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Abstract

This study examines two contrasting explanations for early tendencies to fight and flee.

According to a stimulus-driven explanation, goal-incompatible stimuli that are easy/difficult

to control lead to the tendency to fight/flee. According to a goal-directed explanation, on the

other hand, the tendency to fight/flee occurs when the expected utility of fighting/fleeing is

the highest. Participants did a computer task in which they were confronted with goal-incom-

patible stimuli that were (a) easy to control and fighting had the highest expected utility, (b)

easy to control and fleeing had the highest expected utility, and (c) difficult to control and

fleeing and fighting had zero expected utility. After participants were trained to use one hand

to fight and another hand to flee, they either had to choose a response or merely observe

the stimuli. During the observation trials, single-pulse Transcranial Magnetic Stimulation

(TMS) was applied to the primary motor cortex 450 ms post-stimulus onset and motor-

evoked potentials (MEPs) were measured from the hand muscles. Results showed that par-

ticipants chose to fight/flee when the expected utility of fighting/fleeing was the highest, and

that they responded late when the expected utility of both responses was low. They also

showed larger MEPs for the right/left hand when the expected utility of fighting/fleeing was

the highest. This result can be interpreted as support for the goal-directed account, but only

if it is assumed that we were unable to override the presumed natural mapping between

hand (right/left) and response (fight/flight).
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Introduction

Many (aversive) emotional encounters are characterized by behaviors that qualify as fighting

(i.e., aggressive or offensive behavior) or fleeing (i.e., avoidant, defensive, or safety seeking

behavior), or at least by the tendencies to engage in these behaviors. A barking dog makes us

want to flee. A demeaning offense makes us want to fight. Many existing accounts of emotional

behavior follow a dual process logic. They explain this behavior by the interplay of stimulus-

driven and goal-directed processes, two types of processes that have been defined in terms of

the content of their mediating representations [1–3] (see Fig 1).

In a stimulus-driven process, a stimulus activates an association between the representation

of stimulus features (S) and the representation of a response (R). The latter representation can

also be called an action tendency. Stimulus features can range from more perceptual (e.g.,

loudness of noise) to more abstract ones, including ones that refer to the stimulus-person

interaction (e.g., goal in/compatibility of the stimulus). A common stimulus-driven hypothesis

is that stimuli that are evaluated as negative or goal-incompatible and difficult/easy to control

lead to the tendency to flee/fight [4]. This hypothesis stems from appraisal theories of emotion,

which hold that evaluation of a stimulus as goal-incompatible and difficult/easy to control by

the person leads to anger/fear [4–9], and that anger/fear is typically characterized by the ten-

dency to fight/flee [10–12]. As Ellsworth and Scherer ([4], p. 580) put it: “In the case of an

obstructive stimulus brought about by a conspecific aggressor or predator, the comparison

between the organism’s estimate of its own power and the agent’s perceived power is likely to

decide between anger and fear and thus between fight and flight.” This aligns with Keltner,

Gruenfeld, and Anderson’s ([13]; see also [14]) proposal that low power activates the behav-

ioral inhibition system (BIS), responsible for the tendency to avoid, whereas high power acti-

vates the behavioral approach system (BAS), responsible for the tendency to aggress.

Fig 1. Visual representation of the stimulus-driven (top left) and goal-directed mechanism (top right), and of the embedding of the goal-directed

mechanism in an action control cycle (bottom).

https://doi.org/10.1371/journal.pone.0217266.g001
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A goal-directed process, on the other hand, assesses the expected utility of one or more

action options in the current situation. This process is mediated by representations of the

expectancy that certain actions will lead to certain outcomes (R-O) and the values of these out-

comes (Ov) given a certain stimulus (S). The action option with the highest expected utility

(value x expectancy) activates its corresponding action tendency (R), and this action tendency

can be manifested in overt behavior [15]. The goal-directed process does not occur in a vac-

uum but is best embedded in a cycle [2–3], in which the detection of a discrepancy between a

stimulus (actual state) and a first goal (i.e., representation of a valued outcome) gives the impe-

tus to a second goal to reduce the discrepancy. If a discrepancy is detected, the organism strives

to reduce the discrepancy (i.e., a second goal), either by acting (i.e., assimilation), by choosing a

different first goal (i.e., accomodation), or by reinterpreting the stimulus (i.e., immunization)

[16]. The utility of acting and of specific action options determines whether an action will be

chosen and which one. The outcome of the action feeds back to the comparator where it con-

stitutes the stimulus input to the next cycle, and the cycle is repeated until the discrepancy is

resolved. To illustrate, if a person encounters an enemy who poses a discrepancy with her goal

for safety, this activates a second goal to reduce this discrepancy. If the person estimates that

fighting has a higher expectancy than fleeing to regain her safety, she will activate the tendency

to fight rather than to flee.

A sharp observer may note that the stimulus-driven and the goal-directed accounts of fight/

flight behavior present some overlap. Indeed, the evaluation of goal in/compatibility in the

stimulus-driven account corresponds to the evaluation of a/no discrepancy in the goal-

directed account. In addition, the evaluation of control in the stimulus-driven account corre-

sponds to the overall expectancy of the action options in a person’s repertoire. Despite this

overlap, however, both accounts are not redundant. The appraisal of a stimulus as easy/diffi-

cult to control refers to whether the overall expectancy of the action options is low/high but it

does not specify which specific action option has the highest expectancy. This means that there

are cases in which both processes predict the same action tendencies and cases in which they

predict different action tendencies. In typical cases in which control is low (e.g., a conflict in

which the person is weaker than the opponent), fleeing may be the optimal action, but there

may be situations in which this is not true. For instance, control can be so low that even fleeing

is impossible. Likewise, fighting may be the optimal action in a typical high-control situation,

but again, this may not always be true. For instance, a person may have high control in the

sense that she can flee but not fight.

Evidence for the stimulus-driven hypothesis that goal-incompatible stimuli that are easy/

difficult to control lead to the tendency to fight/flee comes from self-report studies. For

instance, Frijda, Kuipers, and ter Schure [17] reported a correlation between modifiability of a

stimulus and the tendency to go against someone. Evidence also comes from experimental

studies in which high-power individuals engaged more in aggressive behavior than low-power

individuals [13, 18–20]. There is also evidence against this hypothesis, however. Some studies

show that low control leads to more rather than less aggression [21–22]. Other studies show

that high social power leads to a higher degree of activity, regardless of whether this activity

was antisocial or prosocial [23].

These mixed results have led researchers to turn to two strategies: The first strategy is to

refine the factor of control, either by marking the distinction with other related factors (e.g.,

power, dominance, authority) or by splitting it into subtypes (stable vs. situational control,

control by oneself vs. anyone), and to argue that different factors or subtypes lead to different

action tendencies. The second strategy is to invoke moderators. One type of moderators are

other abstract stimulus features (i.e., appraisal factors) such as expectedness, agency, type of

goal, or legitimacy [24]. Another type of moderators are stable person factors such as
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communal vs. exchange relationship orientation [25] and high vs. low self-esteem [18]. A final

type of moderators are other processes, such as the presumed goal-directed processes involved

in emotion regulation [26] and in the planning of concrete behavior [27].

