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Abstract

To cope with the increasing number of co-existing wireless standards, com-
plex machine learning techniques have been proposed for wireless technology
classification. However, machine learning techniques in the scientific litera-
ture suffer from some shortcomings, namely: (i) they are often trained using
data from only a single measurement location, and as such the results do
not necessarily generalise and (ii) they typically do not evaluate complex-
ity/accuracy trade-offs of the proposed solutions.

To remedy these shortcomings, this paper investigates which resource-
friendly approaches are suitable across multiple heterogeneous environments.
To this end, the paper designs and evaluates classifiers for LTE, Wi-Fi
and DVB-T technologies using multiple datasets to investigate the complex-
ity/accuracy trade-offs between manual feature extraction and automatic
feature learning techniques.

Our wireless technology classification reaches an accuracy up to 99%.
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Moreover, we propose the use of data augmentation techniques to extend
these results to unseen environments at the cost of only 2% reduction in
accuracy. When concerning generalisation capabilities, complex automatic
learning techniques surpass simple manual feature extraction approaches.
Finally, the complexity of these automatic learning techniques can be sig-
nificantly reduced by using computationally less intensive received signal
strength indicator data while reaching acceptable accuracies in unseen envi-
ronments (92% vs 97%).

Keywords: manual feature extraction, automatic feature learning, wireless
technology classification, machine learning, CNN

1. Introduction1

With the advent of multimedia-enriched mobile phone applications, traf-2

fic demand from wireless users is increasing substantially. Furthermore, the3

number of wireless Internet of Things (IoT) devices is growing at an un-4

precedented rate: it is predicted that by 2020 there will be around 20 billion5

wireless devices around the globe [1].6

In this context, machine learning, which offers the ability to learn without7

being explicitly programmed, shows enormous potential to better manage8

the limited resources of a wireless network and enable the delivery of a new9

generation of services.10

Due to limited licensed bands and the growing traffic demands, the mo-11

bile communication industry is striving for offloading traffic from licensed to12

unlicensed bands. In Releases 13 and 14 of Long Term Evolution (LTE), the13

3rd Generation Partnership Project (3GPP) has proposed Licensed-Assisted14

Access (LAA), in which LTE can operate on both licensed and unlicensed15

bands via carrier aggregation [2]. This approach, however, raises questions16

on its effect on the performance of legacy IEEE 802.11 (Wi-Fi) [3]. In such17

a co-existence environment, it is necessary to make intelligent decisions for18

maintaining the Quality of Service (QoS) requirements of both technologies.19

On the other hand, it is predicted that the 5th generation (5G) network20

will provide 1000 times the capacity as compared to the current system [4].21

Offloading licensed traffic to unlicensed bands is beneficial, nevertheless it22

cannot solely fulfill the extensive capacity requirement. In this regard, an ef-23

ficient sharing of licensed bands is a promising solution [5]. Various standard-24

ization bodies, European Telecommunications Standards Institute (ETSI)25
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and the 3GPP are currently focusing on various licensed spectrum sharing26

models such as to apply cognitive radio techniques by radio environment27

maps (REM)s [6] and radio access network (RAN) sharing [7], respectively.28

A first step towards achieving this objective is for wireless systems to be29

able to identify what other wireless technologies are present in the same band30

and what their characteristics of operation are. In this paper, we design and31

analyse machine learning techniques for technology classification in shared32

spectrum. In our evaluation of those techniques, we consider three tech-33

nologies: Wi-Fi, LTE and Digital Video Broadcasting Terrestrial (DVB-T).34

These technologies are likely to operate in shared spectrum in the near fu-35

ture. Due to the 3GPP LAA proposals, LTE and Wi-Fi will operate and36

compete with each other in unlicensed bands [2]. Moreover, the reuse factor37

used in licensed DVB-T systems leads to significant amounts of unused spec-38

trum at a given location [8, 9, 10]. In order to efficiently utilise the licensed39

spectrum, secondary users can use it without creating any harmful impact on40

the primary network. This spectrum sharing model was used by the Federal41

Communications Commission (FCC) for television bands and is termed as42

white space reuse [10].43

To operate in shared spectrum, it is crucial that a wireless system is able44

to identify other technologies present in its vicinity, for interference avoid-45

ance and management, as well as for the detection of systems that may be46

operating in violation of the spectrum regime agreed upon for the band.47

The use of machine learning for wireless technology classification allows un-48

precedented technology classification accuracy using a wide range of signal49

features. However, a number of research issues still remain open:50

• Extensibility of results to different environments. In theory,51

machine learning allows scalability by building a generalised model us-52

ing a broad set of signals, collected in multiple environments. However,53

when using small datasets, as if often the case in scientific research, this54

generalisation remains a challenging problem [11].55

• Selection of the input features. It is currently still an open re-56

search question on how to best engineer input features to enable effi-57

cient machine learning [12]. Manual feature selection limits the number58

of required input features to only the ones deemed most effective, but59

it requires extensive domain expert knowledge and can limit the perfor-60

mance due to the inability to extract hidden or underlying features. On61

the other hand, automatic feature learning enables faster development62

of models and applications while also trying to improve the representa-63
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tion of data by discovering previously unknown features, at the risk of64

