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Abstract: In this paper, a ćuk converter balancing method by using a coupled inductor for lithium
based batteries is investigated. The proposed circuit is an active balancing circuit that will equalize
eight battery cells in a series. In electrical vehicles (EV), a battery management system (BMS) is
a vital task to achieve the best performance of the batteries and longer lifetime. The problem of
voltage difference in a battery pack is an important issue to be improved. To overcome the voltage
differences in battery string, an equalizing method is mandatory. The conventional ćuk converter
requires 2(n − 1) switches to balance n cells, while the proposed circuit requires only n switches for
n cells in series. In addition, the proposed developed topology uses coupled inductors instead of
un-coupled inductors, unlike the traditional ćuk converter balancing method. Since the ćuk balancing
transfers the energy among two adjacent cells, it requires a proportionately long equalization time
particularly for long string battery packs, but the coupled inductor ćuk converter type overcomes
this problem. The switches are N-channel metal-oxide field-effect transistor (MOSFET) to achieve
lower drain-source on-resistance, RDS(on), and less voltage drop as compared to the P-channels.
The switches are triggered by complementary signals. The coupled inductor is made in such a way to
hold the same magnetizing inductance. It can be done by using five wires in one hand. The circuit
contains five inductors, one magnetic core, with five winding for eight cells, and one capacitor for
two cells. Therefore, the overall circuitry and complexity of the circuit are reduced, resulting in a
more cost-effective and easy to implement circuit. The system also does not demand complicated
control for battery equalizing. The experimental circuit was implemented and simulation results
were obtained to confirm the validity of the proposed system.
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1. Introduction

Electric vehicles can attain low contamination and low noise associated with traditional
gasoline-powered transportation, thus the peremptory request for electric vehicles is increasing
during the last decades [1]. In addition, the world is facing some challenges such as global warming,
air pollution and depletion of fossil fuels, therefore electric vehicles will have a significant role in
transportation in the future. The biggest expense in EVs is the cost of the batteries, thus a battery
management system is required to achieve the best performance. Lately, lithium batteries are broadly
used in many applications and they are the most common energy storage devices as substitution
of standard fuel [2]. They are broadly used for several purposes such as uninterruptible power
supply (UPS), electric bike, electric scooter, and hybrid electric vehicles (HEV) [3]. These usages may
employ hundreds of cells in parallel or series to achieve high voltage and capacity for the desired
applications because the open-circuit voltage of the battery is low [4]. They have some benefits such as
low self-discharge rate, lower weight, high density, and no memory effect [5,6].
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In lithium based batteries, voltage variations exist within cells due to the charging/discharging
process. Furthermore, manufacturing technology cannot guarantee equal cell output voltages,
resulting in cell imbalances. These inescapable unbalanced cells are because of electrical and chemical
characteristics, asymmetrical degeneration with aging, production tolerance, inner impedance,
and unequal temperature [7,8]. The imbalances decrease the lifetime of the battery as well as reduce
the charge potential, and they are the main factor to degenerate the performance of the battery pack.
The capacity of the battery is also reduced due to temperature and passivation and this problem
increases with cell aging [9].

To improve these imbalances, a BMS is introduced to ensure all cells are equally fully charged.
It monitors battery modules, provides protection and plays an important role in electrical vehicles.
It has some features, for instance, it detects battery charge, battery voltage, battery temperature,
discharge current, and it has over-voltage, under-voltage, and short circuit protection. Several cell
equalization techniques are introduced in the last decades. These balancing methods are principally
separated into two categories, active and passive balancing methods [10–15].

The passive balancing methods connect resistors in parallel to individual battery cells. The extra
energy dissipates as heat. It is based on removing energy from the higher cell by bypassing the current
of the highest cells until the charge equals those of the lower cells in the pack. This method is split into
two types: fixed shunt resistors [16] and switched shunt resistors balancing [17]. The advantages of
the resistor balancing method are low cost and easy implementation, while the requirement for high
power resistor, energy dissipation, and low efficiency are its disadvantages. The switched resistor
balancing is shown in Figure 1. To solve the problem of energy losses, active equalizing methods
are introduced. They equalize the battery cells by transporting the energy from higher cells to the
lower ones and they are split into many types such as switches capacitor, inductor, and transformer
balancing methods.

