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Abstract 

Due to their underlying genetic complexity, chromosomal disorders such as 

Down syndrome (DS), which is caused by trisomy 21, have long been understudied and 

continue to lack effective treatments. With over 200 genes on the extra chromosome, 

even the specific cell pathologies and pathways impacted in DS are not known, and it 

has not been considered a viable target for the burgeoning field of gene therapy. 

Recently, our lab demonstrated that the natural mechanism of dosage compensation 

can be harnessed to silence the trisomic chromosome in pluripotent cells. Using an 

inducible XIST transgene allows us to study the effects of trisomy in a tightly controlled 

system by comparing the same cells with either two or three active copies of 

chromosome 21. In addition, it raises the prospect that insertion of a single gene into a 

trisomic chromosome could potentially be developed in the future for “chromosome 

therapy”.  

 This thesis aims to utilize this inducible system for dosage compensation to study 

the neurodevelopmental effects of trisomy 21 in vitro, and to answer basic epigenetic 

questions critical to the viability of chromosome silencing as a therapeutic approach. 

Foremost, for XIST to have any prospect as a therapeutic, and to strengthen its 

experimental utility, it must be able to initiate chromosome silencing beyond its natural 

context of pluripotency. Here I demonstrate that, contrary to the current literature, XIST 

is capable of initiating chromosome silencing in differentiated cells and producing fully 

dosage compensated DS neurons. Additionally, I show that silencing of the trisomic 

chromosome in neural stem cells enhances their terminal differentiation to neurons, and 

transcriptome analysis provides evidence of a specific pathway involved. Separate 
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experiments utilize novel three-dimensional organoid technology and transcriptome 

analysis to model DS neurodevelopment in relation to isogenic euploid cells. Overall, 

this work demonstrates that dosage compensation provides a powerful experimental 

tool to examine early DS neurodevelopment, and establishes that XIST function does 

not require pluripotency, thereby overcoming a perceived obstacle to the potential of 

XIST as a therapeutic strategy for trisomy. 
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CHAPTER I : Introduction 

Unlike many genetic conditions for which a causative mutation in one gene can 

be identified, Down syndrome (DS) is caused by the presence of an extra copy of an 

entire chromosome, chromosome 21 (chr21). This means that individuals with DS have 

an extra copy of ~250 protein-coding genes (including 16 transcription factors), at least 

5 functional microRNAs, and hundreds of potential non-coding RNAs. This presents a 

significant challenge to understanding the precise genetic causes underlying each of the 

myriad physiological abnormalities present in individuals with DS. An incomplete 

understanding of the causative genes in DS, as well as normal variation between 

individuals, has hindered progress in our understanding of the molecular and cellular 

basis for disease. Because of this, there are currently no effective treatments for the 

most prevalent finding in individuals with DS, cognitive disability. 

 Recently, our lab has introduced a novel approach to studying DS pathogenesis, 

which also has the potential to one day serve as the basis for a comprehensive therapy 

for DS. This “trisomy silencing” system utilizes a natural mechanism of chromosome 

silencing using the gene XIST, in this case inserted into one copy of chr21 in a DS 

patient-derived induced pluripotent stem cell (iPSC) line. In this thesis, I utilize this 

powerful system to study the effects that trisomy has on early neurodevelopment and to 

investigate whether XIST-mediated trisomy silencing can correct these deficits. I will 

investigate whether XIST is capable of functioning outside of its natural developmental 

context of pluripotency, contrary to the current literature. Additionally, I utilize newly-

developed three-dimensional cell culture techniques to further investigate the 
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neurodevelopmental effects of trisomy 21. This introduction will provide the necessary 

background on the subjects covered in this thesis, including dosage sensitivity, XIST 

biology, normal human neurodevelopment, DS neurobiology and its modelling in vitro, 

and the use of XIST to advance translational research in DS. 

The importance of dosage balance 

‘Sola dosis facit venenum’ 

(Latin: only the dose makes a thing not a poison) 

-Paracelsus (1493–1541) 

It has been appreciated for hundreds if not thousands of years that the toxicity of 

a substance depends entirely on its dosage. This idea also applies to gene dosage. In 

fact, it has been hypothesized that the major phenotypic differences between humans 

and our closest living relatives, chimpanzees, depends largely on regulatory differences 

that influence expression levels rather than differences in protein composition (King and 

Wilson, 1975). Thus, it could be the collective dosages of the building blocks of life, 

rather than the structure of the blocks themselves, that makes us human. 

Recent work has identified hominid-specific NOTCH2 paralogs as potentially 

dosage-sensitive regulators of the Notch pathway, which will be described in more detail 

in a later section, that may be partially responsible for the evolution of larger brains in 

humans (Fiddes et al., 2018). Strikingly, duplications of these paralogs have been linked 

to macrocephaly, and deletions have been associated with microcephaly. In the case of 

these paralogs, the building blocks are present only in hominids, yet they serve to tweak 

the degree of Notch pathway signaling, leading to our uniquely powerful cognitive 

capacities. 
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In addition to potentially shaping our species, gene dosage also plays an 

important role in health and disease, yet this is an area of genome biology that is not 

well understood. In fact, it is not well-known what fraction of genes in the genome are 

dosage sensitive. While many genetic disorders are caused by mutations in genes that 

render them nonfunctional or toxic, there are genes for which the presence of an extra 

non-mutant copy is known to be pathogenic. Perhaps the most well-known and striking 

example also happens to be located on chr21. As will be discussed in more detail in a 

later section, the amyloid precursor protein (APP) gene is the only gene on chr21 that 

has been strongly linked to a specific phenotype in DS: the near-universal development 

of Alzheimer’s disease (AD) (Olson and Shaw, 1969). The mapping of the APP gene to 

chromosome 21, in concert with the findings of prevalent AD in DS patients, led to the 

development of the amyloid hypothesis, the dominant theory in the pathogenesis of AD 

(Hardy and Selkoe, 2002). Further supporting that the dosage of this single gene can be 

sufficient for AD pathogenesis, euploid individuals with a duplication of the APP gene 

develop early-onset autosomal dominant AD (Rovelet-Lecrux et al., 2006). 

It is important to note that many, if not most, genes are not dosage sensitive, as 

evidenced by the prevalence of copy number variations (CNV) covering 12% of the 

human genome (Redon et al., 2006). Additionally, there are genes for which an 

increased copy number can be advantageous in certain scenarios, as exemplified by 

the gene encoding amylase, which is present in higher copy numbers in cultures that 

consume a high-starch diet (Perry et al., 2007), and presumably gives a competitive 

advantage to individuals who can more thoroughly digest starches.  
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While there are individual genes which are not dosage sensitive, the presence or 

absence of an entire autosomal chromosome is nearly always incompatible with life. 

Recent estimates suggest that up to 80% of spontaneous abortions are caused by 

chromosomal abnormalities (Hardy et al., 2016). A plurality of these cases is caused by 

trisomy, a trend that has been exacerbated recently by increasing average maternal 

age. The few trisomies that are compatible with life tend to be on the smaller 

chromosomes, which contain fewer genes, such as chromosome 21. Notable 

exceptions to these trends involve the large X chromosome; monosomy and trisomy X 

are both compatible with life and cause mild phenotypes compared to other 

chromosomal abnormalities. This is largely due to the unique process of dosage 

compensation. 

Concomitant with the evolution of heterogametic sex chromosomes came 

systems for dosage compensation, which ensure gene dosage balance between the 

sexes (Charlesworth, 1996). In drosophila, males (XY) upregulate expression from one 

X chromosome by the redundant action of two non-coding RNAs, roX1 and roX2, in 

order to equilibrate X chromosome expression between males and females (Franke and 

Baker, 1999). In contrast, female (XX) mammals downregulate expression from one X 

chromosome. This phenomenon is orchestrated by another non-coding RNA, the X-

inactive specific transcript (XIST). XIST RNA normally coats one X chromosome, 

eventually leading to its transcriptional silencing. In females with trisomy X, XIST is 

expressed from two copies of the X chromosome, ensuring the presence of just one 

transcriptionally active X chromosome and explaining viability of these trisomies. The 

mild phenotypes that are seen in trisomy X, and become more severe in the rare cases 
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of tetrasomy X, are thought to be caused by overexpression a subset of genes that 

escape silencing by XIST (Tartaglia et al., 2010). However, as will become evident 

throughout this thesis and is the case with most trisomies, the specific genes that lead 

to any potential phenotypes in cases of trisomy X have not been identified. One notable 

exception to this is the SHOX gene, which escapes X inactivation and has been linked 

to the short stature of women with Turner’s syndrome (XO) and the tall stature of both 

men and women with supernumerary copies of the X chromosome (Ottesen et al., 

2010). 

Case studies of specific dosage-sensitive genes, the high prevalence of 

chromosomal abnormalities in spontaneous abortions, and the potential role of gene 

expression changes in the evolution of our species make a clear case for the 

importance of gene dosage throughout biology. The natural phenomenon of X 

chromosome inactivation (XCI) provides an important window into understanding how 

perturbation of transcriptional gene dosage affects development, and the ability to 

harness this unique phenomenon to model and potentially treat disorders of dosage 

imbalance opens a new path for these previously untreatable diseases. 

XIST and X chromosome inactivation  

The discovery of X chromosome inactivation and XIST  

 Mary Lyon first put forward a comprehensive theory of X inactivation that has 

survived decades of scientific inquiry (Lyon, 1961). Her theory built on the then-recent 

discovery that the “sex chromatin” in female cells previously identified by Barr and 

Bertram (1949) was in fact one X chromosome (Ohno and Hauschka, 1960), and that 

monosomy X was compatible with a healthy and fertile female phenotype in mice 
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(Welshons and Russell, 1959). Additionally, work in mouse genetics had identified an 

interesting finding where heterozygous mutations in X-linked coat color genes led to the 

patchy appearance of female mice, suggestive of a mosaic phenotype (Fraser et al., 

1953). In this scenario, one X chromosome is randomly inactivated in the early female 

embryo. If the chromosome containing the nonmutant coat color allele is inactivated, 

then pigmented cells arising from this early progenitor will not produce pigment. On the 

other hand, cells derived from the progenitor that silences the other X chromosome will 

produce pigment, ultimately leading to the mottled phenotype seen in female animals of 

certain mouse mutants as well as in the common house cat. Putting these pieces 

together, Lyon’s hypothesis stated that the heteropyknotic (condensed) X chromosome 

can be either maternal or paternal in origin in different cells of the same animal, that this 

chromosome is genetically inactivated, and that this inactivation occurs early in 

development (Lyon, 1961).  

 Soon after proposing this theory, evidence from X;autosome translocations 

indicated that a certain portion of the X chromosome was required for chromosomal 

silencing to take place (Russell, 1963). This led to the idea that there exists a portion of 

the X chromosome called the X inactivation center (XIC) from which the inactivation of 

the X chromosome spreads (Cattanach, 1975). It was not until 30 years after Mary Lyon 

proposed the theory of X inactivation that the gene located in the XIC and associated 

with aberrant XCI was discovered (Brown et al., 1991a, 1991b). XIST was unique in that 

it was the only gene known to be expressed exclusively from the inactive X 

chromosome. Prior genes had been discovered that were expressed only from the 

active X (silenced genes) and genes expressed from both copies of X (genes that 
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escape silencing). Importantly, Brown et al. (1991a) also found that XIST expression 

increased with the number of inactive X chromosomes present, indicating that XIST is 

capable of effectively silencing multiple X chromosomes and rescuing these individuals 

from trisomy, as mentioned in the previous section, which is an important finding for any 

potential therapeutic applications of this unique gene. Soon after, once the entire 17kb 

sequence of XIST was determined (Brown et al., 1992), it became clear that this gene 

does not encode a protein, but instead is transcribed into a long RNA that is retained in 

the nucleus and spatially overlaps nearly perfectly with the inactive X chromosome 

territory, or Barr body (Clemson et al., 1996). In fact, XIST RNA established the 

precedent for a large non-coding RNA (lncRNA) which functions in chromatin. XIST was 

also determined to contain several well-conserved repeat elements known as repeats 

A-F (Brown et al., 1992). At about the same time, mouse mutant studies found that Xist 

was indeed required for X chromosome silencing. These studies showed that in mice 

with one mutant allele of Xist, the silenced chromosome in every cell was always the 

one containing the intact allele (Penny et al., 1996), indicating lethality of cells which 

attempted XCI using a non-functional mutant allele of Xist. 

Mechanisms of XIST-mediated chromosome silencing 

 In the nearly 30 years since the discovery of the XIST gene, numerous 

researchers have tried to understand how this RNA mediates transcriptional silencing of 

an entire chromosome. While there is much that remains unknown about this process, 

significant progress has been made in understanding the underlying mechanisms. It has 

long been understood that XIST recruits many factors in order to effectively and 

redundantly render the X chromosome transcriptionally silenced (Migeon, 1994), and 
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some of the mechanisms employed to this end, which have largely been discovered in 

the mouse, will be reviewed here and are summarized in Figure I-1. 

XIST RNA functions by triggering multiple repressive chromatin modifications 

that contribute to the silent state, such as polycomb protein repressive complexes PRC1 

and PRC2, which induce the canonical heterochromatin hallmarks: monoubiquitination 

of lysine 117 on histone 2A (H2AK119ub1) and trimethylation of lysine 27 on histone 3 

(H3K27me3), respectively (Cao et al., 2002; Fang et al., 2004; de Napoles et al., 2004; 

Plath et al., 2003). Initial experiments suggested that Xist RNA directly recruited PRC2 

to the X chromosome via the A-repeat segment of the RNA (Zhao et al., 2008). In this 

model, PCR2 would first lay down the H3K27me3 heterochromatin mark, which would 

then be bound by the CBX component of PCR1, allowing for H2AK119ub1 enrichment 

(Brockdorff, 2017). Subsequent studies, however, have come to the conclusion that it is 

in fact a non-canonical version of PRC1 that is first recruited to the X chromosome 

(Tavares et al., 2012), and that PRC2 recruitment depends on prior deposition of 

H2AK119ub1 (Almeida et al., 2017). 

The polycomb complexes and their respective histone modifications have long 

been associated with the inactive X chromosome, yet their role in transcriptional 

silencing of the chromosome has been debated. While there is evidence in the mouse 

of some extraembryonic cells requiring polycomb for maintenance of XCI (Wang et al., 

2001), one study found that these complexes did not seem to be required for initiation of  
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Figure I-1: Summary of XIST mechanisms for heterochromatin recruitment. 

XIST RNA (red lines and circles) has a complicated 3D structure including several 
hairpins. Genomic DNA (black lines) is wrapped in nucleosomes (blue circles) 
containing histones which can undergo modifications that make the DNA more or less 
accessible to transcriptional machinery. The A-repeat is known to directly interact with 
SPEN, which recruits HDAC3 through intermediate partners. The A-repeat may also act 
via other mechanisms to enact gene silencing. Other elements of XIST recruit PRC1, 
which lays down H2AK119ub1. This subsequently leads to the recruitment of PRC2, 
which lays down H3K27me3. HDAC3 may also affect PRC2 recruitment. Figure partially 
adapted from Brockdorff (2017). 
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XCI in the embryo itself (Kalantry and Magnuson, 2006). There is also early evidence 

for XIST mutants that do not recruit PRC1/2 to undergo effective silencing, although the  

extent of silencing or the requirement of these complexes for the maintenance of the 

silenced state could not be assessed (Bousard et al., 2018). However, other studies 

have shown that the embryonic lethality in PRC1 knockout mice may not be totally 

attributable to the failure of extraembryonic cells to complete XCI, and that PRC1 

mutant mouse embryonic stem cells (ESC) show impaired XCI (Almeida et al., 2017). 

Ultimately, further experiments, particularly in human cells, are required to determine to 

what extent the polycomb complexes are required for the initiation and maintenance of 

XCI. 

 The A-repeat sequence of XIST has been most tightly linked to the silencing 

function of this RNA. An Xist mutant in this portion of the gene leads to total abrogation 

of its silencing capability (Wutz et al., 2002), with no effect on the ability to recruit 

polycomb complexes and related heterochromatin modifications (Plath et al., 2003). The 

human A-repeat sequence alone was shown to be capable of silencing a reporter gene 

in the same transgenic construct (Minks et al., 2013), and may also be capable of 

silencing endogenous genes, potentially megabases away (Valledor et al., in 

preparation). Due to its importance in the role of silencing and its apparent uncoupling 

from the deposition of heterochromatin marks, there has been a concerted effort to 

determine how the A-repeat sequence induces transcriptional silencing. Through these 

efforts it was discovered that the RNA binding protein Spen was required for Xist-

mediated silencing (Moindrot et al., 2015; Monfort et al., 2015). Further, novel 

techniques for identifying RNA binding proteins, such as comprehensive identification of 



 11 

RNA binding proteins by mass spectrometry (ChIRP-MS), revealed that Spen interacts 

directly with the A-repeat of Xist RNA (Chu et al., 2015). Spen was also shown to 

activate histone deacetylase 3 (HDAC3) which is required for both exclusion of RNA 

polymerase II from the inactive X chromosome and recruitment of PRC2 (McHugh et al., 

2015; Żylicz et al., 2019). Interestingly, while the A-repeat mutant studies demonstrate 

decoupling of this sequence from PRC2 recruitment, it has been shown to be required 

for Spen binding, which in turn is necessary for recruitment of PRC2 to the X 

chromosome. This suggests a complex interaction between the XIST RNA, RNA 

binding proteins, and polycomb complexes that is still poorly understood. 

 In addition to polycomb-mediated heterochromatin marks and Spen-mediated 

histone deacetylation, a number of other chromatin modifications have been linked to 

XCI. For example, H3K9me was one of the earliest reported chromatin changes 

associated with XCI (Heard et al., 2001), and the histone variant macroH2A is highly 

enriched on the inactive X, but its functional significance for XCI is questionable 

(Pehrson et al., 2014). Recent work has identified adenosine methylation of XIST RNA 

as a requirement for transcriptional repression (Patil et al., 2016), yet the mechanism 

behind its action is not yet understood. DNA methylation is one of the final steps in the 

XCI process that is thought to be required for maintenance of the inactive state, for 

which XIST is dispensable (Brown and Willard, 1994). Another factor, SMCHD1, has 

been shown to be enriched on the XCI and to play a role in DNA hypermethylation on 

the inactive X chromosome (Blewitt et al., 2008). While the focus of most studies have 

been on histone modifications and DNA methylation, XIST RNA also interacts with 

architectural proteins, such as SAF-A, and may act directly at the level of chromatin 
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architecture (Creamer and Lawrence, 2017). Overall, the plethora of heterochromatin 

modifications and mechanisms involved in the induction and maintenance of the 

inactive X chromosome state highlight the complementary and redundant nature of XCI. 

Many of the factors involved have been shown to be insufficient for gene silencing on 

their own, but knockout of multiple factors can lead to erosion of the silenced state 

(Csankovszki et al., 2001). 

Once XCI has taken place, it is thought to be stable throughout the rest of 

development. Indeed, XIST RNA is largely dispensable for maintenance of XCI after it 

has been initiated (Brown and Willard, 1994). However, there is evidence that deletion 

of XIST in hematopoietic cells leads to inevitable hematological malignancy in mice 

(Yildirim et al., 2013), suggesting a possible role of XIST in fully maintaining long-term 

silencing. The importance of some factors for the induction of XCI, but not the long-term 

maintenance of silencing and vice-versa further complicates the identification of 

mechanisms involved, and it remains unclear what directly silences transcription as a 

result of XIST expression. Novel strategies to identify proteins that directly interact with 

XIST RNA have identified several pathways that may be crucial for gene silencing and 

bring us ever closer to a complete picture of the X inactivation process. 

Induction of chromosome silencing in development 

 Very soon after the discovery of the Barr body, the temporal dynamics of its 

formation in development began to be studied. It was quickly realized that this body was 

not present in human or macaque zygotes, but appeared several days later in both cells 

of the embryo and extraembryonic tissues (Park, 1957). Since these early studies, 

much progress has been made in understanding the onset of XCI in both mouse and 
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human development. Additionally, the ability of XIST to induce chromosome silencing 

outside its normal developmental window has been an important area of research and 

will be a major area of study in this thesis. 

 The differences in mouse and human XCI are most significant in the 

preimplantation embryo. Beginning in the four-cell embryo in mice, Xist expression is 

initiated from the paternally inherited X chromosome (Marahrens et al., 1997), a process 

known as imprinted XCI. In extraembryonic tissues this pattern of XCI continues 

throughout pregnancy, with exclusive silencing of the paternally-derived X chromosome 

being vital for extraembryonic tissue survival in female animals (Mugford et al., 2012). In 

contrast, the inner cell mass (from which the embryo is derived) reactivates the 

paternally derived X chromosome in late stage blastocysts before random XCI takes 

place (Mak et al., 2004). 

The XCI process in early human preimplantation embryos is just beginning to be 

explored, yet it is clear that imprinted XCI does not occur. Instead, beginning in the 

morula, XIST is expressed from both copies of the X chromosome (Okamoto et al., 

2011; Petropoulos et al., 2016a). Recent evidence indicates that at the same time, X 

chromosome gene expression is biallelically repressed in a process called X 

chromosome dampening (XCD) that has also been observed in naïve iPSCs (Sahakyan 

et al., 2017). The mechanism behind XIST-mediated XCD is not completely understood, 

but a recently discovered X-linked lncRNA called XACT (Vallot et al., 2013), which is 

also transcribed from both X chromosomes in the early human embryo (Vallot et al., 

2017), may play a role in attenuating the silencing action of XIST. 
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Post-implantation XCI in humans mimics that of embryonic mouse cells, where 

one X chromosome is randomly inactivated in each cell by XIST. The exact 

developmental timeline of the transition from XCD to random XCI in the human embryo 

is not well defined. This transition likely occurs in the blastocyst, where evidence of a 

single XIST paint and heterochromatin markers indicating XCI has been seen (van den 

Berg et al., 2009).  

Because XCI occurs very early in development, it is perhaps logical that this 

developmental context is ideal for the silencing initiation function of XIST. In fact, it was 

reported that inducing Xist expression in mouse ES cells that were differentiated for 48-

hours no longer leads to the induction of chromosome silencing (Wutz and Jaenisch, 

2000). Since then, it has largely been accepted that XIST is only capable of inducing 

silencing in the pluripotent state (or in the hours immediately following). This has led to 

research in search of factors present in the pluripotent state that allow for XIST-

mediated silencing. While one such factor, Satb1, was proposed as a “silencing factor” 

that allows for XCI outside of the normal developmental context (Agrelo et al., 2009), 

this finding has been challenged by a study that found Satb1 and Satb2 knockout 

animals to successfully undergo XCI (Nechanitzky et al., 2012). Other studies have 

demonstrated effective induction of XCI in neoplastic somatic cell lines (Chow et al., 

2007; Hall et al., 2002a), but the human fibrosarcoma cell lines used in these studies 

likely possess a particularly malleable epigenetic state that is common in cancers 

(Jones et al., 2016). Other work has shown that certain hematopoietic precursor cells 

are also capable of initiating XCI (Savarese et al., 2006), which the authors interpreted 

as a “transient re-establishment” of competence to initiate the XCI process. The authors 
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noted, however, that the ROSA26 locus, which contained the transactivator transgene 

required for Xist transgene expression, was known to be expressed in hematopoietic 

cells. Given that transgene silencing is a common occurrence, it is possible that other 

cell types did not express Xist in this transgenic system, and thus the potential of these 

cells to initiate chromosome silencing could not be fully assessed. 

There certainly could be factors that are present at high levels in pluripotent cells 

that allow for rapid and effective XCI. However, it is possible that these factors are also 

present at lower levels in differentiated cells which may support XCI, potentially at a 

slower rate. Certain cell types may lack key players, rendering them incapable of 

initiating XCI, but proper expression and localization of XIST must be assessed before 

such conclusions can be reached (Clemson et al., 1998). Currently, the ability of normal 

differentiated human cells to initiate XCI has not been evaluated. Work in this thesis will 

directly test this key question which has relevance for basic epigenetics and 

developmental biology but is also important for the potential therapeutic applications of 

XIST or derived sequences. 

Early human brain development and in vitro modeling  

 The human brain is the most complicated and least understood organ in the 

body. The transformation of a small group of embryonic stem cells to the cognitive 

powerhouse within our skulls is an immensely complex developmental process that is 

only beginning to be unraveled. Due to the potential breadth of this topic, I will limit 

discussions here to those areas most relevant to the goals and results of the present 

thesis work. This will include discussion of the early induction of neural lineage cells in 

the embryo and the onset of neurogenesis, major differences between human and 
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mouse brain development, selected signaling pathways involved in cell fate 

specification and differentiation, postnatal brain development, and attempts at in vitro 

modeling of neurodevelopment. 

Neural lineage commitment and neurogenesis 

 Cells committed to the neural lineage in human embryos arise following 

gastrulation, when the embryo transforms from a single-layer blastula to the gastrula 

containing three germ layers: ectoderm, mesoderm, and endoderm. Ectoderm gives rise 

to both the epidermal ectoderm (i.e. skin) and neuroectoderm which gives rise to 

neurons and macroglia (astrocytes and oligodendrocytes). Derivation of neuroectoderm 

(also known as neuroepithelium) is thought to be the “default” cell fate in the absence of 

other signals, such as bone morphogenetic proteins (BMP) (Khokha et al., 2005; Stern, 

2005; Zimmerman et al., 1996). Starting at about three weeks of human development, 

neuroepithelial cells at the neural plate begin folding to form the neural tube. The hollow 

cavity inside the tube will eventually become the ventricular system of the brain, and the 

progenitors surrounding this tube form a region known as the ventricular zone (VZ) and 

will give rise to the majority of cells in the brain. By embryonic day 28, there is clear 

separation of the neural tube into three primary vesicles: the prosencephalon, 

mesencephalon, and rhombencephalon, which will give rise to the forebrain, midbrain, 

and hindbrain, respectively. 

