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Abstract

Background

Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of

major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A)

are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhi-

murium and Enteritidis) have a broad host range and predominantly cause gastroenteritis.

Methodology/Principle findings

We compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and

Enteritidis using contemporary proteomics. For each serovar, five clinical isolates (covering

different geographical origins) and one reference strain were grown in vitro to the exponen-

tial phase. Levels of orthologous proteins quantified in all four serovars and within the typhoi-

dal and non-typhoidal groups were compared and subjected to gene ontology term

enrichment and inferred regulatory interactions. Differential expression of the core prote-

omes of the typhoidal serovars appears mainly related to cell surface components and, for

the non-typhoidal serovars, to pathogenicity.

Conclusions/Significance

Our comparative proteome analysis indicated differences in the expression of surface pro-

teins between Salmonella Typhi and Paratyphi A, and in pathogenesis-related proteins

between Salmonella Typhimurium and Enteritidis. Our findings may guide future develop-

ment of novel diagnostics and vaccines, as well as understanding of disease progression.
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Author summary

With an estimated 20 million typhoid cases and an even higher number of non-typhoid

cases the health burden caused by salmonellosis is huge. Salmonellosis is caused by the

bacterial species Salmonella enterica and over 2500 different serovars exist, of which four

are of major medical relevance for humans: Typhi and Paratyphi A cause typhoid fever

while Typhimurium and Enteritidis are the dominant cause of non-typhoidal Salmonella
infections. The proteome is the entire set of proteins that is expressed by a genome and

the core proteome are all orthologous proteins detected in a given sample set. In this study

we have investigated differential expression of the core proteomes of the Salmonella sero-

vars Typhi, Paratyphi A, Typhimurium and Enteritidis, as well as the regulating mole-

cules. Our comparative proteome analysis indicated differences in the expression of

surface proteins between the serovars Typhi and Paratyphi A, and in pathogenesis-related

proteins between Typhimurium and Enteritidis. Our findings in proteome-wide expres-

sion may guide the development of novel diagnostics and vaccines for Salmonella, as well

as understanding of disease.

Introduction

The gram-negative bacterial genus Salmonella is divided in two species, Salmonella enterica
and Salmonella bongori. Only the Salmonella enterica subspecies enterica is of clinical rele-

vance for humans and is further classified into more than 2,600 serovars. The human restricted

serovar Typhi (STY) and the closely related serovar Paratyphi A (SPTA) cause enteric fever

[1], while the generalist serovars Typhimurium (STM) and Enteritidis (SENT) are the most

important causes of non-typhoidal salmonellosis [2]. Enteric fever is a systemic disease that

affects more than 27 million people worldwide and leads to more than 200,000 deaths annually

[3,4]. While STY and SPTA both cause a systemic disease, SPTA causes a milder disease with a

shorter incubation time [5]. In the last 20 years, the number of infections with SPTA has signif-

icantly increased in Asia [6]. The global burden of non-typhoidal Salmonella, a common cause

of food poisoning that is usually characterized by localized gastroenteritis, is even higher with

an estimated 93.8 million cases and 155,000 deaths each year [2]. Moreover, invasive non-

typhoidal Salmonella has emerged as an important cause of bloodstream infection in Sub-

Saharan Africa in both adults and children, and the incidence of invasive non-typhoidal Sal-
monella is estimated at 3.4 million cases with more than 600,000 deaths each year [7].

Comparative genomics of Salmonella enterica has revealed specific genetic fingerprints

associated with invasive disease and host adaptation [8,9]. A comparative analysis of 8 typhoi-

dal and 27 non-typhoidal Salmonella genomes demonstrated presence of typhoid-specific pro-

tein families which include virulence factors such as Vi polysaccharide pilus related proteins

[10]. In addition, an in silico comparative analysis of Salmonella genomes identified 469 genes

involved in the central anaerobic metabolism which was intact in gastrointestinal pathogens

(SENT and STM among others) but decaying in extra-intestinal pathogens, such as STY and

SPTA. This metabolic advantage might have a role in competing with other bacteria in the

inflamed gut, thereby enhancing transmission of the gastrointestinal pathogens [11]. However,

not all phenotypic differences in typhoidal and non-typhoidal Salmonella can be explained by

presence or absence of functional genes. Investigating differential expression of the core prote-

omes (defined as all orthologous proteins quantified in a given sample set) between Salmonella
serovars [12], and the regulating molecules involved, can reveal additional insights in the
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adaptations to different host environments and pathogenesis, as well as reveal the expression

of potential vaccine and diagnostic targets.

