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1Department of Telecommunications and Information Processing, TELIN-GAIM,
Ghent University, Belgium

2The State Key Lab. of Inform. Engineering in Surveying, Mapping, and Remote Sensing,
Wuhan University, China

ABSTRACT

Sparse subspace clustering (SSC) has achieved the state-
of-the-art performance in the clustering of hyperspectral
images (HSIs). However, the high computational complex-
ity and sensitivity to noise limit its clustering performance.
In this paper, we propose a scalable SSC method for the
large-scale HSIs, which significantly accelerates the clus-
tering speed of SSC without sacrificing clustering accuracy.
A small landmark dictionary is first generated by applying
k-means to the original data, which results in the significant
reduction of the number of optimization variables in terms
of sparse matrix. In addition, we incorporate spatial reg-
ularization based on total variation (TV) and improve this
way strongly robustness to noise. A landmark-based spectral
clustering method is applied to the obtained sparse matrix,
which further improves the clustering speed. Experimental
results on two real HSIs demonstrate the effectiveness of the
proposed method and the superior performance compared to
both traditional SSC-based methods and the related large-
scale clustering methods.

Index Terms— Sparse subspace clustering, landmark,
hyperspectral image, large-scale data

1. INTRODUCTION

Due to their rich spectral information, hyperspectral images
(HSIs) find numerous applications including remote sensing
for defence and security, agricultural monitoring and geo-
sciences. Clustering of HSIs, as a fundamental task, is to
discriminate the pixels to different groups corresponding to
different materials or objects without any prior label informa-
tion.

In recent years, sparse subspace clustering (SSC) [1]
method has achieved the state-of-the-art performance in HSI
clustering [2–7]. SSC is based on a self-representation model
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which employs the input data as a dictionary. With a sparsity
constraint, SSC claims a subspace-preserving property that
for a given sample from a union of subspaces there exist a
sparse representation vector whose non-zero entries corre-
spond to the samples in the same subspaces. Therefore, SSC
can automatically choose the nearby data points for each in-
put data point. Then similarity matrix is constructed by using
the sparse coefficient matrix directly. In the end, the cluster-
ing results can be obtained by applying similarity matrix into
the standard spectral clustering framework. However, two
important problems limit severely the applicability of SSC
in real applications. The first limitation is huge sensitivity
to noise. This is because SSC treats each pixel in HSIs in-
dependently in the sparse representation model. The second
limitation is the enormous computational complexity when
dealing with large images, which are common in HSIs. The
time complexity of SSC reaches more than O(m3) in one
iteration where m is the number of pixels. Hence, for typi-
cal HSIs, SSC model is often infeasible despite its superior
theoretical performance.

To reduce the noise sensitivity, some extensions of SSC
have been proposed by introducing different spatial con-
straints [2–7]. A smoothing strategy was introduced in [2]
by minimizing the coefficient difference between the central
pixel and the mean of pixels in a local square window. A
`2 norm based spatial regularization was employed in [4] to
smooth the coefficients in the small local region. In [5, 7],
a joint sparsity constraint with `1,2 norm was applied to the
coefficient of each super-pixel. The work in [6] exploited the
collaborative representation with a `2 norm and proposed a
total variation (TV) regularized model with a locally adaptive
dictionary. However, those traditional SSC-based methods
are not scalable, and thereby cannot be applied on the large-
scale data sets.

Some general large-scale clustering methods based on
SSC have been proposed in the area of computer vision to
cope with the computational complexity problem [8, 9]. The
work in [8] applies SSC only to a small number of pre-
selected data points and using the clustering result on this
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small set, constructs a dictionary for the sparse representa-
tion classification (SRC), which is applied to the rest of the
data. In [9], a sketched SSC model was proposed by using
a random projection technique, which compressed the large
dictionary to a much smaller one. Those methods are feasible
for the large-scale HSIs, however, they usually obtain lower
clustering accuracy when noise is present in the data.