 The neuroepithelial cells of the neural tube form a single layer of pseudostratified 

epithelium and exhibit interkinetic nuclear migration, a process whereby the cell nuclei 

undergo mitosis at the apical surface of the VZ and then migrate basally during S phase 

(Huttner and Brand, 1997). Once the neural tube is closed, neuroepithelial cells switch 
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from symmetric proliferation, which expands the neuroepithelial cell pool, to asymmetric 

divisions, which mark the start of neurogenesis. At this point, the cell cycle of the 

neuroepithelial cells is lengthened, due to a four-fold lengthening of G1 phase 

(Takahashi et al., 1995), a change that is believed to be able to trigger neurogenesis in 

and of itself (Calegari and Huttner, 2003). These neurogenic asymmetric divisions form 

two classes of cells, epithelial and non-epithelial. The non-epithelial cells, which have 

lost their attachment to the apical surface of the ventricle, can be further divided into 

non-dividing cells (i.e. neurons and glia) and dividing cells (i.e. intermediate progenitors) 

which can divide symmetrically to produce two neurons (Englund et al., 2005; Huttner 

and Brand, 1997). The epithelial cells, which retain their apical attachment site, are 

known as a specialized type of neuroepithelial cell called radial glial cells (RGCs). 

Radial glia have long been known to serve a structural function in the developing brain, 

whereby their apical processes form a scaffold to guide newly born neurons to migrate 

apically to their final destination in the cortical plate (Rakic, 1971, 1972). Additionally, 

RGCs are now known to serve a vital function as neuronal progenitors through 

successive rounds of asymmetric divisions and as astrocyte progenitors after 

neurogenesis is complete (Malatesta et al., 2000; Noctor et al., 2001). In fact, direct or 

indirect progeny of RGCs make up the majority of neurons in the brain (Anthony et al., 

2004). A summary of early cortical neurogenesis is provided in Figure I-2. 

Human-specific neocortical development 

 A longstanding question in developmental neurobiology has been the cellular 

mechanism of the greatly expanded human neocortex. Mouse studies have shown that  
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most neurons are directly born through symmetric divisions of intermediate progenitors, 

which reside in a region just basal to the VZ known as the subventricular zone (SVZ)  

(Kowalczyk et al., 2009). The SVZ region is greatly expanded in the primate cortex 

(Lukaszewicz et al., 2005), which, unlike in the mouse, can be subdivided into an inner 

and outer SVZ and, in addition to containing non-epithelial intermediate progenitors like 

the mouse SVZ, also contains radially organized epithelial-like cells (Fish et al., 2008; 

Smart et al., 2002). These cells were recently shown to be another class of RGCs 

whose numbers are greatly increased in the outer SVZ, known as outer radial glia 

(oRG) (Hansen et al., 2010). These cells have the ability to divide asymmetrically into 

another oRG cell and an intermediate progenitor (IP), in contrast to mouse RGCs which 

generally only divide symmetrically to produce two neurons (Noctor et al., 2008). This 

ability to self-renew and enlarge the progenitor pool allows for a much larger number of 

progenitors that leads to the greatly increased neuron cell number in the primate brain. 

Additionally, many of these transit-amplifying cells retain pial contacts that allow for 

proper migration of the increased number of neurons. 

 The neurogenic events covered above are best described for the birth of 

excitatory neurons in the cortex. Inhibitory neurons in the mouse are known to originate 

from the ventral portion of the telencephalon (known as the ganglionic eminences) and 

migrate dorsally to integrate with excitatory neurons born from the VZ and SVZ of the 

dorsal telencephalon in order to form functional neuronal networks (Anderson et al., 

1997). The origin of human and primate cortical interneurons has been contentiously 

debated. Ever since it was suggested that a majority of human cortical interneurons 

originate in the dorsal telencephalon, based on classical markers of interneuron  
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Figure I-2: Summary of early cortical neurogenesis 

A) Schematic of a coronal section of one anterior telencephalic hemisphere during early 
human development. Ctx, cortex; LV, lateral ventricle; LGE, lateral ganglionic eminence; 
MGE, medial ganglionic eminence. B) Schematic of cellular composition of developing 
cortex, enhancement of dashed box from (A). Radial glia form apical-basal scaffold for 
radially migrating excitatory neurons. Interneurons from the ganglionic eminences enter 
the cortex tangentially and then switch to radial migration within the dorsal cortex. CP, 
cortical plate; oSVZ, outer subventricular zone; iSVZ, inner subventricular zone; VZ, 
ventricular zone; GE, ganglionic eminences. Figure adapted from Buchsbaum and 
Cappello (2019). 
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progenitors like DLX1/2 and Mash1 (Letinic et al., 2002), numerous studies have 

supported these findings (Petanjek et al., 2009; Yu and Zecevic, 2011; Zecevic et al., 

2011). However, more recent studies using embryonic human tissues have found that 

the purported dorsal interneuron progenitors did not incorporate BrdU, suggesting that 

they are not proliferative (Hansen et al., 2013), and that interneuron-specific 

transcription factor expression patterns in the human telencephalon could be more 

similar to mice than previously appreciated (Ma et al., 2013). These studies did suggest 

that the SVZ of the ventral telencephalon, as well as the caudal ganglionic eminence in 

humans, is greatly expanded compared to mice. Together with another study which 

found that human interneuron neurogenesis takes place over a much longer period 

extending into the third trimester of gestation (Arshad et al., 2016) this provides a 

potential explanation for the greatly increased number and diversity of interneurons in 

the human brain. The growing evidence implicating interneuron function in a range of 

psychiatric and neurodevelopmental disorders due to their vital modulatory role in 

cortical neural networks (Chattopadhyaya and Cristo, 2012; Marín, 2012) necessitates 

further study into the developmental origins of interneurons in humans. 

Notch signaling in neurodevelopment 

 Notch is one of several signaling pathways that are necessary for proper brain 

development and plays a key role in several aspects of neurodevelopment. Here, I 

provide an overview of this pathway in particular detail due to our findings in chapter II 

that unexpectedly revealed a possible role for Notch in DS neurogenesis. 

Notch is vital for maintaining a proper balance between progenitors and 

differentiated neurons and also plays a role in a number of other key steps during 
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neurodevelopment. The canonical Notch signaling pathway is composed of single-pass 

heterodimeric notch receptors and single-pass ligands in neighboring cells that bind to 

the extracellular domain of these receptors. Each component of this pathway is subject 

to extensive post-translational modifications and proteolytic events (Kovall et al., 2017). 

Ligand-receptor binding leads to intracellular cleavage of the Notch receptor by the 

presenilin/γ-secretase complex (Selkoe and Kopan, 2003), releasing the Notch 

intracellular domain (NICD) which translocates to the nucleus and acts in a complex to 

drive target gene expression. 

 Notch plays a central role in the coordination of neurogenesis. Upon neuronal 

differentiation, neuronal genes induce expression of Notch ligands, which in turn 

activate Notch receptors on adjacent cells. Notch target genes, such as Hes1 and Hes5 

then repress proneuronal genes, which maintains these adjacent cells as neural 

progenitors (Gaiano and Fishell, 2002). This system of lateral inhibition prevents all cells 

from differentiating simultaneously into neurons and promotes cellular diversity in the 

developing brain. Experimental inactivation of Hes1 and Hes5 causes premature 

differentiation and depletion of late-born neuronal subtypes (Hatakeyama et al., 2004; 

Ishibashi et al., 1995), and Notch signaling has been shown to be absolutely required 

for the maintenance of neural stem cells in both embryonic and adult brains (Imayoshi 

et al., 2010). 

An interesting question arises when considering the role of Notch signaling in the 

asymmetric divisions of progenitors such as radial glial cells, which divide into another 

progenitor and a differentiated neuron. In asymmetric divisions, the cell divides during 

periods of high proneuronal gene levels, which are cyclically regulated (Hirata et al., 
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2002). One daughter cell then inherits the basal fiber of the radial glial cell that reaches 

into the SVZ, an area of high Notch ligand activity (Miyata et al., 2004). As a result, 

Notch receptors are activated in this daughter cell leading to downstream Notch 

signaling which maintains the progenitor state, while the cell without basal fiber is 

primed to differentiate into a neuron (Lui et al., 2011). 

In addition to its important role in regulated neurogenesis, Notch has also been 

shown to be important in astrogliogenesis. Neurons and astrocytes are sequentially 

derived from common progenitors, a process regulated by increased  gliogenic signals 

in the postnatal brain (Morrow et al., 2001). While an indirect role of Notch signaling in 

maintaining the progenitor pool and allowing for later astrogliogenesis to take place has 

long been inferred, a direct role of Notch in astroglial differentiation has also been 

identified. Notch ligand expression from neuronal precursors activates Notch signaling 

in nearby radial glial cells leading to demethylation of STAT3 binding sites on the glial 

fibrillary acidic protein (GFAP) gene, leading to astroglial differentiation (Namihira et al., 

2009; Takizawa et al., 2001). This finding potentially explains the sequential 

differentiation of neurons followed by astrocytes due to the important role that neuron-

to-progenitor signaling plays in this process. 

Beyond influencing neuron and astrocyte differentiation, Notch signaling also 

plays a vital role in the maturation, morphology, and function of neurons. The first hint 

that Notch may still play an important role in differentiated neurons came from the 

finding of robust nuclear Notch expression in postmitotic neurons (Ahmad et al., 1995). 

Indeed, Notch signaling has been shown to inhibit dendritic growth (Redmond et al., 

2000) and influence axon guidance (Song and Giniger, 2011). Additionally, mice with 
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reduced levels of Notch expression, which develop normally and have grossly normal 

brain morphology, demonstrate impaired hippocampal long term potentiation (LTP) and 

exhibit learning deficits (Costa et al., 2003; Wang et al., 2004). Together, these findings 

indicate that Notch plays an important role in both the development of the proper 

balance of cell types in the brain as well as the long-term maintenance of neuronal 

circuitry.  

Postnatal brain development 

Humans are born with nearly all the neurons they will ever have and, apart from 

some interneurons that continue migrating several months after birth (Paredes et al., 

2016), neuronal migration is also complete at birth (Sidman and Rakic, 1973). However, 

there may be ongoing neurogenesis in the external granule layer of the cerebellum for 

up to a year after birth (Walton, 2012). Additionally, although debated (Sorrells et al., 

2018), recent work suggests that there may be limited ongoing neurogenesis in the 

dentate gyrus of the hippocampus throughout human life (Boldrini et al., 2018), which 

could play an important role in memory formation and has been shown to be decreased 

in patients with AD (Moreno-Jiménez et al., 2019). Beyond neurogenesis, however, 

there is enormous ongoing change that occurs to the brain from infancy through 

childhood and adolescence that allows for its development to the adult form (Figure I-3). 

These postnatal changes would be most amenable to any potential therapeutic 

approaches, including traditional pharmaceuticals or XIST-mediated chromosome 

silencing. 

As alluded to above, gliogenesis follows neurogenesis and is incomplete at birth. 

Astrogliogenesis continues postnatally (Roessmann and Gambetti, 1986) and 
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astrocytes are known to maintain proliferative capacity throughout the lifespan, 

particularly in response to injury (Burda and Sofroniew, 2014). Another type of  

macroglial cell, oligodendrocytes, which play a central role in myelination of axons in the 

central nervous system, arise after astroglia and actively myelinate axons starting in the 

second half of pregnancy through early adolescence (Barnea-Goraly et al., 2005; 

Jakovcevski and Zecevic, 2005; Miller et al., 2012).  

Both astroglia and oligodendrocytes play a critical role in neuronal development 

(Zuchero and Barres, 2015), thus it is of no surprise that maturation of neurons also 

continues long after birth. Synaptogenesis, which is the process of forming functional 

connections between neurons, is rampant after birth. This leads to an overproduction of 

synapses that peaks at about two years of age. Synapses are subsequently pruned 

away over the next few decades until a stable adult level is reached (Huttenlocher, 

1979; Petanjek et al., 2011). Similarly, the dendritic fields of neurons in the prefrontal 

cortex have been shown to grow dramatically postnatally and stabilize at about one year 

of age (Koenderink et al., 1994). These cellular events all work in harmony to develop 

the neonatal brain through childhood and beyond, including maturation of motor, 

sensory, and cognitive circuits. While some measurable cellular properties may stabilize 

with adulthood, the adult neural circuitry remains plastic, allowing for both learning and 

forgetting throughout the lifespan. 

In vitro modeling of human neurodevelopment 

 The relative inaccessibility and scarcity of accessible human fetal brain tissue 

has hindered our understanding of human brain development, especially compared to 

animal models. Early work with embryonic stem cells (ESC) began to reveal the  
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Figure I-3: Timeline of major cellular processes during human neurodevelopment 

Summary of major cellular processes and events that occur in the developing brain and 
their estimated time course. The top panel describes the time course of human 
development in post-conception weeks (pcw) and post-natal years (y). Dashed lines 
indicate time of earliest currently available non-invasive prenatal testing (NIPT) for 
diagnosis of trisomies, as well as time of birth. The lower panel outlines estimated 
timing of cellular events in the developing brain. Rounded bars indicate peak 
developmental period and dashed lines indicate minor degree of feature development. 
Relevant references for each process are provided on the right: a) (Gould et al., 1990; 
Malik et al., 2013), b) (Bystron et al., 2006; Meyer, 2007; Workman et al., 2013), c) 
(Choi and Lapham, 1978; deAzevedo et al., 2003; Kang et al., 2011), d) (Kang et al., 
2011; Yeung et al., 2014), e) (Huttenlocher, 1979; Kwan et al., 2012; Molliver et al., 
1973; Petanjek et al., 2011), f) (Miller et al., 2012; Yakovlev, 1967), g) (Huttenlocher, 
1979; Petanjek et al., 2011). This figure has been adapted from Silbereis, et al. (2016). 
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potential therapeutic applications and developmental insights that pluripotent stem cells 

have to offer. The advent of iPSC technology (Takahashi and Yamanaka, 2006; 

Takahashi et al., 2007) allowed for an infinite supply of normal and patient-derived 

pluripotent stem cells, which has greatly accelerated research into early human 

neurodevelopment and its various pathologies. While iPSCs can theoretically be 

differentiated into any cell type in the body, the utility of iPSCs to model development 

relies on robust differentiation protocols to reproducibly generate the cell type(s) of 

interest.  

 As early evidence of the utility of PSCs to model early neurodevelopment, 

studies have found that differentiating ESCs follow developmental principles. For 

example, ESC and iPSC-derived neuroepithelia form neural-tube like structures that 

mimic early neurodevelopment (Shi et al., 2012a; Zhang et al., 2001). Additionally, in 

vitro differentiation follows a similar time course to in vivo neurodevelopment (Hu et al., 

2010; Tao and Zhang, 2016). These indications of the accurate modeling of in vivo 

development using in vitro methods has encouraged insights that can carry over from 

one to the other, and vice-versa. Knowledge of patterning in the early embryo has aided 

in the development of protocols to form a wide variety of region-specific neural cell 

types (Tao and Zhang, 2016). For example, by varying the concentration of sonic 

hedgehog (SHH) or SHH agonists, iPSCs can be induced to form more dorsal or ventral 

neural progenitors, which eventually differentiate to either more excitatory or more 

inhibitory neuron types, respectively (Li et al., 2009; Liu et al., 2013; Maroof et al., 

2013). Similarly, retinoic acid has been shown to direct progenitors towards a more 

caudal fate, which, in the presence of SHH, can lead to efficient production of motor 
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neurons (Li et al., 2005). The use of individual morphogens can lead to imprecise 

patterning that can have low yields of the specific cell types of interest. This efficiency 

can be improved with precise titration of opposing morphogens, for example 

coordinated SHH and Wnt signaling in addition to retinoic acid treatment allows for 

extremely pure generation of motor neurons (Du et al., 2015). Similar patterning 

techniques can also generate region-specific astrocytes (Krencik et al., 2011), allowing 

for differentiation of a variety of region-specific neural cell types. Generation of pure 

neural subtypes holds promise both for potential cell replacement therapeutic 

opportunities as well as for a more detailed molecular characterization of specific cell 

types.  

 Generally, in vitro differentiation protocols aim to form a pure population of a 

specific neural cell type of interest. However, in vivo neurodevelopment involves many 

interacting diverse cell types, which has led to the development of co-culture techniques 

that aim to mimic these complex interactions. Various techniques have been developed, 

including embedding neural stem cells in extracellular matrix to allow for extracellular 

plaque development in a model of AD (Choi et al., 2014), co-culture of astrocytes and 

neurons on a microfluidic platform (Majumdar et al., 2011), and a tri-culture system that 

can examine migration of microglia in the context of neuron/astrocyte co-culture (Park et 

al., 2018). 

In addition to these engineered systems, other methods have capitalized on the 

self-organizing capacity of cells in vitro to form complex three-dimensional structures 

known as organoids (Eiraku et al., 2008; Lancaster et al., 2013; Mariani et al., 2015; 

Paşca et al., 2015; Qian et al., 2018). These organoid techniques vary in their degree of 
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complexity and self-organization, but all include numerous cell types including neural 

progenitors, radial glia, early- and late-born neurons, and astrocytes. Additionally, these 

systems have been used to model numerous developmental disorders, such as 

microcephaly (Lancaster et al., 2013), Zika virus infection (Qian et al., 2016), autism 

(Mariani et al., 2015), and Timothy syndrome (Birey et al., 2017). Three dimensional 

culture provides a more natural developmental tissue context, but also allows for 

analysis of spatial events, such as the orientation of progenitor cell division relative to 

the ventricular plane, as was shown to be skewed towards perpendicular symmetric 

divisions in a model of microcephaly (Lancaster et al., 2013). While most protocols are 

currently limited to cells from the ectodermal lineage, from which the majority of the 

brain parenchyma is derived, others have also included mesodermal precursors 

(Quadrato et al., 2017), functional microglia (Ormel et al., 2018), and endothelial cells 

that form primitive vascular networks (Pham et al., 2018). These recent advances have 

allowed for visualization and dissection of embryonic human brain development in vitro 

in a complex three-dimensional environment that includes a variety of cell types 

involved in this intricate process. 

 Of course, even contemporary organoid protocols still fall far short of modeling 

the full complexity of human brain development. While organoids demonstrate a 

capacity for self-organization at the level of neural-tube like structures, they lack 

organization at a macroscopic level. Protocols have been developed to generate 

organoids that model differentiation of individual brain regions (Qian et al., 2016), and 

other labs have even gone as far as merging together dorsal and ventral patterned 

organoids in order to model interneuron migration (Bagley et al., 2017; Birey et al., 



 29 

2017). Yet, there is still a long way to go towards modeling development of the human 

CNS. Currently, one must choose between directed protocols, which utilize high 

degrees of patterning, and less directed methods. Directed methods can accurately 

model a specific brain region but lack some of the cell diversity and tissue complexity of 

less directed methods which, on the other hand, tend to have a much higher degree of 

organoid-to-organoid variability (Kelava and Lancaster, 2016). Reproducibility is an 

important limitation of current neural differentiation protocols (Young-Pearse and 

Morrow, 2016), and while some groups claim to have consistent organoid differentiation 

protocols (Yoon et al., 2019), there is still considerable room for improvement. 

In addition to variability between differentiations, iPSC modeling in general is 

affected by genetic variability between individuals, variability between cell lines from the 

same individual, and variability of a cell clone over time (Koyanagi-Aoi et al., 2013; 

Liang and Zhang, 2013; Soldner and Jaenisch, 2012; Young-Pearse and Morrow, 

2016), although some of these limitations can be minimized by improved differentiation 

protocols, iPSC culturing techniques, and quality control measures. Additionally, recent 

advances in genome engineering have made production of isogenic control lines from 

mutant cells and insertion of specific mutations into control lines easier than ever. 

Finally, while current iPSC differentiation protocols closely mimic very early in vivo 

neurodevelopment, their ability to model neurodegenerative diseases is complicated by 

their fetal phenotype and transcriptomic profile (Abeliovich and Doege, 2009). Overall, 

human pluripotent stem cells, particularly iPSCs, have provided insight into a previously 

inaccessible tissue and, despite their limitations, have potential to drastically change our 
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approach towards studying neurodevelopment and treating neurodevelopmental 

diseases. 

The neurobiology of Down syndrome 

 Over 90 years after John Langdon Down described the features of the disorder 

that would come to bear his name (Down, 1867), Marthe Gauthier, Jérôme Lejeune, 

and Raymond Turpin (1959) discovered what is likely the first known cause of a genetic 

disorder: an extra copy of chromosome 21 in individuals with DS. In general, despite the 

hundreds of extra genes that these individuals have in three copies instead of the usual 

two, most lead happy and relatively healthy lives. Still, DS individuals suffer from a 

number of medical problems, and the specific genetic etiology of these various 

symptoms remains poorly understood. Apart from the APP gene which has been 

strongly linked to the development of Alzheimer’s disease in DS, no single genes have 

been linked to other DS phenotypes. In addition to single dosage-sensitive genes 

causing specific phenotypes, it is also possible that the presence of an entire extra 

chromosome, along with the associated transcriptional, translational, and proteomic 

burden, may be responsible for some DS phenotypes. In fact, studies in yeast and mice 

have shown that aneuploidy in general causes cellular stress, which may impact several 

cellular phenotypes such as metabolism and proliferation (Bonney et al., 2015; 

Oromendia et al., 2012; Williams et al., 2008). Importantly, the physical presence of an 

extra chromosome is known to not cause symptoms on its own, as demonstrated by 

trisomy X patients. 

Despite the unknown etiology of many DS symptoms, advances in prenatal 

testing now allow for the diagnosis of DS and other trisomies as early as 8 weeks of 
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gestation, meaning that newborns with DS are more likely to receive treatments for their 

specific needs, particularly for serious congenital heart defects that affect nearly half of 

DS individuals (Freeman et al., 1998). Children with DS are at an increased risk for 

several types of leukemia such as acute megakaryoblastic leukemia (AMKL), which is 

500 times more common in DS than in the general population (Zipursky et al., 1992). 

DS individuals are also prone to other endocrine, gastrointestinal, metabolic, and 

morphological abnormalities (Roizen and Patterson, 2003). Interestingly, DS individuals 

are less likely than the general population to develop solid tumors (Hasle et al., 2016; 

Satgé et al., 1998), a phenomenon which is not well understood but may relate to 

impaired angiogenesis (Baek et al., 2009). The most prevalent and perhaps least 

understood feature of DS, and one for which no effective treatments exist, is intellectual 

disability (ID). 

Intellectual disability in DS individuals and its neurological correlates 

 Individuals with DS exhibit a range of cognitive abilities, with IQs ranging from 30 

to 70 and averaging 50 (Chapman and Hesketh, 2000), which corresponds to mild or 

moderate ID. Learning delays are present from birth, and accelerate at ages 2-4. 

Communication skills are often particularly impaired from as early as two years of age 

(Dykens and Kasari, 1997) and include nonverbal communication (Mundy et al., 1995), 

suggesting that the language delay seen in older children with DS may not be limited to 

speech production difficulties. While there is no delay in the onset of babbling compared 

to typically developing children (Smith and Oller, 1981), DS children show a delay in first 

word acquisition and delayed use of multi-word phrases (Levy and Eilam, 2013). In 

contrast with language production, comprehension is relatively spared particularly with 
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regard to vocabulary (Rosin et al., 1988). Beyond communication, children with DS also 

have deficits in attention that persist in adulthood (Rowe et al., 2006), as well as deficits 

in working memory, again with particular impairment of verbal compared to visuospatial 

aspects of working memory (Jarrold and Baddeley, 1997; Yang et al., 2014). Explicit 

long-term memory is also severely impaired in DS individuals, even when compared 

with individuals with ID of another etiology, and this is thought to stem from deficits in 

both encoding and retrieval abilities (Carlesimo et al., 1997). Additionally, children with 

DS have a much higher incidence of comorbidities such as autism spectrum disorder 

(ASD) and attention-deficit-hyperactivity disorder (ADHD) compared to typically 

developing children (DiGuiseppi et al., 2010; Godfrey et al., 2019).  

 Given how common DS is, it is remarkable that precise neurobiological correlates 

of the cognitive deficits are so poorly understood and remain to be identified. However, 

there are several brain anomalies at both the macrostructural and cellular levels that 

have been reported. On average, individuals with DS have mild overall microcephaly, a 

difference which appears as early as mid-gestation and persists through adulthood, with 

disproportionately small frontal and temporal lobes (Guihard-Costa et al., 2006; 

Schmidt-Sidor et al., 1990). The hippocampus, which is vital for certain explicit memory 

tasks that are impaired in DS individuals, is smaller in the DS population and its size is 

negatively correlated with general intelligence and mastery of linguistic concepts (Raz et 

al., 1995). The cerebellum is also disproportionately small (Guihard-Costa et al., 2006), 

which could be associated with the hypotonia, motor dysfunction, and perceptual-motor 

coordination seen in DS individuals (Charlton et al., 2000; Savelsbergh et al., 2000), but 

may also impact a wide variety of cognitive abilities (Stoodley, 2016).  
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 At the cellular level, DS fetuses have been reported to have decreased neuron 

numbers in the hippocampus, neocortex, and cerebellum, with some studies finding 

differences as drastic as a 34% reduction in total cell number (Guidi et al., 2008, 2011; 

Larsen et al., 2008). Other studies have shown decreased cell proliferation in the 

hippocampus of mid-gestation DS fetuses (Contestabile et al., 2007), which may be 

responsible for the decreased neuron numbers. There have also been reports that 

decreased neuron numbers are specific to small, presumably inhibitory, granular 

neurons of the neocortex (Ross et al., 1984). In addition to decreased neuron numbers, 

the dendritic processes of DS neurons in the cortex and hippocampus have decreased 

branching and dendritic spine numbers (Becker et al., 1986; Ferrer and Gullotta, 1990; 

Suetsugu and Mehraein, 1980). Interestingly, unlike the decreased neuron numbers that 

were seen in fetal DS brains, dendritic morphology and spine numbers were considered 

normal at the fetal stage and only started showing pathological features in early 

childhood (Becker et al., 1986; Takashima et al., 1981; Vuksić et al., 2002). In addition 

to reduced dendritic spine numbers, the morphology of dendritic spines has also been 

reported to be altered in children with DS, showing both unusually long and unusually 

short spines (Marin-Padilla, 1976), which may reflect impaired spine maturation. A 

spine-related protein, drebrin, was reported to be consistently decreased in DS cortical 

tissue (Shim and Lubec, 2002). 