making the models more complex. To the best of our knowledge, the65

efficiency gains of both approaches for wireless technology classification66

have not yet been quantified and compared.67

The main contributions of our work are the following:68

• Quantitative comparison of the efficiency of machine learning69

techniques using manual feature extraction versus automatic70

feature learning for wireless technology classification. Specif-71

ically, we compare these two approaches by using multiple machine72

learning techniques, including decision trees, neural networks, convolu-73

tional neural networks (CNN) and image classification techniques. In74

addition, we evaluate the impact of different input features, including75

Received Signal Strength Indicator (RSSI) data (suitable, for example,76

to embedded devices) as well as more complex input features such as In-77

phase and quadrature (IQ) samples and Fast Fourier Transform (FFT)78

of the IQ samples that generates spectrogram images, to explore how79

well automatic deep learning can exploit features in more complex data.80

• Analysis of the generalisability and robustness to noise of81

wireless technology classification using machine learning. More82

specifically, we test generalisability using data collected in different un-83

seen environments, to exploit the model’s flexibility. Furthermore, the84

robustness of the models is explored by inducing noise into the datasets.85

This allows the assessment of the classification accuracy for multiple86

Signal to Noise (SNR) levels.87

• Trade-off and complexity analysis of machine learning tech-88

niques. We compare the previously mentioned techniques by analysing89

their complexity in terms of trainable parameters, memory footprint90

and training time. We also discuss the trade-offs concerning the com-91

plexity of the proposed techniques.92

The remainder of the paper is organised as follows. Section 2 discusses93

related work. Next, various feature learning techniques are presented, to-94

gether with a dataset description, in section 3. In section 4, manual feature95

extraction techniques based on RSSI distributions are introduced, together96

with a detailed description of the decision trees and a fully connected neural97

network (FNN) that we used. Next, automatic feature learning techniques98

based on IQ samples and RSSI values, along with the CNN designs adopted,99
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are introduced in section 5. In section 6, results of the aforementioned ap-100

proaches are presented and compared in terms of accuracy, generalisation,101

robustness and complexity. The paper ends with conclusions in section 7.102

2. Related work103

Machine learning techniques are increasingly popular and widely adopted104

at different layers of the network protocol stack. Table 1 lists recent papers in105

the domain of wireless technology classification with their classification goals,106

input data, machine learning approaches and compares their contributions107

in terms of generalisation to multiple (unseen) locations, robustness to SNR108

and complexity trade-offs.109

• The authors in [13] used CNNs for classifying 802.11 b/g, 802.15.4110

and 802.15.1, all of which operate in unlicensed bands. Their accuracy111

exceeds 95% with a signal-to-noise ratio greater than -5dB.112

• The authors of [14] classify the presence of radar signals, even with113

simultaneous transmissions of LTE and Wi-Fi systems.114

• The authors of [15] target the same technologies as our paper. However,115

instead of machine learning, [15] uses fixed algorithms (heuristics) in116

an attempt to classify Wi-Fi, LTE and DVB-T, and the paper does not117

validate the results using different datasets.118

• Besides technology classification, it is also possible to classify modula-119

tion techniques, for example using k-nearest neighbors (k-NN), Support120

Vector Machines (SVM) and Naive Bayes algorithms [16] or CNN based121

machine learning [17].122

• Paper [18] identified eight kinds of signals: binary phase shift keying123

(Barker codes modulation), linear frequency modulation, Costas codes,124

Frank code and polytime codes (T1, T2, T3 and T4). This paper used125

image-based CNNs, which train on spectrogram images instead of RSSI126

or IQ data.127

• In [19], the authors propose an end-to-end learning technique using128

spectrum data. Their goal is to identify modulation techniques and129

detect wireless interference with automatic feature learning. Three130

CNNs are trained with different kinds of data: IQ samples, ampli-131

tude/phase data and frequency domain data. Their experiments show132

that amplitude/phase data can outperform IQ and frequency domain133

data in modulation classification, while the frequency domain achieves134

the highest accuracy for interference detection.135
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Table 1: Overview of related work in the field of wireless technology classification

Paper [13] [14] [15] [16] [17] [18] [19] This
Classification
goal

802.11,
802.15.4,
802.15.1

Radar 802.11,
DVB-T,
LTE

Modu-
lation

Modu-
lation

Modu-
lation

Modu-
lation,
interfer-
ence

802.11,
DVB-T,
LTE

Input Data IQ Spec-
trogram

RSSI IQ FFT Spec-
trogram

IQ RSSI,
IQ, FFT,
spectrogram

Approach CNN CNN Fixed
algor-
tihm

k-NN,
SVM,
Naive
Bayes

LSTM,
DNN

CNN CNN Rforest de-
cision trees,
FNN, CNN

Generalisation
locations

+- X

Robustness
to SNR

X X X X X X X

Complexity
trade-offs

+- X X X

Most of the above mentioned papers used IQ samples in the frequency-136

domain as training input, with some using additional data such as phase, am-137

plitude and average magnitude FFT. These samples are used as an input for138

the machine learning techniques. However, IQ samples require complex sens-139

ing methods and such capability is not available on most resource-constrained140

wireless devices. Only [17] and [15] (although [15] does not discuss complex-141

ity trade-offs) adopt a more resource-friendly solution using, respectively,142

average magnitude FFT data or RSSI data that contains less information143

compared to IQ samples but is easier to collect, while [16] discusses complex-144

ity trade-offs off multiple classifiers, with complex IQ data. Most papers do145

validate robustness to noise with multiple SNR levels, an important metric146

to validate classification performance. Unfortunately, only [15] uses train-147

ing data from multiple locations, but none of the above papers evaluate the148

performance of its proposed machine learning techniques using multiple in-149

dependent and unseen datasets from different locations. Thus, in this paper150

we propose and discuss which models are best suited to increase accuracy,151

robustness and generalisability while trying to minimise complexity. To this152

end, we (i) evaluate more types of input data than prior work (manual fea-153

tures from RSSI, RSSI, raw IQ, FFT IQ image-based), (ii) evaluate more154

machine learning techniques than prior work (Decision Tree, FNN and CNN)155

and (iii) analyse the impact of using two separate datasets from different lo-156
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cations.157

