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Abstract 

This paper addresses the use of machine learning and techniques of interpretable machine 
learning to improve quality in manufacturing processes. It proposes analysis methods on top of 
SHAP values to elicit useful insights from machine learning models. These methods constitute 
novel importance measures that support quality engineers in the analysis of production errors. We 
illustrate and test the proposed methods on synthetic as well as on real-world data from a German 
manufacturer. 

1 Introduction 
Recent advancements in machine learning have created increased interest in leveraging the 
potential of this technology in a range of application domains. Within this paper we address the 
application of machine learning to quality engineering in manufacturing. Here, the goal is to 
leverage machine learning for identifying and reducing causes of production errors. Like in other 
applications, the black-box nature of many machine learning approaches poses challenges to the 
applicability. This creates the need for methods to explain machine learning models. Specifically, 
there are two prevalent reasons for explaining machine learning models in quality management 
for manufacturing. One is to gain trust in the model decisions. The other is to leverage insights of 
the model to drive human data analysis. That is, quality engineers want to be pointed to factors or 
combination of factors that help to understand and reduce production errors. In this paper we 
explore existing and new methods of explainable machine learning to address this need. 

Recently, a range of methods have been proposed that are intended to make black-box machine 
learning models explainable (see e.g. Gilpin et al. [1] or Molnar [2] for an overview). Among the 
existing methods are several means to assess feature importance, i.e. means to quantify how 
important a feature is for the decision making of a given model. Feature importance can be used 
as guidance for humans about where they should focus their analysis of the data. However, the 
question is, what importance measures provide useful guidance. In this paper we argue that 
existing importance measures are not ideal for the application in manufacturing quality 
management. We also propose a range of new importance measures and test them on synthetic 
data as well as on real-world data from a German manufacturer. 

The remainder of the paper is structured as follows. Section 2 presents the use case that motivates 
our work. Section 3 introduces our concept for identifying important features and defines 
corresponding measures. In Section 4 we evaluate the proposed importance measure on real-
world data form a German manufacturer (SICK AG). In Section 5 we review related work. Section 
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2 Motivating use case 
The methods proposed in this paper may be of general applicability, but are mainly motivated by 
the use case of quality engineering in manufacturing. Specifically, we draw the requirements from 
the PREFERML research project [3] and the participating manufacturing company SICK AG. The 
task of quality engineers is ensuring high product quality while keeping the production cost low. 
Therefore, they strive to identify and eliminate root causes of production errors. All products 
undergo rigid tests not only when they are finished. The final checks ensure that only high-quality 
products are shipped to the costumers. However, it is desirable for the manufacturer to sort out 
faulty products early in the production process and to avoid allocation of resources to later 
discarded products. Therefore, additional quality checks are conducted after each production step 
throughout the production line. Each checkpoint records a range of measurements and sorts out 
products that do not satisfy predefined criteria. The recorded data points are also the source for 
investigating error causes. For instance, a quality engineer might realize that products that show 
a value greater than X for property Y in production step A, have an increased chance of failing 
when checked in production step E. This insight might result in adjustments of check in step A to 
filter out such products early.  

However, the data pool for investigation is very large. The manufacturer in the PEFERML research 
project takes several thousands of measurements for each product. For humans – who arguably 
struggle to comprehend more than 3 dimensions at a time – it is a very challenging task to find 
relevant relations in such a large pool of data. It is therefore desirable to have support from an 
artificial intelligence or machine learning system. The methods that we propose in this paper 
provide means to leverage machine learning for guiding the work of quality engineers.  

3 Finding Important Features for Quality Engineers with SHAP 
The goal is to point quality engineers to interesting measurements (features) in the quality test 
data. We consider a feature interesting in the target context, if it provides actionable insights for 
quality engineers to adapt thresholds in the current quality checks. Hence a feature is interesting 
if it (a) enables a simple rule for predicting errors and (b) the prediction with that rule is of sufficient 
quality to reduce production cost. 

