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Abstract 

Thermal wave radar (TWR) is a state-of-the-art non-destructive testing method, inspired by radio 

wave radar systems, in order to increase depth resolution and signal to noise ratio of optical 

infrared thermography through pulse compression. Analogue frequency modulation (i.e. 

frequency sweep) and Barker binary phase modulation are the two popular and widely researched 

pulse compression techniques in TWR among which Barker coding has shown the highest 

performance. This paper introduces a novel modulated waveform with variable discrete frequency-

phase modulation (FPM) which distinctively enhances the depth resolvability of TWR compared 

to the existing techniques. The pulse compression quality and depth resolvability of the novel FPM 

waveform is initially evaluated through a 1D analytical solution. The analogue frequency 

modulated and discrete phase modulated waveforms as well as mono-frequency excitation (i.e. 

lock-in thermography) are also evaluated at the same central frequency as the reference. Objective 

functions are defined and a large search space is explored for optimal modulation codes. Two FPM 

waveforms are selected based on their maximized depth resolvability through resultant lag and 

phase in the output channel of TWR. Furthermore, the excellent performance of the selected FPM 

waveforms is validated by 3D finite element simulation. A delaminated glass fiber reinforced 

polymer (GFRP) laminate is simulated in order to evaluate the impact of a dominant lateral heat 

diffusion on the performance of the novel FPM waveforms. The superior depth resolvability of the 

introduced FPM waveforms is confirmed and their robustness at various noise levels is 

demonstrated.  
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1. Introduction 

Optical infrared thermography is an efficient nondestructive testing (NDT) method for full-

field remote inspection of a relatively large area of a test piece [1, 2]. An optical source radiates 

heat onto the inspection surface and a high sensitivity infrared camera records the resultant thermal 

images. The stimulated heat wave diffuses through the thickness of the sample and interacts with 

the internal defects due to the thermal diffusivity mismatch introduced by their interfaces. Then, 

the defects can be detected and quantified through their impact on the evolution of the surface 

temperature. The technique is mainly limited by the diffusive nature of the heat wave as its 

amplitude exponentially decays over the space and (contrary to elastic waves) lacks a wavefront 

to provide high incident energy. Developments of adequate excitation and post-processing 
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techniques to overcome the current detectability limits of infrared thermography and to obtain 

proper quantification of defects have been widely researched (e.g. [3-6]). 

Thermal wave radar (TWR) is a state-of-the-art technique developed for increased depth 

resolution and signal to noise ratio (SNR) of infrared thermography, applied in optical   

thermography using laser or halogen/LED lamps [7-16] and more recently in eddy current 

induction thermography [17, 18]. TWR is based on pulse compression techniques originally 

implemented in the radio wave radar (RAdio Detection And Ranging) systems [19, 20]. Cross-

correlation of the echo reflected from an object with the transmitted waveform enables a radar 

system to determine the object’s range by searching the peak and corresponding time delay (lag) 

or phase in the output channel of the matched filter. In practice, the presence of stochastic noise 

and the possibility of overlapping echoes from multiple closely spaced objects, leads to ambiguity 

in the detection of the peak corresponding to an object. Although transmission of very short pulses 

can increase the range resolution, it results in a lower SNR due to the low energy input. The pulse 

compression technique overcomes this limitation through the transmission of a long but modulated 

waveform. A properly modulated waveform compresses the energy of the cross-correlated signal 

under its main lobe and leads to an increased range resolution and a high SNR. The modulated 

waveforms commonly used in radio wave radar are: analogue linear frequency modulation 

(sweep), discrete frequency modulation (e.g. Costas coding), discrete  phase modulation (e.g. 

Barker and Franck coding) [20], and frequency and/or phase modulation by optimization [21, 22]. 

Contrary to the radio wave radar, TWR deals with a dispersive and overly-damped thermal 

response associated with the diffusive nature of heat waves. Therefore, the measured thermal 

response at the surface of a specimen is not a reflected replica of the input excitation waveform 

anymore, but becomes distorted. The surface temperature is primarily affected by the heat capacity 

of the specimen which acts as a low pass filter. Moreover, it experiences a time varying phase 

delay depending on (i) the frequency spectrum induced by the excitation waveform and (ii) the 

depth of the internal scatters (i.e. defect interfaces). 

