could exist a different bijection giving
a lower value of the p-th Wasserstein distance dp(φ(Aj), φ(Ah)).

3.3 Stability result
Two important results about the stability of persistent homology were recalled in Theorem 2.9 and
Theorem 2.11. They guarantee that if two filter functions or two metric spaces are similar, then
their corresponding persistence barcodes will be similar as well. There exist stability results for
Shannon entropy when defined in a probability distribution. In order to combine these results to
persistent entropy, we just need to adapt them to the metric space of persistence barcodes.

First of all, in [1] the continuity of persistent entropy with respect to the bottleneck distance
is proven. The following proposition generalize this result to the Wasserstein distance.

Proposition 3.14. Let A,B ∈ BF and let dp be the p-th Wasserstein distance with 1 ≤ p ≤ ∞.
If we fix the maximum numbers of intervals nmax and the minimum total length Lmin, then the
persistent entropy E is continuous on (BF , dp):

∀ε ∃δ such that dp(A,B) ≤ δ ⇒ |E(A)− E(B)| ≤ ε.

Proof. The proof is straightforward using d∞(A,B) ≤ dp(A,B) (Corollary 3.4).

The stability problem of Shannon entropy has been previously studied by Lesche in [18] for the
1-norm due to its importance in physics. That bound can be slightly improved as shown in [10,
p. 664].

Theorem 3.15 ([10, p. 664]). Let P and Q be two finite probability distributions (seen as vectors
in Rn), and let ES(P ) and ES(Q), respectively, their Shannon entropy. If ||P −Q||1 ≤ 1/2 then

|ES(P )− ES(Q)| ≤ ||P −Q||1 log(n)− ||P −Q||1 log ||P −Q||1
Note that the restriction ||P −Q||1 ≤ 1/2 is reasonable because ||P −Q||1 is at most 2. Besides,

since the space B0 ∩ BN can be interpreted as finite probability distributions, we can first project
the persistence barcodes of B onto B0 ∩ BN and then apply the previous theorem to obtain the
desired stability result.

Theorem 3.16 (Stability of Persistent Entropy). Consider A,B ∈ BF . If the relative error
rp(A,B) is less than 1/4 then |E(A)− E(B)| ≤ 2rp(A,B)

[
log(nmax)− log

(
2rp(A,B)

)]
.

Proof. We first use Lemma 3.4 to transform the p-norm into the 1-norm. Then, we normalize the
given persistence barcodes and apply Lemma 3.9 and Theorem 3.15.

Table 1 shows some numerical examples. Despite the bound of |E(A) − E(B)| may tend to
infinity for arbitrary large nmax, the relative value |E(A)−E(B)|

log(nmax)
is bounded when nmax tends to

infinity. In other words,

lim
nmax→∞

|E(A)− E(B)|
log(nmax)

≤ 2rp(A,B).

We can deduce the following two stability results using Theorem 2.9, Theorem 2.11 and Theorem
3.16.
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Relative error
nmax 0.1 0.05 0.025 0.01

10 0.339794 0.2 0.115051 0.0539794
510 0.251631 0.136933 0.0740258 0.0325498
1010 0.246531 0.133285 0.0716526 0.0313102
1510 0.243975 0.131457 0.070463 0.0306888
2010 0.242321 0.130274 0.0696935 0.0302868
2510 0.24112 0.129415 0.0691346 0.0299949
3010 0.240187 0.128747 0.0687007 0.0297682
3510 0.239431 0.128206 0.0683486 0.0295843
4010 0.238798 0.127754 0.0680541 0.0294305
4510 0.238256 0.127366 0.067802 0.0292988
5010 0.237784 0.127028 0.0675823 0.029184

Table 1: Bounds of relative values |E(A)−E(B)|
log(nmax)

for different number of intervals (columns) and
relative errors r∞ (rows).

