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Abstract—Discovery of natural laws through input-output data
analysis has been of considerable interest during the past decade.
Various approach among which the increasingly growing body
of sparsity-based algorithms have been recently proposed for the
purpose of free-form system identification. There has however
been limited discussion on the performance of these approaches
when applied on experimental datasets. The aim of this paper
is to study the capability of this technique for identifying the
heat equation as the natural law of heat distribution from
experimental data, obtained using a Totally-Enclosed-Fan-Cooled
(TEFC) induction machine, with and without active cooling. The
results confirm the usefulness of the algorithm as a method to
identify the underlying natural law in a physical system in the
form of a Partial Differential Equation (PDE).

Index Terms—sparse regression, data-driven discovery, sparse
group Lasso, heat equation

NOMENCLATURE

Temperature.

Time.

Axial coordinate.
Mass density.
Specific heat capacity.
Internal heat source.
Thermal conductivity.
Thermal diffusivity.
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I. INTRODUCTION

In spite of significant advances in automated techniques for
the purpose of data generation and data acquisition, automated
discovery of the underlying analytical physical laws of a
system is yet a challenging area in the field of system identifi-
cation. As part of a major advancement in 2009, application of
symbolic regression for determining the analytical laws behind
natural physical phenomena was examined [1]. The authors
adopted the ability of evolutionary computation to construct
the model based on a combination of several mathematical
building blocks such as constants, algebraic operators, state
variables and analytical functions. In this scheme, both the
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form and parameters of the model were a matter of search.
Experimental data captured from a chaotic double pendulum
was used to validate the approach. The method seems to be re-
liable and the identified laws are comprehensive. Nonetheless,
symbolic regression is expensive and thus the method fails to
scale well to big data sets.

A more recent approach by Brunton [2] proposes a sparsity
based method that extracts dynamical system models in the
form of ordinary differential equations (ODEs) from a pre-
defined set of trial functions. This set is characterized with
all candidate functions of the state variables that are possible
to structure the model. Subsequently, sparsity-promoting tech-
niques are applied to identify the relevant terms by solving the
optimization problem. During the last two years, this approach
has been improved to be used for identification of abrupt
changes in a nonlinear system [3], and to have better model
predictive control [4]. In addition, this technique has been
further extended to encompass Partial Differential Equations
(PDEs) [5] and [6]. To achieve this, time series measurements
in the spatial domain are required, then a small number of
spatially positioned points are used to compute the derivatives.
The difficulty of numerical differentiation for noisy data and
the decline of performance for highly correlated data are
among the main challenges of this identification technique,
although the latter challenge has been addressed recently in
[7], where the optimization problem is reformulated from least
absolute shrinkage and selection operator (Lasso) [8] to group
Lasso [9].

The sparse regression technique has been tested on various
sets of numerical data, including the chaotic Lorenz system
[2]. However, there has been little discussion on the perfor-
mance of this technique when applied on data obtained from
experiments. In this study, we use experimental data obtained
using a Totally-Enclosed-Fan-Cooled (TEFC) induction ma-
chine to evaluate the capability of this technique for identifying
the heat equation as the natural law of heat distribution.
Although identification of the coefficients of the heat equation
using conventional parameter identification methods has been
studied earlier [10] and [11], to the best of our knowledge, no
analysis has been conducted to drive the form of this equation
as the physical law of a system. Accordingly, using limited
experimental data points, we discover the heat equation as a



TABLE I
SPECIFICATIONS OF THE INDUCTION MACHINE

Number of pole pairs Ny, 2
Nominal power Py 5.5 kW
Nominal speed npn 1460 rpm

18.6/10.7 A/Y A
230/400 A/Y V

Nominal current
Nominal voltage Upn

Efficiency 7 89.6 %
Mutual inductance Ly, 146.7 mH
Stator inductance L g 153 mH
Rotor inductance L, 153.3 mH
Stator resistance Rg 0.625 Q2
Rotor resistance R, 0.469 Q2

PDE, by means of a modified version of the sparse regression
technique.

II. EXPERIMENTAL SETUP

The experimental setup consists of a TEFC squirrel-cage
induction machine with 4 poles and a 5.5 kW power rating,
connected directly to a 50 Hz / 400 V main grid (see Fig.
1). The motor runs in a no-load condition and has an external
cooling ventilator attached to its end, allowing to conduct the
experiments both with and without active cooling of the motor.
The specifications of the 5.5 kW induction machine are listed
in Table I.