In order to address the problems mentioned above, we
propose a landmark-based SSC model with TV regulariza-
tion (LSSC-TV) for the large-scale HSIs. Instead of the self-
representation dictionary, we select some representative pix-
els as the landmarks to construct the dictionary which has a
much smaller size, resulting in the significant reduction of
the number of optimization variables. In addition, a spa-
tial regularization based on the TV-norm is incorporated in
the proposed model, which improves greatly the robustness
to noise. Moreover, a non-negative constraint and a sum-to-
one constraint are added to interpret the value of coefficients
as the probabilities for a pixel to choose the landmarks. Af-
ter obtaining the sparse matrix, we calculate the final cluster-
ing results by applying the landmark-based spectral clustering
(LSC) method [10].

The rest of the paper is organized as follows, Section 2
briefly introduces the clustering of HSIs with SSC model.
Section 3 describes the proposed LSSC-TV model. Section
4 presents the experimental results on real data and Section 5
concludes the paper.

2. THE SSC MODEL OF HSI CLUSTERING

We denote by Y ∈ RB×MN the flattened 2-D matrix from
the original 3-D HSI data cube with a size of M × N × B,
whereM andN represent the height and the width of the HSI,
respectively, and B denotes the number of bands. Let c be
the number of classes. With the self-representation dictionary
Y, the SSC model [1] with respect to the sparse matrix C ∈
RMN×MN is derived by:

arg min
C

‖C‖1 +
λ

2
‖Y −YC‖2F

s.t. diag(C) = 0, 1TC = 1T , (1)

where ‖C‖1 =
∑

i

∑
j |Cij |; 1 is an all-one vector; diag(C)

extracts the diagonal elements of C; λ is a parameter, which
controls the balance between the data fidelity and the sparsity
of the coefficient matrix. The first constraint is introduced to
avoid the trivial solution of representing a sample by itself and
the second constraint indicates the case of affine subspace.

The model in (1) can be solved by ADMM [11]. Due
to the subspace preserving property of SSC, the sparse ma-
trix C can be used to construct the similarity matrix W ∈
RMN×MN by W = |C| + |C|T . Then the clustering re-
sults can be obtained by applying W in the spectral cluster-
ing [12]. Specifically, the c eigenvectors of Laplacian ma-
trix L = diag(W1) −W corresponding to the c smallest

eigenvalues of L are first calculated by singular-value decom-
position (SVD), and then applied to the k-means clustering
method.

3. PROPOSED LSSC-TV MODEL

SSC and the traditional SSC-based methods [2–7] suffer from
the high computational complexity problem, resulting from
the iterative optimization. A key obstacle is that the inverse
of the entire large matrix (YTY + µI) ∈ RMN×MN has
to be calculated and saved in memory, which results in time
complexity of O((MN)3). As the value of MN in HSIs
is usually very large, such methods impose huge require-
ments in terms of computational resources and may require
tremendous running time, which means they are not scalable.
Another limitation of SSC is its sensitivity to noise, which
is a consequence of the independent sparse coding, which
ignores the spatial continuity of pixel values in a local region.
The inferred similarity matrix is thus prone to noise and large
spectral variations within-class, which deteriorates thereby
the spectral clustering performance.

In order to reduce the computation complexity, we replace
the self-representation dictionary Y with a small landmark-
based dictionary D ∈ RB×n and represent the input data as
a linear combination of those landmarks which are generated
by k-means in the original data Y. This way we significantly
reduce the number of optimization variables from (MN)2 to
MNn, where n�MN .

