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Abstract: Nanostructured hydroxyapatite (HA) is a new class of biocompatible fillers which has been
recently utilized in bio hybrid materials by virtue of its excellent tissue bioactivity and biocompatibility.
However, the need for higher thermal stability, solubility, surface bioactivity, radiopacity, and
remineralization ability suggests a divalent cation substitution of HA for use in light curable dental
restorative composites. In this work, structural and optical properties of Sr-doped hydroxyapatite
were studied using first-principle calculations based on density functional theory (DFT). Next,
Sr-doped hydroxyapatite (HA) was prepared via a new ionic liquid-assisted hydrothermal (ILH) route.
Samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy
dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), transmission electron
microscopy (TEM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET) surface area
analysis, and cell viability. The obtained experimental data showed that the nucleation and crystal
growth process controlled by [BMIM]Br molecules results in uniform products with small and regular
particles and high specific surface areas. Finally, cytotoxicity tests showed that the as-prepared
Sr-doped HA nanoparticles have good biocompatibility (≥91%), confirming their potential for use in
photo-curable dental restorative composites.
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1. Introduction

Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is one of the most promising bioactive materials for the
production of artificial bone grafts and teeth joints with good osteoconductive and biocompatible
properties for biomedical applications [1–3]. In order to explore the effects of calcium substitution by
metals in synthetic HA, various works have already been published [4–7]. The substitution of divalent
cations, such as Sr for Ca, in the lattice structure of HA modifies its thermal stability, solubility, and
textural properties, as well as its surface reactivity. Moreover, these substitutions can also significantly
promote the biological response, radiopacity, and remineralization ability of pure HA for dental
restorative composite applications [8–12]. Several in vitro studies demonstrated that collagen type I
production and remineralization of caries lesions can be facilitated by the release of strontium from
dental composites [13,14].
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To synthesize hydroxyapatite nanostructures, several approaches have been reported, such as
chemical precipitation [15], microwave assisted synthesis [16,17], mechano-chemical synthesis [18],
micro-emulsion [19], and sol-gel [20]. Among these, the hydrothermal method has been considered as
one of the most favorable methods to prepare HA nanostructures due to the possibility of achieving
highly crystalline products, high efficiency, relatively simple and cost-effective synthesis, controllable
morphology, and a Ca/P ratio close to stoichiometric HA [21,22]. Furthermore, due to the potential
formation of nanostructures with tunable morphology, lower agglomeration, and higher surface area,
organic surface modifiers have been used in the synthesis of nanoparticles [23,24]. Ionic liquids (ILs) have
recently been widely employed in the preparation of inorganic materials with unique characteristics
because of their desirable chemical and physical properties, such as high ionic conductivity, high
polarity, and low toxicity [25–27]. Ionic liquids can function as either templating agents or for
capping/morphology-controlling. Thereby, they have the ability to control the nucleation and growth of
the nanostructures, thus inhibiting the aggregation of the resultant nanoparticles through electrostatic
interaction (due to their intrinsic charge), steric hindrance (by alkyl substituent), and electro-steric
stabilization (due to the amphiphilic structure of ILs) [28,29]. In recent years, modified hydro- and
solvo-thermal synthesis using ILs were applied to synthesize various inorganic materials [30–34].
The results have revealed that the presence of an ionic liquid as a co-solvent and capping agent
allows preparation of nanoparticles with desired physical and structural properties. To the best of our
knowledge, hardly any studies were devoted to IL-assisted hydrothermal preparation of Sr-doped
HA nanostructures. In this work, Sr-doped HA nanoparticles were successfully synthesized via an
IL-assisted hydrothermal method and the phase purity, microstructure, and biocompatibility of the
as-prepared products were comprehensively investigated. Moreover, for comparison, Sr-doped HA
was also synthesized via the conventional hydrothermal (CH) route (without IL-based capping agents).

2. Experimental Procedure

2.1. Materials Synthesis

Strontium nitrate (Sr(NO3)2), Calcium nitrate (Ca(NO3)2·4H2O), diammonium hydrogen
phosphate ((NH4)2HPO4), ionic liquid [BMIM]Br, and ammonium hydroxide (NH4OH) were purchased
from Sigma-Aldrich and used without further purification. The HA nanoparticles were synthesized
by an IL-assisted hydrothermal method. Ca(NO3)2·4H2O, with an appropriate amount of strontium
nitrate (Sr concentration: 5 mol%) and (NH4)2HPO4 were separately mixed with double distilled water
with a Ca/P ratio of 1.67. In the calcium containing solution, 1.5 mmol [BMIM]Br ionic liquid was
added as a capping agent. A NH4OH solution was added gradually to the phosphate solution to
adjust the pH level to 8. After continuous stirring for 10 min, the obtained solution was transferred to
a Teflon container autoclave, placed in the furnace, and heated for 12 h at 180 ◦C. Finally, the obtained
precipitates were washed and dried at 80 ◦C and further calcined at 600 ◦C for 2 h in air.