On another layer of the network stack, above signal and technology158

recognition, sits traffic recognition. Likewise, traffic recognition is an ac-159

tive research topic in many performance optimisation and monitoring areas.160

These include mobile, anonymity and encrypted traffic classification that en-161

able profiling and allow management tools to enhance network performance162

[20, 21, 22]. However, the main difference is that our work focuses on robust-163

ness and generalisation towards multiple environments that can have various164

channel conditions. Moreover, these works targeting traffic recognition tar-165

get manual and statistical feature extraction, while the models presented in166

this paper favor raw signals to automatically extract features using CNNs.167

However, when considering manual feature extraction, C4.5 decision trees168

and random forests, the proposed models achieved good results comparable169

to the traffic recognition papers.170

3. System description171

In this section, we propose a spectrum manager framework which makes172

use of the models in this paper and assists operators for fine tuning their173

spectrum decisions. As mentioned above, one of our goals is to assess the174

generalisability of the proposed machine learning techniques for technology175

classification to systems deployed in different locations and under different176

conditions. Hence, we describe the datasets we collected and used in our177

study. These datasets are restricted to perform single-label classification.178

Hence, no overlapping signals were allowed. Finally, an overview of the eval-179

uated technology classification approaches gives an overview of the models.180

181

3.1. Spectrum manager framework182

The proposed spectrum manager is shown in Figure 1 and performs the183

following three tasks (i) fetch IQ samples, (ii) results from the trained mod-184

els, and (iii) spectrum decisions. The heart of the spectrum manager is a185

classification module, which we design by using machine learning approaches186

that do not require domain expertise. In the first task, IQ samples/RSSI187

values are fetched from Universal Software Defined Radio (USRP) which is188

part of the spectrum manager and is in a close proximity of the operators.189

In the second task, the trained models are used for getting identification of190

the technologies from the IQ samples fetched in the first task. Finally, the191
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Figure 1: A spectrum manager can make decision based on technology classification models
proposed in this paper to optimise usage of the wireless spectrum by different operators.

third task, makes spectrum policies and builds interference maps. This in-192

formation can be conveyed by the spectrum manager to the operators for193

fine tuning their spectrum decisions so that they can fairly coexist with each194

other.195

3.2. Data acquisition196

To train technology classification models, we have utilised seven datasets:197

the 6 datasets were captured at multiple locations in Ghent, Belgium and the198

second one in Dublin, Ireland. We have made all datasets publicly available199

for future research comparisons. 4 5 The objective of utilising datasets200

captured at multiple and different locations is to investigate how well the201

model can generalise for unseen environments. More precisely, the results202

in this paper evaluate the performance of our models, trained on Ghent’s203

dataset and validated on Dublin’s dataset. For the remainder of the paper,204

we refer to training dataset as a seen dataset and the validation dataset as205

4The dataset captured in Ghent is available at https://github.com/ewine-
project/Technology-classification-dataset

5The dataset captured in Dublin is available at https://github.com/ewine-project/lte-
wifi-iq-samples
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an unseen one.206

• The seen dataset consists of IQ samples of LTE, Wi-Fi and DVB-T207

captured in 6 various locations in Ghent 6.208

• The unseen dataset consists of IQ samples for LTE and Wi-Fi. These209

samples were collected7 in the CONNECT building in Dublin city cen-210

tre [23].211

In both locations, IQ samples where captured, from which the RSSI was212

calculated8 using (1) for N = 16.213

RSSI = 10 ∗ log10(
1

N

N∑
k=1

(I2
k + Q2

k)) (1)

where N and k correspond to the number of IQ samples per RSSI and the214

index of IQ samples, respectively.215

Figures 2 and 3 show the time domain and spectrogram representation of216

the IQ samples of the seen (two locations in Ghent are shown) and unseen217

dataset, respectively. The figures show clear similarities but also have dif-218

ferences in terms of background noise, sending intervals and signal strength.219

These environmental and antenna-related differences are needed to enable220

and verify generalisation capabilities of the trained models in section 6.221

3.3. Evaluated technology classification approaches222

Table 2 provides an overview of the proposed approaches for wireless tech-223

nology classification and the machine learning techniques adopted, together224

6An Anritsu MS 2690A spectrum analyser was used to capture samples of each of the
aforementioned signal types [15]. The Wi-Fi signal, captured in various office locations in
Ghent, and contains traces at 5540 MHz and at 2412 MHz. The LTE signal was obtained
from a base station nearby, operating at 806 MHz. Lastly, DVB-T signals were captured
from a local TV broadcasting station that operates at 482 MHz. The IQ samples were
collected at the rate of 10 MHz for a duration of 1.1 seconds.

7As a capture device, we used a B210 USRP software defined radio. From the dataset,
we used 14 measurements, each of 2 sec, which consist of 125,000 RSSI or 2 million IQ
samples, which translate to a total number of 1.75 million RSSI values or 28 million IQ
samples.

8In total 68,750 RSSI values or 1.1 million I/Q samples were computed for each mea-
surement of 1.1 seconds. We down sampled the measurements to a rate of 1 MHz to reduce
the dataset footprint. 163 measurements were performed, which translate to 11,206,250
RSSI values or 179,300,000 IQ samples in total.
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Figure 2: Time domain and and spectrogram representation of the seen dataset showing
different characteristics for each technology. Two locations in Ghent with different envi-
ronmental characteristics are shown, which can boost generalisation to multiple locations.
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Figure 3: Time domain and and spectrogram representation of the unseen dataset captured
at Dublin showing different characteristics compared to the seen dataset.

with their training data format. In the final column, we refer to the section225

where we discuss each approach in detail.226

Table 2: Machine learning techniques and feature extraction approaches for technology
classification proposed in this paper

Approach ML technique Data Section
Man. feat. Fully connected neural networks RSSI 4.3
Man. feat. Decision trees and random forests RSSI 4.4
Auto. feat. Conv. neural networks RSSI 5.2
Auto. feat. Conv. neural networks IQ 5.2
Auto. feat. Conv. neural networks Spectrogram 5.2

Figure 4 draws an overview of the steps taken to achieve manual and227

autonomous feature extraction. Every training process starts with RAW228

IQ sample datasets collected at our various locations. Depending on the229

approach, samples will need to be recomputed to other formats. RSSI values,230

computed as discussed in 3.2, are used to manually extract features. In this231
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scenario, discussed in 4.2, the model receives only the optimal selected subset232

of features. IQ samples can be processed with FFT and visualised with a233

spectrogram or directly used as raw input to the model. Once the data is234

processed, the corresponding model is trained.235

Compute FFT
and generate
spectrogram

Trained
model

RAW IQ
samples

IQ­based model?