By invoking goal-directed regulation (and planning) processes, researchers commit to a

dual process model with a default-interventionist architecture. Such a model assumes that the

stimulus-driven process is the default determinant of behavior and goal-directed processes

only intervene under special conditions. This assumption is rooted in the idea that stimulus-

driven processes are automatic, which means that they can occur under all conditions includ-

ing poor conditions (e.g., little time and attentional resources, and the lack of an intention to

engage in the process), whereas goal-directed ones are nonautomatic, which means that they

can only occur under ample conditions (e.g., abundant time and attentional resources, and the

intention to engage in the process) [28]. Applied to the fight/flight case, the initial tendency to

fight/flee is determined by a stimulus appraised as goal incompatible and easy/difficult to con-

trol (i.e., a stimulus-driven process), but this tendency can later be regulated by a goal-directed

process that compares the expected utilities of fighting and fleeing. If an initial tendency to

fight or flee is not possible (e.g., fleeing is not possible because one is trapped) or not desirable

because it conflicts with some goal (e.g., fighting conflicts with the goal to keep a relationship

intact), the goal-directed process can intervene to suppress this tendency.

Recently, Moors [2–3] proposed an alternative dual process model with a parallel-competi-

tive architecture. The model assumes that not only stimulus-driven but also goal-directed pro-

cesses can operate automatically, so that both processes often operate in parallel and compete

with each other. The model, moreover, assumes that the goal-directed process often wins the

competition and gets to determine the lion share of the action tendencies, including the initial

ones. Applied to the fight/flight case, the initial tendency to fight/flee should already be based

on a weighting of the expected utilities of different action options (for a similar view, see [29]).

Taken together, the two types of dual process models have different assumptions regarding

the processes responsible for the initial tendency to fight/flee. The default-interventionist

model predicts that this tendency will be determined by a stimulus-driven process, such as the

process that links goal-incompatible stimuli that are easy/difficult to control to the tendency to

fight/flee. The parallel-competitive model predicts that this tendency will be determined by a

goal-directed process that weights the expected utilities of fighting and fleeing.

To pit the stimulus-driven and goal-directed accounts of initial fight/flight tendencies

against each other, we manipulated the overall ease/difficulty to control a stimulus, partially

independently from the expected utilities of the specific actions of fighting and fleeing, and we

measured the participants’ initial action tendencies.

To manipulate the appraisal of overall ease/difficulty to control a stimulus, we presented

three goal-incompatible stimuli that were contrasted with regard to their objective controlla-

bility: One stimulus was impossible (i.e., extremely difficult) to control whereas the other two

were easy to control. To manipulate the expected utilities of fighting and fleeing, we manipu-

lated the expectancy that these actions would lead to a valued outcome by manipulating the

objective likelihoods that they would lead to this outcome. For the stimulus that could not be

controlled, the expectancies of both fighting and fleeing were zero. For the stimuli that were

easy to control, one stimulus had a high expectancy for fighting (and a zero expectancy for flee-

ing) whereas the other had a high expectancy for fleeing (and a zero expectancy for fighting).

To measure the initial action tendencies elicited by these stimuli, the methods of self-report

and behavioral choice tasks are not suitable because the effects obtained with these methods

may reflect the influence of goal-directed processes in a later stage. Stimulus-response compat-

ibility tasks relying on reaction times are generally considered to be more suitable for measur-

ing early action tendencies (e.g., approach-avoidance tendencies), but even this method is not

TMS/MEP to disambiguate between stimulus-driven vs. goal-directed processes in fight and flight tendencies
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free from regulatory influences [30]. To circumvent the shortcomings of behavioral methods,

we developed a variant of the neurophysiological method that measures Motor Evoked Poten-

tials (MEPs) induced by Transcranial Magnetic Stimulation (TMS) of the primary motor cor-

tex (M1). We did also measure behavioral choices, partly as a manipulation check (see below).

TMS over M1 induces an electrical current in the cortex, which is passed on to the cortico-

spinal tract to the peripheral motor neurons, where it produces a MEP (a peak in EMG activity

20 to 50 ms after the pulse). The amplitude of this MEP is considered as an index of the excit-

ability of the cortico-spinal tract [31], which allows for the detection of motor preparation or

action tendencies even in the absence of overt behavior.

Previous research with single-pulse motor TMS already provides information about the fac-

tors that contribute to the activation of emotional action tendencies. Some studies examined the

influence of appraisals of valence [32–36], goal in/compatibility [37–39], and agency [40] on

action tendencies, in line with a stimulus-driven account. Other studies examined the influence

of values and expectancies of action options [41–43] on action tendencies, in line with a goal-

directed account. Apart from the fact that these studies did not directly pit stimulus-driven and

goal-directed accounts of their findings against each other, most of them have only measured a

general increase or decrease in hand MEPs, suggesting a general increased or decreased readi-

ness to act. For instance, Borgomaneri, Gazzola, and Avenanti [32] found that (right-hemi-

sphere) TMS during the presentation of both positive and negative body postures led to a

decrease in MEP. Avenanti, Minio-Paluello, Sforza, and Aglioti [37] found that seeing pain sti-

muli being administered to another person’s hand led to a decrease in MEPs in the same hand

but an increase in MEPs in the opposite hand. Some researchers have interpreted a general

decrease and increase in MEPs as indicative of specific action tendencies. For instance, Borgo-

maneri et al. [32] and Avenanti [35] linked a decrease in MEPs to the tendency to freeze or ori-

ent and Avenanti et al. [37] linked an increase in MEPs to the tendency to avoid. It could be

argued, however, that a mere decrease in MEPs is also compatible with any other “passive” ten-

dency (e.g., the tendency to give in) and a mere increase in MEPs with any other “active” ten-

dency (e.g., the tendency to fight). In other studies, specific action tendencies have not been

inferred from a general increase or decrease in MEPs but instead from MEPs in specific mus-

cles. For instance, Gough, Campione, and Buccino [44] linked MEPs in the first dorsal interros-

seus (FDI) of the index finger to approach because it is involved in grasping, and MEPs in the

extensor communis digitorum (EC) of the forearm to avoidance because it is involved in releas-

ing one’s grasp. It could be argued, however, that grasping is not uniquely linked to approach

(e.g., when you grasp a safety figure to avoid a threat) and that releasing grasp is not uniqely

linked to avoidance (e.g., when you release your grasp from a safety figure to approach a threat).

The present study goes beyond previous TMS research in two ways. First, it aims to directly

pit a stimulus-driven account against the goal-directed account. Second, it aims to measure

specific action tendencies instead of a general increase or decrease in action readiness and in a

way that does not assume a fixed relation between specific muscle activity and high-level

actions. While in previous research, specific high-level action tendencies have been inferred,

either from a general increase or decrease in MEPs or from MEPs in specific muscles, we

chose instead to install the meaning of specific action tendencies during a training phase. Spe-

cifically, before administering TMS, we trained participants to use the index finger of one

hand to fight and that of the other hand to flee. Assuming that this training would establish

connections between low-level motor movements (finger presses) and high-level meaningful

actions (fight and flight), the comparison of the MEPs at the FDIs of both hands should allow

us to conclude which action tendency was activated most strongly in a given condition.