Next, we reduce the noise sensitivity by introducing an
appropriate regularization. Observe that pixels in HSIs are
spatially correlated and neighbouring pixels belong to the
same class with high probability. Therefore, the coefficients
of neighbouring pixels should be similar. To account for
these spatial properties, we impose TV-norm regularization
on the coefficients matrix. The coefficients in the proposed
method are interpreted as the probability to select landmarks,
thus non-negative and sum-to-one constraints are added for
this physical meaning. The proposed LSSC-TV model with
respect to sparse matrix A ∈ Rn×MN is derived by:

arg min
A

1

2
‖Y −DA‖2F + λ‖A‖1 + λtv‖A‖TV

s.t. A ≥ 0, 1TA = 1T (2)

where λ and λtv are the penalty parameters for the sparsity
level and spatial smoothness, respectively, and the TV norm
is defined by:

‖A‖TV = ‖HxAT ‖1 + ‖HyA
T ‖1, (3)

where Hx and Hy are the forward finite-difference operators
in the horizontal and vertical directions, respectively, with pe-
riodic boundary conditions.

The proposed model can be efficiently solved by the
ADMM algorithm [11]. After obtaining the sparse matrix,



the next step is to build similarity matrix. As sparse matrix
A here is also a probability matrix indicating how likely a
data point selects the landmarks di(i = 1, 2, ..., n), based
on the theory of AnchorGraph in [13], we can construct the
similarity matrix directly by:

W = ATΛ−1A = ÂT Â, (4)

where Λ ∈ Rn×n is a diagonal matrix with Λi,i =
∑MN

j=1 Ai,j

and Â = Λ−1/2A.
In the case that W is sparse, less memory will be needed

to save the matrix and we can directly apply W within the
spectral clustering method. However, the sparseness of W is
not guaranteed, which may suffer from the high requirements
in terms of memory needed to save the large dense matrix W
for the large-scale data. Inspired by the landmark-based spec-
tral clustering method [10], we can calculate the first c eigen-
vectors of ÂÂT ∈ Rn×n, denoted by V = [v1,v2, ...,vc],
corresponding to eigenvalues σ1 ≥ σ2 ≥ ... ≥ σc, and apply
the matrix Σ−1VT Â to the k-means to obtain the clustering
results, where Σ = diag(σ1, σ2, ..., σc) ∈ Rc×c. Note that
the value of n is far smaller than MN , therefore, the eigen-
vectors of ÂÂT can be calculated very fast. We refer to the
paper [10] for details on the clustering method.

4. EXPERIMENTAL RESULTS

We conduct experiments on two widely used bench mark data
sets: Indian Pines and Salinas. The results of the original SSC
[1], spatial-regularized L2-SSC [4] and the large-scale clus-
tering methods SSSC [8], LSC [10] and Sketch-SSC [9] are
reported for comparison. Three performance measures: over-
all accuracy (OA), Kappa coefficient (κ) and running time (t)
are used for quantitative assessment. OA and κ can be com-
puted from confusion matrix with the best match between
clusters and ground truth [14]. All the methods are imple-
mented in MATLAB on a computer with an Intel c© core-i7
3930K CPU with 64 GB of RAM. The results of SSSC, LSC,
Sketch-SSC and LSSC-TV are reported in average of 5 runs.

4.1. Results with small data set

As the traditional SSC-based methods [1, 4] pose excessive
memory requirements in case of large-scale data sets, we first
test all the methods on the cropped Indian Pines, which is
commonly used in the literature [2, 5, 7]. The cropped data
set has 4 classes and the image size is 85× 70× 200. The pa-
rameters of the proposed method LSSC-TV are set as λ = 5×
10−3, λtv = 1×10−2 and n = 500, empirically. The cluster-
ing results reported in Table 1 demonstrate that the proposed
LSSC-TV method achieves the highest clustering accuracy of
87.36%. Compared with the traditional SSC-based methods
SSC and L2-SSC, LSSC-TV obtains nearly 20% accuracy im-
provement and 14 times speed up, which mainly benefits from

Table 1. Clustering results for the cropped Indian Pines.