Theorem 3.17. Let K be a simplicial complex and let f, g : K → R be two monotonic functions.
Let A,B ∈ B be their corresponding persistence barcodes. The average length of the intervals of
A and B are, respectively, `a∞ = La/nmax and `b∞ = Lb/nmax. Let `max = max{`a∞, `b∞}. If
d∞(A,B) ≤ 1

8`max then

||f − g||∞ ≤ δ ⇒ |E(A)− E(B)| ≤ 4δ

`max

[
log(nmax)− log

(
4δ

`max

)]
.

Theorem 3.18. For any two finite metric spaces (X, dX) and (Y, dY ), let A,B be the persistence
barcodes coming from Rips(X, t)|t∈R and Rips(Y, t)|t∈R respectively. The average length of the in-
tervals of A and B are, respectively, `a∞ = La/nmax and `b∞ = Lb/nmax. Let `max = max{`a∞, `b∞}.
If d∞(A,B) ≤ 1

8`max then

dGH(X,Y ) ≤ δ ⇒ |E(A)− E(B)| ≤ 4δ

`max

[
log(nmax)− log

(
4δ

`max

)]
.

The condition d∞(A,B) ≤ 1
8`max comes from imposing rp(A,B) ≤ 1/2. In order to remove the

infinite intervals, we have to use projection φ (see Lemma 3.13).
It seems appropriate to recapitulate now the results of this section before continuing. As shown

in the following diagram, at the beginning of the section we wanted to prove implication (A). In
order to do it, we have separated the problem in three parts ((1), (2) and (3)):

Small changes in
input data

Small changes in
persistent entropy

(A)

Small
changes in
input data

Small changes
in GH distance
or filter function

Small changes
in (B, dp)

Small changes
in persistent

entropy

(1) (2) (3)

Implication (1) is given by the formalization of the problem and implication (2) is given by
Theorem 2.9 and Theorem 2.11 mentioned in the background section. The proof of implication
(3) is the main aim of this section (Theorem 3.16). Putting all together we obtain Theorem 3.17
and Theorem 3.18.

4 Entropy-based summary functions
The simplicity of persistent entropy limits its application to distinguish persistence barcodes. Nev-
ertheless, it is able to measure two interesting features simultaneously: the number of intervals and
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their heterogeneity. In order to obtain deeper statistical information from persistence barcodes we
need to take a step forwards. Following this idea, different kinds of summary functions have been
used in TDA to obtain statistical information from persistence barcodes such as silhouettes [7] and
intensity maps [22]. In this section, we will define three summary piecewise constant functions
using persistent entropy. The first associate to each moment of time a partial sum of the persistent
entropy of the barcode. The second is the normalization of the first one. Both are stable respect
to the bottleneck distance. The last one is designed to measure different features to the bottleneck
distance, and then is not possible to apply the step (3) in the previous diagram. A more detailed
study of this last function would have to be carried in another paper.

4.1 Entropy summary function (ES-function)
We define now a new function which pairs each barcode A ∈ BF with a piecewise constant function
(also known as step functions) in R. This new function resumes information about the number of
intervals and their homogeneity and, as we will prove at the end of this subsection, is stable with
respect to the bottleneck distance. In Remark 2.5 we defined when a class was alive. Since the
birth and death time of each class is encoded by intervals in a given persistence barcode A, we say
that an interval [xai , yai ] ∈ A is alive at t if xai < t < yai .

Definition 4.1 (Entropy summary function (ES-function)). Consider a persistence barcode A =
{[xai , yai ]}

na
i=1 in BF . Define its entropy summary function (ES-function) as the piecewise linear

function:

S(A)[t] = −
na∑
i=1

wai (t)
`ai
La

log

(
`ai
La

)
where wai (t) = 1 if xai ≤ t ≤ yai and wai (t) = 0 otherwise.

Note that S : BF → C and S(A) : R→ R, being C the space of piecewise constant functions.