The current experiment was a multiple-trial computer game in which participants encoun-

tered four avatars: one giver, who gave money to the participants and hence was compatible
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with the participants’ goal to win points, and three thieves, who tried to steal the participants’

money and hence were incompatible with the participants’ goal to win points. After partici-

pants were trained to press one key with the left hand to produce one action (e.g., fight) and

another key with the right hand to produce the other action (e.g., flee), they learned that one

thief could never be defeated (difficult to control, low expectancy of fighting and fleeing),

another thief could only be defeated by fighting (easy to control, high expectancy of fighting),

and still another thief could only be defeated by fleeing (easy to control, high expectancy of

fleeing). In the test phase, each of a series of trials started with the visual presentation of one of

the four avatars (yielding information about in/compatibility, ease/difficulty to control, and

expectancies of fighting and fleeing). Participants were instructed to choose a response, but

only after they were presented with a response cue (1000 ms post-stimulus onset). These

response trials were intermixed with observation trials, in which a response cue did not appear

and participants merely had to observe the stimuli. During observation trials, a TMS pulse was

delivered over the left/right primary motor cortex (M1) at 450 ms post-stimulus onset, and the

ensuing MEP from the right/left index fingers were registered. The response trials were added

to keep the mapping between hand and response strong throughout the experiment, and as a

manipulation check.

The stimulus-driven hypothesis predicts that the two thieves that are easy to control will

elicit the tendency to fight (larger MEPs in the fight finger than in the flee finger) whereas the

thief that is impossible to control will elicit the tendency to flee (larger MEPs in flee finger than

in the fight finger). The goal-directed hypothesis predicts that the thief for which fighting has

the highest expectancy will elicit the tendency to fight, the thief for which fleeing has the high-

est expectancy will elicit the tendency to flee, and the thief for which fighting and fleeing have

zero expectancy will elicit the tendency to be passive. The stimulus-driven and goal-directed

accounts thus make contrasting predictions (a) for the thief that is easy to control by fleeing

(stimulus-driven account the tendency to fight; goal-directed account the tendency to flee)

and (b) for the thief that is difficult to control (stimulus-driven account the tendency to flee;

goal-directed account the tendency to be passive). Both accounts make the same prediction for

the thief that is easy to control by fighting (the tendency to fight).

Method

Participants

According to a power analysis using G�Power [45], the required sample size to detect an effect

of medium size of f = .25 under standard criteria (α = 0.05 two-tailed, β = 0.95, rcorr. = 0.5,

nonsphericity correction = 1) is 28. We tested 30 healthy students recruited at Ghent Univer-

sity (15 females). Their age ranged from 18 to 30 years (M = 22.23 ± 2.53). All had normal or

corrected-to-normal vision and all but two were right handed. All participants were checked

for TMS exclusion criteria [46] and gave their written informed consent before participation.

The study was in accordance with the Declaration of Helsinki and approved by the local ethics

committee of Ghent University. Each participant received a compensation of 30 euro at the

end of the experiment.

Materials

Participants were seated at a distance of 60 cm from a 17-inch computer monitor with a key-

board vertically located on the table in front of them. The visual stimuli consisted of black sil-

houettes combined with 4 faces selected from the Radboud face database, developed by

Langner et al. [47]: Face 7 for the giver, and Faces 24, 30, and 33 for the thieves. This selection

was based on a prior rating study in which we took a subset of 20 Caucasian faces, categorized
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as neutral by at least 80% of the sample of Langner et al. [47], and in which we asked partici-

pants to rate the physical strength (N = 51) and the criminal look (N = 57) of these faces on a

scale ranging from 1 (physically weak/not at all criminal) to 7 (physically strong/very crimi-

nal). The faces for the thieves were not significantly different in valence (M24 = 3.24; M30 =

3.33; M33 = 3.21) according to the Langner et al. [47] study, and our own rating study indicated

that they were not significantly different with regard to physical strength (M24 = 4.33, SD =

1.14; M30 = 4.55, SD = 0.92; M33 = 4.53, SD = 1.16), t(50)s < 1.30, p = .20, and criminal look

(M24 = 3.49, SD = 1.47; M30 = 3.35, SD = 1.22; M33 = 3.12, SD = 1.30), t(56)s < 1.57, p = .12.

Participants wore headphones through which auditory response cues were presented. The

experiment was programmed with Affect 4.0 software [48].

Procedure

The experiment had the format of a computer game in which participants tried to earn money

as a street artist. During the entire game, a hat with money lying on the street was presented in

the lower half of the screen. At the beginning of the experiment, the hat contained 30 euro.

The experiment consisted of (a) a S-O practice phase, in which participants learned stimulus-

outcome associations, (b) a hand-R practice phase, in which they learned the mapping between

hands and responses, (c) a S:R-O practice phase, in which they learned response-outcome con-

tingencies (i.e., expectancies) given a certain stimulus, and (d) a test phase, in which the

learned S:R-O relations still held and in which overt response choices were measured during

response trials and covert action tendencies with TMS/MEP during observation trials. Each of

these phases is described in detail below.

S-O practice phase. In this practice phase, participants encountered four different avatars.

They learned that during a later phase (the test phase), one avatar (the giver) would give them

money (2 euro) and hence would signal a positive outcome, whereas three other avatars (the

thieves) would steal money (1 euro) from them and hence would signal a negative outcome. In

this phase, no money was lost or won yet. The task of the participants was merely to observe

the visual scenes and to remember which avatar was the giver and which avatars were the

thieves. The phase comprised one block of 20 trials, 5 trials for each avatar. Each trial started

with the presentation of an avatar (a black standing silhouette with a picture of a face in the

head part) in front of the hat. The giver crouched towards the hat after 2000 ms and moved his

hand to the hat while a money-dropping sound was played (this animation took 200 ms). He

then remained crouched for another 800 ms before disappearing and the message “+2”

together with an upward-pointing green arrow was presented for 1000 ms. The trials with

thieves followed the same sequence of events as the trials with the giver, except that after a thief

had crouched, a money-grabbing sound was played and the message “-1” together with a red

arrow pointing downwards was displayed. The ITI was set to 1000 ms on average (with a 500

to 1500 ms range). To make sure that participants learned the S-O relations, they were asked at

the end of this phase to identify the three thieves in a line-up together with the giver by clicking

with the mouse on the thieves’ faces. When participants made a mistake, the experimenter told

them and asked them to try again until they gave the correct response.

Hand-R practice phase. In this practice phase, participants learned the mapping between

a hand or key (left vs. right) and a response (fight vs. flee). A faceless silhouette appeared on

the screen, and participants were instructed via an auditory response cue to either fight

(“vecht” in Dutch) or flee (“vlucht” in Dutch). The vertically located keyboard had only four

keys of which two were horizontally aligned closest to the monitor (the close keys) and two

were horizontally aligned farthest away from the monitor (the far keys). Participants kept their

left and right index fingers on two (peripheral) resting keys when they were not responding,
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and they pushed the (central) response keys next to the resting keys to respond. Half of the par-

ticipants received the instruction to use their right hand to fight and their left hand to flee.

They fought by moving their right index finger from the close-right key to the adjacent close-

central key labeled with the word “vecht” and fled by moving their left index finger from the

far-right key to the adjacent far-central key labeled with the word “vlucht”. The other half

received the opposite instruction to use their left hand to fight and their right hand to flee.