2.2. Models and Computational Details

All calculations were performed based on first-principles DFT using the Cambridge Serial Total
Energy Package (CASTEP), as implemented in Materials Studio [35]. The exchange-correlation
interactions are treated at the generalized gradient approximation (GGA) level, employing the
Perdew–Burke–Ernzerhof (PBE) functional [36]. The Ca 3s2 3p6 4s2 electrons, P 5d2 6s2 electrons,
O 2s2 2p4 electrons, H 1s1 electrons, and Sr 4s24p65s2 electrons were treated as valence electrons. In this
study, a unit cell modification suggested by Mostafa et al. [37] was employed for HA. Brillouin-zone
integrations were performed using Monkhorst and Pack k-point meshes (3 × 4 × 4) to obtain the
accurate density of the electronic states [38–41]. The kinetic energy cutoff for wave function expansion
was 340 eV and the self-consistent field (SCF) tolerance was set at 10−6 eV/atom. The convergence
criterion of total force acting on each atom was considered as less than 0.01 eV/Å. The maximum
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displacement and stress were 10−4 nm and 0.02 GPa, respectively. The standard deviations were all
less than 1%, which can confirm the reliability of our calculations for both crystal structures.

2.3. Materials Characterization

All samples were characterized using Fourier transform infrared spectroscopy (FTIR, Perkin
Elmer Spectrometer, Waltham, MA, USA), X-ray diffraction (XRD, Inel, EQuniox 3000, Stratham,
NH, USA, with Cu Kα radiation, λ = 0.154 nm), scanning electron microscopy (SEM/EDS, Seron
Technologies AIS2100, Uiwang-si, Korea), transmission electron microscopy (TEM, Philips EM 208S,
Beaverton, OR, USA), and N2 physi-sorption (Micromeritics ASAP 2010, Norcross, GA, USA). Moreover,
for determining particle size distributions via dynamic light scattering (DLS), a Malvern Zetasizer
Nano S (Malvern, UK) was used. Powders were dispersed in ethanol and sonicated for 20 min prior to
the latter measurement.

2.4. Cell Viability Measurements

To evaluate the cytotoxicity of the as-synthesized sample, a breast cancer cell line (MCF-7) was
used according to our previous work and the ISO 10993-5 protocol [42,43]. The MTT assay was used
to determine the proliferation rate of the MCF-7 cells in the presence of extract powder. The powder
suspension containing 0.1 g of powder was placed in 1 mL of culture medium and kept at 37 ◦C for
predetermined time intervals. After 3, 7, and 14 days, the media were collected for use in a cellular
test. The cells were cultured in RPMI with 10% (v/v) fetal bovine serum (FBS-serum, Gibco, Germany)
100 U·mL−1 penicillin and 100 µg·mL−1 streptomycin and then incubated at 37 ◦C in a humidified
atmosphere in the presence of 5% CO2. The cells were cultured into a 96-well microtiter plate (Nunc,
Denmark) at a density of 1 × 104 cells/well. After 24 h, the culture medium in each well was removed
and replaced by 90 µL extract powder plus 10 µL FBS. The medium was removed after 24 h and
then 100 µL of 0.5 mg·mL−1 MTT (Sigma, USA) solution was added into each well. The cells were
incubated for 4–5 h at 37 ◦C. The blue dark formazan crystals were observed and then dissolved by
adding 100 µL of isopropanol (Sigma, USA) per well. The plate was incubated for 20 min before
absorbance measurement.

3. Results and Discussion

The hexagonal primitive cell of doped and pure HA and the XRD patterns of the as-prepared
Sr-doped HA samples synthesized via conventional and IL-assisted hydrothermal methods are shown
in Figure 1. The results confirm the formation of the HA phase and all the diffraction lines correspond
to the hexagonal structure of HA, according to the JCPDS card 09-0432. The hexagonal primitive cell of
HA consists of tightly bonded PO4 tetrahedral units, two types of Ca atoms, and OH groups (44 atoms
per unit cell with space group P63/m) [44].