Image­based 
model?

Train model 
(depending on input data) 

(5.2) Use
raw IQ data

Compute RSSI
samples

Compute features(5.2) Use
RSSI data

Rank features using
single­feature classifier

scoring method

Remove the lowest
ranked feature and

train temporary model

Yes

Yes

Yes

No

(5.2) Use
spectrogram
images

(4.2) Use
optimal feature
subset

No

No

No Yes (4.1)Manual feature
extraction?

Accuracy 
improved?

Figure 4: Overview of the steps taken to achieve manual and autonomous feature extrac-
tion, including their sections.
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4. Manual feature extraction based on RSSI distributions236

This section discusses the manual feature extraction and selection pro-237

cesses and describes briefly the machine learning techniques which were used238

to train classifiers and generate results.239

4.1. Manual feature extraction240

Before extracting features, we preprocessed and converted RSSI data into241

histograms that estimate the probability distributions of RSSI values. As242

a use-case, these histograms are calculated using 256 RSSI samples which243

corresponds to a sample duration of 4.096 ms. This method is based on244

[15], which shows that these distributions offer valuable features. However,245

here we extract and evaluate more and different features that are simple246

to calculate. The histograms are used as input for the feature extraction247

module. The output of this module is a feature vector Xi such that,248

Xi = [ r0, r1, ..., r19, Rmin, Rmax, Pn, Pw, Hstd, Dmean, Dmedian] (2)

where:249

• {r0, r1, ..., r19} is a set of 20 intervals selected from the input histogram.250

r0 corresponds to the leftmost part of the histogram, while r19 repre-251

sents the rightmost part. Each interval thus contains 5% of the his-252

togram and its value indicates the frequency of RSSI values within the253

corresponding interval.254

• Rmin is the minimum RSSI value and thus the left boundary of the255

histogram.256

• Rmax is the maximum RSSI value and thus the right boundary of the257

histogram.258

• Pn is the measured number of peaks in the histogram.259

• Pw is the width of the highest peak.260

• Hstd is the standard deviation of the histogram values.261

• Dstd is the standard deviation of the RSSI values upon which the his-262

togram is calculated.263

• Dmean is the mean of the RSSI values upon which the histogram is264

calculated.265

• Dmedian is the median of the RSSI values upon which the histogram is266

calculated.267
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Table 3: Number of selected features with their accuracy on a (un)seen dataset

# features Training accuracy Validation accuracy
28 (all) 88.4% 74.0%
15 88.9% 77.0%
11 88.8% 76.1%

4.2. Feature selection268

One advantage of using manual feature extraction methods is the con-269

trol over which features are used to train the model. [24] discusses feature270

selection as a method to improve the accuracy of the model. To allow op-271

timal selection, each feature is ranked according to the score calculated by272

a ranking method. Several such methods have been proposed by [24]. In273

this work, we used the single-feature classifier method which gives the high-274

est prediction accuracy compared to other methods such as entropy-based,275

correlation-based, etc. The single-feature classifier method takes each of the276

features, one-by-one, and calculates the resulting accuracy as a ranking met-277

ric for the corresponding feature.278

In order to determine how many features we select from the ranked list, we279

start removing the lowest ranked feature and proceed up the list. Each time,280

the classifier uses the remaining features to train. Finally, we know which281

and how many are the most optimal features to select. The following fifteen282

features were selected: r1, r2, r3, r4, r8, r9, r10, r11, r12, r19, Rmin, rmax, Pw, Dstd,283

Dmean. Table 3 illustrates a higher accuracy when selecting a subset of fif-284

teen features compared to all 28 features, which confirms the findings of [24]285

are also valid for wireless technologies, where using too many features can286

complicate the model. In addition, the results show that removing too many287

features results in a lower accuracy score. The model losing valuable infor-288

mation to learn classifying wireless technologies explains this behaviour. For289

further results, the fifteen highest scoring features, according to the single-290

feature classifier ranking method, were used to compare the performance of291

the classifier against competing approaches.292

4.3. Fully connected neural network293

Table 4 provides an overview of the employed artificial neural network294

(ANN) architecture. This ANN is also known as a FNN because of its mul-295

tiple (two) hidden layers having connections to all nodes of the previous and296

following layers. The input layer with a size of 29 neurons, or 15 after feature297
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selection, receives the manually extracted feature vectors, vn ∈ R29, contain-298

ing values as described in subsection 4.1. This layer is followed by two fully299

connected layers with 25 and 10 neurons respectively. Finally, an output300

layer classifies the wireless signal through three neurons for DVB-T, Wi-Fi301

and LTE. The first two layers use a radial basis activation function (3):302

output = radbas( ||w · p || b), (3)

where w and p are weight and input vectors respectively, b is the bias and303

radbas(n) is304

radbas(n) = e−n2

. (4)

The output of this activation function will be 1 when the difference be-305

tween w and p is 0.306

The last layer of the neural network uses a softmax activation function307

(5):308

softmax(z)i =
ezi∑
j e

zj
(5)

where j = 1, ...,#classes and zi is309

zi =
∑
k

pkWki (6)

where i is the considered output neuron, k = 1, ...,#neuronsPreviousLayer,310

pk is the output of the previous layer’s neuron and Wki is the weight applied311

to pk. In contrast to the models proposed in section 5, this neural network312

is much smaller. There is no need for feature learning in raw data using313

many deep and convolutional layers. Rather we designed a less complex314

FNN that can perform better given already extracted features [25], hence315

this design choice. The model learns by applying scaled conjugate gradient316

back-propagation each time it is given training data. This gradient is used317

to update the weights and bias values of the neural network. The training318

of such a network requires the inputs, weights and activation functions all to319

have derivative functions.320

4.4. Decision tree and random forest321

Compared to neural networks, decision trees offer insight into how classi-322

fication is performed. Unlike neural networks, they are not considered black-323

boxes. Decision trees compare one of the features at each of their nodes. If324
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Table 4: FNN structure