R3

R2

R1

B3
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Figure 1. Switched shunt resistor balancing method.

The switched capacitor converter (SCC) balancing method is an active equalizing technique
that uses capacitors as an energy storage device for transferring charge between the cells. There are
many types of capacitor balancing such as a single switched capacitor, a double-tiered capacitor,
and a resonant switched capacitor. The switched capacitor has two operation modes, charging and
discharging. The capacitors are used to transfer charge between the cells. A simpler circuitry is its
advantage, while long equalization time is its disadvantage [18,19]. A switched capacitor balancing
circuit is presented in Figure 2. The double-tiered capacitor requires two capacitors for energy
transferring and the advantage is reduced balancing time [20]. However, the resonant switched
capacitor balancing has a lower equalizing time [10].
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Figure 2. Switched capacitor converter balancing method.

The inductor balancing technique transfers energy between cells by using inductors and has fast
equalization time as compared witch capacitor balancing [11], but a high cost and magnetic losses are
its disadvantages. The conventional inductor balancing has longer balancing time as compared to
the transformer balancing because of energy transfer from cell to cell [21–23]. The coupled inductor
balancing has a lower cost because it uses one magnetic core and it has fast balancing time [13].

The transformer balancing technique has a smaller equalizing time compared to other methods [12,15].
The multi winding transformer has a magnetic core with one primary and multiple secondaries
for every cell, as shown in Figure 3. The advantages of transformer balancing circuits are fast
balancing time, direct energy transfer is possible between non-neighboring cells and easy to control [24].
However, the secondary winding voltages are not equal due to the nonuniform turn ratio of secondary
winding leakage inductance, and also magnetic losses and high cost are its disadvantages [25–27].
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Figure 3. Multi winding transformer balancing method.

2. The Conventional Ćuk Converter Balancing Technique

The conventional ćuk converter balancing circuit is shown in Figure 4. The ćuk converter has
non-dissipative currents, a bidirectional energy transferring capacity, and high efficiency [14,28–30].
The conventional ćuk converter requires 2(n− 1) switches, and n− 1 capacitors in order to balance
n number of battery cells [30]. The operational principle is divided into two stages, Firstly, switches
Q1, Q3, and Q5 are turned on, while the other switches are turned off. In the next stage, switches Q2,
Q4, and Q6 are turned on while the other switches are turned off. This circuit equalizes four cells in a
battery string connected in series.
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To investigate the difference between conventional and the proposed ćuk converter balancing
circuit, the two circuits with four cells were simulated with MATLAB software and the simulation
results are presented. The operational principle was simplified with two cells to investigate the circuit.
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W
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Figure 4. Conventional ćuk converter balancing circuit.

In the first mode, Q1 is turned on while Q2 is turned off; the cell voltage equations can be
written as

VCell 1 = L1
diL1

dt
(1)

VCell 2 = −L2
diL2

dt
+ VC1 (2)

In the next mode, Q1 and Q5 are turned off and the body diode of Q2 is turned on; the cell voltage
equations can be expressed as

VCell 1 = L1
diL1

dt
+ VC1 (3)

VCell 2 = −L2
diL2

dt
(4)

By applying Volt-sec balance across L1 and L2,

VCell 1DT + (VCell 1 −VC1)(1− D)T = 0 (5)

Similarly, Volt-sec balance across L1 and L2,

(−VCell 2 + VC1)DT + (−VCell 2)(1− D)T = 0 (6)

The expression for average inductor current can be obtained from charge balance of C1 as

iL1(1− D)Ts − iL2DTs = 0 (7)

where D is duty cycle and Ts is switching frequency.

3. The Simulation Result of the Conventional Ćuk Converter Balancing Circuit

The simulation results of the conventional ćuk converter with MATLAB are presented in this
section. The switches are N-channel MOSFETs with body diodes and they are triggered by pulse width
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modulation (PWM), created by a pulse generator with a synchronous pattern. The switching frequency
is 50 kHz with the duty ratio of 50%. The batteries are modeled with the capacitors with the value of
0.5 F. The inductors are 10 µH and the capacitors are 100 µF.