3.1 Shapley Additive Explanations 
In our work we leverage local explanations and specifically SHAP values [4] to reason about 
feature importance. Local explanations address feature importance for individual data points. This 
is in contrast to global importance measures that capture the general (e.g. average) importance 
of a feature. Local explanations have the advantage that they can reveal if features are sometimes 
(possibly only a few times) of great importance. The contribution of such features may be hidden 
in global importance measures that aim to quantify an average importance. However, a feature 
that is very important a few times can be of major interest for quality management. This is because 
the interesting situations (predictable errors) are rare in a production process that has been 
optimized for years. Hence, a feature may be most of the time not important (e.g. because the 
value is in a good range) and very predictive in few cases (e.g. if the value is outside a good 
range). This feature is only helpful in very few but interesting cases. Also, this feature may yield a 
very helpful insight, e.g. that the values must be in a specific range (where they usually but not 
always are). With our methods we aim to identify such features. 

The proposed feature importance metrics are not global or local in the classical sense. The 
identified features are important in the sense that they allow for good and simple predictions for 



some regions. Another way to think about this is that we are looking for surrogate models in 
regions were the model works very well (and hence the phenomenon of interest is well 
predictable). 

3.2 Illustrative Example for using SHAP values for Quality Management 
SHAP values provide insights into predictions for individual data points. For a given data set this 
results in a set of explanations. Analyzing this set of explanations can yield additional insights into 
the workings of a model and the modelled phenomenon. Lundberg et al. [5] proposed and 
implemented some analysis on top of SHAP values and SHAP interaction values. These include 
clustering of explanations and visualization of interactions. 

This chapter introduces additional methods for analyzing SHAP values and SHAP interaction 
values. In contrast to existing methods for analysis, the proposed methods do not aim at providing 
a holistic understanding of the analyzed model or phenomenon. Instead they aim at finding simple 
and good explanations for part of the analyzed phenomenon. This is motivated by the use case of 
quality engineering in manufacturing. It is not likely that all production errors can be well predicted 
based on quality logs. However, some errors may have a clear root cause that is reflected in the 
data. The proposed analysis methods should help quality engineers to find simple and high-quality 
rules to reduce certain errors. In other words, the aim is to elicit from the learned model if there 
are cases where simple and high-quality predictions can be made. 

The envisioned workflow is that quality engineers use the analysis methods to identify features 
and relations that may be of interest for them. In a second step they use the results of the analysis 
as guidance for visually inspecting the quality data. Based on the visualization and their domain 
knowledge they can then decide on actions for improving production quality. 

We argue that a feature or relation between features is of potential interest, if it enables (a) 
prediction rules with high prediction quality and (b) the respective rules are simple enough for 
human comprehension as well as for taking corresponding action (e.g. adjusting a threshold in a 
quality check). In the motivating use case, prediction quality is high enough, if the ratio between 
true positives TP and false positives FP is high enough. That is, TP/FP must be bigger than the 
cost of a false positive divided by the savings for a true positive. (We do not care about false and 
true negatives, because they do not result in costs or savings compared to the as-is process.) 

We further argue that the support for the rule is less important. Errors are rare in highly optimized 
production lines and any prediction rule will likely have low support. It is more important to identify 
strong effects, because they enable clear actions. A weak but more common effect can yield a 
rule with good support, but is more difficult to exploit in the production process. 

The core ideas behind the proposed analysis methods follow from the arguments above. That is, 
to sacrifice support in favor of confidence and simplicity. This is in contrast to established feature 
importance measures, which aim at finding features that are overall most important (e.g. important 
on average). We are looking for features and relations that are very important, but possibly only 
in a few cases. For the sake of illustration consider the subsequent simplified case:  

Assume a fictional manufacturer that has produced 10000 product items. An intermediate quality 
test measures the features A and B. Both features turn out to be uniformly distributed between 0 
and 1. There are relations that exist between the features and production errors: (1) Products with 
feature value A below 0.8 have roughly a 20 percent chance of failing the final quality check. (2) 
Products with feature value B above 0.99 have roughly a 98 percent chance of failing the test. 
Overall, about 16% of the sample data reflect faulty products. 



To support the quality engineer, we aim to identify the feature that yields the most useful insights. 
We therefore train a machine learning model on the quality test data and analyze the feature 
importance. The feature importance score should point the quality engineer to the most useful 
feature. For illustration, we build a tree model (see Figure 1) and compute the typical feature 
importance scores (see Table 1). We used the Python XGBoost library to build the tree. For the 
sake of simplicity and illustration, we limited the number of trees to one. Hence, Figure 1 illustrates 
the first decision tree in the model1.  