On the other hand, in lock-in thermography (LT) a mono-frequency harmonic excitation is 

applied to the specimen which resolves the depth proportional to its diffusivity length. Hence, the 

application of TWR through a modulated waveform around the same frequency increases the 

bandwidth of the excitation spectrum and enhances the depth resolvability by an increased probing 

depth and increased depth resolution. However, the time varying phase delay of the thermal 

response (which follows the modulation introduced by the waveform) may have an accumulating 

or a dissolving contribution to the output lag or phase channel of the cross-correlation. This can 

explain why a Barker coded waveform can lead to a higher depth resolvability compared to a 

relatively wideband sweep around the same frequency [15, 23]. 

The aforementioned deviation of the thermal response with respect to the excitation waveform 

complicates the implementation of TWR compared to the radio wave radar. However, the research 

presented in this paper opens new insights and opportunities for systematic thermal adaptation of 

the modulated waveform so that a maximized depth resolvability is achieved through TWR.  

In this paper, a novel frequency-phase modulated (FPM) waveform is introduced and its 

discrete modulation code is adapted in order to maximize the depth resolvability of TWR. Initially, 

the thermal frequency response is calculated through a simplified 1D analytical solution for fast 

and efficient exploration of supreme FPM waveforms. Then the enhanced depth resolvability of 
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the obtained FPM waveforms, compared to the conventional waveforms, is validated through 3D 

finite element (FE) simulation. A glass fiber reinforced polymer (GFRP) laminate with the quasi-

isotropic lay-up [+45/0/−45/90]2𝑠 and a thickness of 4 mm is simulated to be inspected for the 

detection of delaminations.   

2. Theory of thermal wave radar (TWR) 

TWR is implemented by matched filtering of the measured thermal response with the excitation 

waveform [7-9]. The matched filter is an optimal linear filter which maximizes the SNR in the 

presence of stochastic noise and reaches its maximum value at a delay time corresponding to the 

depth of the defect. Matched filtering is typically done by time-domain cross-correlation of the 

measured thermal response 𝑇̃(𝑡) with the corresponding excitation (reference) waveform 𝑆̃(𝑡) as 

follows [20]: 

𝜒(𝜏) = 𝑇̃(𝑡) ⊗ 𝑆̃(𝑡 + 𝜏) = ∫ 𝑇̃(𝑡)𝑆̃(𝑡 + 𝜏)𝑑𝑡
+∞

−∞  

 (1) 

where ⊗ denotes cross-correlation and (   ̃) denotes the AC component of the signal due to the 

mono-polar nature of optical excitation. For computational efficiency the cross-correlation is 

preferably performed in the frequency-domain [20]:  

𝜒(𝜏) = ℱ−1{𝜗(𝜔)𝜍∗(𝜔)}  (2) 

𝜗(𝜔)  = ℱ{𝑇̃(𝑡)} (3) 

𝜍(𝜔) = ℱ{W(𝑡)𝑆̃(𝑡)} (4) 

where ℱ and ℱ−1 denote Fourier and inverse Fourier transform operators, respectively, ( ∗ ) 

denotes the complex conjugate and W is a windowing function (e.g. Hanning window) used for 

reducing the side lobes when performing the cross-correlation in the frequency-domain. The 

output of operation 𝜒(𝜏) is a sinc-like function which compresses the energy of the whole signal 

under its main peak. The lag time of this main lobe is an emissivity-normalized quantity 

corresponding to the defect’s depth, and it is defined as: 

𝑙𝑎𝑔𝜒 = 𝜏|𝜒(𝜏)=Max(𝜒(𝜏)) (5) 

Subsequently, the phase of cross-correlation 𝜑𝜒 can be found which is another emissivity-

normalized quantity. The phase is calculated by repeating the operation with a new reference 

waveform in which all spectral components are  −90  degrees phase shifted using the Hilbert 

transform: 

𝜍𝐻(𝜔) = ℱ  {W(𝑡)ℋ(𝑆̃(𝑡))}
 

= −𝑖sgn(𝜔)𝜍(𝜔) (6) 

𝜒𝐻(𝜏) = ℱ−1{𝜗(𝜔)𝜍𝐻
∗ (𝜔)} (7) 

𝜑𝜒 = tan−1 (
𝜒(𝜏)

𝜒𝐻(𝜏)
)|

𝜏=0

 (8) 

where 𝑠𝑔𝑛 denotes the sign function. Obviously, in the case of mono-frequency harmonic 

excitation, the calculated phase reduces to the phase of lock-in thermography (LT). The lag and 

phase calculated for the special case of LT are denoted as 𝑙𝑎𝑔𝐿𝑇 and 𝜑𝐿𝑇 respectively, in this 

manuscript. 