In the last decade, mass spectrometry (MS) based proteomics has advanced rapidly and

provides a comprehensive view on the proteins that are expressed by an organism. In clinical

microbiology laboratories, MALDI-TOF MS is routinely used for bacterial genus and species

identification [13]. In research, proteomics was used to characterize the proteomes of Salmo-
nella Typhimurium and Enteritidis under specific in vitro culture conditions mimicking the

phagosome [14,15], to identify proteins that were expressed by Salmonella Typhimurium iso-

lated from infected macrophages [16], and to study antimicrobial resistance and virulence in

Salmonella Typhimurium [17–19]. Next to proteome analysis within single serovars, compara-

tive proteome studies have been conducted to assess the proteome variability between different

Salmonella serovars. However, these studies used laboratory reference strains which may not

represent the currently circulating clinical strains [20–22].

Here, we conducted a comparative analysis of the core proteomes of the clinically most rele-

vant Salmonella enterica serovars: Typhi, Paratyphi A, Typhimurium and Enteritidis, using 20

Salmonella strains isolated from patients covering various geographical origins, as well as one

reference strain per serovar. Our findings show that differential expression of the core prote-

ome of the typhoidal serovars is mainly related to cell surface components and, for the non-

typhoidal serovars, to pathogenicity.

Methods

Bacterial strains and growth conditions

Five clinical isolates per Salmonella serovar Typhi, Paratyphi A, Typhimurium and Enteritidis

were selected from the strain collection at the clinical laboratory of the travel clinic of the Insti-

tute of Tropical Medicine, Antwerp, Belgium for shotgun proteome analysis. One ATCC refer-

ence strain for each Salmonella serovar was added to the sample set and for the Salmonella
Typhi reference strain, a clinical strain was certified (Table 1). Given that the burden of typhoid

fever and invasive non-typhoidal salmonellosis is highest in Asia and Africa respectively, we

have selected representative strains from different countries covering both continents. All in
vitro incubation was done at 37˚C. Minimum and maximum temperatures were recorded and

ranged between 35˚C and 37˚C. As all clinical strains have been isolated from patients, the

strains were revived from Microbank cryogenic vials (Pro-Lab Diagnostics) on blood agar (BD

Columbia Agar, 5% sheep blood) and grown overnight at 37˚C. Single colonies were sub-cul-

tured on MacConkey agar (BD MacConkey II Agar) and grown overnight at 37˚C. Colonies

were further solubilized into 3 ml of synthetic growth medium and supplemented with 1% glu-

cose (Teknova HI-DEF Azure Media) until the OD was 0.06, and 250 μl of this suspension was

inoculated into 5 ml of synthetic medium supplemented with 1% glucose and grown at 37˚C

with shaking at 220 rpm until mid-log phase (OD 0.5-OD 0.6). The Teknova HI-DEF Azure

synthetic medium (S1 File) is based on the medium described by Neidhardt et al. [23].

Protein extraction and in-solution digestion

Upon harvesting the bacteria, duplicate samples of 1 ml were taken from each culture and cen-

trifuged at 5000 x g for 10 min at 4˚C and the cell pellets were washed twice with phosphate

buffered saline (PBS). Duplicate samples are thus further considered as technical replicates. Pro-

teins were extracted from the bacterial pellets with the Qproteome Bacterial Protein Prep Kit

(Qiagen) following the manufacturer’s instructions. Briefly, after snap-freezing on dry ice, bac-

terial cell pellets were thawed on ice for 15 minutes. Cell pellets were re-suspended 750 μl of

lysis buffer supplemented with lysozyme and Benzonase Nuclease, all included in the extraction
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kit. EDTA-free protease inhibitor (Roche) was added to a final concentration of 2%. After incu-

bation on ice for 30 minutes, lysates were centrifuged at 14,000 for 30 minutes to pellet the cellu-

lar debris, and the supernatant was collected. The protein concentration was determined with

the BCA Protein Assay Kit (Pierce) (S1 Table). Proteins were reduced with 15 mM tris(2-car-

boxyethyl)phosphine hydrochloride (TCEP-HCl) and alkylated with 30 mM iodoacetamide

(IAM) for 15 min in the dark while shaking at 37˚C. The buffer was exchanged to digestion

buffer (50 mM ammonium bicarbonate, pH 7.9) using G-25 illustra NAP-5 gel filtration col-

umns (GE Healthcare). The eluates were then heated at 99˚C for 5 min, put immediately on ice

and, after cooling, sequencing grade modified trypsin (Promega) was added to a 1:100 trypsin

to protein ratio upon which digestion proceeded at 37˚C for 16 h. The trypsin activity was

stopped by adding 60 μl of 10% trifluoroacetic acid (TFA) (0.6% final concentration).