 

Figure 1. The first tree in the sample case model (using XGBoost) 

 

Table 1. Established feature importance measures for the model in fig.1 

Importance Measure Score for feature A Score for feature B 
Gain 16.119608 7.564618 
Cover 946.390676 676.451196 
Weight 263 258 
Total Gain 4239.456775 1951.671417 
Total Cover 248900.747835 174524.408458 
Gini-importance 0.680605 0.319395 
Average SHAP values 0.866374 0.029806 

 

Table 1 shows the values of typical2 used feature importance measures for the presented sample 
model. Note that the typical feature importance measures all consider feature A as most important. 
However, feature A is of little use in the targeted application domain. Through investigating feature 
A, the quality engineer can build a rule of the form “IF feature A < 0.8 THEN ERROR”. However, 
this rule is not of practical use. Sorting out products with a predicted error would remove 80% of 
the products. Also, 80% of the discarded products have no error (i.e. are false positives). In 
contrast, an analysis of feature B would result in a prediction rule of the form “IF feature B > 0.99 
THEN ERROR”. This rule affects a reasonable number of products and is almost always correct. 
It therefore enables a useful adjustment of the production process. 

                                                 
1 Positive values in the leave nodes correspond to the prediction of an error an negative values to the 
prediction of no error 
2 We include average SHAP values despite their relative novelty, to contrast this aggregate measure with 
our proposed methods. 



Note that the typical feature importance measures fail to rank the features as desired. Table 2 
shows the results from the measures that we introduce in this paper. They all correctly rank feature 
B first. The specifics of each importance measure follow in the corresponding subsections below. 

 

Table 2. Proposed importance measures for the model in fig.1 

Importance Measure Score for feature A Score for feature B 
Max SHAP 0.705525 7.591009 
Range SHAP 6.420452 8.724322 
Smoothed Range SHAP 61.053000 65.920289 
Top-K SHAP (with k=10) -19.984684 75.860939 
Max Main Effect 0.667381 4.482486 

 

3.3 Concept for Feature Importance measures on top of SHAP values 
In this section we introduce a range of importance measure on top of SHAP values. All these 
importance measures leverage the local importance measures provided by SHAP values, to 
identify “locally interesting” features. By “locally interesting” we refer to features that yield good 
explanations for errors in at least some cases. This is in contrast to measures that identify features 
that are frequently or on average important. 

Top Importance for Top-K Predictions 

The idea behind the analysis of top-k predictions is to zoom in on the most relevant cases. We 
define top-k by ranking the predictions according to their confidence. In the target application we 
only care about predicting errors. Hence, we only look at error predictions with high confidence. 
There are several model specific ways for determining the confidence. Here we use a broad notion 
of confidence, which does not necessarily imply quantifiable confidence intervals. For instance, 
we use the SHAP values in our analysis to determine the top-k instances. We then average the 
local feature specific SHAP values for each of the top-k predictions. Leaning on the notation from 
Lundberg and Lee [4] and assuming that a high SHAP value refers to the error class, the 
importance measure is defined as follows3: 

Top-K 𝑓,𝐷
1
𝑘

𝜙 𝑓, 𝑥
∈ | | ∈ | |

 

Here, f is the model function and D the data sets for evaluating the feature importance, i the feature 
to score, and 𝜙 𝑓, 𝑥  the SHAP value of feature i for model f and data point x. The intuition behind 
this measure is the following: In the target application we look for predictions with high confidence 
only. Hence, we only care about features that play a role in the predictions with high confidence. 
We then aggregate the local SHAP values for the most relevant predictions. An assumption behind 
this approach is that the top-k predictions are similar from the perspective of the model. That is, 
they yield predictions with high confidence for similar reasons. This may not always hold true, 
especially for larger k. Hence, a natural extension of this measure is to consider clusters within 
the top predictions.  