Due to the non-physical duplication of each OH group by the m plane, the symmetry was reduced
to the P63 space group by removing two of the OH groups and placing the other two along the c-axis.
This modification changes the space group to P63 and has been used before in many theoretical studies
of HA [45,46]. The crystal structures of HA and Sr doped-HA with space group P63 are illustrated
in Figure 1a2, a3. Furthermore, the lattice constants of the as-prepared Sr-doped and pure HA are
calculated using XRD data and DFT calculations, listed in Table 1. The estimated lattice constants are
in good agreement with earlier reports [9,10,47]. As expected, the larger atomic radius of Sr, compared
to Ca, causes an increase in the lattice constants for the Sr doped-HA sample, compared to pure HA.
A close inspection reveals that all the peaks ascribed to HA shift to lower 2θ values for the Sr-doped HA
compound. According to Vegard’s law, if the lattice parameter increases in the presence of a dopant,
then Sr ions enters the lattice of HA and cause lattice expansion. In other words, the large radius Sr ions
(i.e., larger than that of Ca ions) can be the substitutes for Ca ions, resulting in the lattice distortion [48].
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Figure 1. (a) Hexagonal primitive cell of HA and Sr-doped HA and (b) XRD patterns of the
as-synthesized products.

Table 1. Experimental and computational calculated unit cell parameters of the as-prepared products.

Calculated Data
Cell Parameters

a = b (Å) c (Å)

Sr-doped HA (IL-assisted HT) 9.5704 6.9980

Sr-doped HA (Conventional HT) 9.5812 7.0502

Pure HA (IL-assisted HT) 9.402 6.850

Sr-doped HA (Computational method) 9.6590 7.1521

Pure HA (Computational method) 9.6893 6.9762

To further study the underline physics of the elemental substitution, the density of states (DOS)
for Sr-HA were calculated. As presented in Figure 2a, the top of the valence band ranging from
−8 eV to 0 eV is almost exclusively contributed by oxygen p orbitals, while calcium d states are main
constituents of conduction band. Due to substitution of Ca ions with Sr, the profile and peak intensity
of the conduction band is slightly changed due to difference between the d state energy of calcium
and strontium.

The optical properties of the fillers used in light-curable dental composites is considered as
a primary factor affecting curing depth, which is proportional to the physical properties and longevity
of restorations. To investigate the optical characteristics of Sr-HA under illumination, we computed
the energy-loss spectra by converting the computed complex dielectric functions [49–51].

Accordingly, the energy loss function depicted in Figure 2b shows that doped apatites have
a strong plasma frequency peak at approximately 18 eV. However, weak energy loss in the range of
355–415 nm (∼3–3.5 eV) specifies that these fillers can provide an increased curing depth when they
are used in a UV-LED cured dental composite.

Moreover, powders obtained via the IL-assisted approach show a relatively higher crystallinity
compared to the other synthesis method. Materials with higher crystallinity (fewer crystal defects)
result in lower photon absorption in the UV-Vis region, which is an important parameter for light curable
dental composites, leading to effective absorption of photo-initiators. The average crystallite size of the
products was estimated using the Scherrer formula and applied to the main XRD peaks [52–54], which
reveals that the sample obtained via the ILH route (about 35–42 nm) has a lower average crystallite
size compared to the sample prepared using the CH method (about 68–75 nm), which is caused via the
role of IL in controlling the growth process.

The morphology and microstructure of the as-synthesized products were characterized using SEM
(as shown in Figure 3). The IL-derived product consists of uniform spherically shaped particles with
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sizes ranging from 100 to 200 nm. The metal atom coordination and surrounding of the particles with IL
molecules as chelating and surface-passivating ligands cause the homogenous metal distribution and
kinetic control of the particle growth. This leads to homogenous primary micro-particles and a narrow
size distribution, without significant agglomeration after the calcination process. This in turn results in
a high surface area (about 51.3 m2