Layer type Layer size Activation function
Input 15 neurons radbas
Fully connected 25 neurons radbas
Fully connected 10 neurons radbas
Output 3 neurons softmax

the value of the feature is smaller than the trained value, then the algorithm325

follows the left branch; if it is larger, then it follows the other direction.326

During the training phase of a decision tree, decisions are made upon which327

feature should be selected and what the value should be. This decision de-328

pends on the implementation, e.g., the C4.5 algorithm, which we used, splits329

the tree using normalised information gain, also called gain ratio (7) [26]:330

Gainratio(Y,X) =
H(Y )−H(Y |X)

H(X)
(7)

with331

H(X) = −
n∑

i=1

P (xi) ln2 P (xi), (8)

and332

H(Y |X) = H(Y,X)−H(X), (9)

where P (xi) is the probability of feature X having a value xi out of all pos-333

sible values. H(X) thus represents uncertainty in X or the minimum bits334

needed to encode X [26]. H(Y,X) is the joint entropy and H(Y |X) is the335

conditional entropy between class Y and feature X.336

337

The C4.5 algorithm for building decision trees is illustrated in Algorithm338

1 [27]. In the algorithm, T represents the considered instances at each node.339

The chosen label at a leaf is set when only one class is present in the instances340

of a node or when there are no instances. In the last case, the chosen class341

is the most frequent one in the instances at the parent node. Another case342

is when only a few instances are present. Then, the class is set as the most343

frequent one, present in these instances. Note that these early stopping344

conditions try to prevent overfitting. Overfitting occurs when the model has345

high accuracy on the training data, but low accuracy on the validation data.346

Techniques such as pruning are further applied to prevent overfitting. Nodes347
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Algorithm 1: C4.5 Algorithm.
Input: Instances containing features X and classes Y .
Output: A classification decision tree.
ConstructTree(T):
if OneClass or FewCases then

return leaf;
else

create decision node N;
foreach attribute X do

ComputeGainRatio(Y,X);
end
N.test = AttributeWithHighestGain;
if N.test is continuous then

find threshold;
end
foreach splitted T’ in T do

if T’ is Empty then
child of N is leaf;

else
child of N = ConstructTree(T’);

end

end
return N;

end

are replaced by one of their children nodes and the resulting accuracy with348

validation data is captured. Finally, the algorithm chooses the node which349

resulted in the most significant improvement on validation data. This method350

is called sub-tree replacement and is executed as long as the accuracy on351

validation data is increased [28]. As an alternative, C4.5 implementations do352

sometimes only use the largest subtree to replace its parent. We implemented353

pruning together with a maximum tree depth of 25 in order to maximise354

generalisation while reducing the tree size and thus minimising complexity.355

Finally, to further improve the accuracy of decision trees, we have ex-356

plored and used ensemble learning techniques such as random forests for357

our results to compare state-of-the-art decision tree methodologies. Random358

forests further prevent overfitting by generating multiple C4.5-generated de-359

cision trees, each trained with a random subset of features at each node to360

reduce correlation between the trees. Each tree votes for the predicted class.361

Finally, the most voted for class Y is chosen given input X [29].362
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5. Automatic feature learning based on raw IQ samples and image-363

based spectrograms364

This section describes the automatic feature learning approaches that we365

have explored. Additionally, a description of CNNs, along with corresponding366

configuration details, is provided.367

5.1. Feature learning368

The approaches described in this chapter are based on supervised feature369

learning techniques which are heavily exploited in the computer vision do-370

main. In this field, the manual feature extraction followed by dimensionality371

reduction (as in Section 4.1) is replaced by applying deep learning techniques372

directly on raw pixel intensities (e.g., the method proposed by the authors of373

[30]). Similarly, in our research, we apply FNN and CNNs on raw IQ values,374

their derived, simpler, RSSI samples and image-based spectrograms.375

5.2. Convolutional neural networks376

Table 5 provides an overview of the CNN architecture we adopted for377

the classification of wireless technologies. We started the design of our CNN378

architecture based on our previous work [31]. Next, we further improved379

generalisation to multiple locations and improved robustness to noise by ex-380

perimentally fine tuning parameters as discussed further in this section. We381

implemented three types of CNNs based on their used data-type:382

383

1. RSSI-based CNN: for training this CNN, we used RSSI samples,384

which are less complex than IQ samples. This CNN uses 256 RSSI385

samples as an input, which corresponds to 4.096 ms, similar to the386

sample length described in section 4.1.387

2. IQ-based CNN: In this CNN, 4,096 raw IQ samples are used, which388

corresponds also corresponds to 4.096 ms. In Table 5 an input size of389

8,192 is used because each IQ sample has two components.390

3. Image-based CNN: The data used in this CNN are FFT IQ samples.391

Spectrograms are generated and saved as an image with dimensions 64392

x 64 pixels. Again, this corresponds to 4.096 ms per input.393

Compared to the FNN, described in section 4.3, the CNN includes many394

layers without typical neurons. These layers include functions to process395
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the output from previous layers. The first kind of processing layer is a con-396

volutional layer. Such layers contain multiple learnable feature maps and397

calculate their values from various, but not all (such as in fully connected398

layers), previous neurons. They intend to have small receptive fields and399

decrease parameters by sharing filter weights [32]. The size of these feature400

maps varies in the convolutional layers, e.g., the first convolutional layer401

from the image-based CNN contains 64 feature maps with a size of 2 x 2,402

connected to neurons of the input layer. We experimented with increased403

stride sizes, which control the number of values the filter has to move. This404

is by default 1 by 1 so that each convolution connects all neighbours values405

within the convolutional filter size. However, increased stride sizes decreased406

the performance of the model. We believe this is due to features being more407

present locally and chronologically in our data. Increasing the stride size will408

decrease the number of local receptive fields, which results in lower perfor-409

mance.410

Dropout is the next type of layer we used in our CNN. This layer produces411

more generalised models by preventing overfitting of training data, which we412

experimentally validated.413

Pooling is another type of layer with the intent of reducing the total num-414

ber of parameters to train on. This dimensionality reduction dramatically415

enhances training time and reduces the model’s required memory footprint.416

In our case, we found optimal results with a max-pool size of 1X2 and 2X2.417

This pool will take 2 and 4 values, respectively, from the previous layer and418

output the maximum. Using max-pooling in the RSSI CNN, the number of419

trainable parameters decreased from 87,494 to 43,747.420

The above mentioned layers are followed by a fully-connected dense layer.421

Each neuron of this layer is connected to all of the previous layer’s neurons.422