 Apart from neurons, DS brains may also show alterations in astrocyte and 

oligodendrocyte populations. While some studies have shown no change in absolute 

astrocyte number in DS brains in the context of decreased neuron numbers (and thus 

an increased percentage of astrocytes) (Guidi et al., 2008), others have reported 
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increased absolute non-reactive astrocyte number in DS fetal brains and increased 

reactive astrocytes in adult DS brains (Mito and Becker, 1993; Zdaniuk et al., 2011). 

However, increased astrogliosis in adult DS brains may also be related to the 

development of AD pathology (Griffin et al., 1989; Jørgensen et al., 1990), as will be 

discussed in a later section. Myelination by oligodendrocytes has also been reported to 

be impaired in DS brains, with both histological and transcriptional markers of delayed 

myelination in the frontal and temporal lobes as well as the hippocampus (Ábrahám et 

al., 2012; Olmos-Serrano et al., 2016; Wisniewski, 1990; Wisniewski and Schmidt-Sidor, 

1989). 

Overall, there have been numerous reported macro and microstructural 

alterations in the brains of individuals with DS involving many cell types and brain 

regions. However, analysis of human brains is limited by small sample sizes and 

differences in age, pathological status, and sample preparation. While some histological 

findings may correlate with clinical phenotypes, there are few direct links between 

precise morphological changes and behavioral or cognitive findings in individuals. 

Studies in DS mouse models have worked towards making such connections. 

Mouse models of DS neurobiology 

 Unlike the human genome, which is comprised of 23 pairs of chromosomes, the 

mouse genome contains only 20 pairs. This of course means that the syntenic regions 

of human chr21 are not all neatly arranged on one mouse chromosome. Instead, the 

syntenic genes are spread across three mouse chromosomes, with the majority residing 

on mouse chromosome 16 (Mmu16) and the rest on Mmu17 and Mmu10. Clearly, this 

complicates the creation of an accurate mouse model of DS. Despite these difficulties, 
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numerous mouse models have been generated. The best studied mouse model of DS 

contains a freely segregating marker chromosome that contains the centromere of 

Mmu17 and the distal segment of Mmu16 (Reeves et al., 1995). This model, named 

Ts65Dn, contains 125 genes syntenic to Hsa21, but also contains 35 protein-coding 

genes syntenic to Hsa6 (Gupta et al., 2016). Other models have improved on this by 

eliminating Mmu16 genes not syntenic to Hsa21 (Li et al., 2007) and including Hsa21 

syntenic genes from other mouse chromosomes (Yu et al., 2010). A different approach 

led to the creation of a mosaic mouse model in which some cells contain a single copy 

of human chromosome 21 (O’Doherty et al., 2005). While this model has substantial 

utility for studying the overexpression of human chr21 genes in the mouse, subsequent 

analysis has identified significant duplications and deletions within this chromosome, 

including for the important APP gene (Gribble et al., 2013). Many of these models 

present with wide-ranging phenotypes, some of which may correlate with defects seen 

in DS individuals, and others that may be model-specific. For example, a recent 

transcriptome study found little overlap in differentially expressed genes between three 

widely used mouse models of DS (Aziz et al., 2018).  

 In agreement with the previously described findings of decreased neuron number 

and cellular proliferation in DS brains, several mouse models show decreased numbers 

of radial glia in the cerebral cortex and hippocampus, including the dentate gyrus 

(Chakrabarti et al., 2007; Contestabile et al., 2007; Ishihara et al., 2010). These findings 

may be responsible for altered hippocampus-dependent learning and memory tasks 

(Belichenko et al., 2009, 2007; Reeves et al., 1995) and potentially broader cognitive 

impairment as well, such as in the novel object recognition task (Belichenko et al., 2009; 
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Fernandez et al., 2007). Also in line with findings in DS, several mouse models have 

significantly decreased cerebellar size and cell density, particularly in the granule cell 

layer (Baxter et al., 2000; Olson et al., 2004). Interestingly, evidence indicates that this 

is caused by a defective response to SHH signaling (Roper et al., 2006), and can be 

totally prevented in the Ts65Dn mouse by a single injection of SHH agonist at birth (Das 

et al., 2013). DS mouse models also exhibit altered dendritic spine morphology, 

potentially consistent with alterations seen in DS individuals. Specifically, projection 

neurons in Ts65Dn mice have reduced spine numbers and shorter dendrites (Dierssen 

et al., 2003). This is also true for pyramidal neurons in the hippocampus of several, but 

not all mouse models (Belichenko et al., 2009, 2004, 2007). 

 While several findings in mouse models are consistent with DS pathology, there 

are also findings in certain mouse models that conflict with the human condition and/or 

with other mouse models. For example, the Ts65Dn mouse has the well-described 

phenotype of increased GABAergic neuron number along with decreased excitatory 

neuron number leading to an over-inhibited state that impairs LTP in the hippocampus 

and can be ameliorated with GABA receptor antagonists (Belichenko et al., 2004; 

Fernandez et al., 2007; Kleschevnikov et al., 2004; Pérez-Cremades et al., 2010). The 

increase in GABAergic interneurons has been reported to be corrected by normalization 

of the gene dosage of Olig1 and Olig2 (Chakrabarti et al., 2010). However, a more 

genetically accurate mouse model of DS that does not include extra copies of non-chr21 

syntenic genes has the opposite finding, with a decrease in the number of interneurons 

(Goodliffe et al., 2016). This result is more in line with findings in human cells, as will be 

discussed in the next section. 
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Overall, mouse models of DS can provide a useful system for unveiling the 

effects of trisomy on early brain development, a process that is difficult to study in 

human samples. However, caution must be exercised in translating findings from 

imperfect mouse models to the human condition. The failure of a recent DS clinical trial 

of the GABAergic inverse agonist RG1662, despite promising pre-clinical results, has 

many potential explanations. However, a lack of shared genetic defect and physiology 

between mouse models and individuals must be taken into consideration as a possible 

cause. 

Human cellular models of DS neurobiology 

 Despite not having the in vivo relevance of mouse models, human cellular 

models of DS have the advantage of fully recapitulating the root cause of the syndrome, 

namely trisomy for chr21 in human cells. Neuro-cellular models come in two broad 

categories, ES or iPS-derived neural cells and primary fetal neural stem cells. Despite 

the difficulty in obtaining fetal brain tissue samples, several studies have examined the 

proliferative and differentiation capacity of primary neural progenitor cells from DS 

fetuses. Three such studies have found decreased neurogenesis in DS samples 

compared to controls (Bahn et al., 2002; Bhattacharyya et al., 2009; Esposito et al., 

2008). One of these studies described a critical window in neurogenesis whereby early 

passages of NSCs led to an equivalent degree of neurogenesis in DS and control 

samples, but later passages had decreased neurogenesis in the DS samples ,which 

was ascribed to a defect in interneuron formation (Bhattacharyya et al., 2009). In 

addition to a defect in neurogenesis, another study found upregulation of glial progenitor 

markers in DS samples (Esposito et al., 2008), while a third study found no such 
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differences in glial cell proportions (Bahn et al., 2002). These discrepancies could arise 

from differences in source tissue, gestational age, the anatomic location from which the 

cells were derived, and in vitro culturing conditions. 

 Circumventing these difficulties and allowing for an infinite number of cells 

available for experimental perturbation, advances in ES and iPS neuron differentiation 

protocols have led to many published reports investigating the effects of DS on specific 

neural subtypes. Several studies that have used “default pathway” neuron differentiation 

to generate mostly excitatory forebrain neurons have seen no difference in the 

propensity to form neurons when comparing DS to control cell lines (Gonzales et al., 

2018; Shi et al., 2012b; Weick et al., 2013), while one study did report decreased 

neurogenesis in DS cells (Lu et al., 2013). Additionally, while one report found no 

difference in either the number of synaptic punctae or the magnitude of synaptic 

currents (Shi et al., 2012b), another found both decreased synaptic punctae and 

decreased spontaneous postsynaptic currents (Weick et al., 2013), potentially due to 

the formation of more mature neural networks that also included GABAergic neurons. 

Differences in cell culture methodologies can also have significant impact on findings, 

as evidenced by the identification of shortened neurite length in DS cell lines grown for 

120 days (Ovchinnikov et al., 2018), but no such finding in the same cell lines grown for 

only 60 days (Briggs et al., 2013). Other studies have focused on specific neuron 

subtypes that are suspected of being pathological in DS. For example, one study found 

defective in vitro and in vivo migratory capacity of DS GABAergic interneurons as well 

as a change in the proportions of interneuron subtypes generated (Huo et al., 2018). 
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 In addition to potential deficits in stem cell derived neurons, in vitro studies have 

also investigated the astrogliogenic potential of DS cells. As described in a previous 

section, neural precursor cells undergo a gliogenic switch after most of neurogenesis is 

complete. Using primary neural stem cells from DS fetuses, it was reported that DS 

cells undergo a gliocentric shift that leads to increase glial cell production at the cost of 

neuronal production (Lu et al., 2011). Others have replicated this finding in iPSCs and 

have suggested that DS astroglia, potentially due to the extra copy of the chr21 gene, 

S100B, could negatively affect surrounding neurons through a secretory mechanism 

(Briggs et al., 2013; Chen et al., 2014). Other reports, in some cases using the same 

cell lines, have not seen a difference in astroglia production (Bahn et al., 2002; 

Ovchinnikov et al., 2018), suggesting that this finding may again be highly dependent on 

protocol specifics. The field of iPSC disease modeling has made significant progress 

over the course of its short existence. However, several technical and biological 

challenges, including difficult differentiation procedures and many poorly defined 

sources of variability, present significant obstacles towards accurate and reproducible 

disease modeling. 

Alzheimer’s disease in Down syndrome 

 The discussion above has focused on the neurodevelopmental aspects of DS, 

yet as mentioned in the first section of this introduction, AD pathology is a nearly-

universal finding in DS individuals. It is also perhaps the only DS neurological 

phenotype that has been unequivocally linked to a specific gene on chr21, APP. There 

are several interesting cases that solidify the role of APP in AD-DS, and which have led 

to the development of the amyloid hypothesis, a leading theory in non-DS AD. Notably, 
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several studies have identified multiple families with familial early-onset AD caused by 

duplications involving the APP gene (Cabrejo et al., 2006; Kasuga et al., 2009; Rovelet-

Lecrux et al., 2006, 2007; Sleegers et al., 2006), which, along with other lines of 

evidence, have solidified the role of APP in AD and, crucially, the importance of APP 

gene dosage in early-onset AD in DS. Additionally, two case studies of older DS 

individuals without any evidence of AD and only two copies of APP (due to partial 

trisomy for chromosome 21) further support the evidence that this single gene is 

sufficient for the AD phenotype in DS (Doran et al., 2017; Prasher et al., 1998). The 

evidence is clear that APP plays a central role in AD-DS pathogenesis, yet despite the 

near-universal prevalence of AD neuropathology in DS individuals above age 30, only 

~80% of these individuals develop dementia (Mann and Esiri, 1989; Wisniewski et al., 

1985a; Zigman et al., 1996). This raises the possibility that there may potentially be 

moderating factors on chr21 (Wiseman et al., 2015) in addition to well-known mitigators 

in the rest of the genome, like the APOE allele ɛ2 (Corder et al., 1994). 

 AD dementia in DS has both similarities and unique features when compared to 

the general AD population. Particular impairment of recent memory with sparing of 

distant memory and confusion are present in both populations, while impairments 

generally associated with frontal lobe degeneration, such as apathy, depression, and 

communication decline, are present at an earlier stage of disease in the DS population 

(Deb et al., 2007). There is evidence that this discrepancy may arise from pre-existing 

frontal cortex hypoplasia in DS individuals (Holland et al., 1998, 2000; Rowe et al., 

2006), which highlights the difficulty in assessing cognitive decline related to dementia 

in a population with pre-existing ID.  
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 Many of the pathological changes seen in AD-DS brains mimic those seen in AD, 

including the pathognomonic Aβ42-containing extracellular plaques and 

hyperphosphorylated tau intracellular tangles (Goedert et al., 1992; Wisniewski et al., 

1994). These lesions are present in many brain regions, and their number, particularly 

that of tau tangles, is correlated with the severity of dementia (Ropper and Williams, 

1980; Wisniewski et al., 1985b). Notably, there is a degeneration of basal forebrain 

cholinergic neurons (BFCNs) in both AD-DS and AD individuals which is not present at 

birth in DS (Godridge et al., 1987; Kish et al., 1989), emphasizing the distinction 

between developmental defects caused by DS and neurodegeneration related to AD.  

 While mouse models of DS do not exhibit the classical lesions of plaques or 

tangles (Reeves et al., 1995), there is marked degeneration of BFCNs beginning from 6 

months of age (Granholm et al., 2000; Holtzman et al., 1996), modeling the human 

syndrome. Human cellular models of AD-DS have also been developed, and have 

demonstrated both increased secretion of Aβ peptides in DS neural cultures as well as 

the reliance of this increase on trisomic APP gene dosage (Ovchinnikov et al., 2018; Shi 

et al., 2012b). Additionally, 3D human cellular models of AD have also managed to 

produce amyloid aggregates as well as tau inclusions, albeit in cells greatly 

overexpressing multiple mutant proteins (Choi et al., 2014; Raja et al., 2016). These 

systems provide useful models for drug testing in human neural cells and allow for 

modeling of early AD pathogenesis. 

 The pathology of AD in DS has been well described and its root cause in the 

APP gene is generally accepted. However, several recent clinical trials aimed at 

removing amyloid aggregation from AD patient brains have not succeeded in preventing 
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cognitive decline (Doody et al., 2014; Salloway et al., 2014). This suggests that either a 

new strategy must be undertaken and/or patients must be identified and started on 

treatment early in the disease course before symptoms arise (Mullard, 2016). To this 

end, DS individuals present a unique patient population at a high risk of developing AD 

that can be identified long before any symptom onset. Additionally, the AD aspect of DS 

is one that offers a much larger therapeutic window for intervention, particularly when 

compared to early neurodevelopmental defects, both for conventional therapeutics and 

potentially for gene/chromosomal therapy approaches. 

 Finally, it is interesting to note that the biological roles of APP are poorly 

understood, as much research has focused on its complex processing and role in AD. 

Since we and others find that APP is highly expressed in human iPSCs and throughout 

neurodevelopment, it is intriguing to consider that this dosage-sensitive gene could also 

play a role in neurodevelopment, and its potential impact in DS (van der Kant and 

Goldstein, 2015). While not detailed in this thesis, I have been involved in other ongoing 

work by others in the Lawrence lab examining the role of APP dosage in DS cells, 

including its impact on Ab pathology and initial studies on neurogenesis and organoid 

formation.  

Using dosage compensation to advance translational research in 

Down syndrome 

 Therapeutic approaches generally involve gaining a thorough understanding of 

disease mechanism through the use of cellular and/or animal models, followed by drug 

discovery aimed at modulating the disrupted pathways. This is a long and arduous 

process for even the simplest of genetic disorders, i.e. those known to be caused by 
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mutations in a single gene. While DS has the advantage of a well-established root 

cause, understanding the disease mechanism is complicated by the hundreds of 

potentially causative dosage sensitive genes on chr21. Thus, just like modern gene 

therapy aims to bypass the difficult task of gaining a complete understanding of disease 

pathogenesis by correcting the causative mutation, our lab has pioneered a strategy to 

harness the natural mechanism of dosage compensation to correct the root cause of DS 

in a cellular model. This provides an advantageous experimental approach to 

manipulate chr21 gene expression dosage in an otherwise identical population of cells. 

In addition, this innovative strategy may one day also provide the basis for a therapeutic 

approach to trisomy. 

 We demonstrated that targeted insertion of an XIST transgene into an intronic 

DYRK1A locus on one copy of chr21 is capable of robust chromosome-wide dosage 

correction of chr21 transcription in DS patient-derived iPSCs (Jiang et al., 2013). This 

provided strong evidence for robust chromosome-wide silencing of a human autosome 

by a targeted XIST transgene. In addition, this created a needed model to study the 

basic biology of human XIST. As an inducible non-lethal autosomal silencing system 

this can be utilized to study the timing and kinetics of the human chromosome silencing 

process. It can also be used to reveal any defects in the development of a wide variety 

of cell types derived from DS iPSCs by directly linking a given phenotype to the 

expression status of chr21. While this system has not yet been used for in-depth study 

of neurogenesis, our lab has provided initial evidence for an effect on the kinetics of 

neural rosette formation (Jiang et al., 2013). Additionally, we have demonstrated that 

transcriptional silencing of one chr21 beginning in iPSCs prevents development of the 
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hyperproliferative phenotype during hematopoietic differentiation in vitro (Chiang et al., 

2018). Despite this exciting progress, several questions in both the XIST and DS fields 

remain unanswered. 

 In order to have any potential as a therapeutic for any aspect of the syndrome, 

XIST must be able to initiate silencing in differentiated cells as DS can currently be 

diagnosed only as early as 8 gestational weeks (Bianchi et al., 2012). Early XIST 

literature suggests that the cell’s capacity to initiate silencing is no longer present 48 

hours after inducing ESC differentiation, which is many weeks before the diagnosis of 

DS is even known. Evidence from mouse and human carcinoma cell lines suggested 

that this initiation window might not be as narrow as previously described (Hall et al., 

2002a; Savarese et al., 2006), encouraging the studies in chapter II which examine the 

ability of normal differentiated human cells (iPSC-derived NSCs and neurons) to initiate 

chromosome silencing.  

 As described in the previous section, the cellular mechanisms behind ID in DS 

are still poorly understood, and many findings from in vitro models are contradictory. We 

believe that our isogenic and isoepigenetic cellular system, where the same cells in 

either the trisomic or disomic state can be studied in parallel, provides a uniquely 

powerful method for discerning the effects of trisomy on neurodevelopment. In the latter 

half of chapter II, I will utilize the chromosome silencing system to study the effects of 

trisomy on early neurogenesis. In chapter III, I will apply modern three-dimensional cell 

culture techniques to gain an understanding of the effects of trisomy 21 on early 

neurodevelopment. While we had initially hoped to combine organoid models with our 

dosage compensation system, difficulties with transgene expression, as discussed in 
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the appendix, led us to focus our exploration of organoid models to isogenic 

comparisons of trisomic and disomic lines, which is the current standard in the field. 

Ultimately, this thesis aims to provide insight into the biology of dosage compensation 

and early DS neurodevelopment in order to advance translational research for DS, 

including the prospect of chromosome therapy (further considered in chapter V) and to 

one day improve the lives of patients with chromosomal abnormalities. 
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CHAPTER II : Silencing trisomy 21 with XIST in neural stem 

cells promotes neuronal differentiation 

 

Preface 

 I performed all of the experiments described in this chapter, as well as all of the 

analysis, with helpful suggestions from Dr. Oliver King. This chapter was written by me 

and revised by me and Dr. Jeanne Lawrence. This work was submitted for publication 

and is currently in revision. 

 

Jan T. Czerminski and Jeanne B. Lawrence. Silencing Trisomy 21 with XIST in 

Neural Stem Cells Promotes Neuronal Differentiation. (2019) 

 

Introduction 

Chromosomal abnormalities are surprisingly common – detected in about 0.6% 

of newborns (Shaffer and Lupski, 2000) – yet because they involve a dosage imbalance 

for many genes, this major component of the human genetic disease burden has 

remained largely outside the hopeful advances in genetics research. Research into the 

most common chromosomal disorder, Down Syndrome (DS), has received more 

attention in recent years, with most studies attempting to identify chromosome 21 genes 

that cause specific phenotypic features which involve various physiological systems. It 

has been difficult to establish which cell-types and pathways are impacted in Down 
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syndrome, hence better experimental strategies to determine how trisomy 21 impacts 

cell function and development are needed. As with any developmental disorder, it is 

particularly challenging to determine when a deficit arises, and when in development it 

may remain correctible. Here, we further develop and apply an approach using 

epigenetics to advance translational research for chromosomal imbalances.  

Previously, our lab demonstrated that a natural epigenetic phenomenon could be 

harnessed to repress gene expression across one chromosome 21 in trisomic DS 

patient-derived iPS cells by targeted insertion of a single gene, XIST (Jiang et al., 

2013). XIST is a long non-coding RNA that functions in cis to silence one X 

chromosome in female cells and dosage compensate X-linked genes between female 

(XX) and male (XY) cells. The expression and accumulation of XIST transcripts across 

the nuclear chromosome territory is essential to initiate chromosome silencing (Brown et 

al., 1992; Clemson et al., 1996; Lee and Jaenisch, 1997; Penny et al., 1996). Although 

there are differences between mouse and human X-inactivation, in both organisms 

XIST RNA initiates random X-chromosome silencing in pluripotent cells of the inner cell 

mass (van den Berg et al., 2009; Payer and Lee, 2008; Petropoulos et al., 2016b; 

Sahakyan et al., 2018). Given that epigenetic changes are especially rapid and 

widespread as naïve cells begin to form facultative heterochromatin, it is logical that this 

developmental context is optimal for XIST function. The chromosome silencing process 

requires not only XIST RNA, but multiple responses of the cell to this RNA, hence it is of 

fundamental interest to understand whether the epigenetic plasticity of cells in this 

special developmental window is required for XIST RNA to enact chromatin 

modifications which stably repress chromosome-wide transcription.  
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Based on prior studies in mouse ESCs, the initiation of XIST-mediated 

chromosome silencing has long been thought to be stringently limited to within 48-hours 

of ESC differentiation (Wutz and Jaenisch, 2000). Cells of a fibrosarcoma tumor line 

showed partial chromosome silencing, although this potentially reflects a more 

malleable epigenetic state in cancer cells (Chow et al., 2007; Hall et al., 2002a). 

Savarese et al. (2006) studied Xist transgenic mice in which chromosome silencing 

would create cell lethality and concluded that some mouse hematopoietic cell types 

were unusual in that they “transiently reestablish permissiveness for X inactivation”. 

However, the authors mentioned that hematopoietic cells were known to avoid 

transgene silencing of the transactivator required for Xist expression in their doxycycline 

(dox) inducible system. Therefore, the silencing potential in other tissues in which Xist 

RNA might not have been expressed could not be assessed. Other studies suggest a 

role of SATB1 in the “pluripotency machinery” that supports chromosome silencing in 

mouse ES cells (Agrelo et al., 2009; Nechanitzky et al., 2012), but to our knowledge the 

capacity of normal human differentiated cells to respond to human XIST RNA has not 

been directly investigated.      

  The extent to which cells retain epigenetic plasticity beyond pluripotency is of 

fundamental interest for developmental biology, but whether or not XIST can induce 

chromosome silencing in later-stage somatic cells is also critical to the broader 

translational potential of this remarkable RNA. For this reason, the first priority of this 

study was to address this pivotal question, which we did using an inducible XIST 

transgene on one chromosome 21 in DS patient derived iPS cells, undergoing neural 

differentiation in vitro. Recently we demonstrated that XIST expression from one 
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chromosome 21, begun in pluripotent cells prior to differentiation, prevents development 

of well-known DS hematopoietic cell pathologies in vitro (Chiang et al., 2018). While this 

study did not attempt to induce post-differentiation chromosome silencing, the results 

support inducible chromosome silencing as a valid way to identify differences between 

trisomic and functionally euploid cells.  

Unlike the well-established effects of trisomy 21 on hematopoietic cells, specific 

cell pathologies that underlie other clinical phenotypes, including cognitive disabilities, 

remain unclear (Haydar and Reeves, 2012; Mégarbané et al., 2009; Roper and Reeves, 

2006). Some studies indicate trisomy 21 impacts post-natal neurodevelopment, such as 

myelination (Olmos-Serrano et al., 2016) or cerebellar growth (Das et al., 2013), and it 

is now recognized that there is often progressive cognitive decline in DS adults, as well 

as nearly-ubiquitous early-onset Alzheimer Disease. Importantly, variable results have 

been reported regarding the impact of trisomy 21 on early in vitro neural differentiation 

(Bhattacharyya et al., 2009; Briggs et al., 2013; Gonzales et al., 2018; Jiang et al., 

2013; Lu et al., 2013; Shi et al., 2012b; Weick et al., 2013), with most studies reporting 

no difference in the ability of DS stem cells to form neurons. However, studies have 

mostly compared the differentiation capacity of separate iPS lines, which may be limited 

by the fact that even iPSC lines from the same individual can demonstrate 

transcriptional heterogeneity (Liang and Zhang, 2013; Soldner and Jaenisch, 2012) and 

can show differences in their capacity for neural differentiation (Koyanagi-Aoi et al., 

2013).  

 Here, we first set out to test whether XIST can induce chromosomal silencing in 

differentiated neural cells, which led us to examine kinetic differences in the epigenetic 
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steps of chromosome silencing in differentiated cells. Our second major goal was to 

utilize this tightly controlled inducible chromosomal silencing system to compare the 

trisomic and disomic states without variability between cell lines or samples, to 

investigate the effects of trisomic chromosome 21 expression on in vitro DS 

neurodevelopment. 