They fled by moving their right index finger from the far-right key to the adjacent far-central

key labeled with the word “vlucht” and fought by moving their left index finger from the close-

right key to the adjacent close-central key labeled with the word “vecht”. In both hand-R map-

pings, participants fought with the hand closest to the screen and fled with the hand farthest

away from the screen. In this way, we sought to increase the match with natural fight and flight

responses given that fighting/fleeing is an approach/avoidance response and is more natural to

perform with the hand close to/far from the target. Correct fight responses were followed by

an animation (of 700 ms) in which a fist hit the thief and a punching sound was played. Cor-

rect flee responses were followed by an animation (of 500 ms) in which a hand grabbed the hat

and a running-with-money sound was played. The response deadline was 2000 ms. If partici-

pants answered too late, the message “TOO LATE!” appeared on screen for 1000 ms and the

thief stole the money. If participants answered incorrectly (i.e., they fought/fled after they

heard a flee/fight cue), the message “ERROR!!!” appeared on screen for 1000 ms and the

thief stole the money. The ITI was the same as in the previous phase. This practice phase com-

prised three trials with a fight instruction and three trials with a flee instruction, randomly

intermixed.

S:R-O practice phase. In this final practice phase, participants learned S:R-O links both

through verbal instruction and experience. They were instructed that a first thief could be

defeated by fighting (he was presented as fast but weak, so he would not steal money if the par-

ticipant would fight him). This thief was easy to control and fighting had the highest expected

utility (i.e., easy-fight condition). A second thief could be defeated by fleeing (he was presented

as slow but strong, so he would not steal money if the participant would flee from him). This

thief was easy to control and fleeing had the highest expected utility (i.e., easy-flee condition).

A third thief could never be defeated (he was presented as fast and strong, so he would steal

money irrespective of the participant’s response). This thief was difficult to control and fleeing

and fighting had zero expected utility (i.e., difficult condition). Participants were instructed to

try to remember which responses (if any) were most effective to defeat the thieves.

This practice phase comprised 30 trials with 10 trials for each condition (easy-fight, easy-

flee, and difficult). Each of the thieves was followed an equal number of times by a fight cue

and a flee cue after which participants had to fight or flee. The fight response was followed by a

punching fist and sound and the flee response by a grabbing of the hat and sound (like in the

key-R practice phase). After this, if participants had correctly followed the instructions, the

thief remained static and their money was not stolen. If they had made a mistake, however, the

thief crouched and stole their money (conveyed by a downward pointing red arrow and “-1”).

The thief/giver crouched 1000 ms after being presented, and the feedback appeared 1000 ms

after that. The ITI was again the same as in the previous phase.

Test phase. Participants were presented with the same four avatars as in the practice

phases. They were again asked to keep their fingers on the keyboard without responding unless

a cue was given. In this phase, participants no longer received fight and flee cues on any of the

trials. Instead they received a choose cue (“kies” in Dutch) on half of the trials at 1000 ms after

presentation of the avatar, after which they had to choose to either fight or flee. The sequence

of events after each response was identical to that in the S:R-O practice phase (Fig 2), except

that now real money was lost (1 euro) or won (2 euro). If participants fought against or fled
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from the giver during the response trials, they did not receive money from the giver on that

trial. Participants could keep track of their score via a counter that appeared below the feed-

back (“+2” or “-1”) on each trial.

Response trials were randomly intermixed with pure observation trials on which no cue

was given and hence no response was required (Fig 3). Instead, they received a single TMS

pulse to the motor cortex at 450 ms after presentation of the avatar. MEP amplitudes were

measured online on the FDI muscles of the index fingers of both hands. Because participants

were not allowed to respond on the observation trials, they received money from the giver and

got stolen by each of the three thieves. The timing of events (crouching of giver and thieves

and feedback) was the same as in the S:R-O phase.

Although previous research was able to detect that valenced stimuli led to a decrease in

MEPs with a TMS pulse around 150 ms post-stimulus onset and an increase in MEPs around

300 ms [32], we opted for a slightly later timing of the TMS pulse for two reasons. First, the sti-

muli used in our study were more complex in the sense that participants had to first recognize

the identity of the face of the avatar before being able to either appraise him as goal incompati-

ble and easy/difficult to control (as per the stimulus-driven account) or to process the action

option that had the highest expected utility in their presence (as per the goal-directed account).

ERP research suggests that the brain does not respond to visual face identity until 230 after

face onset [49]. Second, our study was set up to capture specific action tendencies to fight and

flee, rather than a general increase or decrease of MEPs. Taken together, we estimated that the

higher complexity of the stimuli as well as the higher level of specificity of the action tendencies

would be reflected in a slightly later activation of these action tendencies. Piloting with the

Fig 2. Order of events in a response trial of the test phase in the easy-flee condition with the right-fight-left-flee hand-R mapping. The instruction to

choose was presented at 1000 ms post-stimulus onset and participants had to respond before 3000 ms post-stimulus onset. A fight response was followed by a

fist punching the avatar, but the avatar nevertheless crouched and stole the money at 2000 ms post-stimulus onset. A flee response was followed by a hand

grabbing the hat.

https://doi.org/10.1371/journal.pone.0217266.g002
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stimulus material of our study confirmed that a TMS pulse of 450 ms post-stimulus onset

yielded the highest MEPs overall (i.e., independent of condition).

The test phase was composed of two blocks of trials. In each block, the coil was placed either

to the left or the right hemisphere. The order of blocks (left first, right first) was counterbal-

anced across participants. During the observation trials of each block, TMS was applied and

MEPs were registered from the index fingers of the contralateral hand. Each block comprised

120 trials: 60 response trials (15 giver, 15 difficult, 15 easy-fight, 15 easy-flee) intermixed with

60 observation trials (15 giver, 15 difficult, 15 easy-fight, 15 easy-flee). Participants were ran-

domly assigned to one of two hand-R mappings. For participants who had the right-fight-left-

flee mapping, MEPs were registered from the fight hand only in the coil-left block, and from

the flee hand only in the coil-right block. For participants who had the right-flee-left-fight

mapping, MEPs were registered from the flee hand only in the coil-left block, and from the

fight hand only in the coil-right block.

Post-test phase. After the experiment, participants were presented with the pictures that

had followed the fight and flight responses (i.e., the punching fist and the hat-grabbing hand)

and they were asked to rate the valence of these responses on a visual analog scale, ranging

from 1 (totally negative) to 100 (totally positive). In addition, they were presented with the

faces of all avatars in random order and were asked to rate the valence, the physical strength,

and the criminal look of each avatar using scales ranging from 1 (totally negative, totally weak,

not at all criminal) to 100 (totally positive, totally strong, totally criminal). Finally, participants

received the money they had won (30 euro) during the test phase before they were debriefed

and thanked.