LC-MS/MS analysis

The peptide mixtures were subjected to LC−MS/MS analysis using an Ultimate 3000 RSLC

nano LC (Thermo Scientific, Bremen, Germany) in-line connected to a Q Exactive mass

Table 1. Geographical origin and year of isolation of the Salmonella enterica Typhi, Paratyphi A, Typhimurium and Enteritidis strains.

ID strain Salmonella enterica serovar Geographic origin Year of isolation

Clinical isolates

9092306 Typhi Bangladesh 2009

9121199 Typhi Burkina Faso 2009

2427† Typhi Cambodia 2010

3182/3† Typhi DRC� 2010

12091815 Typhi Thailand 2012

8041131 Paratyphi A India 2008

8121108 Paratyphi A Senegal 2008

1964† Paratyphi A Cambodia 2010

12082646 Paratyphi A India 2012

12122069 Paratyphi A Myanmar 2012

3011187 Typhimurium Ethiopia 2003

2371 Typhimurium Cambodia 2010

11082746 Typhimurium Malawi 2011

HRG039VD28 Typhimurium The Gambia 2013

11185/3† Typhimurium DRC� 2014

9001877 Enteritidis Cambodia 2009

3252/3† Enteritidis DRC� 2010

10080748 Enteritidis Nigeria 2010

12050236 Enteritidis Senegal 2012

12080487 Enteritidis Indonesia 2012

Reference isolates

ITM00032304‡ Typhi Senegal 2000

ATCC9150 Paratyphi A Malaysia 1993

ATCC14028 Typhimurium unknown 1960#

ATCC13076 Enteritidis unknown unknown

� Democratic Republic of the Congo

# ATCC 14028 is a descendant of CDC 60–6516, which is a strain isolated in 1960 from pools of hearts and livers of 4-week-old chickens.

†Obtained from microbiological surveillance studies in the respective countries. The other strains were obtained from patients at the travel clinic of ITM.

‡Clinical strain certified by the Belgian National Reference Centre for Salmonella and Shigella (ISP-WIV, currently Sciensano, Brussels).

https://doi.org/10.1371/journal.pntd.0007416.t001
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spectrometer (Thermo Fisher Scientific). The sample mixture was first loaded on a trapping

column (made in-house, 100 μm internal diameter (I.D.), 20 mm long, filled with 5 μm C18

Reprosil-HD beads, Dr. Maisch, Ammerbuch-Entringen, Germany). After flushing from the

trapping column, the peptides were loaded on an analytical column (75 μm I.D., 400 mm long

and filled with 3 μm C18 Reprosil-HD beads (Dr. Maisch)) packed in the needle PicoFrit

SELF/P PicoTip emitter (PF360-75-15-N-5 (NewObjective, Woburn, USA)). Peptides were

loaded with loading solvent (0.1% TFA in water) and separated with a linear gradient from

98% solvent A’ (0.1% formic acid in water) to 40% solvent B0 (0.1% formic acid in water/aceto-

nitrile, 20/80 (v/v)) in 130 min at a flow rate of 300 nL/min. This was followed by a 15 min

wash reaching 99% solvent B’. The mass spectrometer was operated in data-dependent, posi-

tive ionization mode, automatically switching between MS and MS/MS acquisition for the 10

most abundant peaks in a given MS spectrum. The source voltage was 3.4 kV and the capillary

temperature was at 275˚C. One MS1 scan (m/z 400−2000, AGC target 3 × 106 ions, maximum

ion injection time 80 ms) acquired at a resolution of 70,000 (at 200 m/z) was followed by up to