In Figure 5a, the cell voltages of the conventional ćuk balancing circuit after equalization is
presented. It was found that it does not converge at the end. The inductor voltages in steady-state are
shown in Figure 5b. It was observed that the inductor voltages are not at the same level of voltage.
They should be at the same voltage, which means they are not equalized well.

Figure 5c,d shows the inductor currents and capacitor voltages, respectively. In Figure 5c, it can
be noticed that the inductor currents are not at the same level, which means the cells are not balanced.
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Figure 5. (a) Cell voltages of the conventional ćuk balancing circuit; (b) inductor voltages of the
conventional ćuk balancing circuit in steady-state; (c) inductor currents of the conventional ćuk
balancing circuit in steady-state; and (d) capacitor voltages of the conventional ćuk balancing circuit
in steady-state.

To compare a conventional ćuk converter balancing method with a buck-boost converter balancing
method, the buck-boost converter balancing circuit with four battery cells was investigated. In Figure 6,
the buck-boost circuit is shown. The buck-boost converter balancing has too many switches, i.e., more
than one switch per cell.

The circuit has two stages. In the first stage, Q1, Q3, and Q5 are turned on while the other switches
are turned off. The energy is stored in the inductors L1, L2, and L3 by Cell 1, Cell 2 and Cell 3.

In the next stage, the switches Q2, Q4, and Q6 are turned on while the other switches are turned
off. In this stage, the stored energy in the inductors is transferred to Cell 2, Cell 3, and Cell 4.

The cell balancing simulation results of the buck-boost converter balancing circuit are presented
in Figure 7. All components parameters are the same as the ćuk converter balancing method. It can
be noticed that the balancing time is longer as compared to the ćuk balancing circuit with coupled
inductors, shown in the next section.

The simulation result of the inductor currents are presented in Figure 8a,b, respectively. It can be
seen in Figure 8a that, in transient, the currents are not at the same level, but in steady state the current
does converge. The blue waveform is corresponding to inductor L3.



Energies 2019, 12, 2881 6 of 18

Q1Cell1

Cell2 Q2

Q3Cell3

Cell4 Q4

P
W
M

P
W
M

PW
M

P
W
M

Q5

Q6

L1

L2

L3

Figure 6. Buck-Boost converter balancing circuit.
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Figure 7. Cell voltage vs. time of the buck-boost balancing circuit.
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Figure 8. (a) Inductor currents of buck-boost balancing circuit in transient; and (b) inductor current of
buck-boost balancing circuit in steady state.

4. The Proposed Ćuk Converter Balancing Circuit

The proposed ćuk converter balancing circuit with coupled inductors was investigated.
The schematic of the proposed circuit is shown in Figure 9. In some applications, a premiere
performance can be achieved by magnetic devices and not by capacitors; in this circuit a coupled
inductor is used instead of inductors. The circuit equalizes eight battery cells in series with one
magnetic core and five coupled inductors.

The conventional ćuk converter requires 2(n− 1) switch per n cells, while the proposed circuit
uses n switches per n cells. Furthermore, the conventional ćuk circuit requires n− 1 capacitors per n
cells, while the proposed circuit requires only n capacitors per 2n cells, thus the number of capacitors
is reduced by a factor of two.
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The proposed ćuk converter balancing circuit with coupled inductors uses one magnetic core
with five coupled inductors for eight cells. The inductors are made in such a way as to have the same
leakage inductances. The operational principle can be split into two modes.
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Figure 9. (a) The operational principle in the first mode; and (b) the operational principle in the
second mode.