Fig 3. Order of events in an observation trial of the test phase in the easy-flee condition with the right-fight-left-

flee hand-R mapping. After a TMS pulse at 450 ms, the avatar crouched and stole the money at 2000 ms post-stimulus

onset.

https://doi.org/10.1371/journal.pone.0217266.g003
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Measurements. In each response trial, we registered whether participants chose to overtly

fight or flee. In each observation trial, we registered the TMS-induced MEPs. TMS pulses were

delivered by a biphasic magnetic stimulator (Rapid2; Magstim). A 70 mm figure of eight coil

was held tangentially to the skull with the handle pointing backwards and laterally at a 45˚

angle to the sagittal plane. The coil was positioned in correspondence with the optical scalp

position defined as the coil position eliciting the largest and most reliable MEPs in the first

dorsal interosseous (FDI) muscle. Participants wore a swimming cap on which the optimal

location for stimulation was marked. A mechanical arm held the TMS coil and the experi-

menter continuously monitored the coil position. The stimulation intensity was determined

based on the resting motor threshold (rMT) of the muscle, which is defined as the intensity

that evokes a MEP larger than 50 μV in 50% of the cases in the FDI [31]. Stimulation intensity

during the recording session was set to 110% of the rMT. Average intensity was 66.6% (range

44%-84%) of the maximal stimulator output for the right hemisphere and 66.8% (range 50%-

82%) for the left hemisphere.

Electromyographical (EMG) activity was recorded with the ActiveTwo system (BioSemi).

Sintered 11 × 17 mm active Ag–AgCl electrodes were placed over the FDI muscles of the right

and left index fingers. These muscles contribute to abduct the index fingers away from the

middle. The active electrodes were placed over the belly of the right/left FDI and the reference

electrodes over the right/left ipsilateral proximal interphalangeal joints (belly-tendon mon-

tage). The ground electrode was placed on the back of the hand, near the wrist joint. The EMG

signal was amplified (internal gain scaling), digitized at 2 kHz, high-pass filtered at 3 Hz, and

stored on a PC for offline analysis.

Results

We restricted our analyses to the measurements taken during the experimental trials for the

three thieves in the three conditions: easy-fight, easy-flee, and difficult. The condition with the

giver was not considered in the analyses. In fact, this condition was only inserted to allow par-

ticipants to gain money and thus to keep their motivation high during the task. We first report

the results for the manipulation checks from (a) the post-experimental questionnaires and (b)

the frequency proportions of the fight and flee responses in the response trials. Next, we report

the neurophysiological results: the MEP amplitudes for the fight and flee responses in the

observation trials.

Manipulation checks

Questionnaire data. Most participants (93%) correctly identified the three thieves at the

end of the S-O practice phase. Only two participants made a mistake, which they corrected

when the experimenter asked them to try again. This indicates that all participants eventually

learned the S-O relations.

Analyses of the manipulation check data were carried out with 29 instead of 30 participants,

because the manipulation check data of one participant could not be retraced. Repeated mea-

sures ANOVAs (with Greenhouse-Geisser correction for violation of sphericity) confirmed

that our manipulation influenced the valence of the avatars, F(3, 40.65) = 71.99, p< 0.01, η2p =

.72. Bonferroni-corrected contrasts with a corrected α = .0125 indicated that the giver was

rated as more positive (M = 80.79, SD = 19.44) than the three thieves (20.25, SD 17.62), F(1,

28) = 88.64, p< .001, η2p = .76, but that the three thieves did not differ amongst each other

(Measy-fight = 22.59, SD = 17.16; Measy-flee = 20.55, SD = 20.85; Mdifficult = 17.62, SD = 20.37), all

Fs< 4.20. The avatars also differed significantly with regard to physical strength, F(3, 69.96) =

4.32, p< .0125, η2p = .13. This time, Bonferroni-corrected contrasts with a corrected α = .0125
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indicated that the giver (M = 59.59, SD = 22.16) did not differ from the thieves (M = 55.75,

SD = 15.31), F(1, 28) = 0.47, p = .50, η2p = .02, but the thieves differed significantly amongst

each other. The thief that was difficult to control was rated as physically stronger (M = 67.45,

SD = 25.70) than the one that was easy to control by fighting (M = 43.14, SD = 26.79), F(1, 28)

= 8.87, p< .0125, η2p = .24, and than the one that was easy to control by fleeing (M = 56.66,

SD = 26.66), although the latter difference did not reach significance, F(1, 28) = 3.40, p = .08,

η2p = .11. The latter two thieves showed no significant difference in physical strength, F(1, 28)

= 4.30, p = .05, η2p = .13. Avatars also differed with regard to criminal look, F(3, 46.13) = 53.63,

p< .001, η2p = .66. Contrasts revealed that the giver (M = 13.28, SD = 17.68) was rated as sig-

nificantly less criminal than the thieves (M = 70.90 SD = 25.95), F(1, 28) = 70.41, p< .001,

η2p = .72, but no such difference was found among the three thieves (Measy-fight = 67.24,

SD = 26.98; Measy-flee = 72.10, SD = 26.26; Mdifficult = 73.35, SD = 30.57), all Fs< 3.07. Finally,

the fight response (M = 26.76, SD = 27.53) was perceived as significantly more negative than

the flee response (M = 60.38, SD = 23.00), t(28) = 4.34, p< .001, d = 0.81.

Choice frequencies. Visual inspection of the choice frequencies in Table 1 indicates that

participants fought in nearly all trials of the easy-fight condition, and fled in nearly all trials of

the easy-flee condition. In the difficult-control condition, there was more variation in the

responses: Participants sometimes chose to fight or to flee, but they more often responded

after the 2000 ms response deadline. To compare choice frequencies for fighting vs. fleeing

across conditions, we calculated preference scores by substracting the number of flee responses

from the number of fight responses for each participant, so that positive values reflected a pref-

erence for fighting and negative values a preference for fleeing. One-sample t-tests revealed a

significant preference (as expressed by a preference score different from zero) for fighting in

the easy-fight condition, t(29) = 132.46, p< .001, d = 24.18, a significant preference for fleeing

in the easy-flee condition, t(29) = -225.93, p< .001, d = -41.27, and no significant preference

for either response in the difficult condition, t(29) = 0.65, p = .52, d = .12. A one-way repeated

measures ANOVA (with Greenhouse-Geisser correction for violation of sphericity) on these

preference scores with within-subjects factor condition (easy-fight, easy-flee, difficult) yielded

a significant effect, F(2, 29.75) = 504.69, p< .001, η2p = .95. Planned comparisons revealed a

significantly higher preference for fighting in the easy-fight condition (M = 29.33, SD = 1.21)

than in the easy-flee condition (M = -29.63, SD = 0.72), F(1, 29) = 35602.77, p< .001, η2p>
.99. They also revealed that in the difficult condition (M = 1.43, SD = 12.16), the preference for

fighting was significantly lower than in the easy-fight condition (M = 29.33, SD = 1.21), F(1,

29) = 145.55, p< .001, η2p = .83, but significantly higher than in the easy-flee condition (M =

-29.63, SD = 0.72), F(1, 29) = 197.02, p< .001, η2p = .87.

To compare choice frequencies for timely vs. late responses across conditions, we calculated

preference scores by substracting the number of timely responses from the number of late

Table 1. Frequencies (and percentages) of response choices and preference scores.