Two experiments are conducted to collect temperature data
from the windings of the induction motor. For the first exper-
iment, both the motor and the cooling ventilator operate for
3.595 hours, such that the motor is actively cooled while it
runs in no-load condition. After 3.595 hours, both the motor
and the ventilator are shut off and the motor is allowed to cool
down without active cooling from that point onward. For the
second experiment, only the motor operates, running in no-
load condition without active cooling. After 6.61 hours, the
motor is shut off and is allowed to cool down naturally.

The temperature data is collected using 4 RTD temperature
sensors, embedded into the stator windings of the induction
motor. These sensors are of the type PT1000 class A, with
a specified tolerance ranging between 0.15 °C and 0.55 °C
for measurements between 0 °C and 200 °C, as specified
according to IEC 60751 [12]. Implementation of the sensors
necessitates dismantling of the motor, removal of the copper
windings and resin by oven heating and rewinding the stator
together with the temperature sensors. In this paper, sensors
at 4 locations within the stator winding have been chosen for
the measurement procedure, which is shown in Fig. 2. All
four sensors are located in the upper region of the motor,
with two of them implemented in the stator winding itself
(T2 and T3) and the other two in the end windings (T4 at the
drive side, T1 at the fan side). The axial distance between the
sensors is also depicted in Fig. 2. The radial position of all
sensors is approximately at the mid-position of the stator slot.
Furthermore, any difference in temperature due to the small
circumferential distance between the sensors is assumed to be
negligible because the setup is fully symmetric.

Fig. 1. Tllustration of the experimental setup: the blue 5.5 k€W test motor on
the right is connected directly to a 3-phase 400 V main grid and runs in a no-
load condition, while the motor on the left is not powered. The coated copper
wires coming out of the right motor are the lead wires of the temperature
sensors embedded in the windings of the machine (see Fig. 2 for sensor
locations).
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Fig. 2. Illustration of the four temperature sensor locations. Considering the
symmetry of the setup, the difference in temperature due to the circumferential
distance between the sensors is assumed to be negligible.

The relation between temperature and resistance of the
PT1000 sensor is known from the Callendar-Van Dusen equa-
tion [12]:

R(T)=Ry(1+A-T+B-T?
A=3.9083-10"3 ()
B=-5775-10""

where T denotes the temperature expressed in °C, R(T) is the
resistance of the RTD at temperature T with Ry = 1000 2



being the resistance at 0°C. The coefficients A and B in (1)
were determined from the IEC 60751 norm [12]. To measure
the resistance, we adopt the 4 wire measurement principle
[13]: one pair of wires acts as a low-impedance current source
while the other pair is used for a high-impedance measurement
of the voltage over the sensor, eliminating the error due to
heat-up of the lead wires.

Power supply, voltage measurement, signal amplification
and linearization of the relation between measured temperature
and output voltage are done in an analog fashion with an in-
house designed circuit board. The output voltage ranges from
0.5 V to 4.5 V, which corresponds to a measured temperature
of 0°C and 200°C respectively. Data acquisition is done
using a MicroLabBox system from dSPACE, with a Real-Time
Interface (RTI) acting as the link between the MicroLabBox
hardware and the programmable software in Matlab Simulink.
PC communication and data visualization are possible with
software ControlDesk 6.1. A 10 Hz low-pass filter and 50 Hz
bandstop filter are implemented digitally to suppress motor
and grid electromagnetic noise. The RTI samples the code at
1 milliseconds, while the output voltage is logged in intervals
of 5 seconds.

III. MODEL IDENTIFICATION METHODOLOGY

Given that the temperature measurement data, T, is a time
varying parameter available at specific fixed locations, the
underlying physical law governing the heat distribution can
be presented in form of a PDE. Here we explain the steps
taken to identify this PDE.