For radio wave radar application, the pulse compression efficiency of the waveform is 

normally determined by calculating its auto-correlation  (i.e. self cross-correlation) as follows: 
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𝜒𝐴𝑢𝑡𝑜(𝜏) = 𝑆̃(𝑡) ⊗ 𝑆̃(𝑡 + 𝜏)  (9) 

In this research, the auto-correlation  (Eq. 9)  is calculated as a reference for the thermal cross-

correlation of TWR (Eq. 1). 

3. Frequency-phase modulated (FPM) waveform for maximized depth resolvability  

3.1. Thermal frequency response (1D analysis) 

The thermal frequency response 𝜃 for an anisotropic solid, in the absence of internal heating 

sources, can be defined by the following parabolic differential equation [24]: 

𝛁 ∙ (𝛂 ∙ 𝛁𝜃(𝐫, 𝜔)) − 𝑖𝜔 𝜃(𝐫, 𝜔) = 0 (10) 

where 𝜔 = 2𝜋𝑓 is the angular frequency [1/s], 𝐫 = [𝑥 𝑦 𝑧] is the spatial vector [m], 𝛁 is the nabla 

gradient operator, 𝑖 = √−1 and 𝛂 is the tensor of anisotropic thermal diffusivity [m2/s] : 

𝛂 =
𝐤

𝜌𝑐𝑝
 (11) 

Here k is the second order tensor of the anisotropic conductivity [W/m.K], 𝜌 is the density [kg/m3] 

and 𝑐𝑝 is the heat capacity [J/kg.K] at constant pressure. By assuming 1D heat diffusion through 

the thickness (along z-axis) of a homogeneous solid, Eq. 10 reduces to: 

 
𝜕2𝜃(𝑧, 𝜔)

𝜕𝑧2
− 𝛽2𝜃(𝑧, 𝜔) = 0 (12) 

where the through-the-thickness diffusion length is 𝜇𝑧(𝜔) = √2𝛼𝑧/𝜔  and  𝛽(𝜔) = (1 +

𝑖)/𝜇𝑧(𝜔). The inspection surface (𝑧 = 0) is subjected to an excitation 𝑞(𝜔) (i.e. 
𝜕 𝜃(𝑧,𝜔)

𝜕𝑧  |
𝑧=0

=

−
𝑞(𝜔)

𝑘𝑧
) and there is no heat dissipation from the backside at a thickness h (i.e. 

𝜕 𝜃(𝑧,𝜔)

𝜕𝑧  
|

𝑧=ℎ 

= 0). 

Therefore, the solution of the governing homogenous second order partial differential equation 

can be derived as: 

𝜃(𝑧, 𝜔) = 𝐴(𝜔) exp(𝛽(𝜔)𝑧) + 𝐵(𝜔) exp(−𝛽(𝜔)𝑧)  (13) 

𝐴(𝜔) =
𝑞(𝜔)

𝛽(𝜔)𝑘𝑧
 

exp(−2𝛽(𝜔)ℎ)

1 − exp(−2𝛽(𝜔)ℎ)
 (14) 

𝐵(𝜔) =
𝑞(𝜔)

𝛽(𝜔)𝑘𝑧
 

1

1 − exp(−2𝛽(𝜔)ℎ)
 (15) 

For a given excitation waveform 𝑆̃(𝑡) and heating amplitude 𝑞0, the relevant heating load in the 

frequency-domain is calculated as: 

𝑞(𝜔) = ℱ{𝑞0𝑆̃(𝑡)}
 
 (16) 

and the corresponding time-domain thermal response at the inspection surface is derived by: 

𝑇̃ (𝑡) = ℱ−1{𝜃(0, 𝜔)}  (17) 

The surface temperature 𝑇̃  may be calculated for the full thickness ℎ as a non-defected area, or for 

any thinner thickness as the intermediate reflecting interface of a defected area. 
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3.2. The novel FPM waveform versus conventional waveforms 

The proposed FPM waveform is formulated based on a central frequency 𝑓𝑐 and a bandwidth 

[𝑓1, 𝑓2]. The waveform is modulated by a 5 bit discrete coding which splits it into 5 sub-pulses at 

evenly spaced time spans so that the total burst time is  𝑡𝑏 = 5/𝑓𝑐 long, as follows: 