Condition

Response choices Easy-fight Easy-flee Difficult

Fight 885 (98.55%) 4 (0.44%) 291 (32.37%)

Flee 5 (0.56%) 893 (99.22%) 248 (27.59%)

Preference score:

fight—flee

880 (98.00%) -889 (98.78%) 43 (4.78%)

Late 8 (0.89%) 3 (0.33%) 360 (40.05%)

Preference score:

timely—late

882 (98,22%) 894 (99.33%) 179 (19.91%)

https://doi.org/10.1371/journal.pone.0217266.t001
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responses for each participant, with positive values reflecting a preference for timely and nega-

tive values a preference for late responses. One-sample t-tests revealed a significant preference

(as expressed by a preference score different from zero) for timely responses in both the easy-

fight condition, t(29) = 114.66, p< .001, d = .21, and the easy-flee condition, t(29) = 267.46,

p< .001, d = 48.85, but not in the difficult condition, t(29) = 1.31, p = .20, d = .24. A one-way

repeated measures ANOVA (with Greenhouse-Geisser correction for violation of sphericity)

on these preference scores with within-subjects factor condition (easy-fight, easy-flee, difficult)

yielded a significant effect, F(2, 29.12) = 26.85, p< .001, η2p = .48. Post-hoc comparisons

showed smaller preferences for timely responses in the difficult condition (M = 5.97, SD =

24.88) than in the easy-fight condition (M = 29.40, SD = 1.40), F(1, 29) = 26.31, p< .001, η2p =

.48, and the easy-flee condition (M = 29.80, SD = 0.61), F(1, 29) = 27.47, p< .001, η2p = .49.

TMS/MEP

Neurophysiological data were processed offline using Matlab software. Epochs 500 ms before

and after the TMS pulse were extracted from the continuous stream of data. Trials were

rejected when the background EMG activity during the 500 ms interval preceding the TMS

pulse was above 200 mV. Peak-to-peak MEP amplitudes (in mV) were calculated for the 20–50

ms window post-pulse. Trials with MEP amplitudes below 50 μV and outside of the range of

+/- 2 SD from the average of each participant were discarded (14.44% of trials in the easy-fight

condition, 14.41% of trials in the easy-flee condition, and 14.42% in the difficult condition),

and the remaining amplitudes were normalized (z-scores) separately for FDI left and FDI

right. Means were calculated for each response mapping (right-fight-left-flee, right-flee-left-

fight), for each condition (easy-fight, easy-flee, difficult), and for each hand (right hand, left

hand; see Table 2).

In a first step, we wanted to test whether the training of the hand-R mapping had been suc-

cesful on the TMS level. In order to do so, we conducted a 2 x 3 x 2 repeated measures

ANOVA on the MEPs with between-subjects factor hand-R mapping (right-fight-left-flee,

right-flee-left-fight) and within-subjects factors condition (easy-fight, easy-flee, difficult) and

hand (right hand, left hand). This analysis did not reveal a significant interaction between

these three factors, F(2, 27) = 0.88, p = .426, η2p = .061, indicating that the training of the

hand-R mapping had not been succesful on the TMS level (in dissociation with the overt

behavioral level where this training had been succesful). This was not in line with our

expectations.

A possible post-hoc explanation for this result is suggested by the well-established finding

that approach behavior is preferentially executed with the right hand and avoidance behavior

with the left hand [50]. This association between approach and a right-oriented bias and avoid-

ance and a left-oriented bias has been explained by the lateralization of approach and avoid-

ance tendencies in the brain: The tendency to approach/avoid is accompanied by increased

left/right-hemispheric brain activity [50–52]. In our study, fighting involved approach whereas

Table 2. Normalized mean MEPs (and SDs).

Condition

Hand-R mapping Hand Easy-fight Easy-flee Difficult

Right-fight-left-flee Right hand 1.07 (0.16) 0.94 (0.18) 1.00 (0.13)

Left hand 1.01 (0.13) 1.08 (0.17) 0.94 (0.12)

Right-flee-left-fight Right hand 1.02 (0.12) 0.96 (0.15) 1.02 (0.15)

Left hand 0.96 (0.09) 1.01 (0.09) 1.02 (0.10)

https://doi.org/10.1371/journal.pone.0217266.t002
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fleeing involved avoidance. Given the right/left-oriented bias for approach/avoidance behav-

ior, it seems plausible to assume that the mapping of the fight response to the right hand and

the flight response to the left hand was more natural than the mapping of the fight response to

the left hand and the flee response to the right hand. It is possible that for participants who

received the non-natural mapping instructions, the number of training trials to install the

hand-R mapping was not sufficient to overcome the natural hand-R mapping, at least not at

the early stage in which the TMS pulse was delivered.

Given that the training of the Hand-R mapping seems to have been ineffective regarding

early action tendencies, we chose to conduct post-hoc exploratory analyses while coding the

fight and flee hand to be in line with the natural mapping instead of the training mapping.

This means that for participants in both hand-R mappings, the right hand was coded as the

fight hand and the left hand as the flee hand. We also pooled the data across the two mappings.

The goal-directed and stimulus-driven accounts make two sets of contrasting predictions.

The first set compares only the easy-flee and easy-fight conditions. Here, the goal-directed

account predicts a condition x hand interaction, with MEPs in the fight hand higher than in

the flee hand in the easy-fight condition, and MEPs in the flee hand higher than in the fight

hand in the easy-flee condition. The stimulus-driven account, on the other hand, predicts a

main effect of hand, with higher MEPs for the fight hand than for the flee hand, because both

are easy conditions.

A test of the first set of predictions using a 2 x 2 repeated measures ANOVA with condition

(easy-fight, easy-flee) and hand (fight hand, flee hand) as within-subject factors revealed a

highly significant interaction effect, F(1, 29) = 13.10, p = .001, η2p = .31, in line with the goal-

directed account (see Fig 4). Planned comparisons were significant with means in the direction

predicted by the goal-directed account: In the easy-fight condition, MEPs were higher for the

fight hand (M = 1.05, SD = 0.14) than for the flee hand (M = 0.99, SD = 0.11), F(1, 29) = 4.87, p
= .035, η2p = .14, whereas in the easy-flee condition, MEPs were higher for the flee hand

(M = 1.05, SD = 0.14) than for the fight hand (M = 0.95, SD = 0.16), F(1, 29) = 7.00, p = .013,

η2p = .19. The main effect for hand predicted by the stimulus-driven account could not be

observed, nor was there a main effect of condition, all Fs< 0.50.

The second set of predictions compares the difficult condition with each of the easy condi-

tions (see also Fig 4). We first compared the difficult condition with the easy-fight condition.

Fig 4. Normalized mean MEPs.

https://doi.org/10.1371/journal.pone.0217266.g004

TMS/MEP to disambiguate between stimulus-driven vs. goal-directed processes in fight and flight tendencies

PLOS ONE | https://doi.org/10.1371/journal.pone.0217266 May 20, 2019 14 / 22

https://doi.org/10.1371/journal.pone.0217266.g004
https://doi.org/10.1371/journal.pone.0217266


The goal-directed account predicts MEPs in the fight hand to be higher in the easy-fight than

in the difficult condition (because the expected utility for fighting is higher in the former than

the latter condition), but no difference between both conditions for the flee hand (because the

expected utility of fleeing is zero in both). The stimulus-driven account also predicts MEPs in

the fight hand to be higher in the easy-fight than in the difficult condition (because control is

higher in the former, which should elicit a stronger tendency to fight), but MEPs in the flee

hand to be higher in the difficult than in the easy-fight condition (because control is lower in

the former, which should elicit a stronger tendency to flee). A 2 x 2 ANOVA with condition

(easy-fight, difficult) and hand (fight hand, flee hand) yielded a significant main effect of hand

with higher MEPs in the fight hand (M = 1.01, SD = 0.14) than in the flee hand (M = 0.98,

SD = 0.11), F(1, 29) = 7.25, p = .012, η2p = .20, but no significant condition x hand interaction,

F< .31.