In the first mode, as shown in Figure 9a, the MOSFETs Q1, Q3, Q5, and Q7 are turned on while
the other switches are turned off. The energy from even cells (Cell1,3,5,7) is transferred to (L1,2,3,4,5),
therefore the equivalent equation can be derived as

Vcell1 = L1
diL1

dt
+ M12

diL2

dt
+ M13

diL3

dt
+ M14

diL4

dt
+ M15

diL5

dt
(8)

where M is the mutual inductance, among L1, L2, L3, and L4. Similarly, the cell voltage VCell 2 can be
expressed as

Vcell2 = −L2
diL2

dt
−M21

diL1

dt
−M23

diL3

dt
−M24

diL4

dt
−M25

diL5

dt
+ VC1 (9)
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The cell voltage of the odd cells, Vcell(3,5,7) can be written as

Vcelln = Lk
diLk

dt
+ Mij

diLj

dt
+ Mij

diLj

dt
+ Mij

diLj

dt
+ Mij

diLj

dt
(10)

where n = 3, 5, 7; k = 2, 3, 4; i = 2, 3, 4; j = 1, 2, 3, 4, 5; and i 6= j
Similarly as before, the cell voltage of the even cells, Vcell(4,6,8) can be written as the following

equation

Vcelln = −Lk
diLk

dt
−Mij

diLj

dt
−Mij

diLj

dt
−Mij

diLj

dt
−Mij

diLj

dt
+ VCm (11)

where n = 4, 6, 8; k = 3, 4, 5; i = 3, 4, 5; j = 1, 2, 3, 4, 5; m = 2, 3, 4; and i 6= j

It can be noticed that the polarity of the inductor currents are negative for the even cells.

Therefore, the cell voltages (Cell1,3,5,7) can be rewritten as


Vcell1
Vcell3
Vcell5
Vcell7

 =


L1 M12 M13 M14 M15

M21 L2 M23 M24 M25

M31 M32 L3 M34 M35

M41 M42 M43 L4 M45

× d
dt


iL1

iL2

iL3

iL4

iL5

 (12)

Similarly, the cell voltage (Cell2,4,6,8) can be written as


Vcell2
Vcell4
Vcell6
Vcell8

 =


M21 L2 M23 M24 M25

M31 M32 L3 M34 M35

M41 M42 M43 L4 M45

M51 M52 M53 M54 L5

× −d
dt


iL1

iL2

iL3

iL4

iL5

+


VC1

VC2

VC3

VC4

 (13)

In the second mode, as shown in Figure 9b, the MOSFETs Q2, Q4, Q6, and Q8 are turned on while
the other switches are turned off.

The equivalent equation for VCell 2 can be expressed as

Vcell1 = L1
diL1

dt
+ M12

diL2

dt
+ M13

diL3

dt
+ M14

diL4

dt
+ M15

diL5

dt
+ VC1 (14)

Similarly, the cell voltage VCell 2 can be expressed as

Vcell2 = −L2
diL2

dt
−M21

diL1

dt
−M23

diL3

dt
−M24

diL4

dt
−M25

diL5

dt
(15)

The cell voltage Vcell(3,5,7) can be written as

Vcelln = Lk
diLk

dt
+ Mij

diLj

dt
+ Mij

diLj

dt
+ Mij

diLj

dt
+ Mij

diLj

dt
+ VCm (16)

where n = 3, 5, 7; k = 2, 3, 4; i = 2, 3, 4; j = 1, 2, 3, 4, 5; m = 2, 3, 4; and i 6= j

Similarly, the cell voltage Vcell(4,6,8) can be written as

Vcelln = −Lk
diLk

dt
−Mij

diLj

dt
−Mij

diLj

dt
−Mij

diLj

dt
−Mij

diLj

dt
(17)
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where n = 4, 6, 8; k = 3, 4, 5; i = 3, 4, 5; j = 1, 2, 3, 4, 5; and i 6= j
Therefore, the cell voltages (Cell1,3,5,7) can be rewritten as


Vcell1
Vcell3
Vcell5
Vcell7

 =


L1 M12 M13 M14 M15

M21 L2 M23 M24 M25

M31 M32 L3 M34 M35

M41 M42 M43 L4 M45

× d
dt


iL1

iL2

iL3

iL4

iL5

+


VC1

VC2

VC3

VC4

 (18)