Results 

The panel of isogenic DS iPSCs studied includes multiple transgenic clones 

carrying a dox-inducible XIST cDNA on one chromosome 21 (Figure II-1A), which were 

created and characterized as previously described (Jiang et al., 2013; and Methods). 

Since prior analysis of chromosome 21 transcriptional repression was only done in 

undifferentiated pluripotent cells (Jiang et al., 2013), we first determined the extent of 

gene silencing in cells induced to express XIST RNA beginning in pluripotency just prior 

to inducing neural differentiation, the natural developmental context for optimal XIST 

RNA function. If XIST can produce neural cells with robust dosage compensation for 

chromosome 21, this itself would be valuable to investigate potential effects of trisomy 

21 on neurogenesis. However, it would be even more advantageous if trisomy could be 

dosage corrected at later steps in cell development, which we tested by inducing XIST 

RNA later during in vitro neural differentiation.  

XIST RNA induces heterochromatin hallmarks in differentiated somatic cells  

To test whether XIST-mediated silencing is possible in differentiated cells, DS-

patient derived iPSCs were differentiated using established protocols which mirror  
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cortical neurogenesis (Cao et al., 2017; Chambers et al., 2009), with dox added to 

induce XIST RNA expression at different time points. These experiments used a 28-day 

neural differentiation time-course, with dox introduced at either day 0, 14, or 21 (Figure 

II-1B). By day 14 no OCT4+ cells are detected, while nearly all cells were SOX1+ and 

SOX2+, indicating efficient neural differentiation with no remaining pluripotent cells 

(Figure II-1C). By day 28 the cells are a mixture of SOX2+ neural stem cells (NSC) and 

TUBB3+ post-mitotic neurons (Figure II-1D). 

 XIST RNA functions by triggering multiple repressive chromatin modifications 

that contribute to the silent state, such as polycomb protein repressive complexes PRC1 

and PRC2, which induce canonical heterochromatin hallmarks H2AK119ub1 and 

H3K27me3, respectively (Cao et al., 2002; Fang et al., 2004; de Napoles et al., 2004; 

Plath et al., 2003). Cells with XIST induced from day 0 showed well-localized XIST RNA 

paints associated consistently with these two major repressive histone modifications 

(Figure II-2A, II-2B, and II-2D). This indicated that inducing XIST just before 

differentiation could produce differentiated DS neural cells with one chromosome 21 

silenced. In parallel samples we investigated whether XIST could trigger these 

heterochromatin hallmarks if induced at day 14 or 21 of differentiation, well outside the 

window of pluripotency. Most cells from each day of dox initiation accumulated 

characteristic XIST RNA paints, indicating proper localization to the nuclear 

chromosome territory. At later time points of differentiation there is some reduction in 

the proportion of cells in which dox can induce XIST transcription (Figure II-2C), likely 

reflecting transgene silencing, as commonly seen for the dox-inducible system during 

differentiation (Gödecke et al., 2017). Importantly, over 90% of XIST+ cells in samples  
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Figure II-1: Experimental design and neural differentiation of DS iPSCs 
 
A) Schematic of XIST-mediated chromosome 21 silencing system. B) Outline of neural 
differentiation protocol. Dox initiation days marked by red arrows. Analysis timepoints 
marked by blue arrows. C) IF at days 0 and 14 of differentiation for SOX2, OCT4, and 
SOX1. DAPI counterstain shown in blue. D) IF at day 28 of differentiation for SOX2 and 
TUBB3. Insets are single channel images. Scale bars are 50µm.  
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Figure II-1: Experimental design and neural differentiation of DS iPSCs  
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Figure II-2: Recruitment of heterochromatin hallmarks by XIST initiated in NSCs  
 
A-B) Combined RNA FISH for XIST RNA and IF staining for H2AK119ub1 (A) and 
H3K27me3 (B) in transgenic cells at day 28 of differentiation. Arrows indicate 
associated signals, and arrowheads indicate XIST paint without associated H3K27me3 
signal. Insets are magnified single channel images of outlined area. Schematics of 
experimental timelines illustrate dox addition (red) and analysis timepoints (blue). C) 
Quantification of XIST+ cells at day 28 of differentiation with different dox addition 
timepoints. D) Quantification of association of heterochromatin markers with XIST+ 
cells. Data are represented as mean ± SEM (n=3 differentiations). 309-926 cells were 
examined for each sample (median=556). *p = ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001; one-way 
ANOVA followed by Tukey’s multiple comparisons test. E) Combined RNA FISH for 
XIST with IF for H3K27me3 in day 21 sectioned neurospheres treated with dox 
beginning at day 0 or day 14. Micrographs are maximal intensity projections of 3D z-
stacks. Insets are magnified single channel images of outlined area. Arrows point to 
H3K27me3 enrichment associated with XIST paint. Arrowheads point to XIST paint 
without associated H3K27me3 enrichment. Scale bars are 5µm.  
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Figure II-2: Recruitment of heterochromatin hallmarks by XIST initiated in NSCs  
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treated with dox beginning at day 14 and day 21 clearly had H2AK119ub1 concentrated 

with the XIST signal (Figures II-2A and II-2D), indicating recruitment of this 

heterochromatin mark within 7 days. In cells induced at day 14, close to 90% of XIST+ 

cells had an associated H3K27me3 focus (Figures II-2B and II-2D), demonstrating that 

even in these differentiated cells XIST RNA can still recruit repressive modifications by 

two major polycomb complexes (PRC1 and PRC2). 

Interestingly, when XIST RNA was induced at day 21, H3K27me3 was enriched 

in just 34% of XIST+ cells by day 28 (Figures II-2B and II-2D). Since the entire 

chromosome silencing process takes just a few days in pluripotent human iPSCs (Jiang 

et al., 2013) and mouse ES cells (Chaumeil et al., 2006; Wutz and Jaenisch, 2000), this 

indicated that by 21 days of differentiation many cells had either lost competence to 

efficiently trigger the H3K27me3 modification, or, alternatively, that the process may 

occur over a substantially longer timeframe in differentiated cells. To determine if 

H3K27me3 enrichment may require more than 7 days of XIST expression, we analyzed 

sectioned neurospheres at day 21 which had been treated with dox starting on day 14. 

In neurospheres expressing XIST for just a week, few cells had H3K27me3 enriched at 

the XIST RNA locus (Figure II-2E) in contrast to the robust enrichment of this hallmark 

in the same condition analyzed after two weeks at day 28 (Figure II-2B and II-2D). This 

observation suggested that the multi-step process of heterochromatin formation is more 

prolonged in differentiated cells. Most importantly, these findings provide the first 

indication that XIST can function to induce at least some heterochromatin modifications 

in differentiated neural cells.  
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XIST induces chromosome 21 transcriptional silencing in neural cells 

Next, we used RNA sequencing (RNA-seq) to quantify the extent of silencing 

across chromosome 21 in neural cultures differentiated for 21 or 28 days, with XIST 

induced either at day 0 of differentiation or at later stages. As a benchmark for full 

chromosome 21 dosage compensation, we included comparison of a parental (trisomic) 

line to an isogenic disomic subclone. First, we examined the effectiveness of silencing 

for chromosome 21 genes in neural cells induced for XIST at day 0. We saw a 

significant decrease in the fraction of chromosome 21 reads in samples treated with dox 

(Figure II-3B). Dox treatment of the parental line, which does not contain the XIST 

transgene, did not cause a significant shift of chromosome 21 transcript levels, affirming 

that this effect is mediated by XIST RNA. Other chromosomes were not similarly 

affected by XIST (Figure II-3A). The effect seen on chromosome 21 gene expression is 

limited by the fraction of cells that express XIST (~60%, Figure 2.2C), which may 

account for a smaller decrease in chromosome 21 transcript levels in dox treated 

transgenic cells compared to isogenic disomic cells (Figure II-3B). 

Importantly, addition of dox at later stages of differentiation also leads to 

significant repression of transcripts from chromosome 21 genes (Figure II-3B). This 

effect is not driven by a few highly expressed genes. Instead, genes across the length 

of chromosome 21 are repressed (Figure II-3D). Although the repression seen is less 

than for cells expressing XIST from day 0, this provides direct evidence that XIST can 

initiate substantial transcriptional silencing in differentiated cells. Further examination of 

individual genes reveals various silencing patterns. For example, while USP25 and 

BACH1 demonstrate moderate to absent repression, respectively, with later dox  
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Figure II-3: Transcriptional chromosome 21 repression at all time points of XIST 
initiation  
 
A) Bar graph of bulk RNA-seq data of mean log2 fold change at day 28 of differentiation 
for all detected genes on each chromosome for each 3 vs. 3 comparison. Data are 
represented as mean ± SEM. Note: Y chromosome data represents only 9 detected 
genes. B) Day 21 and day 28 bulk RNA-seq data. Fraction of normalized chromosome 
21 reads over all reads for each sample. n=3 for each condition. Dashed line represents 
a 33% drop in chr21 transcription from mean parental level. Samples colored in blue are 
trisomic; samples colored in red are disomic or functionally disomic (XIST+). C) Violin 
plots of scRNA-seq data at day 28 of differentiation showing median (horizontal line), 
interquartile range (rectangular box), 95% confidence interval, and the kernel probability 
density at each value. For each cell, the fraction of UMIs from chromosome 21 is 
divided by total UMIs to determine expression from chromosome 21. Number of cells in 
each sample is provided. D) Bulk RNA-seq fold change between indicated comparisons 
for all chromosome 21 genes with FPKM>1 and normalized average read count >10 
plotted against ranked chromosomal position. Approximate chromosomal distance in 
megabases (Mb) relative to the XIST transgene locus is indicated on X-axis. Local 
average (LOESS) for each comparison is indicated by solid horizontal curves with 95% 
confidence intervals. Dotted horizontal line indicates 1.5-fold change. Significant 
differential expression (FDR<0.1) is indicated by larger dots. E) Dot plots of all samples 
for three selected chromosome 21 genes demonstrating various silencing kinetics. 
Dotted lines indicate each gene’s position in (D). **p = ≤ 0.01, ***p ≤ 0.001; one-way 
ANOVA followed by Tukey’s multiple comparisons test. Par, parental trisomic line; ParA, 
parental subclone A; Dis, disomic; C5A, Transgenic Clone 5a; nd, no dox; d0, day 0 dox 
initiation; d14, day 14 dox initiation; d21, day 21 dox initiation. 
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Figure II-3: Transcriptional chromosome 21 repression at all time points of XIST 
initiation 
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addition, PSMG1 shows significant repression at all three dox addition timepoints 

(Figure II-3E). However, comparison of the degree of silencing is complicated by a 

lower fraction of cells expressing XIST at later dox addition timepoints (Figure II-2C), 

which will reduce overall silencing as measured by bulk RNA-seq. Therefore, to 

untangle the association between degree of silencing and proportion of cells expressing 

XIST, we performed single-cell RNA sequencing (scRNA-seq) on cells differentiated for 

28 days to identify a cell population confirmed to express XIST RNA. This approach 

may miss some XIST expressing cells due to the relatively low number of unique RNA 

molecules (nUMI) identified per cell (median = 9,677). Using this technique, we find that 

by day 28, XIST+ cells have decreased chromosome 21 expression by nearly one-third 

(31%) when XIST expression was initiated at the onset of differentiation, as compared 

to the same cells not treated with dox (Figure II-3C). This decrease in chromosome 21 

expression would be expected for complete silencing of one of three copies of 

chromosome 21 and is nearly equivalent to the 32% decrease seen when comparing 

the disomic cell line to the trisomic. In contrast, the pool of single cells in which XIST 

RNA was not detected (XIST-) showed a much smaller (7%) reduction in chromosome 

21 expression, reflecting a subset of false negative XIST expressing cells. As further 

illustrated below, using this approach to compare functionally trisomic to functionally 

disomic cells within the same population provides a powerful experimental approach to 

investigate how trisomy 21 impacts neural cells.  

Next, we used scRNA-seq to examine the extent of transcriptional silencing in 

the XIST+ population in cells with XIST induced at day 14, halfway into the 28-day 

differentiation time-course. In this case, XIST+ cells at day 28 clearly showed 
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substantial repression of chromosome 21 mRNA levels, although this was incomplete 

compared to full silencing (55% of the reduction seen when dox is initiated at day 0). 

The less complete silencing may reflect a reduced developmental competence to 

respond to XIST with differentiation, or the shorter time-period that XIST was expressed 

(4 weeks versus 2 weeks). Slightly more silencing at day 28 compared to day 21 in cells 

treated with dox at day 14 (Figure II-3B) suggested that increased duration of XIST 

expression may allow for more chromosomal silencing. Nonetheless, induction of XIST 

both in iPSCs and 14 or 21 days into neural differentiation leads to a neural cell 

population with extensive transcriptional repression of chromosome 21 genes, providing 

the first demonstration that normal differentiated cells have substantial competence to 

respond to XIST to repress transcription.  

XIST-mediated gene silencing in differentiated cells is a prolonged process           

 The reduced silencing seen at day 28 of differentiation in cells treated with dox 

starting on day 14 could reflect a chromosome-wide reduction in silencing or differences 

in the extent of silencing for individual genes. To investigate this, we compared the fold 

change of individual chromosome 21 genes (in XIST+ versus XIST- cells) for samples 

induced at day 0 and day 14. Many genes, such as CSTB, demonstrate an equivalent 

degree of silencing in both conditions (Figure II-4A-B), whereas several genes were 

substantially less repressed when XIST was induced later, including genes with high 

rates of detection/expression. This indicates there are late silencing genes, which we 

find are not correlated with gene distance from the XIST transgene locus (Figure II-4A). 

Interestingly, APP stands out as having a particularly large difference in degree 

of silencing between the two conditions (Figure II-4A-B). To test whether increased 
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silencing of APP would be seen if the time-frame of XIST expression was extended from 

two to three weeks, we used RNA FISH to examine APP gene silencing at 28 days and 

35 days of differentiation. As shown previously (Jiang et al., 2013; Xing et al., 1993), 

nuclear RNA FISH provides direct visualization of RNA transcription foci associated with 

each active APP allele, allowing for assessment of transcriptional silencing independent 

of any differences due to mRNA half-life. Silencing of APP transcription foci is 

essentially complete when XIST is initiated at the onset of differentiation and examined 

at either day 28 or day 35 of differentiation (Figure II-4C-D). In contrast, when XIST is 

initiated at day 14, the extent of APP silencing increases markedly at day 35 compared 

to day 28. Hence, when XIST expression is initiated later in differentiated neural cells 

the silencing process for some genes is still ongoing at day 28 and repression of this 

especially late-silencing gene is more complete 7 days later.  

The longer timeframe required for chromosome silencing in more differentiated 

cells would not be anticipated from the rapid 3-4 day process that occurs when XIST 

expression is initiated in pluripotent cells. This shorter timeframe is well established in 

mouse ES cells (Chaumeil et al., 2006; Wutz and Jaenisch, 2000) and was seen for 

chromosome 21 silencing in pluripotent cells, including for the APP gene (Jiang et al., 

2013; Valledor et al., in preparation). The prolonged kinetics of the process in 

differentiated cells could explain why gene silencing was not observed after XIST was 

expressed for a shorter period in differentiated mouse ES cells (Wutz and Jaenisch, 

2000). We have preliminary evidence of chromosome silencing in post-differentiation  
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Figure II-4: XIST-mediated transcriptional silencing and heterochromatin 
recruitment are prolonged processes in differentiated cells 

A) Difference in fold-change between d0 and d14 dox conditions plotted against 
chromosomal location relative to the XIST transgene locus. Each dot represents a gene; 
size of each dot is -log10(p-value). Color denotes the fraction of cells in which each 
gene is detected. Only genes demonstrating some degree of repression (>0.1 log10 FC) 
are plotted. B) Violin plots of expression level for CSTB and APP in each sample 
sequenced by sc-RNAseq. C) Representative images of RNA FISH for APP and XIST in 
cells differentiated for 28 and 35 days with dox initiated either at day 0 or day 14. 
Micrographs are maximal intensity projections of 3D z-stacks. Scale bars are 10µm. 
Insets are single channel images. D) Quantification of silencing of transcription foci in 
(C) for the APP gene as described in methods. Data are represented as mean ± SEM, 
n=2, with 293-473 cells scored per sample (median = 400) *p = ≤ 0.05; unpaired 
Student’s t-test. E) Schematic indicating temporal order of steps in chromosome 21 
silencing process as seen in differentiated cells.  



 64 

cells using the same mouse transgenic cells induced to express XIST for 1-3 weeks, 

although analysis is complicated by monosomy-induced lethality (data not shown). 

In sum, these findings reveal that initiation of silencing by XIST is not limited to 

the early developmental context of pluripotent stem cells. Differentiated cells require 2-3 

weeks to complete various steps of this multifaceted process (Figure II-4E), but, most 

critically, chromosome-wide gene silencing still occurs when XIST is initiated in 

differentiated cells. 

XIST produces dosage corrected trisomic neurons 

The cell cultures analyzed above demonstrate that a mixed population of 

neurons and NSCs is capable of initiating XIST-mediated silencing at various stages of 

differentiation. Additionally, scRNA-seq analysis of chromosome 21 expression affirmed 

that this system can readily produce XIST+ neurons with one silenced chromosome 21. 

We next attempted to initiate XIST transcription in a pure post-mitotic neuronal 

population by synchronously inducing differentiation with compound E, a γ-secretase 

inhibitor which rapidly induces all NSCs to differentiate into neurons (Figure II-5A) 

(Ogura et al., 2013). As expected, post-mitotic neurons generated in this way from cells 

treated with dox prior to differentiation had robust XIST expression (Figure 2.5B) 

associated with heterochromatin marks (Figure II-5C). However, if dox was added after 

differentiation into neurons, cells did not even show any transcription focus for XIST 

RNA (Figure II-5B). These findings suggested that neurons can continually maintain 

XIST RNA expression when induced prior to their terminal differentiation, but transgene 

activation is prevented in post-mitotic neurons. 
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 To further investigate this phenomenon, we examined forebrain organoids grown 

for 50 days. These organoids contain clearly demarcated “ventricular-like” zones (VZ) 

containing NSCs which give rise to the surrounding differentiated neurons (Figure II-

5D), thus providing a clear delineation of NSCs and post-mitotic neuron-containing 

regions. We induced organoids with dox at day 48 for just two days prior to examination, 

which minimizes the number of NSCs that will have differentiated into neurons after 

XIST induction. In this case, nearly all XIST+ cells were in the VZs rather than the 

surrounding neurons (Figure II-5E). In contrast, in organoids treated with dox beginning 

at day 22 of differentiation, many XIST+ cells are evident in both the VZ and the 

surrounding neurons (Figure II-5E), demonstrating robust XIST expression in neurons 

and NSCs in trisomy 21 cerebral organoids. Together, results demonstrate that post-

mitotic neurons can continually express and localize XIST RNA and maintain 

comprehensive chromosome 21 silencing, even though the dox-inducible transgene 

needs to be activated prior to terminal differentiation, likely due to DNA methylation of 

the tetracycline response element with differentiation (Gödecke et al., 2017).  

 To our knowledge it has not been previously demonstrated whether XIST RNA 

requires S-phase to initiate recruitment of heterochromatin marks. To examine this, we 

induced XIST transcription concurrently with labelling of replicating DNA by BrdU 

incorporation, in both iPSCs and forebrain organoids. In both paradigms, there were 

cells that had not undergone DNA replication (BrdU-) but were XIST+, with a well-

localized XIST RNA paint associated with a clear recruitment of the heterochromatin 

hallmark H2AK119ub1 (Figure II-5F), seen as early as eight hours in forebrain organoid 

cells. Hence, XIST RNA does not strictly require S-phase to initiate the chromosome  
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Figure II-5: Neurons support continued XIST expression to maintain silent 
chromatin provided the transgene is activated in the NSC stage  
 
A) Representative IF images for SOX2 and TUBB3 of cells at day 28 of differentiation 
with and without compound E treatment at day 21 of differentiation. Scale bars are 
50µm. B) RNA FISH for XIST in day 35 differentiated cells treated with compound E at 
day 21 and induced with dox at day 0 or 28. DAPI counterstain in blue. Scale bars are 
5µm. C) Combined RNA FISH for XIST and IF for H3K27me3 and TUBB3 in day 35 
differentiated cells treated with compound E at day 21. Insets are magnified single 
channel images of outlined area. Scale bars are 10µm. Arrows point to XIST RNA 
paints. D) IF of day 50 sectioned forebrain organoid for NeuN and SOX2. Dashed white 
line delineates NSC-containing SOX2+ VZ-like area and neuron containing NeuN+ 
area. Scale bars are 50µm. E) Combined RNA FISH for XIST and IF for NeuN in 
transgenic forebrain organoids. Micrographs are maximal intensity projections of 3D z-
stacks. Scale bars are 50µm. F) Combined RNA FISH for XIST and IF for H2AK119ub1 
and BrdU with concurrent addition of dox and BrdU in both iPSCs and day 50 
organoids. Insets for the iPSCs are single channel images; insets for organoid are 
magnified single channel images of the outlined area. Arrows point to XIST RNA paints. 
Scale bars are 5µm.  
  



 67 

 
Figure II-5: Neurons support continued XIST expression to maintain silent 
chromatin provided the transgene is activated in the NSC stage 
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remodeling process, suggesting that the lack of cell-cycling in post-mitotic neurons does 

not preclude XIST RNA expression or function. 

 Together, these results demonstrate that this system can produce XIST-

expressing dosage compensated neurons, despite the inability to initiate XIST 

expression with dox in neurons. Additionally, the S-phase of the cell cycle is not 

required for XIST expression and early recruitment of heterochromatin hallmarks. 

XIST RNA enhances neuron formation indicating correction of a 

neurodevelopmental deficit  

scRNA-seq was instrumental to quantify chromosome 21 gene silencing in 

differentiated neurons and NSCs, however this approach may also be advantageous to 

determine if trisomy 21 expression impacts neural differentiation, because it compares 

cells within the same sample sorted for XIST expression. This strategy minimizes 

sources of variability unrelated to trisomy and intrinsic to most other studies using 

patient-derived iPSCs (Liang and Zhang, 2013; Soldner and Jaenisch, 2012). 

Therefore, we examined the single-cell data to address whether XIST+ cells were 

distinct from XIST- cells beyond the difference in chromosome 21 expression.  

As described above, after 28 days of differentiation cultures were histologically 

determined to be a mixture of NSCs and neurons. The scRNA-seq data confirmed the 

presence of two major cell-type clusters that we classified as NSC and neuron based on 

cell-specific markers such as SRY-box 2 (SOX2), Vimentin (VIM), Doublecortin (DCX), 

and Tau (MAPT) (Figure II-6A-B). Further affirming this classification, the NSC cluster 

contained about 40% of cells in G2/M and S-phase (based on cell-cycle specific gene 
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expression), whereas the neuron cluster contained only a small fraction (2%) of cells 

predicted to be cycling (Figure II-6C), as expected for post-mitotic neurons. 

Next, we analyzed the proportion of XIST+ cells that were in the neuron cluster 

compared to XIST- cells in the same sample. Surprisingly, this revealed that XIST+ cells 

with dox initiated at day 0 were significantly more likely to be neurons compared to 

XIST- cells (Figure II-6D). This is despite the findings described above that neurons do 

not initiate XIST expression in this dox-inducible system, and evidence that the 

tetracycline transactivator (TET3G; required for XIST expression) transgene is more 

highly expressed in the NSC cluster, as shown by a dox-treated trisomic control line that 

contains just the TET3G transgene (data not shown). These results show that DS cells 

in which one chromosome 21 was silenced by XIST expression produced a higher 

proportion of neurons relative to NSCs. Given the potential importance for 

understanding DS neuropathology, this observation merited further investigation. 

A difference in the rate with which trisomic NSCs transition to neurons could 

have its root at any point during the 28-day differentiation time course. The inducible 

XIST system makes it possible to investigate the onset of this defect by examining cells 

induced for XIST later during in vitro differentiation. We examined whether this 

phenotype could be reproduced by initiating XIST expression 14 days into 

differentiation. Remarkably, as shown in Figure II-6D, even when XIST expression was 

not initiated until midway through the time-course, XIST+ cells were still significantly 

more likely to form neurons, and to the same degree as cells induced for XIST at day 0. 

This indicates the developmental step which underlies reduced neuron formation occurs 

after 14 days of differentiation. 
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These results strongly suggest that trisomy 21 in DS is associated with some 

dysregulation in neurogenesis that delays and/or reduces neuron formation. In this 

study, we included one trisomic and one disomic cell line primarily as a benchmark for 

full chromosome 21 gene silencing, however we noted that no difference was seen in 

the proportion of neurons produced between these two isogenic lines. To rule out any 

possibility of this finding resulting from technical limitations of scRNA-seq or in analysis 

of one transgenic line, we tested the production of neurons in cultures of multiple 

transgenic lines using a different single-cell approach which combines RNA FISH for 

XIST RNA with immunofluorescence (IF) for SOX2 and TUBB3 (Figure II-6E). This was 

done in three independent transgenic clones each differentiated independently 1-2 

times, with dox added at both day 0 and day 14. In accordance with sequencing results, 

XIST+ cells were again more likely to become neurons compared to XIST- cells (Figure 

II-6F). This was consistent for all three lines and, importantly, occurred to similar 

degrees at both dox addition timepoints. 