 

                                                 
3 For the sake of simplicity we assume a total ordering of prediction scores. 



Max SHAP 

The idea behind Max SHAP is to look for features that can have a high contribution to the outcome. 
It is simply defined as the maximum SHAP value for a given feature in data set: 

Max SHAP 𝑓,𝐷 max 𝜙 𝑓, 𝑥 |𝑥 ∈ 𝐷  

Here, we again assume that the outcome of interest is associated with high SHAP values. One 
may change the sign of the measure or substitute the maximum with a minimum function, if the 
opposite is the case. 

The intuition behind this measure is that it captures the highest effect that a feature can have. The 
rationale is that a feature with a high maximal contribution is in some cases of high interest. A 
weakness of this measure is that it is sensitive to outliners. We argue that confidence is much 
more important in the targeted application domain than support. However, isolated outliers can 
lead to undesirable results. One may therefore alter this importance measure by taking a certain 
quantile instead of the maximum value. 

Max Main Effect 

The idea behind Max Main Effect is to look for features that have the highest effects on their own. 
That is, we explicitly ignore the effect of feature interactions, which are otherwise included in the 
SHAP values. Leaning on Lundberg et al. [4], we define the measure as: 

Max Main Effect 𝑓,𝐷 max 𝜙 𝑓, 𝑥 ∑ 𝜙 , 𝑓, 𝑥 𝑥 ∈ 𝐷   

Here, 𝜙 ,  is the SHAP feature interaction as defined in [4], and with 𝜙 𝑓, 𝑥  we denote the 
dependency on the model f and the data set D.  

The intuition behind this measure is an enhancement of the Max SHAP measure. Again, we 
assume that the outcome of interest is associated with high SHAP values. One may change the 
foresign of the measure or substitute the maximum with a minimum function, if the opposite is the 
case. The maximal SHAP value of a feature may be heavily dependent on the interaction of 
features. In this case, the high contribution of the feature cannot be assessed in isolation. With 
the Max Main Effect measure we aim at identifying features, which have a high contribution 
regardless of the other features. This is appealing in the targeted use case, because such features 
support simple decision rules and visual analysis with only one dimension. 

Range SHAP 

The idea behind Range SHAP is to look for features that have a strong impact on the outcome 
over their value range. Unlike Max SHAP, it considers also negative SHAP values. That it takes 
into account, if certain value ranges of the feature are an indication for no error. (Again, we assume 
that the outcome of interest is associated with high SHAP values.) We define the measure as 
follows: 

Range SHAP 𝑓,𝐷 max 𝜙 𝑓, 𝑥 |𝑥 ∈ 𝐷 min 𝜙 𝑓, 𝑥 |𝑥 ∈ 𝐷  

The intuition behind this measure is to look for features that can have a strong impact on the model 
output in either direction. By looking at the range, we capture the strongest local effects. That is, 
the score is high if the feature contribution varies strongly between some cases. 

 



Smoothed Range SHAP 

The idea behind Smoothed Range SHAP is to suppress variance for data points with the same 
feature value. Due to feature interaction, the same feature value may correspond to different 
SHAP values. Smoothed Range SHAP averages over a sliding window to suppress variation for 
the similar feature values. Using the formula for moving average the measure is defined as follows: 

 

Smoothed Range SHAP 𝑓,𝐷

𝑚𝑎𝑥
1
𝑊∑ 𝜙 𝑓, 𝑥

𝑊 1
2 𝑚 |𝐷| 𝑊 1

2

𝑚𝑖𝑛
1
𝑊∑ 𝜙 𝑓, 𝑥

𝑊 1
2 𝑚 |𝐷| 𝑊 1

2  

Here we assume that the data set D is sorted by x and xi is the i-th position. 

The intuition behind this measure is an enhancement of Range SHAP. If a feature interacts 
strongly with other features, the SHAP values may have a high variance for the same or similar 
feature values. However, it is more interesting for the target application to find changes in the 
model output, which correspond to different feature values. Such changes are more helpful for 
identifying simple prediction rules and are therefore emphasized by this importance measure. 

4 Evaluation 
To evaluate the proposed importance measures with real-world data, we analyzed quality logs 
from the German manufacturer SICK AG. Note that we omit some details in the data description 
that are of minor importance for the evaluation. This is to protect internal information of the 
manufacturer. The analyzed data cover a time span of roughly one year, and contain records 
about several ten thousand products of a specific type. 