Similarly, the cell voltage (Cell2,4,6,8) can be written as


Vcell2
Vcell4
Vcell6
Vcell8

 =


M21 L2 M23 M24 M25

M31 M32 L3 M34 M35

M41 M42 M43 L4 M45

M51 M52 M53 M54 L5

× −d
dt


iL1

iL2

iL3

iL4

iL5

 (19)

The average capacitor voltage values (C1 − C3) are twice the voltage of one cell. This can be
explained by applying the KVL around the larger loop (through Cell 2, Q1, C1, Q3, and Cell 2) in
Figure 9b. Therefore, the KVL equation can be written as

VC1 = Vcell2 + Vcell3 (20)

Similarly, the average capacitor voltages for C2, and C3 can be derived as

VC2 = Vcell4 + Vcell5 (21)

VC3 = Vcell6 + Vcell7 (22)

To write the state-space equation of the proposed circuit, the capacitor currents equation should
be written. Therefore, the capacitor currents C1 − C4 in the first stage, when switches Q1, Q3, Q5,
and Q7 are turned on, can be written as

C1
dvC1

dt
= 0 C2

dvC2

dt
= 0 C3

dvC3

dt
= 0 C4

dvC4

dt
= −iL5 (23)

The state-space equation in the first stage, when switches Q1, Q3, Q5, and Q7 are turned on,
and the other switches are turned off, can be expressed as



L1 M12 M13 M14 M15 0 0 0 0
−M21 −L2 −M23 −M24 −M25 0 0 0 0
M21 L2 M23 M24 M25 0 0 0 0
−M31 −M32 −L3 −M34 −M35 0 0 0 0
M31 M32 L3 M34 M35 0 0 0 0
−M41 −M42 −M43 L4 −M45 0 0 0 0
M41 M42 M43 L4 M45 0 0 0 0
−M51 −M52 −M53 −M54 −L5 0 0 0 0

0 0 0 0 0 C1 0 0 0
0 0 0 0 0 0 C2 0 0
0 0 0 0 0 0 0 C3 0
0 0 0 0 0 0 0 0 C4



×



ˆiL1
ˆiL2
ˆiL3
ˆiL4
ˆiL5

ˆvC1

ˆvC2

ˆvC3

ˆvC4


= . . .
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. . .



0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0



×



iL1

iL2

iL3

iL4

iL5

vC1

vC2

vC3

vC4


+



Vcell1
Vcell2
Vcell3
Vcell4
Vcell5
Vcell6
Vcell7
Vcell8

0
0
0
0



(24)

The average capacitor voltage values (C2 − C4) are twice the voltage of one cell. This can be
explained by applying the KVL around the larger loop (through Cell 2, Q2, C2, Q4, and Cell 2) in
Figure 9b, Therefore, the KVL equation can be written as

VC2 = Vcell2 + Vcell3 (25)

Similarly, the average capacitor voltages for C2 and C3 can be driven as

VC3 = Vcell4 + Vcell5 (26)

VC4 = Vcell6 + Vcell7 (27)

Similarly, the capacitor currents C1 − C4 during the second stage, when switches Q2, Q4, Q6,
and Q8 are turned on, can be written as

C1
dvC1

dt
= iL1 C2

dvC2

dt
= 0 C3

dvC3

dt
= 0 C4

dvC4

dt
= 0 (28)

Correspondingly, the state-space equation in the second stage, when switches Q2, Q4, Q6, and Q8
are turned on, and the other switches are turned off, can be expressed as



L1 M12 M13 M14 M15 0 0 0 0
−M21 −L2 −M23 −M24 −M25 0 0 0 0
M21 L2 M23 M24 M25 0 0 0 0
−M31 −M32 −L3 −M34 −M35 0 0 0 0
M31 M32 L3 M34 M35 0 0 0 0
−M41 −M42 −M43 L4 −M45 0 0 0 0
M41 M42 M43 L4 M45 0 0 0 0
−M51 −M52 −M53 −M54 −L5 0 0 0 0

0 0 0 0 0 C1 0 0 0
0 0 0 0 0 0 C2 0 0
0 0 0 0 0 0 0 C3 0
0 0 0 0 0 0 0 0 C4



×



ˆiL1
ˆiL2
ˆiL3
ˆiL4
ˆiL5

ˆvC1

ˆvC2

ˆvC3

ˆvC4


= . . .
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. . .