Using this tightly controlled inducible system in multiple transgenic lines analyzed 

by two different approaches, we find strong evidence that trisomy 21 expression 

significantly impedes terminal differentiation of NSCs to neurons. This occurs after early 

formation of NSCs but prior to terminal differentiation of neurons. Together, the facts 

that we are comparing functionally disomic and trisomic cells within the same sample, 

that we are analyzing a difference in the proportion of neurons to NSCs rather than total 

neuron number, and that this proportion is altered even when XIST is initiated half-way 

into the differentiation protocol, all suggest that neuron formation is enhanced in XIST+ 

cells independent of an effect on cell density or proliferation. Implicit in this analysis is  
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Figure II-6: XIST expressing cells are more likely to be neurons than cells that do 
not express XIST 

A) t-distributed stochastic neighbor embedding (t-SNE) plot of day 28 scRNA-seq data 
for neuron- (MAPT and DCX) and NSC- (SOX2 and VIM) specific genes. Gray dots 
represent low and purple represent high expression levels. Each dot represents a single 
cell. B) t-SNE plot colored for cell type classification. C) t-SNE plot colored for predicted 
phase of cell cycle. D) Fraction of cells in Clone5a d0 and d14 dox scRNA-seq samples 
identified as neurons separated based on XIST expression. Error bars are SE. E) 
Combined RNA FISH for XIST with IF for SOX2 and TUBB3 in day 28 cells. Example 
XIST+/-;NSC/Neuron cells are labeled. Micrograph is a maximal intensity projection of a 
3D z-stack. Scale bars are 10µm. F) Quantification of (E) for 1-2 differentiations of three 
transgenic clones. Lines connect data points derived from the same sample. Between 
419-1311 cells were analyzed for each sample (median = 868). **p = ≤ 0.01, ***p ≤ 
0.001; Student’s paired T-test. 
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that this specific neural phenotype can be rescued by expression of XIST RNA from one 

copy of chromosome 21. 

Non-chromosome 21 differential expression identifies altered Notch pathway 

genes 

Several studies have examined the transcriptomes of trisomic versus euploid 

(disomic) individuals in fetal or adult human brain samples (Lockstone et al., 2007a; 

Olmos-Serrano et al., 2016), yet transcriptome differences will be confounded by 

differences in cell-type representation, as well as due to variation between non-isogenic 

samples or sample processing. While not our primary goal, our scRNA-seq analysis 

could reveal in a specific cell population (neuron or NSCs) whether non-chromosome 21 

genes are impacted, directly or indirectly, by chromosome 21 dosage. Due to limitations 

in sensitivity, the scRNA-seq data would not necessarily identify changes in weakly or 

variably expressed genes. Nonetheless, changes genuinely due to chromosome 21 

dosage could be revealed with higher-confidence, because this approach compares 

XIST+ and XIST- cells within the same sample, with each cell serving as a biological 

replicate of the disomic and trisomic state. 

Indeed, this analysis identifies a small number of genes which change 

expression in NSCs and/or neurons as a function of chromosome 21 silencing (Figure 

II-7A). Notably, when PANTHER Pathway analysis (Mi and Thomas, 2009; Mi et al., 

2017) is conducted on the total of 9 unique non-chr21 genes that differentially 

expressed, “Notch signaling pathway” (accession: P00045) is the only significantly 

dysregulated pathway (FDR=0.0274). Additionally, the gene Tweety Family Member 1 

(TTYH1), recently implicated in Notch signaling (Kim et al., 2018) but not included in the  
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Figure II-7: Non-chromosome 21 differential expression identifies altered Notch 
pathway genes 

A) Volcano plot of results from Wilcoxon rank-sum test between XIST+ and XIST- cells 
in NSC and neuron clusters for d0 and d14 dox samples examined at day 28 in scRNA-
seq dataset. Chromosome 21 genes are in red, and all other genes are in blue. Circled 
genes are significantly differentially expressed (p-adj<0.05). Non-chr21 DE genes are 
labeled. “Dox effect” genes found to be DE between ParA nd and parA d0 dox samples 
and transgenes were removed from the plots. B) Expression levels of TTYH1 in NSCs 
of all samples sequenced. ParA, parental subclone A; Dis, disomic; C5A, Transgenic 
Clone 5a; nd, no dox; d0, day 0 dox initiation; d14, day 14 dox initiation. C) Schematic 
of experimental design and major results. Chromosome silencing is prolonged in 
differentiated cells and has variable kinetics between genes. XIST+ cells in both d0 and 
d14 dox conditions have increased neuron proportions, decreased TTYH1 expression in 
NSCs, and increased Notch pathway gene expression compared to XIST- cells. 
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Notch pathway annotation, is also differentially expressed in NSCs expressing XIST. A 

similar more modest difference is seen between the trisomic and disomic cell lines 

(Figure II-7B), and no difference is seen between TET+ and TET- NSCs in the trisomic 

parental subclone treated with dox (data not shown). As summarized in Figure II-7C, the 

effects on neuron formation and non-chromosome 21 gene expression occur similarly 

whether one chromosome 21 is silenced from the beginning or far into the differentiation 

process, providing insight into the developmental timing of these effects. To our 

knowledge, this is the first data able to identify genes that likely reflect ongoing 

functional effects of trisomy 21 on expression of non-chromosome 21 genes in a given 

neural cell type. 

Discussion 

The results presented here have broad implications for basic developmental 

biology, DS neurobiology, and for potential translational applications of a unique non-

coding RNA, XIST. Results with scRNA-seq further demonstrate the singular capacity of 

XIST to dosage compensate duplicated autosomal chromatin, allowing production of 

trisomy 21 neurons with a euploid transcriptomic profile. While this alone is valuable, 

this study addresses a critical question regarding the epigenetic plasticity of cells to 

respond to XIST, with encouraging results which heighten the experimental power and 

therapeutic prospects of XIST. These findings demonstrate for the first time in normal 

human cells that XIST can initiate chromosome silencing well beyond the “critical 

window” of pluripotency. Our findings demonstrate that the chromosome silencing 

process still occurs in differentiated cells, but is more prolonged, which could explain 

earlier findings suggesting a strict developmental window for initiation of chromosome  
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silencing. Additionally, single cell analyses of otherwise identical cells, with and without 

XIST-mediated dosage compensation, provide strong evidence that over-expression of 

chromosome 21 genes confers a developmental delay in the transition of NSC to 

neurons. Importantly, this change in the neuron versus NSC balance was consistently 

and equivalently corrected whether XIST expression was initiated at the onset or 

midway through the differentiation time-course. These findings demonstrate the value of 

this approach to investigate the developmental biology of DS. Moreover, these results 

overcome a perceived barrier to developing XIST as a potential therapeutic for DS and 

other trisomies, and further support the effectiveness of chromosome silencing to 

mitigate cell phenotypic effects of trisomy. 

Our results provide new insights into basic developmental biology by revealing 

the unanticipated epigenetic plasticity of more differentiated cells to enact a multi-

layered chromosome remodeling process that normally occurs within the inner cell 

mass. Previously it was thought that the limited reports of XIST-induced 

heterochromatin in somatic cells reflected a peculiarity of some cancer cells or an 

unusual regaining of competence specific to a subset of mouse hematopoietic cells. By 

thoroughly re-visiting this key point in normal human neural cells, our results bode well 

for the potential of XIST function in other cell-types. Using our 28-day time course to 

produce post-mitotic neurons, XIST expression begun at day 14 or 21 initiates 

chromosome-wide repression evident within just 1-2 weeks. Interestingly, some genes 

silence more slowly – and thus complete silencing requires over 3 weeks of XIST 

expression – as shown for the important APP gene, critical to the development of early-

onset Alzheimer’s disease in DS. Even when XIST expression was induced in cells of a 
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48-day old organoid, early heterochromatin hallmarks became apparent on the 

chromosome. Given that XIST triggers multi-layered repressive chromatin modifications, 

the highly-redundant process may still provide transcriptional repression even if certain 

chromatin modifying enzymes are absent or expressed at low levels in differentiated 

cells.  

A complication we encountered using ectopic promoters to drive XIST expression 

is the common phenomenon of transgene silencing with differentiation (Gödecke et al., 

2017; Huebsch et al., 2016; Laker et al., 1998; Oyer et al., 2009; Xia et al., 2007). In our 

system this could be occurring at the tetracycline transactivator locus on chr19 and/or 

the tetracycline response element/XIST locus on chr21, as discussed in detail in the 

appendix. This issue could have also influenced results of a previous study in which 

mice were fed dox to induce an XIST transgene on a disomic autosome, with cell/tissue 

lethality serving as the read-out for XIST function (Savarese et al., 2006). Our results 

clearly show that neurons maintain XIST expression and remarkably complete 

chromosome 21 silencing, yet the dox-inducible system was blocked in neurons unless 

it was already activated in NSCs prior to terminal differentiation. Additionally, there is 

precedent in the literature that dramatic epigenetic changes occur in post-mitotic 

neurons, such as activity-mediated neuronal plasticity achieved by epigenetic 

mechanisms (Ma et al., 2009), or the conversion of post-mitotic neurons from one 

distinct subtype to another by exogenous factors (Rouaux and Arlotta, 2013; Ye et al., 

2015). 

scRNA-seq not only affirmed chromosome 21 silencing in XIST-expressing 

neurons, but unexpectedly revealed that cells expressing XIST were more likely to 
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become neurons. The increased proportion of cells that transitioned from NSC to 

neurons was corroborated by a second approach and consistently seen for three XIST 

transgenic clones. We believe the ability to demonstrate a modest but reproducible 

developmental delay in neurogenesis in vitro rests on the inducible experimental 

approach that examines essentially identical cells in the same culture of the same 

subclone, with and without one chromosome 21 silenced, thereby circumventing other 

sources of variation even between isogenic iPSC clones (Koyanagi-Aoi et al., 2013; 

Liang and Zhang, 2013; Soldner and Jaenisch, 2012). For example, we can conclude 

that the increased rate of neuron formation in dosage-compensated cells is not due to 

culture density, which is difficult to control (Jiang et al., 2013). Importantly, the ability to 

induce dosage correction at later stages also makes it possible to examine the timing 

and reversibility of a developmental defect. Enhanced neuron differentiation occurred 

equivalently whether XIST-mediated silencing was initiated at day 0 or 14 days into 

neural differentiation, indicating a defect that is correctible at either time point. 

Additionally, given that complete transcriptional silencing takes over two weeks after 

XIST is induced, this suggests that either especially early-silenced chr21 gene(s) are 

responsible for this phenotype, or the defect arises after day 21 and potentially close to 

the final division of NSC to form post-mitotic neuron. 

While studies using DS iPS cells have described variable results with neural 

differentiation (see introduction), some studies have reported hypocellularity in small 

samples of DS fetal cortex (Guidi et al., 2008; Larsen et al., 2008; Ross et al., 1984), 

which has been attributed to decreased neuron number. Using a very different approach 

involving experimental manipulation of chromosome 21 expression, results here provide 
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direct evidence that trisomy 21 over-expression causes a neurodevelopmental delay in 

the transition of NSCs to neurons. Recently, we showed that trisomy 21 silencing 

(beginning in pluripotency) prevents development of hematopoietic defects of DS, 

reducing and normalizing the well-known over-production of megakaryocytes and 

erythrocytes (Chiang et al., 2018). The contrasting effects seen where XIST enhances 

neuron production are consistent with the different clinical impact of trisomy 21 on the 

hematopoietic and neural systems.  

 Results further indicate that this experimental strategy can provide insights into 

target pathways dysregulated by trisomy 21, which might identify targets amenable to 

conventional drug therapies. Of particular interest are the significant number of Notch 

pathway related genes that stand out as impacted when comparing trisomic and 

functionally disomic cells. The role of Notch signaling in neural differentiation is well 

described, and its inhibition using γ-secretase inhibitors induces rapid differentiation of 

NSCs to neurons, as illustrated in this study and others (Kawaguchi et al., 2008; Ogura 

et al., 2013). However, the role of Notch in DS neurodevelopment is less clearly 

understood. Some transcriptome studies of DS adult brain samples have reported 

upregulation of Notch signaling genes, and the potential role of specific chromosome 21 

genes in Notch signaling has been of interest (Fernandez-Martinez et al., 2009; Fischer 

et al., 2005; Lockstone et al., 2007a). TTYH1 and related pathway genes, HEY1 and 

RBPJ, are increased in the trisomic state and strongly downregulated after chromosome 

21 silencing. Of particular interest was a recent report showing that TTYH1 impacts the 

Notch pathway to promote maintenance of the NSC state (Kim et al., 2018), which could 

explain our finding of a higher fraction of NSCs in uncorrected trisomic cells. 
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Additionally, the role of Notch signaling in astrogliogenesis is well described (Louvi and 

Artavanis-Tsakonas, 2006), and aberrations in astrocyte number have been reported in 

DS brains and in vitro models (Chen et al., 2014; Colombo et al., 2005; Mito and 

Becker, 1993).  

 Finally, the fundamental finding here that differentiated cells retain substantial 

epigenetic plasticity is encouraging for the forward-looking prospect that XIST or derived 

sequences could be developed as a therapeutic strategy for aspects of DS and 

potentially a diversity of smaller duplication disorders only now being described 

(Theisen and Shaffer, 2010). Although our results implicate a specific cell transition 

during neural development, potentially due to mis-regulation of the Notch pathway, with 

over 200 genes on chromosome 21 it is likely that other steps in earlier neuroepithelial 

differentiation (Jiang et al., 2013) or later neuron function could also be impacted by a 

myriad of mechanisms. In addition, recent studies indicate that aneuploidy in general 

may cause proteomic cell stress due to low-level over-expression of many genes 

(Bonney et al., 2015; Sheltzer et al., 2012). Therefore, with enormous advances in 

genome editing and delivery technologies, we continue to advance the prospect that a 

single-gene could target the root cause for a complex chromosomal disorder to 

potentially mitigate effects of trisomy 21 in several physiologic systems. We have 

demonstrated that XIST-mediated silencing can correct known DS cell pathologies in 

vitro (Chiang et al., 2018), and now show that epigenetic correction may be possible 

long into development for the neural cell lineage and potentially other cell systems. 

Clearly, many challenges remain, including the need for a smaller XIST transgene 

amenable to current delivery methods and the fact that neurogenesis is largely 
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complete prenatally. However, several major aspects of neural development, such as 

myelination and synaptic pruning, continue long after birth (Silbereis et al., 2016), as 

does the development Alzheimer dementia in most DS individuals (Wiseman et al., 

2015). 

Great efforts from many investigators have led to breakthroughs in understanding 

dosage compensation of the X-chromosome, yet the translational relevance to common 

chromosomal dosage disorders of this basic epigenetic mechanism is only beginning to 

be explored.  
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Materials and Methods 

iPS cell culture and neural differentiation 

The isogenic XIST-transgenic and disomic subclones were derived and 

characterized as described in Jiang et al. (2013). The initial DS iPSC parental line (DS1-

iPS4) was provided by G.Q. Daley (Park et al., 2008). Clone5a is a subclone of the 

previously characterized clone5 (Jiang et al., 2013) which was altered for this study to 

include a second copy of the tetracycline transactivator driven by the CAG promoter in 

the AAVS1 locus (Addgene plasmid #60431) in an attempt to minimize transgene 

silencing with differentiation. All clones except the original parental line contain the 

TET3G transgene in the AAVS1 locus. iPSCs were maintained on vitronectin-coated 

plates with Essential 8 medium (ThermoFisher) and tested periodically for mycoplasma. 

Cells were passaged every 3-4 days with 0.5mM EDTA.  

Neural differentiations were performed as previously described (Cao et al., 2017; 

Chambers et al., 2009) with some modifications. Briefly, iPSCs were dissociated into 

single cells and plated at a density of 50,000 cells/well in a vitronectin-coated 24-well 

plate with 10µM of the ROCK inhibitor Y-27632 (Tocris Bioscience). The next day, 

media was changed to Neural differentiation media (NDM) consisting of 50% 

DMEM/F12, 50% Neurobasal, 0.5X Glutamax, 1X N-2 supplement, 1X 

penicillin/streptomycin (all from ThermoFisher), and supplemented with 2uM DMH1 and 

SB431542 (both from Tocris Bioscience). After 14 days, cells were broken into clumps 

after EDTA treatment and cultured in suspension for 7 days in NDM. On day 21 or 28 of 

differentiation, neurospheres were dissociated into single cells with StemPro Accutase 

(ThermoFisher) and plated onto coverslips (Electron Microscopy Sciences) coated with 
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Matrigel (Corning) at a density of 25,000-50,000 cells/coverslip and fed every 2-3 days 

with Neuron media consisting of Neurobasal, 1X N-2, 0.5X B-27 without vitamin A, 1X 

penicillin/streptomycin, 1X Glutamax (ThermoFisher), 0.3% Glucose, 10ng/ml GDNF 

(Peprotech), 10ng/ml BDNF (Peprotech), 10ng/ml ascorbic acid (Sigma-Aldrich), and 

1µM cyclic AMP (Sigma-Aldrich). Doxycycline diluted in distilled water was added to the 

culture media starting at various time points at a concentration of 500ng/ml. In cultures 

where NSCs were synchronously differentiated to neurons, compound E (EMD 

Millipore) was added for 3 days at day 21 of differentiation at a concentration of 200nM.  

Forebrain organoids were generated as previously described (Qian et al., 2016, 

2018) with the following modifications: embryoid bodies were formed by dissociated of 

iPSCs into single cells and re-aggregating in U-bottom 96-well plates (Lancaster and 

Knoblich, 2014). On day 7, aggregates were transferred to ultra-low attachment 6-well 

plates (Corning) for Matrigel embedding, and on day 14 the plates were moved to an 

orbital shaker set at ~100rpm.  

Cell fixation, RNA FISH, and immunofluorescence 

For iPSC and monolayer neural culture, cell fixation with 4% paraformaldehyde 

(PFA) was performed as previously described (Byron et al., 2013). Forebrain organoids 

were fixed for 30min in PFA at room temperature, washed three times with PBS, and 

cryopreserved in 30% sucrose/PBS at 4°C overnight. Fixed organoids were embedded 

in O.C.T. compound (Sakura Finetek), frozen in an ispropanol/dry ice slurry, and 

sectioned at 14µm on a cryotome. Sections were attached to Superfrost Plus slides 

(Electron Microscopy Sciences) and stored at -20°C until staining. Prior to staining, 
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sections were rehydrated in PBS for 5min, and detergent extracted in 0.5% Triton X-100 

(Roche) for 3min. 

RNA FISH and IF were performed as previously described (Byron et al., 2013; 

Clemson et al., 1996). For RNA FISH and combined RNA FISH/IF in iPSCs and 

monolayer neural culture, detergent extraction was performed prior to fixation. For IF 

alone, fixation was performed prior to detergent extraction. The XIST probes used were 

G1A (Addgene plasmid #24690; Clemson et al., 1996) and a Stellaris FISH probe 

(Biosearch Technologies, SMF-2038-1), which was used according to the 

manufacturer’s instructions. The APP probe is a BAC from BACPAC resources (RP11-

910G8). DNA probes were labelled by nick translation with either biotin-16-dUTP or 

digoxigenin-11-dUTP (Roche). For simultaneous IF and RNA FISH, cells were 

immunostained normally with the addition of RNasin Plus (Promega) to the incubation 

buffer and fixed in 4% PFA prior to RNA FISH. The primary antibodies used in this study 

are provided in Table II-1. The conjugated secondary antibodies used in this study were 

Alexa Fluor 488, 594, and 647. BrdU staining was performed after RNA FISH and 

subsequent fixation by incubating coverslips or slides at 80°C in 70% formamide in 2X 

SSC for 5min (coverslips) or 30min (cryosections on slides) followed by dehydration in 

70% and 100% cold ethanol for 5min each and standard IF.  

RNA isolation, cDNA library preparation, and high-throughput sequencing             

RNA was extracted using TRIzol reagent (ThermoFisher) according to 

manufacturer’s instructions. RNA samples were cleared of contaminating genomic DNA 

by DNAse I (Roche) treatment for 1hr at 37°C. RNA cleanup and DNAse I removal was 

performed using RNeasy MinElute columns (Qiagen) according to manufacturer’s 
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instructions. Clean RNA was assessed for quality on an Advanced Analytical Fragment 

Analyzer, and all samples had an RQN > 7.5. 100ng of RNA per sample was used to 

prepare mRNA strand-specific sequencing libraries using the NEBNext® Ultra™ II 

Directional RNA Library Prep Kit for Illumina® in conjunction with the NEBNext® Poly(A) 

mRNA Magnetic Isolation Module and NEBNext® Multiplex Oligos for Illumina® (New 

England Biolabs). Sequencing was performed by the UMass Medical School Deep 

Sequencing Core Facility on the Illumina HiSeq4000 platform to a depth of ~8 million 

reads/sample. 

Reads were aligned to the hg19 human genome build (GRCh37) using hisat2 

(v2.0.5). Reads were counted to genes using the featureCounts function of the subread 

package (v1.6.2). Within R, the DEseq2 package was used to normalize reads between 

samples and determine significantly differentially expressed genes. Significance in 

Figure 3D was determined by performing multiple comparison correction on all 

expressed chr21 genes (n=125) and setting an FDR of <0.1. The ggplot2 package was 

used to generate most graphs. 

Single-cell RNA sequencing 

 On day 28 of differentiation, neurospheres were dissociated with StemPro 

Accutase (ThermoFisher) and passed through a 40μm strainer to remove remaining 

clumps. Cells were washed twice in PBS + 0.4% BSA, counted and assessed for 

viability (>80%). Cells were then processed using the 10x Genomics Chromium™ 

Single Cell 3’ Library and Gel Bead Kit v2 per manufacturer’s instructions. Sequencing 

was performed by the UMass Medical School Deep Sequencing Core Facility on the 

Illumina HiSeq4000 platform. Alignment, filtering, barcode counting, and UMI counting 
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was performed using the Cell Ranger pipeline (10x Genomics - v2.1.1) using the hg19 

reference genome which was altered to include the TET3G transgene sequence. 

Further normalization, filtering, and analysis was performed using the Seurat R package 

(v2.3.4). Cell cycle scoring was performed as previously described (Tirosh et al., 2016). 

Microscopy and cell scoring 

 Cells were visualized using a Zeiss AxioObserver 7, equipped with Chroma multi-

bandpass dichroic and emission filter sets (Brattleboro, VT), with a Flash 4.0 LT CMOS 

camera (Hamamatsu). Images were minimally corrected for brightness and contrast to 

best represent signals observed by eye using ZEN software (v2.3 Blue, Zeiss). Where 

indicated, 3D z-stacks of several focal planes were computationally deconvolved and a 

maximal image projection was created using ZEN software in order to visualize all 

signals in one image. For scoring of heterochromatin marker association with XIST 

signal, we examined at least 8 random fields in three independent differentiations per 

sample. For APP gene silencing, we examined at least 6 random fields in two 

independent differentiations per sample, and silencing was assessed using the following 

formula, which corrects for variable hybridization efficiency between samples: Degree of 

silencing = 100 * (1 - (fraction of XIST+ cells with 3 APP foci / fraction of XIST- cells with 

3 APP foci)). For scoring of neuron/NSC cell type, TUBB3+ cells were counted as 

neurons, SOX2+/TUBB3- cells were counted as NSC, and SOX2-/TUBB3- cells were 

not counted. After a cell was determined to be a neuron or NSC, its XIST status was 

assessed. For this experiment, 5 random low-power fields were examined for each 

independent sample. 
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Table II-1: Primary antibodies used in chapter II 

Antibody Host Source Identifier 

NeuN  mouse monoclonal Millipore MAB377 

Trimethyl-Histone H3 

Lys27 (H3K27me3)  

rabbit polyclonal Millipore 07-449 

Oct3/4 goat polyclonal Santa Cruz 

Biotechnology 

sc-8629 

Sox2  rabbit polyclonal Millipore AB5603 

Tubulin β 3 (TUBB3)  mouse monoclonal Biolegend Tuj1 (MMS-435P) 

BrdU mouse monoclonal Sigma-Aldrich BU-33 (B8434) 

Ubiquitl-Histone H2A 

Lys119 (H2AK119ub)  

rabbit monoclonal Cell Signaling 

Technology 

D27C4 (#8240) 

Sox1   goat polyclonal R&D Systems AF3369 
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CHAPTER III : Modeling DS neurodevelopment with cerebral 

organoids 

 

Preface 

 I performed all of the experiments described in this chapter, with help from Meg 

Byron in the culturing and processing of over 1,000 organoids for the largest 

experiment. I performed the analysis of results from the early experiments myself, 

whereas most of the computational analysis on the largest experiment was performed 

by Dr. Oliver King, with input from me and Jeanne Lawrence. 

 

Introduction 

Cognitive disability is a universal feature of DS, and while the genetic basis of DS 

is clear, the direct molecular and cellular causes for this phenotype are not well defined. 

Studies in mouse models of DS have identified several brain pathologies and 

corresponding behavioral or cognitive phenotypes, although various studies of different 

or even the same mouse models do not always agree (Belichenko et al., 2009, 2007; 

Haydar and Reeves, 2012; Reeves et al., 1995). Additionally, discerning which models 

more faithfully reflect the various aspects of neurodevelopment and cognitive features of 

human DS is challenging. Several studies report evidence of genetic or pharmaceutical 

correction of specific phenotypes in specific mouse models of DS, such as for increased 

interneuron number and decreased cerebellar size (Chakrabarti et al., 2010; Das et al., 
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2013). However, some of these findings do not correlate well with the human syndrome. 

For example, several studies have suggested that interneuron number may be 

decreased in DS patients and human cell models (Bhattacharyya et al., 2009; Huo et 

al., 2018; Ross et al., 1984; Wisniewski, 1986), in contrast to reports in trisomic mice 

that interneuron numbers are increased. Further complicating the current state of 

knowledge in this area, at the recent meeting of the Trisomy 21 Research Society, a 

panel discussion highlighted the important issue that neural phenotypes have not been 

consistent for the same DS mouse model bred and studied at different times or places.  