10 tandem MS scans (resolution 17,500 at 200 m/z) of the most intense ions fulfilling the

defined selection criteria (AGC target 5 × 104 ions, maximum ion injection time 60 ms, isola-

tion window 2 Da, fixed first mass 140 m/z, spectrum data type: centroid, underfill ratio 2%,

intensity threshold 1.7xE4, exclusion of unassigned 1, 5–8, >8 charged precursors, peptide

match preferred, exclude isotopes: on, dynamic exclusion time 20 s). The HCD collision

energy was set to 25% normalized collision energy and the polydimethylcyclosiloxane back-

ground ion at 445.120025 Da was used for internal calibration (lock mass). The mass spec-

trometry proteomics data have been deposited to the PRIDE Archive (http://www.ebi.ac.uk/

pride/archive/) via the PRIDE partner repository with the data set identifier PXD011154 (user-

name: reviewer00797@ebi.ac.uk; password: hN5SqXtY).

MS data processing

Raw MS files were analyzed by MaxQuant [24] version 1.5.0.25 and MS/MS spectra were

searched against the translated protein sequences of the annotated genomes of Salmonella
Typhi CT18 (NCBI accession number AL513382.1) [25], Paratyphi A ATCC 9150

(CP000026.1) [26], Typhimurium 14028S (CP001363.1) [27], and Enteritidis PT4/P125109

(AM933172.1) [28]. The following parameters were applied for the database search: enzyme

specificity was set to trypsin/P allowing for a maximum of two missed cleavages; carbamido-

methylation of cysteine was set as a fixed modification; methionine oxidation, N-terminal for-

mylation on the protein level and conversion of N-terminal glutamine to pyroglutamate were

set as variable modifications. The first search for precursor ions was performed with a mass

tolerance of 20 ppm for calibration, while 6 ppm was applied for the main search. For protein

identification, at least two unique peptides were required per protein group and the minimum

peptide length was set to 7. The false discovery rate for peptide and protein identification was

set to 1%. The minimum score threshold for both modified and unmodified peptides was set

to 30. MS runs were analyzed with the “match between runs” option between samples of a

given serovar. For matching, a retention time window of 42 s was selected. Protein quantifica-

tion was based on the MaxQuant label-free (MaxLFQ) algorithm. For all other parameters,

default settings were applied as advised by the developers.

Comparative analysis of core proteomes

The MaxQuant output file “proteinGroups.txt” was loaded into Perseus 1.5.0.8. The protein

entries were filtered to remove potential contaminants, reverse hits and proteins only identi-

fied by site. Then, the LFQ intensities were log2 transformed and data were filtered for
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proteins containing a minimum number of valid values in 9 out of 12 samples. The log2 trans-

formed data were then normalized by subtracting the median per sample within the dataset.

To compare the different Salmonella serovars we used orthology mapping. Orthologous genes

within the four serovars were retrieved from the Orthologous Matrix (OMA) database [29]

with NCBI Taxonomy IDs 220341 (STY), 295319 (SPTA), 550537 (SENT) and 588858 (STM).

Statistical significant differences in LFQ intensities were assessed using a two-sided t-test with

Bonferroni adjusted P values using R. Proteins were considered differentially expressed if they

showed a minimal 2-fold change in their overall levels with an adjusted P-value lower than

0.05. Principal component analysis (PCA) was done in Perseus 1.5.0.8 using default settings as

advised by the developers.

Functional enrichment analysis

Differentially expressed proteins were subjected to gene ontology (GO) term enrichment to

investigate biological processes, molecular function and cellular compartment using the Data-

base for Annotation, Visualization and Integrated Discovery (DAVID) bioinformatics

resources 6.7 [30]. Briefly, we have uploaded the differentially expressed core proteins as an

input list and performed GO term enrichment analysis against a background list with default

settings (count threshold is 2 and EASE threshold is 0.1).

Regulatory network analysis

To infer regulatory interactions that can explain differential expression profiles we used the

PheNetic web server (http://bioinformatics.intec.ugent.be/phenetic/#/index) with default set-

tings (Cost is 0.1, Pathlength is 4 and k-best paths is 20) and upstream run mode [31]. Input

data consisted of the available interaction network for Salmonella Typhimurium LT2 (http://

bioinformatics.intec.ugent.be/phenetic/index.html#/network), the list of detected proteins that

are shared by two groups, and the list of differentially expressed proteins with P<0.05.