0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



×



iL1

iL2

iL3

iL4

iL5

vC1

vC2

vC3

vC4


+



Vcell1
Vcell2
Vcell3
Vcell4
Vcell5
Vcell6
Vcell7
Vcell8

0
0
0
0



(29)

5. The Simulation Results of the Proposed Ćuk Converter with Coupled Inductors and Four Cells

The simulation results of the proposed ćuk converter with coupled inductors are presented in this
section. Firstly, the proposed circuit was tested with four cells in MATLAB to compare the conventional
and proposed circuit. Next, the proposed ćuk balancing circuit was tested with eight cells. The switches
are N-channel MOSFETs with body diodes and they are triggered by pulse width modulation (PWM),
created by pulse generator with a synchronous pattern. The switching frequency is 50 kHz with the
duty ratio of 50%.

As compared to the general ćuk converter circuit, which uses one switch and one diode,
the proposed circuit uses two switches instead of a diode. This means less voltage drop across
it and more symmetry voltages for both odd cells and even cells.

The batteries were modeled with capacitors with the value of 0.5 F, and the initial capacitor
voltages were chosen to present different voltage levels. The voltages were chosen from 3 V to 3.7 V to
have different imbalanced cells.

The magnetizing inductance for the coupled inductors is 10 µH and the leakage inductance of
1 µH. All capacitors are 100 µF with no series resistance.

The simulation results of the proposed ćuk converter with coupled inductors and four cells in
series are presented. The cell voltages of Cells 1–4 after balancing are shown in Figure 10a. The circuit
has a faster balancing time as compared to the conventional circuit presented in the previous section
and the cell voltages converge at the end.
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Figure 10. (a) Cell voltages of the proposed ćuk balancing circuit with four cells; and (b) inductor
voltages of the proposed ćuk balancing circuit with four cells in steady state.

Figure 10b shows the inductor voltages of the proposed ćuk balancing circuit with four cells
in steady-state. It is known that the inductor average voltage in a period in steady-state is zero.
Thus, it can be seen that they are at the same levels, which means all cells are balanced, unlike in the
conventional circuit, for which they are not at the same voltage levels.

In Figure 11a, the inductor currents of the proposed ćuk balancing circuit with four cells in
steady-state is presented. It was found that all inductor currents are the same, which means the cells
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are balanced. Figure 11b shows the capacitor voltages in steady-state. It can be seen in the figure that,
according to Equations (20)–(22) and (25)–(27), the average voltages across capacitors are twice the
voltage of one cell.
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6.74
CV1
CV2

(b)
Figure 11. (a) Inductor currents of the proposed ćuk balancing circuit with four cells in steady state;
and (b) capacitor voltages of the proposed ćuk balancing circuit with four cells in steady state.

6. The Simulation Results of the Proposed Ćuk Converter with Coupled Inductors and Eight Cells

In this section, the simulation results of the proposed ćuk converter with coupled inductors are
presented. Similar to the previous simulation, all parameters are the same, except the number of cells,
which are increased to eight cells. The cell voltages of Cells 1–8 are shown in Figure 12a.
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Figure 12. (a) Cell voltages of the proposed eight-cell ćuk balancing circuit; and (b) inductor voltages
of the proposed ćuk balancing circuit with eight cells in steady-state.

The circuit has a faster balancing time as compared to the conventional circuit presented, and the
cell voltages also converge at the end similar to the proposed circuit with four cells. As discussed
above, the inductor average voltage in a period in steady-state is zero.

Similar to the previous section, it can be noticed that all inductor voltages are at the same voltage
level, resulting in all cells being balanced. The inductor voltages of the proposed ćuk balancing circuit
with eight cells in steady-state are presented in Figure 12b.