In recent years, with the advent of whole genome sequencing approaches, 

studies have begun to examine differences in the transcriptomes of DS versus euploid 

samples. However, among several published studies there have been few consistent 

conclusions. While studies invariably find chr21 genes to be disproportionately 

upregulated in DS tissues and cells, the number and identity of these genes is 

inconsistent. A meta-analysis of 45 transcriptome studies found only 77 chr21 genes to 

be consistently upregulated in DS samples (Vilardell et al., 2011). If there is no 

feedback regulation of a specific gene, then trisomy for that gene would be expected to 

result in a relatively modest 1.5-fold increase in mRNA level, which could be further 

confounded by differences in cell types or pathological states. Most recently, several 

studies have claimed that trisomy 21 causes broad transcriptome-wide changes, with 

some studies reporting global upregulation of non-chr21 genes (Mowery et al., 2018) or 

the presence of domains of up- and down-regulation across the genome (Letourneau et 

al., 2014). However, the latter phenomenon has recently been called into question (Do 

et al., 2015), and very recently has been shown to be unrelated to trisomy and 
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detectable in both normal and trisomic samples (Ahlfors et al., 2019). Studies in adult 

DS brain tissue have found hundreds of differentially expressed genes even using 

extremely stringent statistical cutoffs (Lockstone et al., 2007b), which may reflect 

differences in cell type representation and/or cellular states. For example, some 

evidence from post-mortem DS brain samples as well as human cellular DS models 

have demonstrated increased astroglial numbers (Briggs et al., 2013; Chen et al., 2014; 

Lu et al., 2011; Mito and Becker, 1993; Zdaniuk et al., 2011). If true, this difference in 

cell-type representation alone could cause broad changes in the overall transcriptome 

of brain tissue, complicating identification of specific pathways directly perturbed by 

trisomy 21.  

Hence, it remains a challenge to understand the neurodevelopmental basis for 

cognitive deficits in DS children and adults, deficits that can vary between patients in 

severity and are now generally accepted to progress throughout adulthood. It is now 

understood that triplication of the chr21 APP gene plays a critical role in the almost 

inevitable early-onset of AD in DS, but the neurodevelopmental changes are far less 

understood than the later-stage neurodegeneration. In summary, numerous molecular 

pathways have been touted as central to DS pathogenesis, however, little consensus 

has been reached as to the transcriptional changes and pathways impacted nor on the 

specific cellular pathologies that characterize differences in the DS human brain. Thus, 

new methods are needed to investigate and better characterize the cellular changes of 

DS neurodevelopment and allow identification of the molecular pathways involved, 

information essential for the development of effective therapeutic targets and strategies 

of any kind.  
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In the prior chapter, I used primarily monolayer neural differentiation to examine 

the functionality and effects of XIST-mediated chromosome silencing in a defined 

pathway of neurogenesis. This proved a valuable approach to examine a precise 

developmental window of neurogenesis. However, studies in this chapter pursued a 

complementary approach, using cerebral organoids, a new technology that I introduced 

into the Lawrence laboratory. 

Recently, cerebral organoids have emerged as a new model system for studying 

early human neurodevelopment in a more developmentally appropriate three-

dimensional environment (Di Lullo and Kriegstein, 2017). In addition to providing the 

potential to examine spatial relationships between developing neural cells and tissue 

layers, organoid systems also allow for the generation of a variety of cell types and to 

examine them over longer time frames without the need for passaging or other 

manipulation during differentiation. Not long after an early paper on human cerebral-

organoid technology was published (Lancaster et al., 2013), I became intrigued by the 

opportunity to examine development of more complex neural tissues and over a longer 

time-frame. Given that this was a new and more complex approach to studying human 

neurodevelopment, the first major goal of the studies of this chapter was to establish 

this technology in the Lawrence lab. This ultimately involved reproducing and evaluating 

three different organoid protocols to assess their suitability for our experimental goals, 

to determine if the presence of trisomy 21 causes discernible neurodevelopmental 

differences of human organoids compared to those derived from isogenic euploid 

iPSCs. I quickly learned that the greater complexity provided by these structures 

presents substantial advantages as well as significant challenges requiring more 
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quantitative analysis techniques. Therefore, a theme that shaped the goals and 

experiments throughout this chapter was to develop experimental design strategies that 

avoid or minimize sources of variation between isogenic samples other than those due 

to presence of an extra chromosome 21. Some of the methodological points 

demonstrated by this work have value for the field of disease modeling with human 

iPSCs more generally, whereas other specific results have significant implications for 

the fundamental biology of trisomy 21. 

Here, we test three organoid generation protocols out of a larger compendium of 

recently-developed organoid protocols as representing the range of undirected to 

directed organoid approaches. We use DS patient-derived iPSCs and utilize a directed 

forebrain spheroid method to perform in-depth transcriptional investigation of trisomic 

and disomic conditions. We examine both potential cell type representation differences 

as well as non-chr21 expression changes in three trisomic and three isogenic disomic 

cell lines. 

Results 

The results below detail the progression of experimental design improvements 

based on results of earlier observations. The last and largest experiment was 

formulated based on lessons learned from our initial cerebral organoid studies, which 

highlighted the need to address several sources of variation between samples that are 

often present but not due to trisomy 21. A summary of potential sources of confounding 

variation that are often present (but not due to trisomy 21) are listed in Table III-1, most 

of which are also relevant to human disease modeling with iPSCs generally. DS studies 

have reported numerous phenotypic and transcriptional differences attributed to trisomy  
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Table III-1: Potential sources of variability in iPSC disease modeling 

Sources of variability Strategies used in this study to 

lessen variability 

Genetic differences between individuals Isogenic cell lines 

Between isogenic clones Subclones from same reprogramming 

event 

Within a clone 

- Genetic drift 

- Epigenetic drift 

- Freeze/thaw bottleneck 

No freeze/thaw between differentiations 

in same experiment 

Difference between individual organoids Pooling large numbers of organoids 

Differences between differentiations Multiple differentiations using a semi-

directed protocol 
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in human or mouse neural tissues and cells, however it is often difficult to know whether 

other potential differences between samples has been ruled out. In order to examine 

whether trisomy 21 per se impacts the development of cerebral organoids in any given 

assay, part of our goal here became to understand the extent to which differences may 

arise from other factors: e.g. variation between organoids, cell lines, experiments, cell 

representation, etc. This led us to focus on quantitative transcriptome analyses using an 

expanded experimental design of isogenic organoids, providing what we believe is the 

most comprehensive comparison of differences in trisomic versus disomic organoids 

available to date. 

Evaluating three approaches for generating cerebral organoids with DS iPSCs 

Several 3D cell culture models of cerebral development have recently been 

developed, each with its own set of advantages and drawbacks. Most significantly, 

protocols differ in the usage of exogenous patterning molecules. Lancaster et al. (2013; 

2014) utilize a protocol with minimal patterning and make use of the “default fate” of 

differentiating pluripotent cells to become rostral neuroectoderm. This results in the 

generation of several cerebral cell types, including meninges, choroid plexus, and 

cortical zones including self-organizing neural stem cell niches and surrounding 

neurons. The potential advantages of minimal patterning in generating a model of 

neurodevelopmental disorders include diminishing the potentially overriding effects of 

non-physiologic levels of patterning and mitotic factors on a subtle defect in 

differentiation and/or proliferation. Additionally, modeling a wide range of cell types that 

could be involved in disease pathogenesis in a dense 3D environment could reveal 
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phenotypes absent in monoculture. On the other hand, the broader range of cell types 

produced may include those that are likely of peripheral relevance to cognitive disability. 

Because of this, protocols based on advances in developmental neurobiology 

and 2D culture techniques have utilized patterning molecules to establish region-

specific 3D models of human neurodevelopment. In particular, Paşca et al. (2015) utilize 

dual-SMAD inhibition, high concentrations of the mitogens FGF2 and EGF, as well as 

the neurotrophins BDNF and NT3 to generate spheroids that include only cortical-like 

cells, including both neurons and astroglia. A third protocol utilizes SMAD inhibitors as 

well as mild WNT signaling activation, which ameliorated apoptotic cell death and 

potentially further dorsalized the organoids (Qian et al., 2016, 2018).  

Protocols also differ in their attempts to minimize necrosis in the center of 

organoids that is largely inevitable due to the lack of vascularization and poor oxygen 

penetration. While some have cultured organoids in very high (40%) oxygen 

environments (Kadoshima et al., 2013), most protocols involve aeration of the media 

with bioreactors and orbital shakers (Lancaster et al., 2013) or miniaturized bioreactors 

(Qian et al., 2016). In addition to aiding with necrosis and increasing overall organoid 

size, spinning in a bioreactor has also been shown to improve formation of large 

ventricular-like zones compared to stationary culture conditions (Lancaster et al., 2013). 

Interestingly, one protocol reports static culture of spheroids that grow up to 4mm in 

size, but does not attempt to reduce necrosis through aeration or increased oxygen 

concentration (Paşca et al., 2015). 

Finally, some protocols rely on a provided extracellular matrix in the form of a 

mouse tumor-derived gelatinous protein mixture (Matrigel) to enhance production of 
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cortical ventricular-like zones (Lancaster et al., 2013; Qian et al., 2016). This comes at 

the cost of increased variability due to inconsistent embedding and lot-to-lot variability of 

growth factors present in this biologically derived material, as well as increased labor 

costs and decreased throughput associated with this added step. Protocols that omit 

Matrigel embedding still generate ventricular-like zones, though smaller and less 

complex (Mariani et al., 2012; Paşca et al., 2015).  

 In order to develop a model of DS neurodevelopment in the lab, I tested these 

protocols using isogenic iPSCs with trisomy 21 and their disomic controls. First, I 

generated cerebral organoids, as previously described (Lancaster and Knoblich, 2014; 

Lancaster et al., 2013). This protocol generated large ventricular-like zones with tightly 

packed neural stem cells surrounded by outwardly migrating postmitotic neurons 

(Figure III-1A). However, these structures constituted a minority of cells in each 

organoid, which were largely composed of self-organizing cells in a non-ventricular 

pattern, reminiscent of choroid plexus-like tissue as well as other cells lacking clear 

organization (Figure III-1A’). Because we aim to examine the effects of trisomy on 

cortical neurogenesis, we decided that this protocol was not sufficiently reproducible to 

achieve this goal. 

 Next, we created forebrain organoids with minor modifications (see methods) 

(Qian et al., 2018). After ~50 days, these organoids formed a large number of large, 

well-organized ventricular-like zones (Figure III-1B). The organoids were largely 

comprised of VZs with very few regions that showed organization of a different cerebral 

cell type. These organoids demonstrated a particularly striking contrast between NSC-

containing VZs and surrounding neuron-containing regions. This characteristic was  
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Figure III-1: Evaluating three approaches for generating cerebral organoids with 
DS iPSCs 
 
A-C) Immunofluorescence photomicrographs of representative cortical regions in three 
selected organoid generation protocols. A’) Non-cortical region in organoid generated 
with Lancaster protocol, which resembles choroid plexus in organization. B’) Cortical 
region of organoid generated with Qian protocol but lacking the distinct radial 
organization seen in (B). D) Visual summary of protocol generation protocols. All 
protocols utilize the same first step of single-cell dissociation and re-aggregation in 96-
well plates. E) Example of 90-day organoids generated with Paşca protocol and 
demonstrating robust GFAP expression, suggestion formation of astrocytes. Wide 
variability between individual organoids can be seen, which makes quantification of cell 
representation difficult. Scale bars are 100µm in (A-C) and 1mm in (E). 
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taken advantage of in the previous chapter to validate the monolayer findings of 

impaired initiation of XIST transcription in postmitotic neurons, and this protocol could 

be used for other studies going forward, particularly for examination of early VZ 

formation and the cell dynamics within VZs. While some batches generated robust VZ-

containing organoids, others did not produce the characteristic morphology, potentially 

due to inconsistencies in Matrigel embedding and subsequent disembedding (Figure III-

1B’). This, along with the increased labor required to generate these organoids with 

Matrigel embedding, motivated us to find another protocol that could generate 

organoids with higher throughput.  

 To this end, we generated cortical spheroids, this time with some significant 

modifications in order to consistently generate organoids in our hands (Paşca et al., 

2015). Most significantly, the exposure to SMAD inhibitors was increased from one to 

two weeks, and the subsequent mitogen and neurotrophin treatments were thus 

delayed by one week. Nevertheless, this protocol produced large spheroids containing 

smaller VZ-like zones along with some unorganized progenitor containing areas (Figure 

III-1C). A visual summary of the organoid differentiation protocols tested in this chapter 

is provided in Figure 3.1D. Additionally, prolonged culture generated significant 

numbers of GFAP-expressing astrocytes (Figure III-1E), production of which is limited in 

other protocols due to the lack of a progenitor expansion step. Together, these 

favorable characteristics encouraged us to utilize this organoid generation protocol 

going forward to examine the effects of trisomy on neurodevelopment in aged 

organoids. 
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After early attempts to analyze potential differences in cell type representation 

using histological methods, we quickly came to the conclusion that the still-large degree 

of variability from organoid to organoid makes accurate quantification a particularly 

difficult task (Figure III-1E). For this reason, we turned to bulk RNA sequencing to 

determine cell type representations of trisomic and disomic organoids. 

Initial studies identify differences in organoid cell type representation  

Our first pilot RNA sequencing experiment in organoids used bulk RNAseq of 10 

organoids aged for 160 days, five from an isogenic trisomic (parental) line and five from 

the euploid control line. Use of isogenic lines avoids differences in genetic background, 

and the comparison of subclones of the same iPS line avoids differences in the iPS 

reprogramming process or the somatic cell of origin. The overall strategy was to 

generate bulk sequence data and use published gene sets for different cell-types to 

deconvolve the cell-type representation of the bulk sequencing. To evaluate the 

variation between individual organoids in this first experiment, we sequenced the 10 

organoids individually. 

We generated RNAseq data for the 10 organoids, each sequenced to a depth of 

~30 million reads with 100bp paired-end reads, which provided strong quantification of 

mRNA levels for each gene, as evidenced by the reproducible difference in chr21 

expression between trisomic and disomic organoids (Figure III-2A). Further analysis of 

the transcriptome differences between disomic and trisomic organoids indicated that, in 

addition to changes in upregulation of many chromosome 21 genes (red), there were 

widespread changes in expression levels of non-chromosome 21 genes between these 

samples (Figure III-2B). As described in the introduction, widespread differences in non- 
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Figure III-2: Initial studies identify differences in interneuron or glia cell 
representation between small pools of disomic and trisomic organoids  
 
A) Fraction of chromosome 21 reads in each individual organoid sequenced. Trisomic 
organoids have close to the expected 1.5-fold increase in chromosome 21 expression 
compared to disomic organoids. B) Volcano plot comparing 5 trisomic vs. 5 disomic 
organoids. Chr21 genes are circled in red and expression level is signified by colors 
ranging from blue (low expression) to green (high expression). DLX family genes and 
GFAP are labelled. C) Estimated composition of each organoid into cell types using 
defined gene sets (further described in methods section). D-E) Pooled qPCR 
quantification of DLX1 (D) and GFAP (E) expression, normalized to GAPDH. Each dot 
represents a pool of ~8 organoids. Colors represent independent organoid 
differentiations. 
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chromosome 21 gene expression is currently a common finding in published studies of 

trisomy. 

Most notably, analysis of differentially expressed non-chr21 genes between the 

two conditions showed many DLX family genes, each identified as downregulated on 

average in the trisomic organoids (Figure III-2B). These genes are well-known for their 

involvement in the specification and migration of ventral forebrain-derived interneurons 

(Anderson et al., 1997; Cobos et al., 2007; Paina et al., 2011; Stühmer et al., 2002), and 

there have been mixed reports in human samples and cell models of whether 

interneuron generation is decreased or increased due to trisomy (Bhattacharyya et al., 

2009; Huo et al., 2018; Ross et al., 1984; Wisniewski, 1986; Xu et al., 2019). 

To further investigate whether other interneuron-related genes followed the same 

pattern, and to determine whether other cell types also had altered representations in 

trisomic organoids, we utilized marker gene lists recently generated by single-cell RNA 

sequencing of human cerebral organoids (Quadrato et al., 2017). There could be a 

statistically significant difference on average between these two samples of five versus 

five organoids, but that does not itself address whether this reflects a consistent 

difference in neurodevelopment between these trisomic versus control cells. 

Deconvolution of cell type representations for each individual organoid demonstrated 

overrepresentation of forebrain-derived cells in the disomic condition, largely driven by 

an increase in interneuron generation (Figure III-3C). Importantly, this effect was driven 

by three disomic organoids which had large numbers of this cell type, whereas two 

disomic organoids had similar interneuron composition to the trisomic organoids. A 

second difference in cell-type representation was observed for radial glia cells, which 
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were overrepresented in trisomic organoids, with a corresponding increase in GFAP 

expression, a gene also expressed in astrocytes, in these samples (Figure III-2B). Thus, 

despite using a directed organoid generation protocol, significant variability between 

individual organoids in interneuron formation weakens any conclusions that can be 

drawn on this point.  

 In an attempt to minimize differences between individual organoids, and to 

investigate whether similar findings could be identified in younger organoids, we 

generated several batches of organoids grown for 90 days and examined them in pools 

of ~8 organoids by RT-qPCR for a prominent marker of interneurons, DLX1, as well as 

for GFAP. We found that DLX1 expression remained highly variable between 

experiments and inconsistently showed an increase in disomic organoids over trisomic, 

although we note that higher expression in organoids from the parental (trisomic) line 

was not seen in these experiments (Figure III-2D). On the other hand, GFAP expression 

was consistently upregulated in the trisomic organoids, by about 3-fold (Figure III-2E). 

This indicates that either the trisomic cells generate more radial glia and/or astrocytes, 

or that these cell types produce higher levels of GFAP mRNA in the trisomic condition.  

Expanded experimental design to discriminate differences due to trisomy 21 

The above findings provide some evidence of differences in organoid 

development that correlates with the trisomic condition, but questions remain as to 

whether these differences could reflect other sources of variability. Therefore, we 

greatly expanded the experimental design in order to increase the power to discriminate  

differences due to trisomy from differences due to variability between individual 

organoids, different experiments, or even between isogenic cell lines. In this experiment  
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Figure III-3: Expanded experimental design to discriminate differences due to 
trisomy 21 
 
A) Micrographs of nearly all organoids generated in this experiment. Independent 
differentiations are signified by “org”, isogenic trisomic lines by “par”, and isogenic 
disomic lines by “dis”. B) Schematic of samples generated. Each of the 48 dots 
represents 12 organoids and one sample for sequencing, while the 3D cylinders signify 
in silico collapsing for statistical comparison. C) Fraction of chromosome 21 reads for 
each pooled sample sequenced. D) Estimated composition of each sample into cell 
types using defined gene sets. E) Estimated cell-type composition of collapsed samples 
used for statistical comparison. 
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we generated a total of over 1,000 organoids from three trisomic and three disomic 

isogenic iPSC lines (Figure III-3A), which were derived from the same iPS cell 

reprogramming event. To minimize effects of individual organoid differences, we 

examined pools of 12 organoids, generating four pools per cell line, and this scheme 

was repeated in four independent batches of organoids. Roughly half of these 

organoids were used for bulk RNA sequencing, with 2 pooled samples per cell line per 

batch, for a total of 48 samples (Figure III-3B). The remaining organoids were frozen for 

histology and media preserved for potential future analyses on parallel samples. 

Initial sequencing analysis confirmed expected differences in chromosome 21 

expression, with all trisomic lines having ~1.5-fold higher levels of chromosome 21 

transcripts compared to disomic lines (Figure III-3C). We next set out to use this 

transcriptome data to determine the cell type composition of each sample using the 

same list of gene markers described above, based on published single-cell seq studies 

defining specific gene sets. We found that nearly every sample was mostly composed of 

forebrain-type cells, with significant contributions from astroglia, dopaminergic neurons, 

neuroepithelial cells. Surprisingly, this analysis revealed that some organoid samples 

contained a subset of mesodermally-derived cells (Figure III-3D), suggesting some 

degree of off-target differentiation.  

Notably, there was no consistent or statistically significant difference in the 

proportions of the categorized cell-types between the disomic and trisomic states 

(Figure III-3E). Differences in cell-type representations between cell lines of the same  

state (disomic or trisomic) were detected, but these were not consistent between the 

disomic versus trisomic lines. Comparison of results for a given line between 
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independent differentiations suggested that some variation appears sporadic but may 

also reflect inherent epigenetic differences between even isogenic cell lines which may 

evolve in culture (Table III-1). We cannot rule out that the variability detected between 

cell lines may mask the presence of more subtle differences in the propensity of disomic 

and trisomic organoids to form different neural cell types.  

 A theme of recent transcriptome studies in DS cells and tissues is the finding of 

extensive transcriptome-wide differences between trisomic and euploid samples. This is 

also suggested in our initial experiment comparing individual organoids from trisomic 

and disomic iPSCs. To determine whether this expanded organoid experiment would 

affirm a similar finding, we examined differentially expressed genes (DEGs) between 

disomic and trisomic organoids. An important aspect of this statistical analysis was to 

avoid amplification of clone-specific differences by treating repeated measurements 

from different experiments on the same cell sample as four independent measurements, 

a form of pseudoreplication which results in inappropriately inflated p-values. Thus, our 

analysis collapsed replicate samples and samples from different differentiations of the 

same cell line and compared organoids generated from the 3 trisomic lines to 3 isogenic 

disomic lines (Figure III-3B).  

This analysis detected strong upregulation of genes across chromosome 21, with 

159 of 250 expressed chr21 genes meeting statistical criteria for differential expression, 

generally at or near the 1.5-fold level expected in trisomic cells (Figure III-4A). 

Interestingly, a notable exception was the RWDD2B gene, which was over 13-fold 

upregulated in trisomic samples. The most striking finding, however, was that despite 

the robust detection of differentially expressed chromosome 21 genes, no non-chr21  
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Figure III-4: Genome-wide transcriptome analysis of expanded organoid 
experiment 
 
A) Volcano plot of collapsed 3 vs. 3 comparison of trisomic and disomic conditions. 
Chr21 genes are circled in red. No statistically significant (FDR<0.1) genes are 
detected. B) Volcano plot of the same comparison as in (A) but including the degree of 
forebrain representation as a covariate for each sample. The 3 non-chr21 genes that 
are identified as statistically significant (FDR<0.1) are labelled. C) Individual gene plots 
for two astrocyte marker genes, GFAP and AQP4 which do not meet statistical 
difference thresholds but trend towards higher levels in trisomic samples. D) Expression 
level in each sample of two of the non-chr21 genes identified in (B) as statistically 
significant plotted against estimated forebrain composition demonstrating strong 
correlation. 
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transcriptome changes were detected (FDR<0.1) in this greatly expanded experiment. 

This suggests that the genome-wide differences found in the smaller-scale experiment 

above (Fig III-2B) may reflect biological differences between the cell lines compared, 

rather than due to trisomy. However, two astrocyte marker genes, GFAP and AQP4, 

both showed a trend towards upregulation in trisomic samples, although these did not 

meet this significance threshold, likely due to variable expression between samples 

(Figure III-4C).  

 The paucity of non-chr21 DEGs detected in this expanded study fits with the lack 

of consistent differences in cell type representation between the two groups shown 

above, since consistent differences in cell-type representation would likely result in 

many cell-type specific genes being differentially expressed between the two groups. 

On the other hand, inconsistent variation in the cell type representations between all the 

cell samples (not correlated with trisomy/disomy) might increase gene expression 

variability that potentially could obscure any subtle changes in gene expression 

between the two groups. In an attempt to correct for this possible effect, we normalized 

the data in each sample for the dominant cell type, the proportion of forebrain cells. 

Importantly, this correction increased the number of significantly DE chr21 genes to 175 

(Figure III-4B), indicating an increase in power due to decreased variance by correcting 

for differences in cell type representations between cell lines. Off of chr21, three hits 

emerged, SOX4, APOE, and a lowly expressed pseudogene RP11-848P1.9. As 

expected for the emergence of significant genes when correcting for cell type  

representation, SOX4 and APOE are correlated, positively and negatively, respectively, 

with the estimated proportion of forebrain cells (Figure III-4D). Of these, SOX4 
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expression was downregulated in trisomic samples, whereas APOE and RP11-848.9 

were more highly expressed. The implications of these findings are considered in the 

discussion. 

Discussion 

 The overall goal of this study was to use recently developed cerebral organoid 

technology to shed light on the molecular and cellular pathways altered in early DS 

neurodevelopment. Understanding how and when brain development and/or function is 

impacted in DS is critical to assess therapeutic prospects to mitigate cognitive or 

neurological deficits due to trisomy 21. Numerous studies report a variety of differences 

thought to be due to trisomy in mouse models or human DS tissues and cells. However, 

results are often inconsistent or even contradictory between studies. Experiments here 

focused on disease modeling with human iPSC and organoid technology and the overall 

findings have significant implications for understanding the extent to which trisomy 21 

impacts early fetal neurodevelopment.  

 As this study progressed from smaller scale experiments to the much larger final 

experiment, we worked to minimize or account for potential sources of variation in 

human cell modeling of DS on several levels. From the start we used a totally isogenic 

system, generated organoids with a semi-directed (less variable) forebrain protocol, and 

used multiple large pools of organoids per sample in order to control for individual 

organoid variability. The larger numbers of pooled organoids were generated from each 

of six isogenic lines (three trisomic and three disomic) that are subclones representing 

the same iPSC reprogramming event, which may be important, as some have reported 

a differential capacity for neurogenesis of different iPSC lines derived from single 
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somatic cells (Koyanagi-Aoi et al., 2013). Finally, the entire large organoid production 

scheme was repeated four times, allowing us to assess and account for variability 

between experiments.  