·g−1), which is consistent with the Brunauer–Emmett–Teller (BET)
analysis with a type IV adsorption classification (presented in Figure 4). The significant surface area
(about 50 m2/g) closely corresponds to the estimated small crystallite size of 30–40 nm, as determined
from XRD. This is easily calculated from the relation between non-porous particle size (assumed
spherical) and surface area, as follows: A (in m2/g) = 6000/(ρD), with ρ as the material density in g/cm3

and D as the particle diameter in nm. This immediately leads to the conclusion that the particles,
as observed in SEM consist, of loose aggregates of a small number of non-porous crystallites.
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In contrast, the sample prepared without IL shows irregular morphology with higher particle size
(100–350 nm, as seen in Figure 3a) and massive agglomeration, leading to a lower surface area (about
37.1 m2

·g−1).
Based on the above observations, it can be concluded that the addition of [BMIM]Br plays a key role

in the formation of the smaller and regular spherical nanoparticles of HA powders with mesoporous
structures. Accordingly, the main cations [BMIM]+ can serve as capping agents and adsorb on different
faces of crystals to reduce the surface energy of the polar planes, resulting in low-dimensional particles
with a well-defined morphology. Moreover, the [BMIM]Br mainly acts as a crystal growth modifier,
hereby controlling the ion diffusivity of the solution and the growth rate on different crystal surface
planes, leading to the isotropic growth of nanoparticles with a uniform spherical shape (Figure 5b).
Furthermore, the reaction was found to occur rather fast in a solvent with [BMIM]Br and the driving
force would be pretty high due to the low interface tensions of the ionic liquid, thus resulting in higher
nucleation rates and the formation of smaller nanoparticles [25,26,30]. The relatively larger surface area
and the mesoporous architecture of the prepared sample via the ILH method can provide more active
sites for adsorption and interaction of surrounding molecules, reinforcing obtained dental composites
more effectively.

According to the DLS measurements (Figure 5c), the average hydrodynamic particle size for
IL-assisted hydrothermal (ILH) and conventional HT-derived samples was estimated at about 47
and 89 nm, respectively. It clearly shows a narrow size distribution for the IL-assisted method in
comparison with the other preparation method. Moreover, the average hydrodynamic size of the
nanoparticles measured by DLS is consistent with the TEM results. Bimodal size distributions were
observed for the conventional hydrothermal-prepared sample, whereby the higher particle-size peak
corresponds to clusters and the aggregation of smaller particles. Again, the presence of IL during the
synthesis is important to achieve well dispersed nanoparticles and allows for the kinetically controlled
growth of crystal faces of nanocrystals.

The FTIR spectrum (Figure 6a) showed the presence of OH, HPO4
2−, and PO4

3− absorption bands,
confirming the formation of HA obtained via the ILH method. Prominent peaks in the measured
range of 400–4000 cm−1 were assigned to the bending vibrations mode (470, 566, and 603 cm−1), the
non-degenerated symmetric stretching mode (961 cm−1), and the triply degenerated stretching mode
(1035–1091 cm−1) of the P-O bonds. The peaks at 632 and 3598 cm−1 correspond to the stretching
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vibration of OH− ions in the HA lattice, while the weak broad bands at 3300–3500 cm−1 and 1648 cm−1

are attributed to the adsorbed water [55–58].
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hydrothermal approach.

Moreover, EDS was performed and the results confirm the presence of all elements in the
ILH-obtained sample (Figure 6b)and the obtained Ca/P ratio was measured as 1.698, relatively close to
the stoichiometric Ca/P ratio expected for a pure HA phase (1.67).

Finally, the cytotoxicity of the ILH-prepared HA nanoparticles was also conducted using MTT
assay and the results are presented in Figure 7. There are no significant differences in the proliferation
rate of the cells in the presence of ILH derived HA powders compared to that of the control sample
and the cellular viabilities were estimated greater than 91%, even after 14 days. The cytotoxicity test
indicates that, without further surface modification, the as-synthesized Sr-doped HA nanoparticles
showing acceptable biocompatibility as well as a relatively high surface area, therefore, have a good
potential for use in UV-LED curable dental restorative composites.
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4. Conclusions

In this work, Sr-doped HA nanoparticles was synthesized via a modified hydrothermal route with
the assistance of [BMIM]Br ionic liquid and the resultant products were comprehensively characterized.
The computational study shows that Sr-doped HA possessed weak energy loss in the range of
355–415 nm (∼3–3.5 eV), which can provide an increased curing depth when it is used in a UV-LED
cured dental composite. According to experimental results, the as-synthesized product indicated
a significant surface area (about 50 m2/g) and an acceptable biocompatibility (greater than 91%).
Therefore, the as-prepared Sr-doped HA nanoparticles present good potential for using in UV-LED
curable dental restorative composites.
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