[𝑓1, 𝑓2] = [𝑓𝑐(1 + 𝑟), 𝑓𝑐(1 − 𝑟)] ;   𝑟 = 0.33   (18) 

𝑪𝒇 = [1.00   0.75 0.5 0.25  0.00] (19) 

𝑪𝝋 
= [𝐶𝜑1, 𝐶𝜑2, 𝐶𝜑3, 𝐶𝜑4, 𝐶𝜑5]  ;    −1 ≤ 𝐶𝜑𝑗 ≤ 1 (20) 

𝑃𝑗(t) = {
1 ;      (𝑗 − 1)/𝑓𝑐 ≤ 𝑡 < 𝑗/𝑓𝑐

0 ;      else                                 
 (21) 

𝑆̃FPM 
(𝑡) = ∑ 𝑃𝑗(t) cos (2𝜋 (𝑓1 + (𝑓2 − 𝑓1)𝐶𝑓𝑗)𝑡 +

𝜋

2
𝐶𝜑𝑗)

5

𝑗=1

 (22) 

The frequency modulation code 𝑪𝒇 (Eq. 19) has a constant definition such that it prescribes an 

evenly stepped modulation frequency from the upper band limit 𝑓𝑐(1 + 0.33) to the lower band 

limit 𝑓𝑐(1 − 0.33) over a length of 5 bits. A descending frequency modulation rate is preferably 

applied so that the specimen’s depth is consistently resolved by the increasing diffusion length of 

the excited thermal waves.  

The phase modulation code 𝑪𝝋 
(Eq. 20) has a variable definition. Each member 𝐶𝜑𝑗 of the 

phase code can take any real number in the range [−1, +1] so that the resultant phase as defined 

in Eq. 22, varies in the range [−𝜋/2, +𝜋/2]. This variable phase code provides flexibility to tailor 

the performance of the FPM waveform for increased depth resolvability of TWR.  

Figure 1 presents an arbitrarily generated FPM waveform (the top row) against a Barker coded 

waveform (the middle row) and a frequency modulated sweep waveform (the bottom row) with 

corresponding thermal responses and calculated cross-correlations.  

 
Figure 1: (a,c,e) Modulated excitation waveforms at a central frequency 0.05 Hz and resultant surface 

thermal response of a GFRP sample with a defect at a depth of 2 mm, and (b,d,f) corresponding auto-

correlation (Eq. 9) and thermal cross-correlation (Eq. 1); 𝑃𝑀 is the amplitude of the main peak of 𝜒, and 𝑃𝑆 

is the amplitude of the largest side peak in the feasible range of the lag (i.e. 𝜏 > 0) 
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The three waveforms presented in Figure 1 are generated at the same central frequency of 0.05 

Hz and for the same 5 bit length of 100 s. The thermal responses correspond to a GFRP with a 

through-the-thickness diffusivity of 𝛼𝑧 = 2.76 × 10−7 m2/s (see Table 1 in section 4) having a 

defect (i.e. reflector) at a depth of 2 mm (i.e. 8 plies deep).  

The arbitrary FPM waveform corresponds to a randomly generated phase code (see Figure 

1(a)), and the 5 bit Barker coded waveform (Figure 1(c)) is in fact a mono-frequency harmonic 

signal in which the 4th bit is 180 degrees phase shifted (i.e. a particular FPM with 𝑟 = 0  and 𝑪𝝋 
=

[−1, −1, −1, +1, −1]). The sweep waveform (Figure 1(e)) is generated by a linear frequency 

modulation with the same frequency bandwidth [𝑓1, 𝑓2] and burst time 𝑡𝑏 of the FPM as follows: 

𝑓(𝑡) = 𝑓1 + (
𝑓2 − 𝑓1

2𝑡𝑏
) 𝑡 (23) 

𝑆̃Sweep(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓(𝑡). 𝑡 − 𝜋) (24) 

The calculated thermal cross-correlations as shown in Figure 1(b,d,f) indicate the distortion, 

the asymmetry and the peak delay (compared with the auto-correlation) induced by the thermal 

response. Moreover, the results demonstrate the relatively low sidelobe (i.e. noise) level of Barker 

coded waveform compared to the other two waveforms indicating its good pulse compression 

quality. Indeed, a lower peak-sidelobe-level implies a lower noise level and consequently a higher 

SNR in the output of the matched filter. 