Specifically, we analyzed the test data from a production step A and the outcome of tests from the 
subsequent step B. We trained a model (i.e. XGBoost classifier) on 34% of the quality test data 
from step A, with the aim to predict errors in step B. In other words, we aim to predict if a product 
that passes the tests in step A will fail the tests in step B. If certain tests in A allow for a good 
prediction of errors in B, one may adjust the tests in step A to filter out corresponding products. 
One thereby saves the cost of performing step B on products that are going to fail the subsequent 
quality check. 

For model training we considered roughly 100 test parameters from step A as features and the 
test results from the subsequent step B as label. The test results can have a range of outcomes. 
That is, a test can be passed, or failed for various reasons. For the sake of simplicity, we reduced 
the label to the binary outcome “passed” or “failed”. 

Within this setup we analyzed the trained model with regards to feature importance. We tested 
the established and new introduced measures listed in Section 3. The introduced measures 
require data instances and the model as input. Here we used the training data. We used the 
XGBoost library for the implementation of the model4 and the established importance measures.   
To implement the new proposed measures, we set up on top of the SHAP library for computing 

                                                 
4 We used default parameters, with exception of scale_pos_weight. This parameter as adjusted to reflect 
the cost structure for false positives and true positives in the manufacturing line. 



SHAP values and SHAP interaction values. The parameters K and W for our measures were set 
to K=10 (i.e. the top-10 predictions) and W=50	(i.e. a smoothing window of 50 values). 

The analysis results in a ranked list of features for each tested importance measure. Table 3 
shows the top 10 results for established measures and Table 4 depicts the top 10 results for the 
new introduced methods. Feature names are obfuscated to protect internal information of the 
manufacturer. In both tables we highlight feature Dfleft_col_1593 and Dfleft_col_379. We argue 
that - amongst the listed features - these two features are of most interest in the targeted 
application domain. Hence, we expect that an effective importance measure ranks these features 
high. 

Figure 2 and Figure 4 provide the details for our argument about the importance of Dfleft_col_1593 
and Dfleft_col_379. The figures show the distribution of feature values as histogram. The Y-axes 
displays the frequency of feature values and have logarithmic scale. The X-axis is scaled to cover 
the whole value range. We omitted axis labels to protect internal information of the manufacturer. 
The shading of the bars encode the percentage of errors (faulty product) in the respective bar 
(white 0% and black 100% errors). We show all features that are among the top three features of 
any tested importance measure. 

Table 3: Features ranked by established importance measures 

Average SHAP  Cover  Gain  Total Gain  Weight 

Dfleft_id  Dfleft_col_1125  Dfleft_col_1125  Dfleft_id  Dfleft_id 

Dfleft_col_832  Dfleft_col_832  Dfleft_col_832  Dfleft_col_1593  Dfleft_col_357 

Dfleft_col_705  Dfleft_col_708  Dfleft_col_711  Dfleft_col_738  Dfleft_col_1593 

Dfleft_col_1593  Dfleft_col_705  Dfleft_col_366  Dfleft_col_1125  Dfleft_col_379 

Dfleft_col_1126  Dfleft_col_711  Dfleft_col_1593  Dfleft_col_832  Dfleft_col_1322 

Dfleft_col_932  Dfleft_col_366  Dfleft_col_733  Dfleft_col_357  Dfleft_col_738 

Dfleft_col_738  Dfleft_col_751  Dfleft_col_745  Dfleft_col_1214  Dfleft_col_1214 

Dfleft_col_1566  Dfleft_col_725  Dfleft_id  Dfleft_col_711  Dfleft_col_1267 

Dfleft_col_357  Dfleft_col_738  Dfleft_col_738  Dfleft_col_379  Dfleft_col_1266 

Dfleft_col_711  Dfleft_col_1126  Dfleft_col_1126  Dfleft_col_1126  Dfleft_col_1566 

 

Table 4: Features ranked by proposed importance measures 

Max Main Effect  Max SHAP  Range SHAP  Smoothed Range SHAP  Top‐K SHAP 

Dfleft_col_1593  Dfleft_col_379  Dfleft_id  Dfleft_id  Dfleft_col_1593 

Dfleft_col_379  Dfleft_col_1593  Dfleft_col_1593  Dfleft_col_1593  Dfleft_col_738 