Figure 13a shows the inductor currents of the proposed ćuk balancing circuit with eight cells
in transient. The figure shows that, after the balancing time is done, all inductor currents reach the
same level in transient. The inductor currents of the proposed ćuk balancing circuit with eight cells in
steady-state, in a closer view, is presented in Figure 13b. It can be noticed that all inductor currents are
the same, which means the cells are balanced.

In Figure 14a,b, the capacitor voltages in transient and steady state are presented, respectively.
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Figure 13. (a) Inductor currents of the proposed ćuk balancing circuit with eight cells; and (b) inductor
currents of the proposed ćuk balancing circuit with eight cells in steady-state.
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Figure 14. (a) Capacitor voltages of the proposed ćuk balancing circuit eight cells in transient; and (b)
capacitor voltages of the proposed ćuk balancing circuit with eight cells in steady-state.

7. Experimental Results

In this section, the experimental results of the proposed ćuk converter are presented. To verify the
proposed balancing circuit, a prototype of the ćuk converter balancing circuit with coupled inductors
was implemented and tested with eight cells in series. The circuit equalized eight battery cells, but the
number of cells can be increased or decreased depending on the desired application.

The switches are logic level N-channel MOSFETs with body diodes, and they are controlled by
a pair of complementary signals in a synchronous trigger pattern generated by a micorocontroller.
The N-channel MOSFETs were used to achieve the same characteristics and lower drain-source
on-resistance, RDS(on), and less voltage drop as compared to the P-channel types. MOSFETs Q1, Q3,
Q5, and Q7 are controlled by a non-inverting MOSFET driver, which is triggered by a microcontroller,
while switches Q2, Q4, Q6, and Q8 are controlled by an inverting MOSFET driver. The MOSFET
characteristics are shown in Table 1.

Table 1. MOSFET characteristics.

Parameters Values

VDSS 60 V
RDS(on) 89 mΩ

ID 12 A
VGS ±15

VGS(th) 1.6 V (min)
Qg 7.4 nC (typ)
tr 104 ns
tf 40 ns

The proposed ćuk converter circuit contains five coupled inductors and one magnetic core with
an air gap. The ferrites and coil former E 25/13/7 (EF 25) was chosen. The windings were made with
five wires in one hand to obtain more symmetry in the leakage inductance of the coupled inductor
winding. The magnetizing inductance of 9.89 µH was obtained by tuning the air gap thickness of
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the ferrite core. The thickness of the air gap is 76 µm. The capacitors are 100 µF multilayer ceramic
capacitors in order to achieve lower equivalent series resistance (ESR).

The driver is an inverting and non-inverting MOSFET driver controlled by a microcontroller.
The frequency of 48 kHz with a duty ratio of 45% is applied to the driver. The simplified driver
schematic of the proposed circuit with two cells is presented in Figure 15.

C1

Q1

L1

Cell1

Cell2 Q2

L2

P
W
M

A
m
pl
if
ie
r

A
m
pl
if
ie
r

Non-inverting

Inverting

.
.

Figure 15. The control flowchart of the proposed ćuk converter balancing circuit.

In the first mode, the odd MOSFETs is triggered by a non-inverting driver, which is generated by
a microcontroller. Then, even MOSFETs are triggered by an inverting driver. The duty cycle of 5% is
applied to the driver to avoid shoot-through between MOSFETs. The input signals to the drivers which
are generated by a PWM controller are firstly amplified, and then they are applied to the drivers.

The batteries are lithium polymer battery (Lipoly) with the nominal voltage of 3.7 V and minimum
Capacity of 1000 mAh, and they are connected in a series configuration. The cut-off discharge voltage of
the battery is 3 V and the maximum charge voltage is 4.2 V. The cell voltages are measured individually
and the data are collected by Arduino Nano.

The gate to source voltages to the MOSFETs are generated by the microcontroller, as can be seen
in Figure 16. The blue signal is applied to MOSFETs Q1, Q3, Q5, and Q7, while the reg signal is applied
to MOSFETs Q2, Q4, Q6, and Q8.
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6
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10

12

Figure 16. The gate to source voltages to the MOSFETs.