This way, learned local features from previous convolutional layers get con-423

nected and are used to perform the final steps of classification.424

The final layer contains three neurons, one for each class, and is activated425

with a softmax layer, as described in 4.3. In contrast to the FNN discussed426

in 4.3, each convolutional and dense layer is succeeded by a ReLU activation427

function. Here, this activation function performs slightly better than the428

radial basis activation function. The ReLU function, first proposed in [33],429

is defined in (10):430

f(x) = max(0, x) (10)
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Figure 5: Results of manual and automatic feature learning approaches.

Finally, the models are trained for maximum 100 epochs using early stop-431

ping criteria (no loss improvement for 10 epochs) and a batch size of 256432

samples.433

6. Results and comparison434

This section first presents results regarding accuracy in seen environments435

and afterwards generalisation towards unseen environments. Next, robust-436

ness towards additional noise levels is analysed, followed by a complexity437

analysis of the proposed approaches. All results are validated using 10-fold438

cross-validation to ensure there is no bias towards portions of the dataset439

and minimise variation of the results [34].440

6.1. Accuracy441

Results of the proposed approaches are presented in Figure 5. In this442

scenario, automatic feature learning with the CNN using raw IQ samples443

achieves the highest accuracy (97.8%), followed closely by the image-based444

CNN (97.1%) and the RSSI-based CNN (95.3%). Manual feature extraction445

methods achieve a slightly lower accuracy for both the FNN (87.2%) and446

the Random Forest (RForest) decision trees (88.0%). Figures 6a - 6e show447

the above results in more detail using confusion matrices. More specifically,448

accuracies for each correct classification and classification errors of Wi-Fi,449

LTE and DVB-T are shown. We observe classification errors to be the highest450

for Wi-Fi for manual RSSI based methods. Around 40% of Wi-Fi is identified451

as DVB-T. This leads to the conclusion that better features are needed to452

differentiate the two technologies. Despite these results, LTE classification453

seems to perform well across all models, even for less-complex manual feature454

extraction-based and raw RSSI-based methods. The IQ and image-based455
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Figure 6: Above confusion matrices of all five approaches (a) Manual FFN model, (b)
Manual RForest model, (c) RSSI CNN model (d) IQ CNN model (e) Image CNN model.
Below confusion matrices with approaches using data augmentation including different
SNR levels (f) Manual FFN model, (g) Manual RForest model, (h) RSSI CNN model (i)
IQ CNN model (j) Image CNN model.

models clearly have superior performance as a result of the more complex456

models and feature-rich data.457

6.2. Generalisability458

The above results are only viable for environments that closely resemble459

those where the training data was collected. Therefore, we assess the gen-460

eralisation of the models and validate the classification performance with a461

dataset from an unseen and different environment. Figure 5 shows for each462

approach lower accuracy on unseen datasets. This result is expected because463

the environment has other properties and captured signals are influenced in464

different ways. However, IQ- and image-based approaches still manage to465

achieve an accuracy above 93%, while the RSSI-based CNN achieves 89.4%.466

Manual feature extraction techniques struggle to generalise, exhibiting an ac-467

curacy just under 75%. This behaviour occurs because valuable information468

is lost through conversion of IQ samples to RSSI and further through manual469

extracted features.470
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To remedy this, we combined the techniques to improve generalisation471

and avoid overfitting discussed in 5.2, with additional data augmentation472

techniques. These techniques transform each sample of the dataset in various473

ways and add them to the original dataset. Specifically, we post-processed the474

seen dataset and included noise of different SNR levels, which is considered475

as a way of applying data augmentation techniques to IQ samples and RSSI476

values. Each sample is extended with noise, with SNR levels ranging from477

-15dB to +30dB with a step of 5dB. As a result, the original dataset size is478

increased by a factor of 10.479

The results presented in Figure 5 illustrate accuracy improvements in all480

approaches through data augmentation, especially on the unseen dataset with481

the CNN using raw RSSI and IQ data (achieving and additional 2.5% - 3.1%482

generalisation increase). This leads to a very competitive scenario were RSSI,483

IQ and image-based CNN can be considered feasible for wireless technology484

classification. While manual feature extraction techniques show performance485

just under 90% in scenarios similar to those of the trained datasets, unseen486

scenarios keep struggling, with accuracies around 75%. These data augmen-487

tation techniques also show 1-7% improvement for single class classification488

accuracy on the seen dataset as shown in figures 6f - 6j.489

6.3. Robustness490

Next, we discuss the robustness of our proposed solutions against addi-491

tional noise levels. Again, the models are trained with data containing SNR492

levels ranging from -15dB to +30dB. Validation results are collected for un-493

trained samples in each SNR level. Figure 7 illustrates classification accuracy494

as a function of SNR. The image-based CNN achieves the highest accuracy495

overall, even in the low SNR scenario of -15dB. This is due to the fact that496

the image based CNN, which uses FFT of the IQ samples, is more immune497

to noise. As such the authors of [35] prove that such FFT frequency-based498

features surpass time-based features for wireless device identification in de-499

graded SNR scenarios. Unsurprisingly, in high SNR scenarios it is clear that500

the automatic feature learning techniques outperform the manual feature ex-501

traction methods, which have limited features. Moreover, the similar and502

limited performance of the RForest and the FNN also hint to inferior feature503

extraction compared to their automatic extraction counterpart. Looking fur-504

ther at the results, the IQ-based CNN performs notably worse in low SNR505

scenarios. High sensitivity to noise by IQ samples is one possible underlying506

reason for this result. With these fluctuations in the dataset, the IQ-based507
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Figure 7: Classification accuracy as a function of SNR levels, for manual and automatic
feature learning approaches.