Remark 4.2. ES-function pairs the instant t and the persistence barcode A with the partial sum
of E(A) corresponding to the intervals of A that are alive at that moment t. See Figure 3.

The following result states that ES-function is stable with respect to the bottleneck distance.

Theorem 4.3 (Stability of the ES-function). Let S be the ES- function, d∞ the bottleneck distance
and A,B two persistence barcodes in BF . If the relative error r∞(A,B) is less or equal than 1/4,
then we have:

||S(A)[t]− S(B)[t]||1 ≤ 2Lminr∞(A,B) log [2r∞(A,B)] + 2d∞(A,B) log nmax

≤ 2r∞(A,B)

(
Lmin log [2r∞(A,B)] + Lmax

log nmax

nmax

)
.

Remark 4.4. Recall that ||f ||1 =
∫
R |f(t)|dt for a given function f : R → R. Notice that all

functions appearing in this subsection are bounded and have compact support in R therefore their
1-norm is always finite.

Proof. Let us prove the first inequality. Sort the intervals of A and B such that γId(i) = i as in
Remark 3.1. Note that wai (t) = wai (t)w

b
i (t)+wai (t)(1−wbi (t)). Denote the expression `ai

La
log
(
`ai
La

)
by sai . Then:

||S(A)− S(B)||1 =

=

∣∣∣∣∣∣∣∣ nmax∑
i=1

(wai (t)w
b
i (t) + wai (t)(1− wbi (t)))sai − (wbi (t)w

a
i (t) + wbi (t)(1− wai (t)))sbi

∣∣∣∣∣∣∣∣
1

=

∣∣∣∣∣∣∣∣ nmax∑
i=1

wai (t)w
b
i (t)(s

a
i − sbi ) + wai (t)(1− wbi (t))sai − wbi (t)(1− wai (t))sbi

∣∣∣∣∣∣∣∣
1

≤
nmax∑
i=1

∣∣∣∣wai (t)wbi (t)∣∣∣∣1|sai − sbi |+ ∣∣∣∣wai (t)(1− wbi (t))sai ∣∣∣∣1 + ∣∣∣∣wbi (t)(1− wai (t))sbi ∣∣∣∣1.
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Point cloud 1 Point cloud 2 Point cloud 3 Point cloud 4

Barcode 1 Barcode 2 Barcode 3 Barcode 4

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

S(B1)[t] S(B2)[t] S(B3)[t] S(B4)[t]

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5
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0.0
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1.5
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Figure 3: In the first row we show four different point clouds. The 1-st persistence barcodes of
their associated Vietoris-Rips filtration appear in the second row. Observe that all of them have
the same persistent entropy E = 1.38629. In the third row we can see their ES-function for each
instant t. Note that all of them are different in spite of the fact that the four persistent barcodes
have the same persistent entropy.

We first compute a bound for
∑nmax

i=1

∣∣∣∣wai (t)wbi (t)∣∣∣∣1|sai − sbi |. Note that

nmax∑
i=1

||wai (t)wbi (t)||1 ≤
nmax∑
i=1

min{`ai , `bi} ≤ Lmin.

And since function −x log x is concave then |x1 − x2| ≤ ε⇒ |− x1 log x1 + x2 log x2| ≤ −ε log ε. In
this case,

ε = max

{
`ai
La
− `bi
Lb

}
≤ 4nmaxd∞(A,B)

Lmax
= 2r∞(A,B)

by Lemma 3.9, and then |sai − sbi | ≤ 2r∞(A,B) log (2r∞(A,B)). Therefore,

nmax∑
i=1

∣∣∣∣wai (t)wbi (t)∣∣∣∣1|sai − sbi | ≤ 2Lminr∞(A,B) log (2r∞(A,B)) . (1)

Now, we calculate the bound for
∑nmax

i=1

∣∣∣∣wai (t)(1−wbi (t))sai ∣∣∣∣1 + ∣∣∣∣wbi (t)(1−wai (t))sbi ∣∣∣∣1. Consider
the function wbi (t)(1− wai (t)). Its integral gives the period of time in which the i-th interval of B
is alive and the i-th interval of A is not. This might happen in both: the initial and the end of the
period of time. Therefore, if εi = max{|xai − xbi |, |yai − ybi |} then:∫

R
wbi (t)(1− wai (t))dt ≤ 2εi ≤ 2d∞(A,B).