Due to these efforts we were able to improve detection of what is a relatively 

subtle 1.5-fold expected increase in expression for individual chromosome 21 genes, 

with over 70% of expressed chr21 genes meeting statistical criteria for differential 

expression due to trisomy. This is substantially more chr21 DEGs than detected in our 

smaller experiment or in most studies of DS tissues or cells, which, paradoxically, report 

many more off-chr21 DEGs than found here (Letourneau et al., 2014; Mowery et al., 

2018; Olmos-Serrano et al., 2016; Vilardell et al., 2011; Weick et al., 2013). Despite 

especially robust detection of chr21 DEGs, our largest experiment did not find 

significant evidence for genome-wide transcriptional deregulation of non-chr21 genes. 

In our smaller experiment (comparing five organoids each from a trisomic and a disomic 

line), more genome-wide expression differences were detected between these samples, 

but, importantly, the larger analysis leads us to reinterpret these results as likely 

reflecting other sources of biological variability that we cannot conclude is 

“dysregulation” due to trisomy 21.  

Consistent with a lack of abundant non-chr21 DEGs, the more powerful 

experimental design did not detect statistically significant differences in cell-type 

representations between trisomic and disomic organoids. Instead, despite pooling large 

numbers of organoids to eliminate individual organoid variability, we saw considerable 

variability between cell lines of the same chr21 state. Additionally, while some lines, 

such as DisB, consistently generated similar proportion of cell types from differentiation 
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to differentiation, others, like ParA, had considerable variability from one differentiation 

to another. These differences between cell lines of the same condition could obscure 

subtle changes in cell type representation caused by trisomy 21. 

 Organoid technology affords the opportunity to examine development of a 

greater complexity of cell-types, however that complexity also can introduce analytical 

challenges. Our analysis showing overall variation in cell-type proportions persists 

between samples, even in a more highly powered experiment than generally used, and 

this variation can weaken the power to identify differences genuinely due to trisomy 21. 

In an effort to minimize this noise, we normalized results for the proportion of forebrain 

cells in each sample. Following this correction, three statistically significant non-chr21 

genes were found, two of which link to important cellular processes which could be 

aberrant in a range of DS neural cell types. Notably, SOX4 has been shown to affect 

oligodendrocyte development by induction of a Notch target gene (Braccioli et al., 2018) 

and missense mutations in SOX4 have recently been identified in patients with 

intellectual disability and facial dysmorphism (Zawerton et al., 2019). The role that 

SOX4 plays in DS neurodevelopment has not been examined but results here suggest 

a new hypothesis and opportunity to explore both the upstream cause (stemming from 

trisomy 21) of SOX4 dysregulation and its downstream consequences. Similarly, it 

seems striking that results also indicated dysregulation of the APOE gene which, 

through its isoforms, has been strongly linked to the risk of developing AD (Poirier et al., 

1993). Interestingly, it has been suggested that the expression level of APOE, which we 

found to be elevated in trisomic samples, may play also play a role in AD pathogenesis 

(Riddell et al., 2008). 
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Previous studies in iPS-derived DS cells have described a range of findings with 

many reporting no difference in the neuronal differentiation capacity of DS cells (Briggs 

et al., 2013; Gonzales et al., 2018; Lu et al., 2013; Shi et al., 2012b; Weick et al., 2013). 

Other studies using unrelated disomic and trisomic iPSCs in a monolayer culture 

system have demonstrated an increase in the proportion of astroglia formed by trisomic 

cells (Chen et al., 2014). Another very recent study generated patterned ventral 

forebrain organoids using DS cells and found an increase in the propensity of trisomic 

cells to form interneurons, which was correctible by knockdown of a chr21 gene, OLIG2 

(Xu et al., 2019). This finding is surprising given previous studies in iPSCs and primary 

human cells that describe the opposite finding (Bhattacharyya et al., 2009; Huo et al., 

2018; Ross et al., 1984; Wisniewski, 1986). While our findings are not directly 

comparable to this study due to significant differences in the organoid generation 

protocol, one clear advantage of utilizing organoids patterned towards a specific 

forebrain subregion as in Xu et al. (2019), is a decrease in the variability between 

organoids and the number of different cell types formed, which may allow for enhanced 

detection of disease-specific differences.  

Overall, these results raise caution about false-positive results, but also potential 

false negative results, arising due to variability from organoid to organoid, batch to 

batch, and cell line to cell line. Neurodevelopmental phenotypes may be quite subtle 

and difficult to model with iPSCs, as discussed elsewhere (Soldner and Jaenisch, 

2012). In the current study we believe we have sufficiently minimized the variability 

between organoids by studying over 500 trisomic and 500 disomic organoids. However, 

our analysis reveals that in the end, when other sources of variability are addressed, 
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these organoids are derived from three trisomic and three trisomic isogenic cell lines, 

and differences between those cell lines exist and can over-shadow milder phenotypes. 

In fact, epigenetic drift in pluripotent cells was earlier demonstrated in our lab and others 

by demonstrating variability in X-chromatin modifications and XIST RNA status in 

female ES cell lines (Hall et al., 2008; Silva et al., 2008), which we showed evolve even 

between colonies within the same culture dish (Hall et al., 2008). Thus, even isogenic 

subclones can develop epigenetic differences over time that complicate disease 

modeling. 

Ultimately, recently-developed cerebral organoid techniques offer the possibility 

to more accurately model the early stages of human neurodevelopment with the added 

potential to apply modern cellular biology techniques and manipulations to study 

previously inaccessible developmental programs in unprecedented detail. However, 

precise differentiation protocols must be tailored to the specific experimental question at 

hand and currently may result in highly variable differentiation conditions which 

necessitate examination of a large number of independent samples to identify 

interesting differences that emerge from the noise of variability. 

Materials and Methods 

iPSC culture 

 iPSCs were cultured and maintained as described in the previous chapter. Cell 

lines were verified for appropriate number of copies of chromosome 21 by FISH for a 

chr21 gene, APP, before each series of differentiations. RNA sequencing confirmed 

appropriate chr21 copy number. 
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Cerebral organoid differentiation 

 Lancaster protocol: organoids were generated as previously described 

(Lancaster and Knoblich, 2014; Lancaster et al., 2013). Briefly, iPSCs were dissociated 

into single cells and plated at a density of ~9,000 cells/well in 96-well round-bottom 

ultra-low attachment plates (Corning) in iPSC media containing 4ng/ml thermostable 

FGF-2 (Millipore) and 50µM Y-27632 (Tocris Bioscience). After 6 days, organoids were 

transferred to ultra-low-attachment 24-well plates in N2 and heparin-containing neural 

induction media. Organoids were embedded in Matrigel droplets on day 11 of 

differentiation and grown for 4 days before transferring to an orbital shaker set at ~100 

RPM.  

 Paşca protocol: spheroids were generated as previously described (Paşca et al., 

2015) with significant alterations. The first steps of the protocol were performed as 

above, using a re-aggregation strategy. Cells were re-aggregated in 96-well plates in 

iPSC media containing 20ng/ml thermostable FGF-2 and 50µM Y-27632. The next day, 

half the media was exchanged with neural differentiation media (NDM) containing 2uM 

DMH1 (Tocris Bioscience) and SB431542 (Tocris Bioscience) as described in the 

previous chapter. Organoids were fed with this media every day for 14 days. After 14 

days, media was changed to neural media containing 20ng/ml FGF-2 and EGF 

(Peprotech) as described (Paşca et al., 2015) and moved to ultra-low attachment 24-

well plates. From this point forward, organoids were grown on an orbital shaker set at 

~100 RPM to improve aeration. At day 32, FGF-2 and EGF were replaced with 20ng/ml 

of BDNF (Peprotech) and NT-3 (Peprotech) for 18 days. At day 50, organoids were fed 

every other day with neural media without any supplements. 
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 Qian protocol: forebrain organoids were generated as described in the previous 

chapter. 

Cell fixation, RNA FISH, and immunofluorescence 

 These steps were performed as described in the previous chapter for organoid 

samples. Primary antibodies used in these experiments are listed in Table III-3. 

RNA isolation, cDNA library preparation, and high-throughput sequencing 

 These steps were performed as described in the previous chapter with the 

following modifications. Whole organoids were washed once with 1X PBS and placed 

into 2ml microcentrifuge tubes containing one 5mm steel bead (Qiagen) and 1ml of 

Trizol reagent (ThermoFisher). These samples were homogenized using the 

TissueLyserII instrument (Qiagen) on the P1 setting. Beads were then removed using a 

magnet and samples were either stored at -80C or RNA extraction, DNAse treatment, 

and RNA cleanup was performed immediately as described in the previous chapter. All 

samples had an RQN > 7.5 and strand-specific sequencing libraries were prepared 

using the NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina® in 

conjunction with the NEBNext® Poly(A) mRNA Magnetic Isolation Module and 

NEBNext® Multiplex Oligos for Illumina® (New England Biolabs). 

Sequencing was performed by the UMass Medical School Deep Sequencing 

Core Facility on the Illumina HiSeq4000 platform to a depth of ~8 million reads/sample 

in the case of the large organoid experiment or on the NextSeq instrument to a depth of 

~30 million reads/sample in the case of the pilot experiment. 
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RNA sequencing analysis 

Read alignment and counting was performed as described in the previous 

chapter.  

Cell type representation deconvolution was performed using the BSeq-SC 

algorithm (Baron et al., 2016). Pre-averaged pseudobulk estimates of single cell 

sequencing data from Quadrato et al. (2017) were used as the basis vectors for 

deconvolution. The top 20 marker genes ranked by p-value for each cell cluster were 

used to determine cell type representation estimates. 

The quasi-likelihood test in the edgeR package for R was used to determine 

differential gene expression. Replicate samples and repeated differentiations of the 

same cell line were summed together to form a 3 vs. 3 comparison. Multiple comparison 

correction was performed separately for chr21 and non-chr21 genes to determine 

significant differential expression. For cell type representation correction, the estimated 

proportion of forebrain cells was included as a covariate in the statistical model. 

Reverse transcription and qPCR 

 RNA was extracted and processed as described above and in chapter II. 

Reverse transcription was performed using SuperScript III reverse transcriptase 

(ThermoFisher) per manufacturer’s instructions and using random hexamers for first 

strand synthesis. cDNA was then diluted, and qPCR reaction was set up using iTaq 

Universal SYBR Green Supermix (BioRad) per manufacturer’s instructions with the 

primers listed in Table III-2. The qPCR reaction was performed on the BioRad C1000 

Touch thermal cycler. GAPDH was used for normalization and quantification was 

performed using the DDCt method (Livak and Schmittgen, 2001). 
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Table III-2: qPCR primers used in chapter III 

Gene Primer Sequence 

GFAP F 5’-AAG-CTG-CTA-GAG-GGC-GAG-GAG-AAC-3’ 

R 5’-TGA-CAC-AGA-CTT-GGT-GTC-CAG-GCT-3’ 

DLX1 F 5’-GGC-TGT-TTG-CCA-ATT-CAG-GGT-TCT-3’ 

R 5’-TTC-GGC-TCC-AAA-CTC-TCC-ATA-CCA-3’ 

GAPDH F 5’-TGC-ACC-ACC-AAC-TGC-TTA-GC-3’ 

R 5’-GGC-ATG-GAC-TGT-GGT-CAT-GAG-3’ 

F = forward; R = reverse 
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Table III-3: Primary antibodies used in chapter III 

Antibody Host Source Identifier 

NeuN  mouse monoclonal Millipore MAB377 

Sox2  rabbit polyclonal Millipore AB5603 

TUBB3 (Tuj1)  mouse monoclonal Biolegend MMS-435P 

Sox1   goat polyclonal R&D Systems AF3369 

GFAP rabbit polyclonal Chemicon AB5804 

PAX6 rabbit polyclonal Biolegend 901301 
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CHAPTER IV : Discussion and conclusions 

 The work presented in this thesis aims to demonstrate the utility of dosage 

compensation and cerebral organoids as experimental model systems to study DS 

neurodevelopment and to advance the possibility of chromosome therapy as a 

therapeutic strategy. A discussion of the results using these experimental model 

systems will be presented here, and a forward-looking evaluation of the potential of 

XIST as a therapeutic will be considered in chapter V. 

Dosage compensation to model disease 

 Work in our lab has translated the natural mechanism of dosage compensation 

orchestrated by the XIST gene to Down syndrome. We have demonstrated that an XIST 

transgene is capable of silencing an entire autosome in an inducible manner in DS 

iPSCs (Jiang et al., 2013), and that silencing of the extra chromosome can prevent 

known in vitro pathologies, such as in the hematopoietic system (Chiang et al., 2018). 

This system provides a novel way to study DS pathology by allowing for comparison of 

otherwise identical cells, with either two or three active copies of chromosome 21. This 

bypasses some of the limitations of in vitro modeling that relies on comparison of 

different cell lines, which, particularly in the case of iPSCs, can diverge over time in 

culture in ways that are unrelated to the pathology in question (Soldner and Jaenisch, 

2012; Young-Pearse and Morrow, 2016). The work presented in this thesis further 

advances the utility of this model on several fronts. 
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Dosage compensation in differentiated cells 

 In chapter II I demonstrated that contrary to the current literature, XIST is capable 

of inducing chromosome silencing in differentiated cells. This was demonstrated for 

NSCs at several timepoints in differentiation. In addition to the therapeutic possibilities 

of XIST being able to silence in differentiated cells, this also has important implications 

for both basic epigenetics and disease modeling.  

 The initial finding that XIST was incapable of initiating silencing just 48 hours 

after differentiation in mouse ESCs (Wutz and Jaenisch, 2000) generally fits with the 

idea that pluripotent cells, unlike differentiated cells, exist in a malleable epigenetic state 

that is amenable to drastic chromosomal restructuring processes like X chromosome 

inactivation. Indeed, studies have confirmed that pluripotent cells, when compared to 

their lineage-committed daughters, have unusually high levels of open chromatin marks 

(Azuara et al., 2006; Mikkelsen et al., 2007). Regions of open chromatin in pluripotent 

cells are balanced by marks of heterochromatin at the same loci (Azuara et al., 2006), 

preventing precocious expression of lineage-specific genes. It is easy to imagine how 

this “razor’s edge” of pluripotency is naturally permissible to chromosome-wide 

silencing, and how this ability may be lost in differentiated cells with narrowed 

developmental competence where large swaths of the genome have already been 

packed away in heterochromatic compartments. 

 Of course, this supposed unmalleable differentiated state has been shown to be 

malleable experimentally by the relatively recent finding that somatic cells can revert to 

the pluripotent state by the addition of a few key transcription factors (Takahashi and 

Yamanaka, 2006). Indeed, the chromatin state of iPSCs has been shown to be largely 
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identical to ESCs (Guenther et al., 2010), demonstrating a complete restructuring of 

nuclear architecture by the relatively minor perturbation of exogenous transcription 

factor expression. These findings force the reimagination of what a “stable” epigenetic 

state truly entails. 

Our results demonstrating the natural ability of differentiated cells to enact a 

chromosome-wide silencing process provide further evidence that the differentiated 

state is more malleable than previously believed. While differentiated cells are capable 

of initiating the silencing process, the prolonged silencing process that we describe may 

reflect their altered epigenetic status compared to pluripotent cells. While others have 

demonstrated the ability of mouse hematopoietic progenitors to undergo chromosome 

silencing (Savarese et al., 2006), it is unknown whether all differentiated cell types are 

capable of undergoing this process. The current study focused on neurodevelopment 

and demonstrated the silencing capacity of neural stem cells. An important area of 

future work will involve empirical testing in other cell types to determine their silencing 

capacity. An intriguing possible outcome is that differentiated cells generally show 

significant capacity to initiate silencing, but potentially with varying competency or 

kinetics, which could enable high-resolution examination of the order of XIST-mediated 

chromosome silencing events. For example, the extended silencing timeline of NSCs in 

this study allowed us to easily discern the temporal order of polycomb-mediated 

heterochromatin modifications, which further supported recent findings suggesting that 

H2AK119ub1 is laid down prior to H3K27me3 (Almeida et al., 2017; Tavares et al., 

2012). Further analysis of different cell types could help elucidate key factors required 

for the silencing process, and those involved in its modulation. 
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In addition to providing important insights into basic epigenetics, the ability of 

differentiated cells to initiate silencing also provides the unique ability to study the 

development of pathology in trisomy. Most genetic disease modeling studies use iPSCs 

or mouse models to compare control cells or animals to mutant cells harboring a genetic 

insult, but it is a challenge to determine when defects arise over the course of 

development. The studies presented here demonstrate the ability of our inducible 

system to harness a natural epigenetic mechanism to functionally correct the gene 

dosage imbalance of DS at different stages of differentiation. This powerful strategy will 

allow for a suite of studies in different cell types that may elucidate the specific cell-

types and developmental origins of pathology in DS. Moreover, this approach can 

address at what points these pathologies are reversible. 

For example, in this thesis we demonstrated the enhanced neurogenic capacity 

of neural stem cells in which XIST expression was not initiated until halfway through the 

differentiation process, implying a correctible defect in NSCs. This would provide a 

particularly powerful technique to study postmitotic neurons, whose possible ongoing 

dysfunction (Caviedes et al., 1990; Weick et al., 2013) could account for at least part of 

the cognitive disability in DS individuals. While we have shown that neurons are capable 

of maintaining XIST expression and chromosome silencing, if DS neurons were also 

shown to support the initiation of silencing, then this would afford a unique perspective 

into how trisomy 21 affects the ongoing function of a neuron. Comparison of trisomic 

and euploid cells with an identical differentiation history could eliminate several 

confounding variables unrelated to trisomic transcription and could more definitely 

address these key questions.  



 126 

The ability to initiate chromosome-wide silencing in differentiated cells has wide-

ranging implications beyond the dosage compensation field. It clearly illustrates the 

natural epigenetic plasticity of differentiated cells that has been increasingly appreciated 

in recent years and offers a previously unachievable opportunity to study the effects of 

transcriptional correction of trisomic cells at different stages of development. 

Identification of affected pathways in DS neurodevelopment using dosage 

compensation 

 In addition to demonstrating the ability for differentiated cells to initiate dosage 

compensation, we also discovered a specific effect that reducing trisomic cells to 

functional disomy had on their neurogenic potential. We saw that cells with a silenced 

third copy of chromosome 21, either from the onset of differentiation or halfway through, 

formed a higher proportion of neurons than trisomic cells. This was initially revealed by 

single-cell RNA sequencing analysis and confirmed cytologically in multiple transgenic 

iPSC clones. Transcriptional analysis further identified a significant difference in Notch 

pathway genes between trisomic and disomic cell states. The well-known involvement 

of the Notch pathway in controlling the transition of NSCs to neurons suggests that the 

downregulation of this pathway in silenced cells may be responsible for their enhanced 

neurogenic potential or kinetics. Additionally, the finding that one of our most significant 

hits, TTYH1, has been reported to function upstream of Notch signaling (Kim et al., 

2018), suggests a new potential area of investigation to look for regulators of TTYH1 or 

its upstream mechanisms encoded on chr21.  

The association of chr21 genes to specific cellular phenotypes has been a major 

challenge in the field, and future studies could utilize classical biological perturbation 
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tools for interrogating the involvement of single chr21 genes in generating this 

phenotype. One association that has been proposed, the dependence of an over-

production of interneurons in a mouse model on the Olig1/2 genes (Chakrabarti et al., 

2010), has recently been suggested to play a similar role in a human in vitro cell model 

(Xu et al., 2019). However, substantial evidence from other mouse models and human 

studies suggest this association may not be a consistent effect across model systems 

(Bhattacharyya et al., 2009; Huo et al., 2018; Ross et al., 1984; Wisniewski, 1986). 

Perhaps one of the few reproducible associations with strong evidence in patients is the 

role of APP in AD pathology. Thus, novel strategies to elucidate genotype-phenotype 

associations are needed, and XIST-based tools being developed in our lab to inducibly 

silence small portions of chromosome 21, including the important DYRK1A locus, could 

play a role in narrowing key chr21 loci in DS pathology.  

We believe our phenotypic findings in chapter II reflect the ability of inducible 

dosage compensation to identify chr21-dependent cellular effects because of the 

uniquely well-controlled nature of this system. As discussed in that chapter, we did not 

identify a difference in the neurogenic capacity between the trisomic and disomic cell 

lines examined. As detailed in chapter III, a wide assortment of variables affects iPSC 

disease modeling in general (Table III-1), most of which are mitigated or eliminated by 

comparison of trisomic cells to dosage corrected cells in the same culture. 

For example, we found that the dosage corrected cells preferentially 

differentiated over trisomic cells while in the same exact environment with identical 

Notch ligand expression. The initial preferential differentiation of dosage compensated 

cells could be due to a cell autonomous effect of reduced intrinsic Notch signaling. 
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However, the Notch pathway acts through well-known mechanisms of lateral inhibition 

(Gaiano and Fishell, 2002) whereby a newly differentiated neuron expresses Notch 

ligands that enhance Notch signaling in adjacent cells, reducing their propensity to 

differentiate. Thus, newly-differentiated dosage compensated cells would upregulate 

Notch ligand expression, preventing differentiation of adjacent cells and potentially 

amplifying the difference seen between disomic and trisomic cells. This possibility has 

implications beyond DS for studying many developmental diseases. Examining disease 

and non-disease cells grown together has the potential to identify differences that could 

otherwise be masked by a variety of non-disease related factors. 

Of course, the use of XIST-mediated chromosome silencing is not without its own 

set of limitations. As shown in chapter II, corrected XIST+ cells are more likely than 

XIST- cells to also express the tetracycline transactivator that is required for XIST 

expression in this system. While we did not see a difference in Notch gene expression 

between TET+ and TET- cells in a non-XIST transgenic line also treated with dox, other 

findings from our lab have shown that many genes are differentially expressed when 

such transactivator-containing cells (without an inducible XIST transgene) are treated 

with dox (data not shown). Thus, inclusion of such a line is important in any studies 

using an inducible system. Additionally, it is possible that XIST expression itself, 

independent of its chr21 silencing function, could somehow affect the neural 

differentiation potential of NSCs. We consider this to be a remote possibility based on 

the biology of XIST and its ubiquitous expression in female cells, but future studies 

could also include plasmid-based XIST expression as a control for this unlikely 

possibility.  
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Ultimately, we have demonstrated the ability of the recently-developed system of 

dosage compensation to correct neurodevelopmental defects in trisomy 21, potentially 

through its action on specific signaling pathways. Additionally, the demonstrated ability 

of this system to dissect precise developmental windows of opportunity has enormous 

potential to advance our understanding of DS pathogenies, which could ultimately lead 

to the development of conventional therapeutics targeting specific affected pathways. 

However, there has been suggestion in the literature that many aneuploid phenotypes 

could be caused by overall cellular stress caused by trisomic transcription and/or 

translation (Bonney et al., 2015; Oromendia et al., 2012; Sheltzer et al., 2012), which 

would imply that there may not be simple gene-phenotype associations for at least 

some aspects of DS. Addressing these phenotypes would thus necessitate a 

chromosome silencing approach, as discussed further in chapter V. 

 Cerebral organoids to study DS neurodevelopment 

Challenges to organoid modeling of subtle neurodevelopmental phenotypes 

In chapter III, we evaluated several novel organoid protocols with the goal of 

modeling trisomy 21 neurodevelopment in a more biologically relevant three-

dimensional environment. Our smaller early experiments identified promising alterations 

in cell type representation between trisomic and disomic organoids. However, due to 

high organoid-to-organoid variability we questioned if these differences were genuinely 

due to trisomy, and thus pursued expanded studies utilizing large numbers of organoids 

and three isogenic lines per condition, which could not confirm these conclusions. Thus, 

we did not identify consistent cell type representation differences due to trisomy in this 
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system. This raises the question as to whether any strong cellular phenotypes should 

be expected at this stage of DS neurodevelopment. 

As discussed in detail in chapter III, there are a number of sources of variation 

that we worked to control for in this study (Table III-1). While we believe this is a 

stronger study than most, variability between samples could still have influenced our 

results. While the experimental design has likely minimized false positive findings, the 

significant degree of variability in cell type representation between subclones of the 

same condition could mask any subtle differences in cell type representation that are 

due to trisomy. Additionally, while some lines had consistent cell type composition from 

differentiation to differentiation, others had a drastically different cell make-up from one 

experiment to the next. This could imply either epigenetic or environmental factors that 

significantly affect the differentiation of organoids and could make elucidation of cell 

type differences due to trisomy quite difficult. As in any in vitro cell culture modeling, it is 

also possible that the experimental conditions and exogenous factors present in the 

media, like mitogens and neurotrophins, could override real biological differences 

between chr21 states and lead to roughly similar cellular composition. Finally, it is 

possible that at the modeled stage of neurodevelopment, there is negligible or no effect 

of trisomy 21 on cerebral organoid development. The same factors described above 

could also explain the associated finding of very few non-chr21 gene transcription 

changes detected in the cerebral organoids. 

Future studies utilizing isogenic iPSC clones and cerebral organoids to model DS 

neurodevelopment should take into account these numerous possible sources of 

variability. Additionally, future studies could further improve upon this initial investigation 
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by increasing the number of isogenic clones used, which could increase the power to 

detect true differences related to chr21 state. Minimizing passage number from the 

initial derivation of isogenic lines could also decrease the chance for lines to undergo 

significant epigenetic drift over time in culture. Finally, utilizing an even more directed 

organoid generation protocol could decrease the number of different cell types formed 

and thus further minimize organoid to organoid and batch to batch variability. Several 

such brain-region-specific protocols have been described in the literature (Bagley et al., 

2017; Birey et al., 2017; Monzel et al., 2017; Qian et al., 2016; Xu et al., 2019), and very 

recent advances in organoid generation protocols (Velasco et al., 2019) promise to 

further improve the reproducibility of results between organoids, batches, and lines. 