CNN cannot learn to classify technologies in a reliable way. Results of the508

RSSI-based CNN further support this explanation because multiple IQ sam-509

ples are averaged to become RSSI samples, as explained in equation 1 and are510

thus less susceptible to fluctuations due to added noise. As such, the input511

to the neural network has a much larger impact considering noise for IQ sam-512

ples compared to RSSI samples. The RSSI-based CNN model achieves good513

performance, even in low SNR scenarios with an utmost difference of 10%514

compared to image-based CNN at -5dB, while performing only 3% less at515

high SNR scenarios compared to other automatic feature learning methods.516

These CNN-enabled methods prove to be robust from 10dB and upwards517

with accuracies ranging between 86% and 98%.518

6.4. Complexity519

Table 6 illustrates the complexity of the proposed approaches. Results520

are collected on a Windows computer with an Intel R© CoreTM CPU i9-9900K521

@ 3.60GHz, NVIDIA R© TITAN RTXTM 24GB graphics card and 32GB of522

system memory. Manual feature extraction methods require less memory and523

are much faster in terms of training time. Moreover, the RSSI-based CNN524

achieves a much smaller memory footprint compared to the more complex525
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Table 6: Trainable weights, memory footprint and training time of the proposed ap-
proaches

Model Weights Memory Train time
RForest man. feat. 6393 0.08GB 19s
FNN man. feat. 1018 0.12GB 51s
CNN RSSI-based 43747 0.81GB 100s
CNN IQ-based 212935 8.46GB 1500s
CNN Image-based 55430 2.61GB 950s

IQ- and image-based methods. One of the reasons is the 16 times smaller526

input size. The IQ- and image-based methods require high-end GPUs to527

train on. Furthermore, because of their high number of weights, layers and528

convolutions, they require more resource-heavy systems to deploy as wireless529

technology classification systems. Although IQ-based models require most530

resources, we want to highlight that these model require no pre-processing.531

This makes the model very interesting compared to image-based models532

which require computational-heavy FFT and image generation capabilities.533

This pre-processing can limit the feasibility when the model is deployed for534

wireless classification.535

As a conclusion, manual feature extraction methods are very resource-536

friendly, but only perform well in known environments. Automatic feature537

learning methods perform better, especially in terms of generalisation. On538

the one hand the RSSI-based CNNs show great efficiency potential with their539

relative small memory footprint and high accuracy. On the other hand, IQ-540

and image-based methods achieve the highest prediction accuracies no matter541

their resource requirements.542

7. Conclusions and future work543

Machine learning techniques show enormous potential in many domains,544

including wireless technology classification. In this domain, due to increasing545

heterogeneity in wireless communications, often sharing the same spectrum546

band, sensing the environment and making intelligent decisions is crucial.547

Many of the previous works present deep learning approaches to successfully548

identify wireless technologies on the fly. However, many of the proposed549

methods target only resourceful devices and fail to address generalised and550

robust models for different environments with changing noise levels.551

25



In this paper, we have proposed and evaluated techniques to allow wire-552

less technology classification for resource-constrained devices, as well as for553

more resourceful devices. Furthermore, we have shown that data augmen-554

tation techniques add an additional boost to generalisation, next to vari-555

ous model design choices, for unknown environments up to 3.1%. We have556

demonstrated that applying FFT algorithms to IQ samples, to further create557

image-based spectrograms, enables high accuracy, even in lower SNR scenar-558

ios. Raw IQ files achieve the highest generalisation capabilities by achieving559

the highest accuracy in unseen environments. Finally, manual feature extrac-560

tion proved to be inferior compared to automatic feature learning in terms561

of accuracy, but can still be useful in known environments, while requiring562

very low complexity. Moreover, the less complex RSSI-based model offers a563

good balance between complexity, accuracy, generalisation and robustness to564

noise. These results demonstrate the positive effect of choosing the correct565

machine learning technique and data format. As such, the outcome of this566

paper enables wireless domain experts to incorporate intelligence into wireless567

communications using machine learning techniques while targeting multiple568

environments and recommends multiple approaches for wireless technology569

classification.570

571

We envision future research adding support for overlapping signals. This572

will enrich the models support for irregular signal behaviour and prevent573

misclassification for these kind of signals. Additionally, autoencoders can574

be used for semi-supervised learning, minimising the required amount of575

labelled data that is needed. This will further accelerate the adoption of new576