Note that both intervals cannot be the only ones alive in both extreme of the period of time
simultaneously, therefore we also have

εi ≤
∫
R
wbi (t)(1− wai (t))dt ≤ 2εi ⇒

∫
R
wai (t)(1− wbi (t))dt = 0.
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and vice versa. Using
∑nmax

i=1 sai = E(A) we can deduce:
nmax∑
i=1

∣∣∣∣∣∣∣∣wai (t)(1− wbi (t))∣∣∣∣∣∣∣∣
1

sai +

∣∣∣∣∣∣∣∣wbi (t)(1− wai (t))∣∣∣∣∣∣∣∣
1

sbi

≤
nmax∑
i=1

sai

∫
R
wai (t)(1− wbi (t)) + sbi

∫
R
wbi (t)(1− wai (t))

≤ max

{ nmax∑
i=1

εi(s
a
i + sbi ),

nmax∑
i=1

2εis
a
i ,

nmax∑
i=1

2εis
b
i

}
≤ max

{
d∞(A,B)[E(A) + E(B)], 2d∞(A,B)E(A), 2d∞(A,B)E(B)

}
≤ d∞(A,B)max

{
[E(A) + E(B)], 2E(A), 2E(B)

}
= d∞(A,B)2 log nmax. (2)

Putting together (1) and (2) we obtain the desired bound. Using the definition of r∞ we can
deduce the second inequality presented in the theorem.

When n tends to infinity, we can deduce from the theorem above that:

lim
nmax→∞

||S(A)− S(B)||1 ≤ 2Lminr∞(A,B) log [2r∞(A,B)] .

4.2 Normalized entropy summary function (NES-function)
One of the main aims of persistent homology is to represent the shape of the input data set. In
some applications, like image analysis or material science (see [4] for a review), it may be important
to detect some repetitive pattern independently of the size of the input data set. In this particular
case, a comparison in the metric space (B, dp) is not useful due to its strongly dependence on the
number of long intervals. Our aim now is to create a function to distinguish patterns independently
of the number of intervals.

Definition 4.5 (Normalized entropy summary function (NES-function)). Consider a persistence
barcode A = {[xai , yai ]}

na
i=1 in BF . Normalized entropy summary function (NES-function) of A is

defined as:
NES(A)[t] =

S(A)[t]

||S(A)||1
.

We show examples of repetitive patterns in Figure 4. In the first row, the first two images
indicate different patterns both given by quadrilaterals. The second and the third images have the
same pattern but different number of points. In the second row, in each image, we take the vertices
of the quadrilaterals and use the Vietoris-Rips filtration to obtain the corresponding persistence
barcodes. In the third row, 30% of points are displaced or removed, with respect to the second
row. The result of computing persistent homology and NES-function on both examples is shown
in Figure 5 and Figure 6, we can observe that NSE-function seems to be robust to noise and to
the number of points in the pattern. This observation is supported by the 1-norm distance matrix
showed in Figure 7.

Theorem 4.6 (Stability of the NES-function). Under the same conditions appearing in theorem
4.3, we have

||NES(A)−NES(B)||1 ≤
||S(A)− S(B)||1

min{||S(A)||1, ||S(B)||1}

≤
2r∞(A,B)

(
Lmin log [2r∞(A,B)] + Lmax

lognmax

nmax

)
min {||S(A)||1, ||S(B)||1}

.