Next we compared the difficult condition with the easy-flee condition. Here, the goal-

directed account predicts MEPs in the flee hand to be higher in the easy-flee than in the diffi-

cult condition (because the expected utility for fleeing is higher in the former than the latter),

and no difference in MEPs between both conditions in the fight hand (because the expected

utility of fighting is zero in both). The stimulus-driven account, on the other hand, predicts

MEPs in the flee hand to be higher in the difficult than in the easy-flee condition (because con-

trol is lower in the former, which should elicit a stronger tendency to flee), and MEPs in the

fight hand to be higher in the easy-flee than the difficult condition (because control is higher

in the former, which should elicit a stronger tendency to fight). A 2 x 2 ANOVA with condi-

tion (easy-flee, difficult) and hand (fight hand, flee hand) yielded a significant interaction

effect, F(1, 29) = 4.19, p = .043, η2p = .134. Planned comparisons showed a trend effect in the

flee hand with higher MEPs in the easy-flee (M = 1.05, SD = 0.14) than in the difficult condi-

tion (M = 0.98, SD = 0.11), F(1, 29) = 2.90, p = .099, η2p = .09, in line with the goal-directed

account. In the fight hand, MEPs were not significantly different between the easy-flee

(M = 0.95, SD = 0.16) and difficult conditions (M = 1.01, SD = 0.14), F< 1.96, again in line

with the goal-directed account. For the sake of completion, we also report a trend effect of

hand, F(1, 29) = 3.37, p = .077, η2p = .10, with higher MEPs in the flee hand (M = 1.01,

SD = 0.13) than in the fight hand (M = 0.98, SD = 0.15), and no main effect of condition, F<
.02.

We wish to add that if the data were coded according to the trained hand-R mapping, a sim-

ilar pattern of results was obtained but only for participants in the right-fight-left-flee map-

ping. Data supporting the first set of predictions were somewhat less strong, but those

supporting the second set of predictions were somewhat more outspoken (see S1 File for

details).

Discussion

In the current study, we pitted two mechanisms against each other that have been invoked to

explain the early action tendencies to fight and flee. According to one stimulus-driven mecha-

nism, high/low control over a goal-incompatible or negative stimulus activates the tendency to

fight/flee. According to the goal-directed mechanism, the tendency to fight/flee is activated

when fighting/fleeing has the highest expected utility. In typical cases, such as a competition in

the animal world or between children on a playground, both mechanisms predict the same

action tendency. This is because in these cases, fighting has the highest expected utility when

control is high and fleeing when control is low. To pit the two mechanisms against each other,

we created atypical cases in which both mechanisms predicted different action tendencies. Par-

ticipants encountered three thieves (goal-incompatible stimuli) of which one could never be
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defeated (difficult to control and zero expected utility for fighting and fleeing), another could

be defeated by fighting (easy to control and highest expected utility for fighting), and still

another could be defeated by fleeing (easy to control and highest expected utility for fleeing).

The said stimulus-driven process predicts a tendency to flee in the difficult condition and a

tendency to fight in the two easy conditions. The goal-directed process predicts a tendency to

be passive in the difficult condition, a tendency to fight in the easy-fight condition, and a ten-

dency to flee in the easy-flee condition.

Participants’ overt choices were in line with the goal-directed hypothesis: They fought in

nearly all trials of the easy-fight condition and fled in nearly all trials of the easy-flee condition.

Moreover, they responded more often late than with fight or flight in the majority of the diffi-

cult trials, which can be understood as a sign of passivity and/or indecisiveness.

This result accords with, but goes also beyond two previous sets of findings. A first set

shows that certain stimulus features (e.g., emotional quality or valence) are only processed

when they are goal relevant (e.g., [53–54]). While this suggests that processing of these features

is goal dependent, it does not yet show that the specific action tendencies activated are goal-

directed in the sense that they depend on the values and expectancies of action outcomes. A

second set of findings does show the role of goal-directed processes in emotional behavior

(e.g., [55]). Solely relying on overt behavior, however, does not allow one to disambiguate

between dual process models with (a) a default-interventionist architecture, in which an initial

action tendency produced by a stimulus-driven process is overruled by a later action tendency

produced by a goal-directed process, and (b) a parallel-competitive architecture, in which both

processes operate in parallel and in which the goal-directed process wins the competition and

determines the initial action tendency. Although both models predict that the eventual behav-

ior will be caused by a goal-directed process, they each hold a different process to be responsi-

ble for the initial action tendency: a stimulus-driven process in the default-interventionist

architecture, a goal-directed process in the parallel-competitive architecture.

To examine the initial action tendencies in the three conditions, we administered TMS

shortly after presentation of the thieves and we measured EMG on the FDI muscles of two

hands that were trained to fight and flee in a prior phase. A pre-analysis of our data suggested

that the hand-R training mapping was not succesful at the TMS level. Leaning on the robust

finding that approach/avoidance responses (including fighting/fleeing) are naturally executed

with the right/left hand [50–52], we conjectured that the non-natural training installed in par-

ticipants in the latter group was insufficient to override this natural mapping. Following the

line of thought that all participants initially activated their right/left hand to fight/flee, we

coded the right/left responses as fight/flee responses and conducted the analyses pooled across

training mappings. As predicted by the goal-directed account, this yielded a strong condition

(easy-fight, easy-flee) x hand (fight hand, flee hand) interaction effect, with significantly higher

MEPs on the fight/flee hand in the easy-fight/easy-flee conditions. No evidence could be

spurred for the main effect of hand predicted by the stimulus-driven account. In addition, a

significant condition (easy-flee, difficult) x hand (fight hand, flee hand) interaction effect was

found with higher MEPs on the flee hand in the easy-flee condition (in which fleeing had the

highest expected utility) than the difficult condition (in which fleeing had zero expected utility)

as predicted by the goal directed account, and not the reverse effect predicted by the stimulus-

driven account.

Taken together, the behavioral results of our study yield support for the idea that people

tend to fight or flee in order to obtain the outcome that is most beneficial to them, and that

they tend to be passive when there is no beneficial action option available. These conclusions

were corroborated by the neurophysiogical results of our study when the data of all partici-

pants were coded according to the presumed natural hand-R mapping. These findings suggest
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the operation of a goal-directed mechanism, instead of a stimulus-driven mechanism that

links the general ease/difficulty to control an aversive stimulus to the tendency to fight/flee.

The neurophysiological results, moreover, allow us to tentatively conclude that the goal-

directed process already yields an action tendency as early as 450 ms post-stimulus onset. This

is in line with the parallel-competitive scenario that places goal-directed mechanisms at the

heart of the tendencies to fight and flee [2]. This presents a viable alternative to the widely

endorsed default-interventionist scenario in which the goal-directed mechanism can only

jump in at a later stage to regulate an initial stimulus-driven action tendency. Support for the

early operation of goal-directed processes is also informative for other goal-directed models

such as that of Mirabella [56], and Ridderinkhof [57] that present partial overlap with our own

model.