Ethics statement

The clinical Salmonella isolates were obtained through the project “Surveillance of antimicro-

bial resistance among consecutive blood culture isolates in tropical settings”, within the Third

Framework Agreement between the Belgian Directorate of Development Cooperation (DGD)

and the Institute of Tropical Medicine (ITM), Antwerp, Belgium. The partner institutes

involved in this surveillance project that provided strains were: Sihanouk Hospital Centre of

Hope, Phnom Penh, Cambodia and Institut National de Recherche Biomédicale, Kinshasa,

Democratic Republic of the Congo. Ethical approval for the Microbiological Surveillance was

granted by the Institutional Review Board at the ITM in Antwerp, by the Ethics Committees of

the Antwerp University (Belgium). Ethical approval for the Microbiological Surveillance Study

was granted by the Institutional Review Board of ITM, the Ethics Committee of Antwerp Uni-

versity and the competent ethical committees from the DR Congo and Cambodia respectively.

The Salmonella Typhimurium isolate from The Gambia was received from the Medical

Research Council (MRC) Keneba, MRC The Gambia. Ethical approval was granted by the

Gambia Government/MRC Joint Ethics Committee. The remaining strains were obtained

from patients presenting at the travel clinic at ITM, ethical approval was granted by the Institu-

tional Review Board of ITM. All isolates and subsequent biological samples were anonymized.
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Results

Salmonella proteins identified by LC-MS/MS

The reference genomes of STY, SPTA, SENT and STM used in our analysis contain 4,600,

4,095, 4,318 and 5,372 protein-encoding genes, respectively. In total, 3596 orthologous genes

in the four serovars were retrieved from the OMA database and 1,414, 1,558, 1,222 and 1,099

proteins were detected by LC-MS/MS analysis in the STY, SPTA, SENT and STM strains,

respectively. Protein detection in technical replicates showed Pearson correlation coefficients

higher than 0.92 for all samples, except for the STM strain from Ethiopia with a Pearson corre-

lation of 0.86 (S2 Table). Intra-serovar PCA of the LFQ intensities of expressed proteins show

little variation in expression levels between strains within the same serovar (S2 File). However,

in order to conduct reliable intra-serovar comparisons, more strains should have been

included per serovar.

In total, 418 orthologous proteins were detected in all serovars (Fig 1) and expression levels

in the typhoidal (STY and SPTA) and non-typhoidal (STM and SENT) Salmonella serovars

were compared by PCA of the LFQ intensities (Fig 2A). The first two components capture

~72% of the variability in the dataset and show that the typhoidal serovars do not separate

from the non-typhoidal serovars based on the observed variability in LFQ intensities. When

we compared the typhoidal with the non-typhoidal Salmonella strains, a total of 128 proteins

showed a minimal 2-fold change in their overall levels with an adjusted P-value lower than

0.05 (S3 Table). GO term enrichment of these 128 proteins showed that all GO terms with a P
value lower than 0.05 are related to translation and structural components of the ribosomes

(Table 2).

Differentially expressed proteins in Salmonella Typhi (STY) and Paratyphi

A (SPTA) are associated with the cell surface

A set of 810 core proteins were detected in Typhi and Paratyphi A and their LFQ intensities

were used as input for PCA (Fig 2B). The first two components allow a clear separation of the

STY from the SPTA strains, covering 80% of the total variation in expression levels. In addi-

tion, the PCA shows that clinical isolates do not separate from the reference strains in both ser-

ovars. A total of 230 proteins with a minimal 2-fold change in their overall levels and an

adjusted P-value lower than 0.05 were considered significantly differentially expressed between

STY and SPTA strains (S4 Table). GO functional enrichment analysis of these proteins indi-

cated an enrichment of biological pathways that are related to carbohydrate and polysaccha-

ride biosynthesis and metabolism, as well as the external encapsulating structure (Table 2). We

have plotted our differential expression data set on the wide interaction network for Salmo-
nella Typhimurium LT2. Using the upstream run mode, PheNetic searches for regulatory

mechanisms that can explain our observed data set. The inferred sub-network (Fig 3) shows

that many differentially expressed proteins are connected to each other by outer membrane,

stress and carbohydrate metabolism regulatory proteins such as CpxR, YjeB and CRP, which

are not necessarily differentially expressed themselves, but might have a post-translational ser-

ovar-specific effect. Moreover, the small regulatory RNAs OmrA and OmrB connect differen-

tially expressed proteins involved in carbohydrate metabolism.