Proof. It is straight forward.∣∣∣∣∣∣∣∣ S(A)

||S(A)||1
− S(B)

||S(B)||1

∣∣∣∣∣∣∣∣
1

=

∣∣∣∣||S(B)||1S(A)− ||S(A)||1S(B)
∣∣∣∣
1

||S(A)||1||S(B)||1
≤ max{||S(A)||1||S(B)||1}

||S(A)||1||S(B)||1

=
||S(A)− S(B)||1

min{||S(A)||1, ||S(B)||1}
.
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Figure 4: The first row shows quadrilaterals forming a pattern; in the second, the points of the
quadrilateral are pictured; and, in the last row, noise is added to the point cloud data. The first
two columns have similar number of points but different pattern while the last two have the same
pattern but different number of points.

4.3 Time-based entropy summary function (TES-function) for detecting
topological features

A direct consequence of the work carried out by Hausmann [16] and Latschev [17] is that if a
point cloud in a manifold is dense enough then its Vietoris-Rips filtration will be homotopic to the
manifold during a period of time I. Nevertheless, it is not possible to compute that period of time
in practice. This problem is classically sorted out using persistent homology and considering long
intervals, in the corresponding persistence barcode, as topological features. In this subsection, we
will define the time-based entropy summary function F which is a modified version of ES-function,
to automatically distinguish topological features from noise, and locate the periods of time where
the corresponding Vietoris-Rips complexes may be homotopic to a manifold.

In order to achieve this goal, our function will pair each moment t with a higher value when
the classes represented by the alive intervals in that time are topological features. Usually, this
happens when:

• The length of the alive intervals at the moment t are big and similar.

• Few intervals are alive at that moment.

• The period of time these intervals are the only ones alive is long.

ES-function S satisfies the first condition but not the others. In order to get the second
condition, we can obtain the "average contribution" to the persistent entropy, of each interval
in the persistence barcode, dividing S by the number of intervals alive at the moment t, Wa(t).
Besides, for the third condition we can weight these contributions multiplying S by the period of
time for which the set of alive intervals keep unchanged with respect to the moment t, Ta(t).
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Figure 5: Persistence barcodes of the Vietoris-Rips filtration (fist row) and NES-function on the
persistence barcodes (second row), all associated to the point clouds (without noise) showed in the
second row of Figure 4.

Figure 6: Persistence barcodes of the Vietoris-Rips filtration (first row) and NES-function on the
persistence barcodes (second row), all associated with the point clouds (with noise) showed in the
third row of Figure 4.

Definition 4.7 (Time-based entropy summary function (TES-function)). Consider a persistence
barcode A = {[xai , yai ]}

na
i=1 in BF . Time-based entropy summary function (TES-function) of A is

defined as:
F (A)[t] =

Ta(t)

Wa(t)
S(A)[t],

where Wa(t) =
∑na

i=1 w
a
i (t), and Ta(t) = max

{
s1 > 0 : |wai (t)− wai (t+ λs1)| = 0, ∀λ ∈ [0, 1]; ∀i =

1 . . . na
}
+max

{
s2 > 0 : |wai (t)−wai (t− λs2)| = 0, ∀λ ∈ [0, 1]; ∀i = 1 . . . na

}
is the period of time

during which the alive intervals in t persist.

Function A 7→ Ta is not continuous with respect to the bottleneck distance then F (A) is not
continuous neither. The main reason for this fact is that bottleneck distance ignores noise while F
is sensitive to it since it is designed with the purpose of detecting topological features.

We use now the circle S1 as a toy example to study the potential use of TES-function. In fact,
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Figure 7: 1-norm distance matrix of NES-function on the persistence barcodes associated to the
six point clouds showed in Figure 4. Observe that NES-function distinguishes the patterns but not
the sizes of the point clouds.

the circle S1 is a manifold whose Vietoris-Rips complexes exhibit a rich behavior. In [19], it is
proved that, if X is a dense subset of S1 and m ∈ Z∗ then

Rips(X, t) ' S2m+1 when
m

2m+ 1
< t ≤ m+ 1

2m+ 3
.