After reordering the experimental data from m locations at n
time samples as a column vector, T,,,, x1, both time and spatial
derivatives of the measurements are numerically calculated.
The governing dynamic PDE can then be presented as:

T, = f(z,T,7%, ..., T, TT,,T..,...) (2)

where T; denotes the time derivative and T,, T,, etc. denote
the derivatives of the temperature to the spatial coordinate z.
Subsequently, an over-determined matrix of linear and nonlin-
ear functions of the state T,,,,x1 and the spatial derivatives is
constructed, denoted as S:

|
|
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L
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in which each column represents a possible term for the model.
Although the architecture of this set is arbitrary, adopting
fundamental functions such as polynomials and trigonometric
functions is a common practice. In this regard, expert knowl-
edge and prior information about the system can help choose
the appropriate type of nonlinearity, e.g. in terms of relevant
orders of polynomials or derivatives.

Once the collection is built, expression (2) is simplified as
a linear PDE model [2]:

Ty = 5S¢ (4)

where ¢ is a corresponding regressor. Considering that only
a few functions in matrix S are likely to appear in the final
model, £,x1 is expected to be a sparse vector of coefficients.
In other words, most of the parameters in the collection will
have a zero weight and will not appear in the model.

As the level of correlation between the columns of matrix
S is high, many regression algorithms such as Lasso have
difficulties detecting the correct coefficients when finding the
solution to this over-determined linear system of equations [5].
Previous studies have proposed to deal with this problem by
replacing Lasso with ridge regression [5], or by reformulating
the optimization problem as group Lasso [7]. Group Lasso
[9] handles the problem by minimizing the number of active
groups of variables, where the variables inside each group are
either all zero or all non-zero, with no sparsity considered in
groups with non-zero parameters. In contrast, a sparse group
Lasso considers groups sparsity and individual feature sparsity
[14] and [15]. Correspondingly, we define our optimization
problem using the sparse group Lasso. Having the S matrix
broken down to G submatrices, £* is chosen such that it
minimizes:

2
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where S, is the submatrix of S with columns corresponding
to the terms in group g and &, is the coefficient vector of that
group. The coefficients A\; and Ao are the individual and group
sparsity regularization parameters, respectively. The higher
the values of A; and \g, the higher will be the number of
zero components in the solution matrix. Correspondingly, the
optimal value of these coefficients is found by balancing the
number of non-zero components in the solution matrix against
the accuracy of the final solution. The length of the groups is
chosen based on the assumption on the number of nonzero
terms of the solution &*. For instance if having two nonzero
terms is desired, the number of the groups would be =, each
consisting of two terms. Note that both matrices S, and T;
are normalized to have unit length, so that scaling differences
between groups do not affect the results of the algorithm. Once
the vector of the arguments of minima £* becomes available,
its nonzero components are summed to structure the PDE that
defines the underlying physical law.
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Fig. 3. Temperature profiles with active cooling of the motor windings. For
sensor locations, see Fig. 2.

IV. RESULTS AND DISCUSSION
A. Identification data

Figures 3 and 4 illustrate the two sets of temperature data
collected from the stator winding based on the experiments
explained in Section II. Figure 5 shows a zoom of the acquired
data in Fig. 4. By comparing Fig. 3 with Fig. 5, it can be
observed that the temperature difference between the four
sensors in the two sets is not significant. These two data
sets are used to assess the efficiency of the identification
methodology. We use the data prior to the shut off of the
motor: i.e. the data of approximately 3.5 hours of heating for
the forced cooling data set of Fig. 3 and 6.5 hours of heating
in Fig.4. The reason for this is that we want to identify the
internal heat source.

The rms phase current, Iphasems, Was measured during the
operation of the induction machine as being 4.8 A, from which
the Joule loss in one phase, Pcy iphase; can be deduced:

PCu,lphase = R; X Ipzhase,rms = 14.4W (6)

where Ry is the stator resistance given in Table 1. Therefore,
the Joule losses within one slot, Pcy 1401, can be calculated as:

P Cu,Iphase

=1.2W 7)
NSIOIS (

P Cu,lslot =

where Ny = 12 is the total number of slots per phase. As
the volume of one stator slot, V., has been estimated to be
equal to 2.576 - 10~° m3, the heat source per unit volume, g,
can be expressed as follows:

_ PCu, Islot

W
=4.658 - 10*— 8
‘/slot mS ( )

This heat source value is used as part of the analysis
in the next section to evaluate the accuracy of the model
identification results.
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Fig. 4. Temperature profiles with no active cooling of the motor windings.
For sensor locations, see Fig. 2.
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Fig. 5. Magnified temperature profiles with no active cooling of the motor
windings. For sensor locations, see Fig. 2.