supported technologies in many environments. Furthermore, future work577

can make intelligent decisions for wireless technology operators based on the578

detected present technologies. Finally, models with even lower complexity579

should be developed with a small accuracy-complexity trade-off, reducing the580

operational costs of future intelligent devices.581

[1] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things582

(IoT): A vision, architectural elements, and future directions, Future583

generation computer systems 29 (2013) 1645–1660.584

[2] H.-J. Kwon, J. Jeon, A. Bhorkar, Q. Ye, H. Harada, Y. Jiang, L. Liu,585

S. Nagata, B. L. Ng, T. Novlan, et al., Licensed-Assisted Access to Un-586

licensed Spectrum in LTE Release 13, IEEE Communications Magazine587

55 (2017) 201–207.588

26



[3] R. Zhang, M. Wang, L. X. Cai, Z. Zheng, X. Shen, L.-L. Xie, LTE-589

unlicensed: the future of spectrum aggregation for cellular networks,590

IEEE Wireless Communications 22 (2015) 150–159.591

[4] Incorporated, The 1000x data Challenge (2013).592

[5] R. H. Tehrani, S. Vahid, D. Triantafyllopoulou, H. Lee, K. Moessner,593

Licensed spectrum sharing schemes for mobile operators: A survey and594

outlook, IEEE Communications Surveys and Tutorials 18 (2016) 2591–595

2623.596

[6] ETSI, Building the future, work programme 20142015, Technical Re-597

port, 2014.598

[7] 3GPP, Study on radio access network (RAN) sharing enhancements,599

Technical Report, 2014.600

[8] Y. j. Choi, C. S. Kim, S. Bahk, Flexible Design of Frequency Reuse Fac-601

tor in OFDMA Cellular Networks, in: IEEE International Conference602

on Communications, volume 4, pp. 1784–1788.603

[9] J. Huschke, W. Rave, T. Kohler, Downlink capacity of UTRAN reusing604

frequencies of a DVB-T network with negligible influence on DVB-T605

performance, in: IEEE Vehicular Technology Conference, volume 3, pp.606

1579–1583.607

[10] B. Ellingster, H. Bezabih, J. Noll, T. Maseng, Using TV receiver infor-608

mation to increase cognitive white space spectrum, in: IEEE Interna-609

tional Symposium on Dynamic Spectrum Access Networks, pp. 131–141.610

[11] L. Zhou, S. Pan, J. Wang, A. V. Vasilakos, Machine learning on big611

data: Opportunities and challenges, Neurocomputing 237 (2017) 350 –612

361.613

[12] Y. Bengio, A. Courville, P. Vincent, Representation learning: A re-614

view and new perspectives, IEEE Transactions on Pattern Analysis and615

Machine Intelligence 35 (2013) 1798–1828.616

[13] M. Schmidt, D. Block, U. Meier, Wireless Interference Identification617

with Convolutional Neural Networks, CoRR abs/1703.00737 (2017).618

27



[14] A. Selim, F. Paisana, J. A. Arokkiam, Y. Zhang, L. Doyle, L. A. DaSilva,619

Spectrum Monitoring for Radar Bands Using Deep Convolutional Neural620

Networks, in: IEEE Global Communications Conference, pp. 1–6.621

[15] W. Liu, M. Kulin, T. Kazaz, A. Shahid, I. Moerman, E. De Poorter,622

Wireless Technology Recognition Based on RSSI Distribution at Sub-623

Nyquist Sampling Rate for Constrained Devices, Sensors 17 (2017).624

[16] T. J. O’Shea, J. Corgan, Convolutional Radio Modulation Recogni-625

tion Networks, International Conference on Engineering Applications of626

Neural Networks abs/1602.04105 (2016).627

[17] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, S. Pollin, Dis-628

tributed Deep Learning Models for Wireless Signal Classification with629

Low-Cost Spectrum Sensors, IEEE Transactions on Cognitive Commu-630

nications and Networking abs/1707.08908 (2017).631

[18] M. Zhang, M. Diao, L. Guo, Convolutional neural networks for au-632

tomatic cognitive radio waveform recognition, IEEE Access 5 (2017)633

11074–11082.634

[19] M. Kulin, T. Kazaz, I. Moerman, E. De Poorter, End-to-end learning635

from spectrum data : a deep learning approach for wireless signal iden-636

tification in spectrum monitoring applications, IEEE Access 6 (2018)637

18484–18501.638

[20] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescap, Multi-classification ap-639

proaches for classifying mobile app traffic, Journal of Network and Com-640

puter Applications 103 (2018) 131 – 145.641

[21] A. Pescape, A. Montieri, G. Aceto, D. Ciuonzo, Anonymity services642

tor, i2p, jondonym: Classifying in the dark (web), IEEE Transactions643

on Dependable and Secure Computing (2018) 1–1.644

[22] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescap, Mobile encrypted traffic645

classification using deep learning, in: 2018 Network Traffic Measurement646

and Analysis Conference (TMA), pp. 1–8.647

[23] eWINE-project, Iq samples of lte and wifi, https://github.com/648

ewine-project/lte-wifi-iq-samples, 2017.649

28



[24] I. Guyon, A. Elisseeff, An Introduction to Variable and Feature Selec-650

tion, J. Mach. Learn. Res. 3 (2003) 1157–1182.651

[25] L. Jing, M. Zhao, P. Li, X. Xu, A convolutional neural network based652

feature learning and fault diagnosis method for the condition monitoring653

of gearbox, Measurement 111 (2017) 1 – 10.654

[26] C. R. Shalizi, Methods and Techniques of Complex Systems Science: An655

Overview, Springer US, pp. 33–114.656

[27] S. Ruggieri, Efficient C4.5 [classification algorithm], IEEE Transactions657

on Knowledge and Data Engineering 14 (2002) 438–444.658

[28] Salvatore Ruggieri, Subtree Replacement in Decision Tree Simplifica-659

tion, in: SDM.660

[29] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.661

[30] J. Schmidhuber, Multi-column Deep Neural Networks for Image Classi-662

fication, in: IEEE Conference on Computer Vision and Pattern Recog-663

nition (CVPR), IEEE Computer Society, Washington, DC, USA, 2012,664

pp. 3642–3649.665

[31] V. Maglogiannis, A. Shahid, D. Naudts, E. De Poorter, I. Moerman, En-666

hancing the coexistence of lte and wi-fi in unlicensed spectrum through667

convolutional neural networks, IEEE Access 7 (2019) 28464–28477.668

[32] S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, Face recognition: a669

convolutional neural-network approach, IEEE Trans. Neural Netw. 8670

(1997) 98–113.671

[33] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S.672

Seung, Digital selection and analogue amplification coexist in a cortex-673

inspired silicon circuit, Nature 405 (2000) 947.674

[34] Y. Zhang, Y. Yang, Cross-validation for selecting a model selection675

procedure, Journal of Econometrics 187 (2015) 95 – 112.676

[35] B. Danev, S. Capkun, Transient-based identification of wireless sensor677

nodes, in: 2009 International Conference on Information Processing in678

Sensor Networks, pp. 25–36.679

29