Dfleft_id  Dfleft_id  Dfleft_col_379  Dfleft_col_379  Dfleft_id 

Dfleft_col_738  Dfleft_col_738  Dfleft_col_738  Dfleft_col_738  Dfleft_col_720 

Dfleft_col_703  Dfleft_col_932  Dfleft_col_832  Dfleft_col_832  Dfleft_col_1125 

Dfleft_col_708  Dfleft_col_1322  Dfleft_col_1322  Dfleft_col_1125  Dfleft_col_357 

Dfleft_col_1125  Dfleft_col_357  Dfleft_col_357  Dfleft_col_720  Dfleft_col_1214 

Dfleft_col_811  Dfleft_col_1214  Dfleft_col_703  Dfleft_col_1210  Dfleft_col_745 

Dfleft_col_1322  Dfleft_col_720  Dfleft_col_1214  Dfleft_col_1266  Dfleft_col_1126 

Dfleft_col_1214  Dfleft_col_703  Dfleft_col_932  Dfleft_col_1267  Dfleft_col_711 

 



As Figure 2 shows, the features Dfleft_col_1593 and Dfleft_col_379 have desirable properties for 
the targeted use case (however the error numbers that support this observation for Dfleft_col_379 
are rather small). For both features one can observe an interval with a low error rate. Outside this 
interval, the error rate is very high. This allows quality engineers to derive simple rules of the form 
“IF value > X or value < Y THEN ERROR”. For Dfeft_col_1593 and Dfleft_col_379 this rule would 
apply in few cases (remember the logarithmic scale) and – according to the training data – has 
high prediction quality. Several of the other identified features share this property of feature 
Dfleft_col_1593 and Dfleft_col_379. However, the corresponding relations are weaker. That is, 
the error rates outside the respective intervals are lower (lighter color in the figure) and/or the rules 
would apply to fewer instances. We therefore argue that the feature Dfeft_col_1593 and 
Dfleft_col_379 are most important and should be ranked high by the importance measures. Note 
that this is the case for the new introduced measures and in particular for Max Main Effect and 
Max SHAP 

 

Figure 2: Distribution of feature values for training data. (Y-axes with logarithmic scale, color coded error percentage, 
white=0%, black=100%). 

Furthermore, the features Dfleft_id and Dfleft_col_357 stick out. These features do not show a 
clear relation with errors in Figure 2. Figure 3 provides more details on these features. For Dfleft_id 
and Dfleft_col_357 it shows the SHAP values and feature values for each data point in the training 
data. The plots provide insights on why these features are considered important by some 
measures. For some data points the features have strong contributions to the model output. 
However, the variance of the contribution is high, in particular in regions with potential high impact. 
(This can be seen in the vertical arrangement of points below or above point with high 
contribution). The figure implies that these features have strong interactions with other features 
and do not enable good explanations on their own. Thus, the features are not useful for simple 
prediction rules that consider only one value. It may be interesting to further investigate the feature 
interaction in search for slightly more complex relations (e.g. comprising two or three features). 
However, this is beyond the scope of this paper and subject to future work. 

As a side note, the feature Dfleft_id is an identifier value that roughly resembles a counter. This 
feature is obviously not useful or general predictions and a domain expert would discard it for 
prediction models. However, it can be useful to analyze data in retrospect. The fact that this feature 
has an impact in the model hints at production problems in certain time frames. This insight can 
be helpful for quality engineers. 



 

Figure 3: SHAP values for Dfleft_id and Dfleft_col_357 

For our analysis we split the data into training and test data. However, the evaluation on the 
training data may be more meaningful in the targeted use case. This is because the main goal is 
not to build a general prediction model, but to point quality engineers to interesting phenomena in 
the data (possibly only in retrospect). In this case the human can judge the validity of the findings 
based on domain knowledge and validation through a separate test set may be of less importance. 
(See [2] for a more detailed discussion of using test sets or training sets for evaluating approaches 
of interpretable machine learning). In our test case, the insight from the model would have been 
available after 34% of the analyzed period and before the test data is available. However, it is still 
interesting to see how derived rules would have played out on the test data (see Figure 4). Overall, 
we find that insights from the training set continue to be valid in the test set. Yet, the total frequency 
of errors decreased. This is not surprising, since the observed process is subject to continuous 
improvements by the quality engineers. 