Differentially expressed proteins in Salmonella Typhimurium (STM) and

Enteritidis (SENT) are associated with pathogenicity

A set of 465 core proteins were detected in all strains of STM and SENT. PCA of the LFQ

intensities of these proteins showed a clear separation of the STM isolates from the SENT
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isolates based on the observed protein expression levels where the first two components cover

~80% of the total variation in expression levels (Fig 2C). The PCA also shows that the reference

strains and the clinical isolates do not separate in STM and SENT. A total of 192 proteins with

a minimal 2-fold change in their overall levels and an adjusted P-value lower than 0.05 were

considered significantly differentially expressed between STM and SENT strains (S5 Table).

Fig 1. Venn diagram of the orthologous proteins detected by LC-MS/MS in 6 Salmonella Typhi, 6 Salmonella Paratyphi A, 6

Salmonella Enteritidis and 6 Salmonella Typhimurium strains.

https://doi.org/10.1371/journal.pntd.0007416.g001

Fig 2. Principal component analysis (PCA) separate serovars based on LFQ intensities. The PCA plots show that the first and

second principle components capture ~72% of the variability among the Salmonella serovars Typhi (STY), Paratyphi A (STPA),

Typhimurium (STM) and Enteritidis (SENT) (A), 80% of the variability between the serovars STY and SPTA (B), and ~80% of the

variability between the serovars STM and SENT (C). Reference strains for each serovar are presented in red.

https://doi.org/10.1371/journal.pntd.0007416.g002
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GO enrichment analysis of these proteins showed that all GO terms with P<0.05 are related to

pathogenesis (Table 2). The inferred subnetwork (Fig 4) revealed that the flagellar biosynthesis

sigma factor FliA and the flagellar transcriptional regulators FlhD and FlhC (STM1924.S) con-

nect the upregulated flagellar synthesis and motility proteins in STM. HilA, the main regulator

of Salmonella Pathogenicity Island 1 (SPI-1), is possibly involved in the upregulation of the

type 3 secretion system (T3SS) structural protein Prgl and effector protein SipA in STM.

Discussion

The genomes of typhoidal and non-typhoidal Salmonella have a high level of similarity with

more than 98% of sequence identity [32]. However, these two groups cause different diseases,

host-pathogen interactions and immune responses. Here, we conducted the first comprehen-

sive analysis of the proteomes of the Salmonella serovars Typhi, Paratyphi A, Typhimurium

and Enteritidis using five clinical isolates that cover different geographical regions and one ref-

erence strain per Salmonella serovar. We have compared the expression levels of proteins from

the core proteome under in vitro conditions and identified regulators that may help to explain

the differences between different Salmonella serovars.

Table 2. Gene ontology functional enrichment analysis of differentially expressed core proteins between typhoidal and non-typhoidal, Typhi and Paratyphi A,

Enteritidis and Typhimurium Salmonella.

Category Term Count % P-value
Typhoidal versus non-typhoidal

GOTERM_MF_FAT GO:0005198~structural molecule activity 38 29.46 2.56E-10

GOTERM_MF_FAT GO:0003735~structural constituent of ribosome 37 28.68 3.13E-10

GOTERM_BP_FAT GO:0006412~translation 42 32.56 5.99E-07

GOTERM_CC_FAT GO:0005840~ribosome 37 28.68 9.52E-06

GOTERM_CC_FAT GO:0030529~ribonucleoprotein complex 37 28.68 2.17E-05

GOTERM_MF_FAT GO:0003723~RNA binding 29 22.48 2.39E-05

GOTERM_CC_FAT GO:0043232~intracellular non-membrane-bounded organelle 38 29.46 9.00E-05

GOTERM_CC_FAT GO:0043228~non-membrane-bounded organelle 38 29.46 9.00E-05

GOTERM_MF_FAT GO:0019843~rRNA binding 21 16.28 2.82E-04

GOTERM_CC_FAT GO:0033279~ribosomal subunit 12 9.3 0.024948

GOTERM_MF_FAT GO:0000049~tRNA binding 7 5.42 0.048571

STY versus SPTA

GOTERM_BP_FAT GO:0016051~carbohydrate biosynthetic process 10 4.4 5.55E-04

GOTERM_BP_FAT GO:0008610~lipid biosynthetic process 10 4.4 0.001

GOTERM_BP_FAT GO:0034637~cellular carbohydrate biosynthetic process 8 3.52 0.006

GOTERM_BP_FAT GO:0000271~polysaccharide biosynthetic process 7 3.08 0.009

GOTERM_BP_FAT GO:0009103~lipopolysaccharide biosynthetic process 6 2.64 0.014

GOTERM_BP_FAT GO:0008653~lipopolysaccharide metabolic process 6 2.64 0.014

GOTERM_BP_FAT GO:0005976~polysaccharide metabolic process 7 3.08 0.016

GOTERM_BP_FAT GO:0044264~cellular polysaccharide metabolic process 6 2.64 0.026

GOTERM_BP_FAT GO:0033692~cellular polysaccharide biosynthetic process 6 2.64 0.026

