

Implementing realistic biological variability in an individual-based Dynamic Energy Budget model

Josef Koch and Karel De Schamphelaere

Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium

Introduction

DEB-IBM

 Allows for extrapolation of individuallevel energetic effects to populations

vidual-Based Modelii

Species: *Nitocra spinipes*

- Brackish water copepod
- Worldwide distribution
- **Ecotoxicological test species***

Inter-individual variability

- Integral in population resilience
- Data available for *N. spinipes*:

0		2
~ 7		~ –
	n = 610	

Challenge: How can variability in DEB parameters be estimated from variation in data?

$$S_i = \frac{V_{X_i}\left(E_{X_{\sim i}}(Y|X_i)\right)}{V(Y)}$$

each respective input parameter X_i

Results & Discussion

Parameter	$\{\dot{p}_{Am}\}$	\dot{v}	$[E_G]$	$[\dot{p}_M]$	К	E_H^{χ}
S_i Dev. time	0.44	0.003	0.03	0.06	0.36	0.06
S _i Brood size	0.42	0.001	0.01	0.11	0.39	0.05

 Observed endpoints are most sensitive to the maximum assimilation rate $\{\dot{p}_{Am}\}$

• Drawing $\{\dot{p}_{Am}\}$ from a log-normal distribution with an optimised scale parameter (SD) led to the best possible approximation of the variation in real data

(relative to mean)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Conclusions

- Variability in DEB parameters can be estimated from experimental data
- Adding variability to a single parameter provided a good approximation of observed variation in measured data and can easily be implemented in the IBM

josef.koch@ugent.be www.ecotox.ugent.be GhEnToxLab @ugent **in** Ghent University

References

[1] Kooijman, S.A.L.M., Dynamic Energy Budget Theory For Metabolic Organisation. 3rd ed. 2010, Cambridge: Cambridge University Press [2] Railsback, S.F. and V. Grimm, Agent-based and Individual-based Modeling: A Practical Introduction. 2nd ed. 2019, New Jersey: Princeton University Press [3] Koch, J. and K.A.C. De Schamphelaere, Two Dynamic Energy Budget Models for the Harpacticoid Copepod Nitocra spinipes. Journal of Sea Research, 2018 [4] Saltelli, A., et al., Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index. Computer Physics Communications, 2010. 181(2): p. 259-270