Furthermore, the depth resolvability of the modulated waveforms with respect to LT is 

demonstrated in Figure 2 in terms of (a) lag and (b) phase contrast (compared to a non-defected 4 

mm thick GFRP). The left axes correspond to the absolute contrast quantity (bulleted line) obtained 

from LT (i.e. a mono-frequency harmonic excitation) as a reference, and the right axes correspond 

to the deviation of the absolute contrast quantity of modulated waveforms from this reference. 

Therefore, a positive value at the right axis indicates outperformance compared to LT, and vice 

versa. The results indicate that lag and phase of LT resolve the depth down to around  2 mm (half 

thickness). The Barker coded waveform has the highest performance among modulated 

waveforms. The sweep waveform barely improves the depth resolvability, while the arbitrarily 

modulated FPM waveform leads to a significant enhancement of depth resolvability.  

 

Figure 2: Depth resolvability of the evaluated modulated waveforms (presented in Figure 1) compared to 

LT (central frequency 0.05 Hz) in terms of (a) lag contrast and (b) phase contrast 
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3.3. Exploring the search space for the supreme FPM waveforms 

In section 3.2, a FPM waveform was introduced with a constant frequency code definition but 

a variable phase code with float real valued elements. An arbitrarily generated phase code showed 

the potential of improving depth resolvability of the FPM waveform compared to LT (Figure 2). 

The aim of this section is to explore a randomly generated search space for an optimized phase 

code such that its performance is maximized in terms of pulse compression and defect-induced 

contrast of phase or lag.  

The quality of pulse compression is normally determined by the peak-sidelobe-level (PSL) of 

the cross-correlation. Minimization of PSL ensures high SNR in the output of the matched filter 

and therefore reduces ambiguity in the calculation of the lag with the presence of stochastic noise. 

Hence, the pulse compression quality of TWR is determined by the PSL of the thermal cross-

correlation (of a defect with an intermediate depth 𝑧 = 0.5ℎ) which needs to be minimized: 

PSL = 20 log10 (
𝑃𝑆

𝑃𝑀
)|

𝑧=0.5ℎ

 (25) 

Here 𝑃𝑀 = max (𝜒(𝜏)) is the amplitude of the main peak of 𝜒, and 𝑃𝑆 is the amplitude of the largest 

side peak (see Figure 1(b)) in the feasible range of the lag (i.e. 𝜏 > 0 for a time causal system). 

The PSL of the auto-correlation 𝜒𝐴𝑢𝑡𝑜 is also calculated herein as a reference and denoted by 

PSLAuto.  

Moreover, the depth resolvability of lag and phase are, respectively, determined by the 

following objective functions to be maximized:    

𝐹𝑙𝑎𝑔 =
1

ℎ
∫ (|∆𝑙𝑎𝑔𝜒(𝑧)| − |∆𝑙𝑎𝑔𝐿𝑇(𝑧)|)

ℎ

0

𝑑𝑧 (26) 

𝐹𝜑 =
1

ℎ
∫ (|∆𝜑𝜒(𝑧)| − |∆𝜑𝐿𝑇(𝑧)|)

ℎ

0

𝑑𝑧 (27) 

These objective functions determine the deviation of the absolute contrast quantity (lag or phase) 

from that of LT (see right axes of Figure 2), averaged through the depth. This provides a measure 

of the FPM waveform’s performance compared to LT. 

A relatively large population of 20,000 FPM waveforms with randomly generated phase codes 

are examined through the 1D analytical solution. A central frequency of 0.05 Hz is applied and the 

search space is evaluated through the quantities defined in Eq. 25-27 (see Figure 3). The relative 

location of the conventional modulated waveforms (Barker and sweep), the arbitrary FPM 

waveform (see Figure 1) and also LT are indicated in the search space for comparison. As 

expected, among these reference waveforms, the Barker coded one shows the highest performance 

[15, 23]. However, this Barker coded waveform is dominated by a multitude of the FPM 

waveforms introduced in the search space. 

The distribution of 𝐹𝑙𝑎𝑔 versus PSL for the whole population is shown in Figure 3(a) in which 

the individual denoted as FPM1 corresponds to the highest 𝐹𝑙𝑎𝑔 achieved at the lowest PSL. 