The inductor current waveforms are presented in Figure 17a. As can be noticed, the average
inductor voltage is zero and all inductors have the same voltage levels, which means all cells are
balanced. The capacitor voltage waveform C1 is presented in Figure 17b. For clarity, only the capacitor
voltage waveform of one capacitor (C1) is presented.

To verify the proposed ćuk balancing circuit, the circuit was tested with eight lithium-ion
battery cells in a series. To have cell imbalances, the battery cells with different voltages were tested.
In Figure 18a, the cell voltage waveforms of the proposed circuit is shown. The cell voltages vary
from 2.9 V to 3.7 V. The cell voltage waveforms with more voltage difference and one cell fully
charged is shown in Figure 18b. The cell voltages vary from 2.8 V to 4 V in order to have significant
voltage differences.
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Figure 17. (a) Inductor voltage waveforms of the proposed ćuk balancing circuit; and (b) capacitor
voltage waveforms of the proposed ćuk balancing circuit.
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Figure 18. (a) Cell voltage waveforms of the proposed circuit after balancing; (b) cell voltage waveforms
of the proposed circuit after balancing with one cell fully charged; (c) charging and equalizing voltage
waveforms of the cells with balancing circuit; (d) the discharging voltage waveforms of the cells with
nominal voltages without balancing circuit; (e) the discharging waveforms of the cells with fully
charged cells without balancing circuit; and (f) the discharging waveforms of the cells with existing of
the balancing circuit.

In Figure 18c, the charging and equalizing voltage waveforms of the proposed circuit are presented.
It can be seen that all cells are charged and balanced from the beginning to the end and they are at the
same voltage level.
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The discharging voltage waveforms of the cells with nominal voltages without the balancing
circuit is shown in Figure 18d. It can be seen that each cell has a different discharging point, and they
do not converge at the end. In Figure 18e, the discharging waveforms of the cells with fully charged
cells without a balancing circuit is presented. It can be noticed that they do not converge at the end,
because the balancing circuit is not presented. To verify the circuit the battery cells were discharged
with the proposed circuit. The discharging waveforms of the cells with the existing balancing circuit
are shown in Figure 18f.

To verify the proposed circuit, the battery cells with different voltage values were tested. The cell
voltages were varied from 2 V to 4 V to apply significant voltage differences. The photograph of the
experimental set up of the proposed ćuk converter balancing circuit is shown in Figure 19.

LCD

Arduino Nano

Scope

Isolated cell Voltage Measurments Battery Cells

Cuk balancing circuit
Coupled Inductors

Figure 19. A photograph of the experimental set up of the proposed ćuk converter balancing circuit.

The efficiency of the proposed ćuk converter balancing circuit was calculated with different loads.
The loads were varied from 270 Ω to 12 Ω, and the results are shown in Figure 20.
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Figure 20. The efficiency of the proposed ćuk converter balancing circuit.

8. Conclusions

A ćuk converter balancing technique, by using a coupled inductor for lithium-ion batteries in
ultra-light electric vehicles, is investigated in this paper. The proposed circuit equalizes eight li-ion
battery cells in a series. The conventional ćuk converter balancing circuit requires 2(n − 1) switches
in order to equalize n cells, but the proposed circuit requires only n switches for n cells in a battery
pack. A conventional ćuk converter uses one switch and one diode, but the proposed circuit uses
two MOSFETs as switch per cell, therefore, resulting in less voltage drop. Furthermore, the proposed
circuit uses coupled inductors instead of un-coupled inductors, unlike the conventional type. Using
coupled inductors requires fewer magnetic cores as well as windings compared to separate inductors,
and the symmetry is maintained. There is always a voltage available to power the MOSFETs, even
without bootstrap. The coupling permits a faster equalizing than capacitors alone. As the leakage
is lower than the magnetizing, a lower impedance is created. As no separate voltage measurement
is used, which is less sensitive to false readings. The gate drivers can be made in such a way that a
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virtual zero consumption is obtained at rest. The proposed circuit will equalize eight cells in a battery
pack in series. The number of cells can be decreased or increased depending on the desired application.
Experiments and simulations were performed to verify the feasibility of the proposed system.
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