GOTERM_CC_FAT GO:0030312~external encapsulating structure 7 3.08 0.033

STM versus SENT

GOTERM_CC_FAT GO:0019861~flagellum 8 4.14 0.037

GOTERM_CC_FAT GO:0042995~cell projection 8 4.14 0.037

GOTERM_BP_FAT GO:0009405~pathogenesis 9 4.66 0.044

https://doi.org/10.1371/journal.pntd.0007416.t002
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The classification of the four serovars into typhoidal and non-typhoidal groups is largely

based on clinical presentation, with systemic and gastrointestinal disease, respectively. How-

ever, PCA of the LFQ intensities of the 418 detected proteins shared by all four serovars did

not separate the typhoidal from the non-typhoidal serovars. Out of these 418 detected core

proteins, 128 were significantly differentially expressed between typhoidal and the non-typhoi-

dal serovars. However, GO analysis showed enrichment for proteins involved in translation

and ribosomal activity, and thus largely represent the house keeping machinery of the bacterial

cells. PCA showed that the LFQ intensities of the reference and clinical isolates within the

STY, SPTA, STM and SENT serovars do not cluster separately, and the reference strains can

thus be considered as representative for the serovar.

Further analysis showed that 230 proteins were differentially expressed between STY and

SPTA. GO analysis revealed that proteins involved in carbohydrate and lipopolysaccharide

metabolism, and proteins involved in external encapsulating structures were most enriched.

The regulators in the sub-network analysis connecting the differentially expressed proteins are

implicated in the cell envelope stress response and in polysaccharide metabolism. For example,

OmrA/B connect Dld and SdaB, two proteins that are involved in transport of sugars and car-

bohydrate biosynthesis in E.coli, respectively. It is plausible that a serovar-specific effect acts at

the sRNA-level, which is not detected in our proteomic analysis. CpxR that is known to have a

role in the response to alterations in the cell envelope in Salmonella [33], explains the expres-

sion of Psd and LpxA required for phospholipid and glycolipid metabolism, respectively

Fig 3. Phenetic sub-network inference analysis of differential protein expression in STY versus SPTA. 122 out of

230 differentially expressed proteins are shown in this sub-network. Red nodes represent proteins with higher

expression in SPTA versus STY. Green nodes represent proteins with higher expression in STY versus SPTA. The

more intense the color, the higher the level of differential expression. Gray nodes have no differential expression. The

color of the edge indicates the interaction type with blue referring to metabolic, green to protein-protein and red to

protein-DNA interactions.

https://doi.org/10.1371/journal.pntd.0007416.g003
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[34,35]. RpoS, RpoE and RpoH are involved in the stress response to different environmental

conditions and contribute to Salmonella virulence [36–38]. CRP regulates the transcription of

different operons involved in the transport of sugars and in catabolic functions [39], and FruR

is required for carbohydrate metabolism [40]. The observation that cell surface proteins are

significantly differently expressed between STY and SPTA is relevant for the diagnosis of Sal-
monella as well as for vaccination purposes. While the reference diagnostic method for typhoid

fever is microbiological culture (blood, bone marrow or stool) and subsequent serotyping,

rapid diagnostic tests (RDTs) have been developed and are commercially available for STY

antigen and antibody detection [41]. However, diagnostic accuracy of the current RDTs is low,

ranging from 31–97% [42] and more performant RDTs are urgently needed, including RDTs

for SPTA. It has recently been shown that Salmonella antigen-based RDTs can be successfully

applied to blood culture broths for Salmonella identification [43]. Three currently available

typhoid vaccines are recommended by the WHO: an oral vaccine based on a live attenuated

mutant strain of STY Ty21a (Ty21a), the injectable Vi capsular polysaccharide (ViCPS) vac-

cine and the typhoid conjugate vaccine (TCV) (http://www.who.int/immunization/policy/

position_papers/typhoid/en/). However, these Typhi vaccines do not provide protection

against paratyphoid fever caused by SPTA [44], and hence, a vaccine that protects against

typhoid and paratyphoid fever would be of high value. When selecting antigens for developing

new diagnostics or vaccines for both STY and SPTA, one should take into account that