Therefore, FPM1 is picked as a supreme waveform. Likewise, Figure 3(b) presents the distribution 

of 𝐹𝜑 versus PSL for the whole population in which FPM1 is approaching the upper extreme of 𝐹𝜑 

confirming its superior depth resolvability in terms of both lag and phase. The pulse compression 

quality (as measured by PSL) only contributes to a reduced ambiguity in the calculation of the lag. 
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Therefore, the individual with the highest 𝐹𝜑, denoted as FPM2, is also picked as another supreme 

waveform with maximum depth resolvability of phase, despite its relatively low pulse compression 

quality (i.e. high PSL).  

 
Figure 3: Search space corresponding to a population of 20,000 randomly generated FPM waveforms, and 

relative location of the selected supreme waveforms FPM1 and FPM2 compared to sweep, Barker coded 

and an arbitrary FPM waveform (see Figure 1(a,c,e)).  

Figure 3(c) presents the distribution of 𝐹𝜑 versus 𝐹𝑙𝑎𝑔 in which the lag ambiguity of individuals 

with relatively high PSL (e.g. FPM2) is evidenced by the scattered overestimations of 𝐹𝑙𝑎𝑔 at its 

upper extreme. The relative values of PSL and PSLAuto are also demonstrated in Figure 3(d) which 

clearly confirm that a low PSLAuto does not necessarily ensure a low PSL of TWR. Although FPM2 

has a lower PSLAuto than FPM1, its PSL is much higher and leads to ambiguity in the determination 

of lag as presented in Figure 3(c).  

3.4. Evaluation of the selected supreme waveforms FPM1 and FPM2 

The selected waveforms FPM1 and FPM2, and their corresponding phase codes and calculated 

cross-correlations are presented in Figure 4. As expected from Figure 3(d), FPM2 has a high 

sidelobe level leading to its increased PSL compared to FPM1.    

Furthermore, the resultant depth resolvability of the two supreme waveforms FPM1 and FPM2 

are evaluated and compared with the Barker coded waveform (which showed the highest 

performance in Figure 2) as shown in Figure 5 in terms of (a) lag contrast and (b) phase contrast. 

Comparing the results presented in Figure 2 and Figure 5 clearly confirms that proper phase 

modulation of the FPM waveform leads to a significantly higher depth resolvability than that of 
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conventional modulated waveforms. Among the two supreme waveforms, FPM1 results in a 

higher depth resolvability of the lag (Figure 5(a)) and FPM2 results in a higher depth resolvability 

of the phase (Figure 5(b)). In terms of depth resolvability through lag, FPM1 and FMP2 both 

outperform the Barker coded waveform, down to around 2 mm deep after which they converge 

and decline to slightly below zero (i.e. result in a lag contrast smaller than LT). 

 
Figure 4: Selected supreme waveforms (a) FPM1 and (c) FPM2 at a central frequency 0.05 Hz and resultant 

thermal response at the surface of a GFRP sample with a defect at a depth of 2 mm, and (b,d) corresponding 

auto-correlation (Eq. 9) and thermal cross-correlation (Eq. 1) 

However,  in terms of depth resolvability through phase, both FPM1 and FMP2 outperform 

the Barker coded waveform and are able to resolve the entire depth  (down to 4 mm deep) while 

the Barker coded waveform drops to below zero (i.e. results in a phase contrast less than LT) at 

2.6 mm depth. 

As presented in Figure 5(a) the high PSL of FPM2 leads to ambiguity in the detection of the 

lag corresponding to shallow defects (𝑧 < 0.6 mm). This explains why 𝐹𝑙𝑎𝑔 of FPM2 is highly 

overestimated in the search space shown in Figure 3(c). 

 
Figure 5: Depth resolvability of the selected waveforms FPM1 and FPM2 (presented in Figure 4) and the 

Barker code compared to LT in terms of (a) lag contrast and (b) phase contrast 
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4. Application to the 3D thermal wave problem (FE simulation) 

The 1D analytical solution used in section 3 enabled fast calculation of the thermal response, 

providing an efficient evaluation of the random search space. However, the 1D approach is valid 

for thermal diffusion towards the defect (on the condition that the inspection surface is uniformly 

heated), but not for the 3D heat diffusion of the heat wave reflected back from the defect. In this 

section, the performance of FPM1 and FPM2 in the inspection of a GFRP laminate is evaluated 

based on a 3D FE simulation. Realistic conditions are taken into account: heat dissipation to the 

surrounding environment, non-uniform heating induced by the optical source and more 

importantly the measurement noise of the infrared camera.    