We wish to point out that if the post-hoc explanation is correct that the participants in our

study could not flexibly adjust the initially activated natural hand-R mapping in line with our

instructions, this does not jeopardize our interpretation that the responses were goal-directed.

This is because goal-directedness requires flexible adjustment of responses in accordance with

current R-O mappings, which is different from the adjustment of hand movements in accor-

dance with current hand-R mappings. Thus, our finding of a rigid hand-R relationship does

not affect conclusions about the flexibility of the R-O relationships and hence of the goal-

directedness of the responses. To drive this point home, compare with a case in which you are

promised a million dollars if you write a particular sentence by using a different keyboard than

the one you are used to (e.g., from querty to azerty). Chances are high that you want to write

the sentence to obtain the money outcome, which suggests that the response of writing the sen-

tence is goal-directed. It is likely, however, that you make mistakes in implementing this

response in low-level motor movements.

It stands to reason, however, that even if participants were unable to adjust their hand-R

mappings initially, as is reflected in the TMS/MEP data, they were still able to do so at a later

time, as is indicated by the behavioral data. It seems then, that the initially rigid hand-R rela-

tionship could be flexibly corrected only at a later stage, while the fight/flee tendencies (R)

themselves remained goal-directed throughout.

Evidence for the role of the goal-directed mechanism has implications for emotion theory.

It has the potential to change the tenacious conviction that emotional behavior has an irratio-

nal flavor. Theorists who define emotional action tendencies in contrast with instrumental

ones deny that the former can be instrumental (i.e., caused by goal-directed processes) on a

priori grounds. They are likely to argue that the fight and flee tendencies that we measured do

not qualify as emotional, precisely because the results suggest that they are instrumental. How-

ever, if emotional action tendencies are defined independent of a specific causal mechanism,

the question as to which mechanism can cause these action tendencies is open to empirical

research. For instance, if the criterion to call an action tendency more/less emotional is that it

should be caused by a stimulus that is more/less goal relevant [2–3, 58–59], then both more/

less emotional action tendencies can be caused by any mechanism. In the current study, the

thieves are relevant and potentially incongruent with the goal to win or keep money. Thus, the

fight and flee responses do qualify as emotional to some degree according to the criterion of

goal relevance.

The mechanisms underlying emotional action tendencies also has implications for behavior

change in clinical practice and society. If emotional action tendencies are caused by appraisal,

unwanted emotional action tendencies should be changed by engaging in reappraisal. For

instance, if aggressive tendencies are caused by the appraisal of a stimulus as goal incompatible

but easy to control, unwanted aggressive tendencies can be toned down by teaching a person

to reappraise the situation as less easy to control. If, on the other hand, emotional action
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tendencies are caused by a goal-directed process, unwanted emotional action tendencies

should be changed by changing values and expectancies. If aggressive tendencies, for instance,

arise because a person assesses that aggressive behavior has the highest expected utility for

restoring a thwarted goal of high value (e.g., a status goal or a social norm), then unwanted

aggressive tendencies can be toned down by teaching him/her that there are other, less costly

action options for restoring that goal, such as lecturing the perpetrator.

A final contribution is methodological. The TMS method that we developed to answer our

theoretical questions is innovative, both from the perspective of emotion research as from the

perspective of motor TMS research. Traditional emotion research has measured emotional

action tendencies via self-report [17], overt behavior [60], and stimulus-response compatibility

tasks [30]. Our study contributes to recent attempts to extend the set of methods with motor

TMS, which has the advantage that it can probe very early action tendencies. Previous TMS

research inferred emotional action tendencies either from a general rise or decrease in action

readiness (e.g., a decrease in MEP as an index of freezing; [32, 37]) or from specific muscle

movements (e.g., an increase in MEP in FDI as an index of approach [44]). In our study, we

did not infer but rather install the emotional meaning of muscle movements via a training

phase in which these movements were instrumental for emotional actions (fight, flee). This

method allowed us to measure tendencies to engage in these emotional actions in a more reli-

able way. There is a caveat, however. If we are right that the non-natural hand-R mapping

trained in half of our participants was insufficient to override their natural hand-R mapping,

three recommendations are in place. A first option is to only use mappings that are compatible

with natural mappings. A second option is to establish arbitrary connections between

responses and movements that do not have a strong pre-existing connection (e.g., use two fin-

gers of the same hand). A third option might be to extend the number of training trials and/or

install implementation intentions so as to override any natural connections.

Despite the strengths of the current study, a number of potential limitations deserve consid-

eration. First, the study has been set up to challenge one particular stimulus-driven hypothesis

(high/low control over a goal-incompatible stimulus leads to the tendency to fight/flee). Thus,

our research does not speak to the validity of other stimulus-driven hypotheses.

Second, critics might argue that the reward structure of our study, which was conveyed to

participants both via instructions and via experience during the S:R-O practice phase, could

have led to the formation of temporary S-R links in which the representation of each thief is

connected to the representation of a specific response. This fits with the notion of an imple-

mentation intention, which is understood as a temporary link between the representation of a

stimulus and the representation of a response that the person wants to engage in [61]. For

instance, a person who wants to avoid dental caries, can put up the implementation intention

“Before bedtime (S), I will brush my teeth (R)”. Initially, researchers were convinced that once

an implementation intention is put up, it acts autonomously from the overarching goal (e.g.,

avoiding dental caries) [62]. Recent research, however, shows that the overarching goal has to

remain active in the background to avoid a breakdown of the implementation intention [63].

Applied to our study, if participants did put up temporary S-R links, it is likely that these links

were not isolated from the overarching goal (e.g., to maximize profit), and hence that they can-

not be considered as pure S-R links but rather as S-R links embedded in an overarching goal-

directed process.

A third potential limitation concerns the timing of the TMS pulse. As explained in the

method section, the TMS pulse was administered at 450 ms post-stimulus onset because we

estimated that the higher complexity of the stimuli as well as the higher level of specificity of

the action tendencies would result in a slightly later activation of these action tendencies than

what has been found in certain previous studies [32]. We admit, however, that the current
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study does not completely rule out a scenario in which a stimulus-driven process occurred still

before that time and was subsequently overruled by a goal-directed process, in line with a

default-interventionist architecture. Future studies could be conducted with slightly earlier

TMS timings and perhaps more sensitive measures of corticospinal excitability to further

examine this issue.

A fourth issue concerns the timing of the response cues in the response trials at 1000 ms

after the presentation of the avatar. At the time that the avatar is presented, participants do not

know whether the trial will be a response trial or an observation trial, so they are likely to pre-

pare a response prior to the response cue. Shifting the response cue to a time prior to the presen-

tation of the avatar would not have been an option, however, because if participants would

know beforehand that a certain trial is an observation trial, they should also know that respond-

ing has zero expected utility, and hence a goal-directed process should predict passivity.

Summing up, the present paper presents a novel method based on motor TMS that has

potential in disambiguating between stimulus-driven and goal-directed accounts of early

action tendencies. Using this method, we obtained preliminary support for the goal-directed

account rather than for one specific stimulus-driven account of the early tendencies to fight

and flee. The evidence is not conclusive, however. Future research should examine this issue

further, using a wider range of TMS pulse times.
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