Class
name

SSC
L2-
SSC

SSSC LSC
Sketch-
SSC

LSSC-
TV

Corn-
notill

60.00 61.09 56.98 57.01 62.19 49.40

Grass-
trees

98.36 99.32 96.66 96.49 100 99.95

Soybean-
notill

76.91 79.37 70.30 55.66 68.80 99.27

Soybean-
mintill

50.68 54.89 56.65 61.07 58.87 97.88

OA(%) 65.11 67.78 65.65 65.13 68.12 87.36
κ 0.5296 0.5629 0.5296 0.5119 0.5628 0.8169
t(s) 543 624 5 0.4 3 38

the employed spatial regularization and the compact dictio-
nary constructed by landmarks. Compared with the large-
scale clustering methods SSSC, LSC and Sketch-SSC, the
proposed method also yields significant accuracy improve-
ment with comparable running time.

4.2. Results with large-scale data set

We also test the performance on a larger data set: Salinas,
with size 512 × 217 × 204, including 111,104 pixels. There
are 16 classes in total. The false color and ground truth are
shown in Fig. 1 (a) and (b). The parameters of our method
are empirically set as λ = 1 × 10−3, λtv = 5 × 10−4 and
n = 1000. Due to the excessive memory requirements of
SSC and L2-SSC, they cannot be run on our computer for
this data. The results of large-scale methods reported in Ta-
ble 2 indicate that LSSC-TV consistently obtains the highest
accuracy. Note that LSSC-TV and LSC use the same spectral
clustering method and the difference is in the way to obtain
A. LSC employs k nearest neighbours (knn) method to find
the closer landmarks, while LSSC-TV automatically selects
the nearby landmarks based on sparse representation. In con-
trast with knn, the sparsity-based model is more flexible in
the embedding of various spatial regularizations. In terms of
runing time, LSC is the fastest method, and our method ob-
tains comparable running time with SSSC and Sketch-SSC.
The clustering maps in Fig. 1 show that the proposed method
and Sketch-SSC suffer from less impulse noise than SSSC
and LSC in this data.

5. CONCLUSION

We proposed a scalable SSC model by incorporating the
landmark-based sparse representation, which is feasible for
both small and large-scale HSIs without sacrificing clustering
accuracy. The small landmark dictionary reduces the amount
of optimization variables, resulting in a scalable clustering
model. The exploitation of spatial regularization based on



(a) (b) (c) OA=69.42 (d) OA=69.53 (e) OA=74.36 (f) OA=77.56

Fig. 1. Salinas. (a) False color image, (b) Labels, and clustering maps of (c) SSSC, (d) LSC, (e) Sketch-SSC and (f) LSSC-TV.

Table 2. Clustering results for Salinas.

Class name SSSC LSC
Sketch-

SSC
LSSC-

TV
Brocoli-1 59.06 78.52 99.43 40.00
Brocoli-2 98.34 97.20 98.91 92.56

Fallow 5.75 2.58 11.92 12.42
Fallow-rough-plow 77.45 99.24 19.90 99.33

Fallow-smooth 89.80 99.10 99.45 98.96
Stubble 99.61 98.96 99.54 98.84
Celery 90.82 69.72 55.25 99.61

Grapes-untrained 69.08 47.90 98.67 66.58
Soil-vinyard 97.04 92.09 99.72 91.46

Corn-senesced 43.00 64.21 88.04 90.17
Lettuce-4wk 73.01 97.62 54.21 92.53
Lettuce-5wk 14.98 0 70.97 88.57
Lettuce-6wk 0 97.84 0 0
Lettuce-7wk 90.02 0.04 97.78 0

Vinyard-untrained 48.30 59.91 0.28 63.71
Vinyard-trellis 46.69 61.42 97.61 74.47

OA 68.81 67.10 73.43 75.40
κ 0.6515 0.6387 0.7007 0.7273
t(s) 116 21 269 353

TV norm strengthens the dependency between neighbouring
pixels and guarantees thereby the robustness to noise and
spectral diversity within-class. Moreover, landmark-based
spectral clustering method is introduced to solve the dense
similarity matrix problem for the large-scale HSIs.
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