 

Figure 4: Distribution of feature values for test data. (Y-axes with logarithmic scale, color coded error percentage, 
white=0%, black=100%). 

5 Related Work 
Recently there has be a strong increase of interest in works on interpretable machine learning5. 
Such works aim to address the opaqueness of many machine learning models and to provide 
human understandable explanations. (See [1] or [2] for an overview.) Works from this category 
are generally related to our work. However, we are not aware of any approach that is tailored to 
the specific needs of quality engineering in manufacturing. The existing works typically aim at 

                                                 
5 We use the term to refer to approaches of explainable ML as well, while acknowledging an ongoing debate 
on how to specify the difference between the terms. 



providing a holistic understanding of a model. In contrast, our work aims at electing specific 
insights from the model that are helpful for quality engineers. 

More specifically related to our work are works on feature importance. We can distinguish between 
global importance measures and – more recently introduced – local importance measures. Global 
importance measures like gain [6], or and similar measures for tree models (e.g. as implemented 
in [7]) are well established. They are some form of aggregate that aim at capturing the typical (e.g. 
average) importance of a feature. This type of aggregate conceals features that are only important 
in some rare cases. However, such rare cases can be of most interest in quality management for 
manufacturing. 

Local importance measures such as LIME [8] and SHAP [4] explain feature importance for 
individual data points. This is useful for understanding specific predictions. However, they require 
additional analysis to gain insights beyond the scope of single data points. Closely related to our 
work is the work of Lundberg et al. [5], who address visualizations on top of SHAP values. Such 
visualizations are helpful for a detailed analysis. Yet, they show individual data points and leave 
the interpretation to the user. In contrast, our work points quality engineers to features of interest. 
Lundberg et al. [5] also use mean SHAP values as global importance measure. This is related to 
our work in the sense that it is an importance measure on top of SHAP values. However, the 
measure is not designed for the specific needs of our use case and – as our experiments show – 
it is less effective than our measures in this context. 

Cohen et al. leverage Shapley values in a feature selection mechanism [9]. Thereby they indirectly 
define feature importance on top of Shapley values, similar to [5]. However, they focus on 
maximizing the overall performance of classifiers. That is, like other global importance measures, 
they aim at capturing the typical importance of a feature. Therefore – unlike the measures that we 
propose – their analysis is not tailored to identifying features that are useful for quality engineers. 

6 Conclusion and Future Work 
In this paper we introduced feature importance measures that are tailored to the needs of quality 
engineers in manufacturing. They leverage SHAP values to identify locally important features. 
Along synthetic and real-world data we demonstrated the benefits of these measures. Our tests 
indicate that “Max Main Effect” and “Max SHAP” are most promising among the five introduced 
measures. In future work we plan to further investigate the strength and weaknesses of the 
proposed measures to derive recommendations about their application. 

One other direction of future work is expanding the concept to better leverage local information on 
feature interaction. In this paper we focus on strong effects that relate to a single feature. The 
rationale is that such effects can be easy illustrated and comprehended by humans. However, we 
intend to explore more complex effects that occur for certain combinations of feature values. Here, 
the analysis of SHAP interaction values is a natural extension to the concepts that we introduce 
in this paper. 

Another direction of future work is to build regional models on top of the identified relevant features. 
The goal is to make some interesting phenomena understandable that the model picked up on. 
That is, beyond identifying interesting features, we aim to directly provide interesting explanations. 
Again, in this context we mean by interesting that the explanation is simple and yields good 
prediction quality. We plan on expanding on the idea to build surrogate trees by (a) building trees 
only for regions and not as surrogate for the entire model, (b) building trees on a subset of features, 
and (c) training on the original data and not the model predictions. The rational is to produce local 



explanation of the real world and not the model (i.e. aiming to produce a simple model that works 
well in certain situations). 

Overall, we believe that the foundation laid by SHAP values provides many opportunities for 
eliciting relevant insights from a machine learning model. There is a big spectrum between global 
importance measures and data point specific feature contributions that provide rooms for insights 
on various levels of granularity. With the use case of quality engineering in manufacturing we 
provide an example for the benefits of such analysis. 
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