A 4 mm thick GFRP laminate with quasi-isotropic lay-up [(+45/0/−45/90)]2s as schematically 

shown in Figure 6 is modelled by Abaqus/CAE using brick elements with quadratic shape 

functions (a total number of 134,487 elements). The laminate includes six interply defects (i.e. 

delaminations) defined as 10 mm wide square interfaces with nodal disbond (i.e. no thermal 

interaction). Two 2 kW optical sources with 45° beam angle are assumed at a standoff distance of 

500 mm from the sample and (to induce an asymmetric heating pattern) at an offset of 300 mm 

from its centerline. The radiative heat flux emitted to the sample’s surface is calculated by 

assuming a Gaussian distribution of the heating intensity and a uniform emissivity coefficient of 

0.9.  For more details concerning the FE model the reader is referred to [25].   

 
Figure 6: Schematic presentation of simulated quasi-isotropic GFRP laminate [(+45/0/−45/90)]2s and 

assumed position of optical sources (a) top view and (b) side view 

The assumed material properties of glass fiber and epoxy resin and resultant diffusivities 

calculated  for a GFRP with 50% volume fraction of glass are given in Table 1. The effective 

thermal diffusivity calculated along fibers is 1.63 times higher than normal to the fibers which thus 

leads to a dominant lateral (in-plane) heat diffusion. 

Table 1:  Thermo-physical properties calculated [26] for a unidirectional GFRP ply with 50% volume 

fraction of glass fibers (𝑥′ and 𝑦′ denote the local ply axes along and perpendicular to the fibers, 

respectively) 

Material 
𝜌 

(kg/m3) 

𝐶𝑝 

(J/kg K) 

𝑘𝑥′ 

(W/m K) 

𝑘𝑦′ , 𝑘𝑧 

(W/m K) 

𝛼𝑥′ 

(m2/s) 

𝛼𝑦′ , 𝛼𝑧 

(m2/s) 

Glass fiber 2460 740 1.25 1.25 6.87 × 10−7 6.87 × 10−7 

Epoxy resin 1160 1100 0.24 0.24 1.88 × 10−7 1.88 × 10−7 

GFRP 1810 920 0.75 0.46 4.50 × 10−7 2.76 × 10−7 

The calculated thermal response is degraded with a temporal Gaussian white noise of standard 

deviation 20 mK, which is equal to the noise equivalent differential temperature (NEDT) of a high-

end infrared camera. A 10 mm wide square area at the center of the sample (see Figure 6(a)) is 
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selected and its mean value is used as a reference to calculate the corresponding contrast quantities 

(phase or lag) as presented in Figure 7.  

The contour map of the lag and phase contrast for FPM1 are shown in Figure 7(a) and (b), 

respectively. Note that the effect of non-uniform heating is cancelled out in these representations. 

Furthermore, the gradient of the lag and phase contrast along the centerline of the defects (line 

AB) and in the vicinity of the defects are shown in Figure 7(c) and (d), respectively. The contrast 

obtained through FPM1, FPM2 and the Barker coded excitation waveforms are compared with 

that of LT at the central frequency 0.05 Hz. A good agreement with the results of Figure 5 is 

observed, indicating that the observations made in the 1D model are equally valid for the 3D 

model. The very poor contrast  obtained through LT at the intermediate defect D4, confirms that 

it is being inspected at a frequency close to the so-called blind frequency (i.e. the frequency 

associated with a zero-crossing of the defect-induced phase contrast). However, due to the in-plane 

phase gradient induced by the lateral heat diffusion, a zero phase contrast may not be achievable 

over the entire defected area unless buried under the noise level.  

According to Figure 7(c), the lag contrast of the waveforms FPM1 and FPM2 is consistently 

higher than that of the Barker coded waveform, and all modulated waveforms consistently 

outperform LT down to D4 (2.25 mm deep). Inspecting D4 at a central frequency close to its blind 

frequency shows the true capability of TWR. Each modulated waveform shows good contrast, 

with the FPM1 having a contrast almost double of the contrast in the Barker coded waveform, 

while LT leads to very poor lag contrast. The deeper defects D5 and D6 which are inspected at a 

frequency higher than their blind frequency, lead to a negative lag contrast through LT, a 

comparable contrast through the FPM waveforms, and a very poor contrast through the Barker 

coded waveform. 