Fig 4. Phenetic sub-network inference analysis of differential protein expression in STM versus SENT. 78 out of

192 differentially expressed proteins are shown in the sub-network. Red nodes represent proteins with higher

expression in SENT versus STM. Green nodes represent proteins with higher expression in STM versus SENT. The

more intense the color, the higher the level of differential expression. Gray nodes have no differential expression. The

color of the edge indicates the interaction type with blue referring to metabolic and orange to protein-DNA

interactions.

https://doi.org/10.1371/journal.pntd.0007416.g004
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although encoded in both serovars, membrane proteins can be differentially expressed

between both serovars and this should be tested in vitro and in vivo.

Upon comparing the proteomes of STM and SENT, 465 core proteins were detected, of

which 192 were differentially expressed between the two serovars. GO enrichment analysis

revealed that flagellar proteins and proteins involved in pathogenesis were most differentially

expressed between both serovars. Among the higher expressed proteins in STM over SENT,

six proteins are directly related to Salmonella pathogenicity island 1-encoded Type III secre-

tion system (InvJ, SipA, SipD, SipC, PrgI, SipB). The T3SS-1 is an important virulence machin-

ery that controls penetration of the gut epithelium during the infection by injecting effector

proteins directly into the cytoplasm of epithelial cells through a needle-like appendages [45].

The regulator proteins InvJ and PrgI are known to be involved in needle and inner rod assem-

bly [46], while SipA induces actin cytoskeletal rearrangements [47] and the translocases SipB

and SipC form a translocation pore into the host cell membrane which is connected to the nee-

dle complex [48]. The sub-network also shows that HilA is possibly involved in the observed

activation of the invasion proteins (SipA and PrgI) in STM. In addition, in the inferred sub-

network the regulators FlhC (STM1924.S), FlhD and FliA were identified as regulators that

connect 8 differentially expressed flagellar proteins (FlgL, FliD, FlgE, FlgM, FlgK, FlgD, FlgN,

FlgG), showing higher expression profiles in Typhimurium strains. Besides their role in motil-

ity, flagellins were shown to stimulate both the innate and adaptive immune system and to

cause inflammation upon STM infection [49]. Moreover, loss of flagellin expression in Salmo-
nella has been linked to increased virulence in mice [50].

Some limitations in our study should be considered. The Salmonella strains were grown in

standard in vitro conditions which may not be representative for protein expression in the

infected host [51]. The addition of glucose to the medium may have induced catabolite repres-

sion. However, the addition of glucose as carbon source in needed to permit the growth of bac-

teria. Moreover, growth temperatures ranged between 35˚C and 37˚C and may have impacted

expression levels. For instance, pathogenicity related gene expression is known to be tempera-

ture-sensitive [52]. In addition, the protein extraction procedure might have minorly affected

the observed protein profiles although all steps have been performed on ice or 4˚C. However,

all strains have been grown using the same in vitro culture conditions and underwent the same

extraction procedure and any possible effects are thus very likely averaged out in the compara-

tive analysis. In addition, our mass spectrometry set-up is not as sensitive as the newest instru-

ments currently available, and we captured around 20 to 40% of the proteomes. Poorly

expressed proteins in the standard in vitro culture conditions used may thus have been missed,

such as virulence related proteins [53]. Finally, the aim of our study was to conduct a compara-

tive analysis of orthologous proteins shared between the four Salmonella serovars, and as such,

we do not present information on serovar-specific (non-orthologous) proteins.

In conclusion, to the best of our knowledge this is the first study that compared the core

proteomes of a large panel of clinical Salmonella isolates, covering the four clinically most rele-

vant Salmonella enterica serovars: Typhi, Paratyphi A, Typhimurium and Enteritidis. Our

comparative proteome analysis indicated differences in the expression of surface proteins

between STY and SPTA, and in pathogenesis-related proteins between STM and SENT. Our

insights may guide future developed of novel diagnostics and vaccines, and understanding of

disease progression.
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