B. Identification results

1) Identified coefficients: The search space is represented
by considering temperature vector T, x1 With m = 4 (sensor
locations) and n = 4500 samples in case of no active cooling
and 2500 samples in case of active motor cooling, up to the
second power, its derivatives up to the third order, as well
as the different possible combination of their multiplications.
A pseudo second order accurate scheme is used to handle
unequally spaced data obtained from the four sensors, for for
the numerical differentiation (e.g. calculation of T,) when
building the matrix S from (3). In order to solve (5), the
selected total number of groups (G) equals to 7 and the values
of A1 and )y are 10° and 10~2 respectively.

The identification yields two nonzero coefficients in the
model, namely one coefficient (c;) relating to the second order
derivative of T in the axial direction, and one constant term

(c2):
Tt = Cszz +c2 (9)
The coefficients obtained using the first data set (Fig. 3)

and second data set (Fig. 4), are presented in Table II showing
acceptable agreement to each other.



TABLE II
IDENTIFIED COEFFICIENTS
c1 (J/kg.K) c2 (J/kg.K)
First data set | 8.163 - 1075 | 1.59 - 1072
Second data set | 7.867 - 1075 | 1.63 - 10~2
TABLE III
WINDING MATERIAL PROPERTIES
Copper | Resin
Thermal conductivity k& (J/m.K) 385.2 0.85
Specific heat capacity c, (J/kg.K) 386 1700
Mass density p (kg/m?) 8890 1766
[ Packing factor [ 0.85 |

2) Comparison with theory: The heat equation is given by
the following PDE [16]:

pep T = V(EVT) + q (10)

Therefore, considering one dimensional heat transfer in the
axial direction, expression (10) can be rewritten as follows:

PCp PCp

As mentioned previously, the windings are embedded in
a resin matrix inside the stator slot. Therefore, the weighted
average of thermal properties of these elements is used
to check the validity of the coefficients. For example, the
weighted thermal conductivity is calculated using (12), where
PF denotes the packing factor. The estimated packing factor
as well as the properties, obtained from the literature, are
presented in Table III [17]. The same transformation with
packing factor can be applied on the other properties p and

Y

Cp.

k:PF'kCu+(1—PF)'kResi7L (12)

By substituting the known values of &, p, ¢, and g, expres-
sion (11) yields to the coefficients in Table I'V.

The heat equation formulated in (11) confirms the validity of
expression (9), meaning that the sparsity regression algorithm
has determined the physical law of heat distribution accurately.
Furthermore, coefficient values in Table IV agree with those
in Table II.

Comparing expressions (11) and (9), it can be noted that
the sparse-regression technique has estimated the thermal dif-
fusivity parameter in the axial direction, o, = k/pc,, through
coefficient c¢; (with values in Table II). This is particularly

TABLE IV
THEORETICAL COEFFICIENTS

c1 (J/kgK)
7.182 - 105

co (J/kg.K)
1.02 - 10~2

very beneficial because this parameter can be used to estimate
k in cases where c, and p are known.

One remarkable observation to emerge from the identifica-
tion comparison is the correlation between the PDEs obtained
from both forced cooled and not forced cooled data sets,
suggesting the ability of the sparse regression method to
recover the PDE of a system for varying boundary conditions.

V. CONCLUSION

In this work we investigated the possibility of identifying
physical laws in terms of PDEs using a sparse regression
technique based solely on input-output data analysis. Ac-
cordingly, we obtained the heat equation using a modified
version of the sparse regression scheme. The experimental
data consisted of temperature measurements collected from
experiments conducted with a TEFC induction machine, both
with and without active cooling. The results were consistent
using both the data sets, confirming the reliability of this
method when applied on experimental data. In addition, the
possibility to recover the PDE of the system for varying
boundary conditions was observed. Moreover, it was shown
that important thermal properties such as thermal conduc-
tivity can be estimated through the identified heat equation
coefficients. For future research, experimental investigations
with additional temperature measurements along the radial
direction within the induction machine can reveal the efficacy
of the method applied to more complex PDEs. Furthermore the
application of sparsity-based approaches on other experimental
data sets are recommended.
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