 
Figure 7: FEA results corresponding to the inspection of the GFRP laminate shown in Figure 6 at the central 

frequency 0.05 Hz and for an NEDT of 20 mK: (a) lag image and (b) phase image obtained from the selected 

waveform FPM1, and comparison of the depth resolvability of the various waveforms along the centerline 

of the defects (line AB) in terms of (c) lag contrast and (d) phase contrast 
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According to Figure 7(d), and as expected from Figure 5(b), the phase contrast obtained from 

the FPM waveforms is initially lower for the relatively shallow defects D1 and D2 when compared 

to the phase contrast from the LT and the Barker coded waveforms. However, for deeper defects, 

the FPM waveform leads to a higher phase contrast. Moreover, FPM2 which results in a slightly 

lower lag contrast than FPM1 (Figure 7(c)), outperforms FMP1 in terms of phase contrast, 

confirming the results shown in Figure 5. 

Despite the very low pulse compression quality (i.e. high PSL) of FPM2, the results suggest 

that it can capably resolve the depth by reliable determination of the lag in the presence of 

stochastic noise. However, the ambiguity induced by the noise level also depends on the 

dominance of the lag contrast (i.e. the thermal diffusivity mismatch introduced by the defect’s 

interfaces). In fact, any heat leakage through the defect (e.g. due to a partial contact or presence of 

a filling material) reduces the resultant lag contrast and makes it more dominated by the noise 

(compared to the ideal disbond condition considered in the FE simulation).  

In order to further study this matter, the contrast quantities of each defect (averaged over the 

defect area) obtained through the different waveforms are determined at a relatively high noise 

level (i.e. NEDT of 200 mK) as presented in Figure 8. Moreover, the variations of contrast 

quantities with respect to the noise level (i.e. NEDT of 0-200 mK) are presented in the insets of 

Figure 8, for the intermediate defect D4. Each noise level is applied in 10 iterations and the 

corresponding deviation range around the average value is indicated by the error bars.   

 
Figure 8: The average contrast quantity (a) lag and (b) phase subject to a high noise level (NEDT of 200 

mK); the insets present the gradient of the contrast quantity for defect D4 versus NEDT and the error bars 

indicate the deviation range corresponding to 10 iterations of applying random noise 

According to Figure 8(a), FPM2 shows a good stability comparable to FPM1 in determination 

of the lag for an NEDT of up to 200 mK. The Barker coded waveform has a lower deviation range 

than the FPM waveforms, due to its periodic definition which has a noise averaging characteristic. 

It is noteworthy that LT (which has the lowest pulse compression efficiency) leads to a very 

unstable calculation of lag at this high noise level with very wide deviations outside the range 

shown in Figure 8(a). Therefore, it has been excluded from this figure. 

Likewise, Figure 8(b) confirms the good performance and stability of the FPM waveforms in 

calculation of the phase contrast, and again a lower deviation range is observed for the Barker 

coded waveform and LT due to their periodic (noise averaging) nature. The very low sensitivity 

of the phase of LT to the noise level (Figure 8(b)) despite its very high PSL, clearly demonstrates 

the fact that the pulse compression quality has no contribution in the determination of phase. 
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5. Conclusions 

A novel frequency-phase modulated (FPM) waveform was introduced and a framework was 

developed to adapt its variable modulation code for maximized depth resolvability of thermal wave 

radar (TWR). Initially, the thermal frequency response was calculated through a simplified 1D 

analytical solution for fast and efficient exploration of the search space in order to identify supreme 

FPM waveforms. Then the enhanced depth resolvability of the selected FPM waveforms, 

compared to conventional waveforms, was validated through 3D finite element simulation. Glass 

fiber reinforced polymer (GFRP) was assumed as an orthotropic constitutive material with 

dominant in-plane heat diffusion, to be inspected for detection of delaminations.   

Two FPM waveforms were selected from the search space based on their maximized depth 

resolvability through resultant lag and phase in the output channel of TWR. Although FPM 

waveforms were explored based on a 1D analytical estimation of the thermal problem, their 

superior performance was maintained when inspecting a GFRP with dominant in-plane heat 

diffusion, and their robustness at various noise levels was demonstrated.  

The fact that the introduced FPM waveforms can be easily coupled to an optimization 

procedure for improved efficiency and defect detectability, provides a unique opportunity to go 

beyond current limitations of optical infrared thermography for NDT of deep defects.     
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