Finite samples are expected to approximate this result. We use TES-function associated to the
Vietoris-Rips complex of finite samples of the circle to verify it.

The methodology is as follows: Compute persistence barcodes, up to dimension 5, associated
to finite samples of points in the circle and then apply TES-function. For each sample of the circle,
take the intervals corresponding to the highest values of its TES-function as topological features,
ignoring the contractible case which is: β0 = 1, βi = 0 ∀i > 0.

In our experiments, we have tested TES-function on the persistence barcodes associated to nine
point clouds with 40 points. Two of these point clouds are shown in Figure 8. We have observed
that we always obtain the Betti numbers of the circle S1 as the main topological feature. Betti
numbers of S3 appears three times as the second most important, two times as the third, the
forth and the sixth; indicating they are topological features of the filtration independent of the
distribution of the points. The rest of the topological features depend on the distribution of the
points in the point cloud and consist of β0 > 1 or, occasionally, β2 = 1 and β0 = 1. Betti numbers
of S5 do not appear as important topological features since the point clouds are not dense enough
to generate it or it appears with a very short length.

Notice this method is an automatized process. It would be interesting to see how it responds
to extremal cases, for example, finding out the minimum number of points needed to recognize the
homology of the circle S1. In Figure 9 we show two examples of a new test with 9 point clouds
of 10 points each. In this case, five of them detect the homology of S1 as the main feature. In
two of the remaining ones, no cycle is created due to the point distribution. When the experiment
is done with 8 points, its persistent homology usually does not find any cycle and therefore the
process does not detect the homology of S1.

5 Conclusions and future work
We have proved the stability of persistent entropy justifying its application in topological data
analysis. What is more, we have used persistent entropy to define an stable summary function
called ES-function. We have constructed, from it, two new summary functions called NES-function
(to distinguish different patterns) and TES-function (to detect topological features).

The computations carried in the paper has been done using the package "TDA" for R (see
[13]), and Javaplex for Matlab (see [26]). Besides, the graphics have been generated using both,
Wolfram Mathematica and Matlab. The code used for generating the examples can be found in
http://grupo.us.es/cimagroup/.

As future work, a hypothetical stability result for NES- and TES-functions would have to be
developed. New experiments should be carried in order to get a deep insight of the properties of
the functions and their possible applications.
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1. β1 = 1, β0 = 1 (S1)

2. β3 = 1, β0 = 1 (S3)
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Point Cloud 2 Topological features 2

1. β1 = 1, β0 = 1 (S1)

2. β0 = 1

3. β0 = 1

4. β0 = 3

5. β0 = 2

6. β3 = 1, β0 = 1 (S3)
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Figure 8: On the left (row 1 and row 3), point clouds with 40 points each are displayed. On the
right (same rows), the topological features of their associated Vietoris-Rips filtrations are shown
in order of importance in accordance with the values of TES-function. In the first example, the
maximum value of TES-function 1, marked with the arrow one, max = 1.23306, is reached in
the period of time (0.51, 1.7) which corresponds to the time when there are two intervals of 0-th
(blue) and 1-th (red) dimensions in Persistence barcode 1. These two intervals are compatibles
with the homology of the circle S1 which appears in Topological features 1 in the first place.
The next bigger value, pointed by the arrow two, corresponds with the Betti numbers of S3. We
always discard the contractible case β0 = 1, βi = 0 for i > 0 as a topological feature.
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Point Cloud 2 Topological features 2

1. β1 = 1, β0 = 1 (S1)

2. β0 = 7

3. β0 = 5

4. β0 = 1

Persistence barcode 2 TES-function 2

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 9: In this case, contrary to Figure 8, the point clouds only have 10 points. If the points
appear forming clusters, the TES function may consider them more important than the fact of
being contained in a circle.
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