Prospects and hurdles towards combining dosage compensation and cerebral 

organoids  

 Of course, many of the sources of variability described above could be 

completely eliminated by comparing cells within the same organoid, those with three 

transcriptionally active copies of chr21 and those that, due to XIST, have two. In chapter 

II, we demonstrated that this approach could be used in a monolayer culture system to 

reveal both a difference in the propensity for dosage corrected cells to terminally 

differentiate, and a potential mechanism for this finding. In principle, a similar approach 

could be used to study functionally disomic and trisomic cells in long-term organoid 

cultures. This would have the advantage over short-term monolayer cultures of being 

able to study a wider range of cell types, such as later-born astrocytes, inhibitory 

neurons, and upper-layer projection neurons. Additionally, studying more mature 

neurons has the potential to address if there are ongoing functional deficits in 
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synaptically active neurons, which could provide a more therapeutically accessible 

target for pharmaceutical intervention. 

 While this was our initial goal and represents an exciting area of potential future 

studies, we struggled to maintain long-term XIST transgene expression in aged 

organoids, as described in further detail in the appendix. However, some of the insights 

that we’ve come to as we attempted to mitigate this common problem in transgene 

studies could be applied to generate a system capable of long-term XIST expression. 

Since natural or endogenous promoters may be less likely to be silenced, this could 

include using brain-specific promoters to drive either transactivator or XIST expression, 

especially if temporal inducibility is not a requirement for the particular experimental 

question. Additionally, in an inducible system, constitutive expression of a 

transactivator-demethylase construct may potentially prevent methylation of the 

tetracycline response element in fully differentiated neurons (as further discussed in the 

appendix).  

 Still, several potential caveats of this approach must be taken into consideration. 

One difficulty is that even if a considerable number of cells remain XIST+ in aged 

organoids, it would be important to compare this number to the starting proportion of 

XIST-expressing cells. If there is significant discrepancy in these proportions, then there 

is likely a large population of cells that expressed XIST at one point in the past or are 

derived from XIST-expressing cells. This could complicate interpretation of any 

differences found between these populations, because it is possible that seemingly 

XIST- cells still retain some transcriptional silencing due to past XIST expression, or that 

their developmental trajectory was altered by their dosage compensated progenitors. 



 133 

 Ultimately, if a robust XIST expression system could be put in place with minimal 

change in the proportion of XIST expressing cells over time in culture, this could prove 

to be a powerful resource for revealing the true effects of trisomy 21 on DS 

neurodevelopment.  

Concluding remarks 

 Together, the results presented in this thesis demonstrate the utility of a powerful 

new approach to studying DS neurodevelopment. I have demonstrated the ability of 

XIST to initiate chromosome-wide transcriptional silencing in differentiated cells, which 

opens the door to a wide variety of studies examining the dynamics of XIST-mediated 

transcriptional silencing in many cells types, allows for precise determination of critical 

developmental steps in DS pathogenesis, and overcomes a perceived obstacle towards 

the application of XIST transgenes as a therapy for DS. I identify a specific alteration in 

neurogenesis that is potentially driven by alterations in a defined pathway, Notch, that 

may be responsible for key aspects of altered DS neurodevelopment. Finally, I explored 

the ability of cerebral organoids to model DS neurodevelopment in a natural three-

dimensional environment which could allow for studying more mature in vitro cell types 

that are altered in DS. Overall, I hope these studies provide some insight into the 

cellular events that lead to cognitive disability in DS, and that these insights may 

someday be translated into therapies that improve the lives of patients and families with 

DS. 
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CHAPTER V : XIST: from natural trisomy rescue to potential 

therapy  

 
The mechanisms of female X-inactivation for dosage compensation have been 

studied for decades, and yet the therapeutic possibilities of this unique biological 

phenomenon have hardly been considered. Chromosomal disorders, which are 

detected in nearly 0.6% of newborns (Shaffer and Lupski, 2000), have largely been 

regarded as beyond the reach of modern advances in gene therapy due to their 

complex underlying genetic basis. Largely unappreciated case studies in patients with 

unbalanced X;autosome (X;A) translocations have demonstrated the remarkable ability 

of XIST to rescue otherwise lethal trisomies. Additionally, recent breakthroughs have 

confirmed the ability of XIST transgenes to dosage correct chromosome 21 transcription 

in Down syndrome (DS) iPSCs. Of course, many challenges remain regarding 

translating this natural mechanism of dosage compensation to disorders of gene 

dosage imbalance. Here, I review the case study literature on trisomy rescue via X;A 

translocation, discuss the state of the art and limitations of current gene therapy 

technologies, and evaluate the biological questions that still need addressing to bring 

this transformative strategy for chromosomal disorders closer to reality. 

XIST rescues lethal trisomies in patients 

Due to the increased dosage of hundreds to thousands of genes, trisomies are 

nearly always incompatible with life. The few exceptions include small chromosomes 

with relatively fewer genes, such as chr21, trisomy for which causes DS, and the X 
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chromosome, which possesses the unique ability to undergo dosage compensation via 

the gene XIST. In fact, many women with trisomy X, who have two silenced X 

chromosomes instead of the usual one, lead perfectly normal lives and show no signs of 

harboring an extra chromosome in each of their cells (Tartaglia et al., 2010). These 

individuals demonstrate two findings critical for the translational potential of XIST: the 

complete compatibility of two XIST-expressing chromosomes with normal health, and, 

as evidenced by all XX women, that it is not the physical presence of millions of 

basepairs of extra DNA that is pathogenic in trisomy, as has been proposed by others 

(Plona et al., 2016), but rather their transcriptional output. Trisomy X patients 

demonstrate the ability of XIST to silence multiple chromosomes and render trisomy for 

a chromosome containing thousands of genes non-pathogenic. Additionally, these 

patients demonstrate that the presence of multiple XIST RNA coated Barr bodies in 

every nucleus of a person is non-toxic, and indeed necessary to rescue an otherwise 

lethal chromosomal abnormality. However, it is rare patients with X;A translocations that 

establish the power of this remarkable RNA to function beyond the X chromosome. 

One such case involves a boy with Klinefelter syndrome and a few mild 

malformations despite the presence of nearly an entire extra copy of chromosome 14, 

which contains nearly 2,000 genes (Allderdice et al., 1978). This condition, generally 

incompatible with life, was possible due to an X;14 translocation containing XIST. 

Further analysis demonstrated that the translocated chromosome late replicating, 

indicating it was transcriptionally silenced (Allderdice et al., 1978), leading to effectively 

disomic chromosome 14 dosage. Another case involved a woman with two normal 

copies of chromosome 9 in addition to a derivative chromosome containing the long 
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XIST-containing arm of the X chromosome translocated to the long arm of a third copy 

of chromosome 9 (Leisti et al., 1975). This patient did exhibit morphological 

abnormalities and learning disabilities, but considering her karyotype, the effects were 

remarkably mild due to the silencing of the trisomic genetic material. Examination of 

cultured cells from these patients demonstrated that XIST RNA from the translocated 

chromosome spread across the autosomal chromatin, albeit incompletely, along with 

hallmarks of inactivation (Hall et al., 2002b). Finally, a third case of a girl with mild 

developmental delay and dysmorphic features was shown to be caused by trisomy 15 

with an X;15 translocation (Stankiewicz et al., 2006). Even partial trisomy for 15q has 

been associated with severe cognitive disability and dysmorphic features (Kristoffersson 

and Bergwall, 1984; Pedersen, 1976), further implying that at least a large portion of 

15q is silenced in this patient leading to her mild phenotype. Together, these cases 

demonstrate that XIST is capable of effective autosomal silencing that can rescue 

otherwise lethal trisomies and lead to relatively mild phenotypes in patients.  

Recent work in our lab has further applied these natural phenomena to the most 

common autosomal trisomy, DS (Jiang et al., 2013). We inserted an inducible transgene 

for XIST into one copy of chromosome 21 in DS iPSCs as a proof of concept that these 

natural phenomena could be reproduced in the lab using modern stem cell and gene 

editing technologies. Importantly, this work demonstrated that an XIST transgene 

inserted into an autosome leads to robust transcriptional silencing chromosome-wide, in 

addition to deposition of several heterochromatin marks associated with X-inactivation 

as well as DNA methylation. While this work opened the door to the possibility of a 
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“chromosome therapy” for DS and other trisomies, several biological questions and 

technological barriers still need to be addressed. 

Biological considerations for chromosome therapy 

 The general concept of chromosome therapy has been demonstrated in living 

patients with trisomies that would be otherwise lethal were it not for the transcriptional 

silencing action of XIST. Additionally, our lab has provided a proof-of-concept that this 

powerful technique can be harnessed in vitro to target a trisomic chromosome and lead 

to its transcriptional inhibition. However, patients with a rescued trisomy have been 

dosage compensated by XIST since conception, and thus there are several outstanding 

questions relating to the function of XIST in differentiated cells and the reversibility of 

cellular phenotypes later in development that must be addressed in order to evaluate 

the viability of chromosome therapy. 

Somatic cell silencing 

 In order for chromosome therapy to be feasible in utero or postnatally, XIST must 

be able to initiate silencing in differentiated cells. As discussed in detail in the 

introduction and in chapter I, inducing XIST-mediated silencing in differentiated cells, 

potentially with the exception of hematopoietic cells (Savarese et al., 2006), has long 

been considered unfeasible because these cells are thought to lack the epigenetic 

plasticity to respond to XIST. I have shown in iPSC-derived neural stem cells that 

inducing silencing in differentiated cells is no longer a strict barrier and is not a unique 

property of hematopoietic progenitors. I have shown that silencing indeed takes place in 

differentiated neural stem cells, albeit requiring a longer timeframe than in pluripotent 
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cells. It remains possible that certain cell types will be found to be incapable of initiating 

silencing via XIST. This requires empirical testing in a variety of cell types that are 

particularly affected in trisomy. I have shown evidence that S-phase is not required for 

XIST expression, localization, and recruitment of early marks of heterochromatin, 

however the ability of postmitotic cells to initiate silencing should be tested in such cells 

capable of initiating XIST transcription. The confirmed competence of differentiated cells 

to enact the chromosome silencing process is a vital step forwards towards bringing 

chromosome therapy closer to reality. 

Correction of cellular function 

 Perhaps the biggest unknown in chromosome therapy is whether transcriptional 

silencing of the trisomic chromosome in a cell will lead to improvement in cellular 

function, and ultimately improved health and well-being of patients. This thesis 

demonstrates that early neurodevelopmental defects, such as impaired neurogenesis, 

can be corrected with chromosome silencing. Additionally, we have shown that known 

hematopoietic defects can be prevented when silencing is initiated in iPSCs (Chiang et 

al., 2018). Importantly, in this thesis we have shown that initiation of silencing in 

differentiated cells can also improve neurogenesis, suggesting that initiating silencing in 

pluripotent cells is not a requirement for phenotypic benefits. 

Currently, diagnosis of DS and other trisomies is only possible at around 8 weeks 

of gestation. At this point, neurogenesis has already begun and will continue until the 

third trimester (Bystron et al., 2006; Malik et al., 2013). This provides a potential window 

of opportunity for correcting some of the earliest defects in neurogenesis via in utero 

delivery. Clearly, animal models of trisomy silencing are required to gain an 
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understanding into whether correction at different developmental stages could mitigate 

trisomic phenotypes, such as delayed neurogenesis. Even if the earliest effects of 

trisomy are already in place at the time of intervention, later cellular events that have 

been found to be dysregulated in DS brains, such as defective myelination (Olmos-

Serrano et al., 2016), could still be mitigated since the myelination process continues 

well past adolescence. 

Additionally, trisomy 21 may not just impact cell differentiation and development, 

but also cellular function. Chromosome 21 encodes a number of ion channels that are 

expressed in the brain (Cramer et al., 2010; Lipsky and Goldman, 2003), and may affect 

ongoing function of trisomic neurons, which evidence indicates is altered in vitro 

(Caviedes et al., 1990; Weick et al., 2013). If XIST expression and chromosome 

silencing can be initiated in postmitotic neurons, it is possible that reversal of these 

ongoing defects could improve neuronal function and potentially cognition. 

Perhaps most significantly, the overproduction of amyloid precursor protein 

(APP) is thought to be the driving factor in the extremely high prevalence of early-onset 

AD in DS patients (Zigman et al., 1996). Reducing the transcription of this gene to 

functionally disomic levels in young DS patients prior to detectable AD pathology (Mann 

and Esiri, 1989) could prevent the development of this devastating neurodegenerative 

process. While many individuals with DS and their families have adjusted to the 

challenges of living with DS, there is considerable concern about the looming prospect 

of cognitive decline and prolonged course of AD-related dementia in relatively young 

individuals. 
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While the focus of this thesis has been on the cognitive deficits in DS, 

chromosome silencing, like all gene therapies, is of course potentially applicable to any 

tissue and cell type. Other cell systems, such as the hematopoetic system, could also 

be amenable to ex vivo therapies, which have a much longer history of success in 

clinical trials and offer potentially higher efficiencies (Grossman et al., 1994; Hacein-

Bey-Abina et al., 2002; Naldini, 2011). Additionally, while XIST-mediated chromosome 

therapy may be the only prospect for reducing cells to functional euploidy in vivo, ex 

vivo approaches could also involve other strategies for chromosomal correction, such 

as ring chromosome induction (Bershteyn et al., 2014) or selectable chromosome 

knock-out (Li et al., 2012). 

There is considerable pre-clinical testing that needs to be undertaken in order for 

the prospect of chromosome therapy to gain further momentum. We have demonstrated 

that there is no longer evidence for the previously perceived hard barrier preventing 

differentiated cells from initiating chromosome silencing. Additionally, we have shown 

that chromosome silencing is capable of correcting some in vitro phenotypes, even 

when induced in differentiated cells. Further work in mouse models of trisomy and 

advanced human cellular models, such as cerebral organoids, is necessary to 

determine what the developmental limits are for dosage compensation to correct 

trisomic transcription and cellular phenotypes.  

Technological hurdles towards chromosome therapy 

The concept for chromosome therapy reduces the problem of hundreds of 

trisomic genes down to the challenge of insertion of one gene. In this respect, 

revolutionary progress in gene therapy for less genetically complex single gene 
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disorders becomes relevant to DS and other trisomies. However, chromosome therapy 

with XIST would require other technical hurdles to be overcome. In its current form, 

chromosome therapy would require efficient delivery of a large XIST DNA transgene to 

a high proportion of cells followed by allele-specific insertion into one trisomic 

chromosome and subsequent expression of the transgene leading to transcriptional 

silencing of the chromosome. 

Efficient transgene delivery in vivo 

The necessary number of cells required for phenotypic benefit varies from 

disease to disease and from tissue to tissue. While it is hard to predict the precise 

number of corrected cells needed to improve DS phenotypes, it is safe to assume that 

delivery will need to be much more efficient than for disorders of secreted enzyme 

deficiency like b-thalassemia (Ricciardi et al., 2018), for example. Additionally, unlike for 

loss of function disorders for which plasmid-based expression or random genomic 

integration is suitable, the targeted insertion of an XIST transgene requires efficient 

delivery in the same cells of both gene editing factors and the transgene itself. 

Luckily, great strides in gene delivery techniques have been made in recent 

years, largely focused on viral vectors. While randomly integrating vectors, such as 

lentiviruses, would not be amenable to chromosome therapy requiring targeted 

insertion, others, such as adeno-associated viruses (AAV) do not readily integrate and 

instead form stable episomes carrying transgenes capable of targeted insertion (Hirsch 

et al., 2010). Several serotypes of AAV have been shown to effectively cross the blood 

brain barrier (BBB) leading to robust long-term expression in neurons and astrocytes 

(Gray et al., 2010; Miyake et al., 2011) and novel capsid selection methods have led to 
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the creation of an increasing number of neurotrophic AAV variants (Deverman et al., 

2016). Most significantly, the promising results of clinical trials (Lowes et al., 2019) and 

recent FDA approval of intravenously delivered AAV-based therapy for spinal muscular 

atrophy reinforces the incredible progress that has been made in developing viral 

vectors with efficient delivery to cells even across the BBB. One important limitation of 

many viral vectors, and AAV in particular, is their limited cargo capacity of ~5kb. This 

poses a particular problem for XIST, which has a cDNA of ~17kb, as will be discussed 

in the next section. Recombinant viruses with larger cargo capacity have been identified 

and used in preclinical trials, but their safety profiles are not as well described 

(Lachmann, 2004; Sweeney et al., 2017). 

In addition to viral delivery systems, non-viral approaches have also seen 

enormous progress in recent years. While non-viral systems lack the natural tropism of 

viral vectors and therefore generally have lower delivery efficiency, their main 

advantage is lower toxicity and immunogenicity. Lipid nanoparticles (LNPs) are currently 

the leading non-viral delivery method, with clinical trials currently underway for small 

RNA-containing LNPs, and progress is being made towards encapsulating and 

delivering mRNAs and DNA (Cullis and Hope, 2017). Additionally, viral-like particles 

containing gene editing tools and repair templates have also been developed (Mangeot 

et al., 2019), along with hybrid models utilizing LNP-delivered gene editing tools and 

virally-delivered repair templates (Yin et al., 2016). Taken together, as this fast-moving 

field progresses with ever-more efficient technologies, chromosome therapy will be able 

to take advantage of delivery tools with broad applicability to any gene therapy requiring 

highly efficient delivery. 
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Smaller functional XIST transgenes 

 As alluded to above, the XIST gene poses a particularly difficult problem for 

delivery technologies due to its large size. Additionally, because it does not encode a 

protein, elucidation of the function of each of its domains is particularly difficult. Despite 

this, progress has been made toward identifying regions of the XIST genes necessary 

for certain attributes of this lncRNA, such as recruitment of heterochromatin modifiers 

and gene silencing. Most significantly, the A-repeat region of XIST has long been known 

to be necessary for its silencing function (Wutz et al., 2002) and has also been shown to 

be sufficient for silencing of adjacent reporter genes (Minks et al., 2013). Recent work 

suggests that the A-repeat alone is also capable of silencing endogenous genes several 

Mb away from its site of insertion (Valledor et al., in preparation). Intriguingly, the A-

repeat has been shown to modestly repress gene expression when recruited to a 

genomic location via catalytically inactive dCas9 enzymes (Shechner et al., 2015), 

suggesting that integration into the chromosome may not be required for its silencing 

function. Together, there is considerable evidence to suggest that insertion of a full-

length XIST transgene may not be necessary to lead to a relevant degree of 

transcriptional repression, which could considerably lower the barriers to chromosome 

therapy.  

Directed allele-specific transgene insertion 

 Once the transgene can be delivered to a large proportion of cells it must then be 

inserted into one copy of the trisomic chromosome in order to initiate transcriptional 

silencing. The first step in this process is accurate generation of double strand breaks 

(DSB) using a targeted nuclease. This has been perhaps the most prolific area of 
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research particularly in the past 5 years since the discovery of the easily programmable 

CRISPR-Cas9 system (Dai et al., 2016). While there are still some limitations regarding 

where in the genome a nuclease can be targeted, the rapid proliferation of newly 

discovered and engineered nucleases with varying protospacer adjacent motif (PAM) 

sequences promises to render nearly the entire genome available for editing. The 

specificity of these nucleases has been demonstrated to be capable of allele-specific 

genome editing in disease loci (Smith et al., 2015), yet a remaining concern is the 

degree of off-target DNA cleavage, which could potentially lead to off-target integration 

and, more likely, off-target mutagenesis (Fu et al., 2013). This has led to the 

development of progressively more precise nuclease variants with minimal off-target 

effects (Kleinstiver et al., 2016) as well as a move towards transient expression of 

nuclease components in an attempt to minimize off-target DSBs (Yin et al., 2016).  

 Once the DSB is created, the transgene must be efficiently inserted into the 

genome. In dividing cells, homology directed repair (HDR) is capable of inserting a 

donor DNA template at the cut site, albeit at a relatively low frequency (Hirsch et al., 

2010). However, the efficiency of HDR drops to extremely low levels in non-dividing 

cells, such as neurons, necessitating a different insertion strategy. Several such 

strategies have been developed (Nami et al., 2018; Yamamoto et al., 2015), one of 

which is termed homology-independent targeted integration (HITI). HITI utilizes non-

homologous end joining machinery which is active in non-dividing cells and has been 

shown to be extremely efficient in vitro with close to 50% of cells containing the targeted 

gene modification (Suzuki et al., 2016). In vivo editing using HITI is significantly more 
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efficient than HDR and ongoing efforts in numerous labs are resulting in substantial 

incremental improvements.  

Stable transgene expression 

 As described in chapter I of this thesis as well as in the appendix, transgene 

silencing is a common occurrence even in in vitro models of chromosome silencing. 

XIST possesses the unique feature of laying down several redundant layers of 

heterochromatin marks. Thus, once the repressive chromatin structure is triggered by 

XIST, the RNA is no longer strictly required to maintain the silent chromosome state 

(Brown and Willard, 1994). However, expression of the XIST transgene will be 

absolutely required to initiate chromosome silencing in cells. Additionally, as described 

in chapter I, the silencing process can be significantly prolonged in differentiated cells, 

requiring XIST expression for at least several weeks in neural cells to lead to complete 

chromosome silencing. 

 Transgene silencing has also affected early gene therapy trials (Bestor, 2000), 

with one patient dying of his underlying disease likely due to the progressive silencing of 

the therapeutic gene (European Society of Gene Therapy (ESGT), 2006). Eukaryotic 

cells have evolved considerable defenses to prevent ectopic gene expression, 

particularly from viral sources, which makes their use a particular challenge. Several 

strategies can be employed to optimize transgene expression such as careful selection 

of ubiquitous or cell-specific promoters, inclusion of an efficient polyadenylation signal to 

the transgene of interest, as well as the inclusion of introns that can increase transgene 

expression (Powell et al., 2015). 
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Chromosome position effects also have a major impact on transgene silencing 

but are difficult to predict. Selection of purported “safe-harbor” locations for insertion of 

the transgene would be impractical for a chromosome therapy strategy due to the 

limited number of such sites which are not present on chr21 or other chromosomes 

compatible with trisomy. While certain strategies can be employed to maintain a 

euchromatic state at the site of insertion, such as utilizing a ubiquitous chromatin 

opening element (UCOE) (Kunkiel et al., 2017), ultimately selection of a target site may 

require empirical testing without the guarantee that a universally permissive site exists 

(Papapetrou and Schambach, 2016). The pervasive issue of transgene silencing is 

poorly understood and remains a technological hurdle for effective gene replacement 

therapies but can likely be overcome through a process of trial and error including 

testing in suitable human cell models. 

 The biological tools are largely in place to accurately insert a transgene into one 

copy of a trisomic chromosome in vivo, at least in theory. However, considerable 

incremental progress on multiple technical fronts is still required in order to increase the 

efficiency of each step described above, and to provide a meaningful chance at clinical 

improvement in trisomies.  

Conclusions 

 Thanks to recent advances in delivery systems, editing technologies, and 

improved safety profiles, the gene therapy revolution is finally making a significant 

impact on the lives of patients and families with rare monogenetic disorders. The rescue 

of natural trisomies by X;A translocations and the recent proof-of-concept that this 

strategy can be harnessed in the lab provide hope that XIST-mediated chromosome 
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therapy may one day offer a viable therapeutic approach to individuals and families with 

common trisomies like DS. Figure V-1 summarizes the biological considerations, some 

of which have been addressed in this thesis and previous work in the lab, as well as the 

technological barriers towards the development of chromosome therapy. Significant 

progress must still be made for this dream to become reality, and several important 

biological questions about potential efficacy remain unanswered. This new therapeutic 

strategy to trisomy also brings with it many important ethical considerations, including 

the need to safeguard the interests of vulnerable populations such as children with 

intellectual disabilities, and the need to consider the potential germline effects of 

targeted XIST insertion. Ultimately, we hope that the decades of research into the 

unique natural phenomenon of dosage compensation will finally be realized into 

promising strategies for improving the health and well-being of individuals with DS and 

other chromosomal duplication disorders. 
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Figure V-1: Summary of biological considerations and technical hurdles towards 
chromosome therapy 
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APPENDIX : Transgene silencing: XIST gets a taste of its own 

medicine  

 

Preface 

 All of the experiments and analysis described in this appendix were performed by 

me, with help from Meg Byron growing and processing organoids treated with 

antibiotics. The lentiviral plasmid was created by Melvys Valledor. Zdenka Matijašević 

performed experiments treating iPSCs with antibiotics that informed some of the studies 

described here.  

Introduction 

Transgene silencing is a broad problem affecting numerous biological systems 

and transgene vectors, and several pathways of silencing have been identified (Matzke 

et al., 2000). In general, transgenes are thought to be silenced by genome defense 

systems that have evolved over millions of years to prevent parasitic genomic elements, 

such as viruses, from invading and overtaking host machinery (Waterhouse et al., 

2001).  

In this thesis I have described the usage of an XIST transgene as a powerful 

experimental system with which to study DS pathogenesis. Additionally, I have outlined 

the potential therapeutic applications of this unique gene for treating trisomies. 

However, as alluded to in the introduction, in the course of this thesis research I and 

others in the lab have experienced significant XIST transgene silencing using our in 

vitro system. As described in chapter V, transgene silencing can have drastic 
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consequences when it involves a therapeutic gene replacement. While the stakes were 

not nearly so high in this case, transgene silencing poses a problem for effectively 

studying XIST-mediated silencing as an experimental tool and must be addressed 

before therapeutic approaches can be considered. 

Results 

XIST silencing in iPSCs 

 We first noticed a transgene silencing problem in iPSCs. While several early 

passages of the transgenic XIST-inducible cell lines (Jiang et al., 2013) showed stable 

expression of XIST in a very large fraction of iPSCs (Jun Jiang, personal 

communication), we noticed that over time, many cells lost the expression of the XIST 

transgene (Figure A-1A). The loss of XIST expression was patchy, in that some entire 

colonies would robustly express the transgene, while others had no XIST+ cells, and 

still others had a cluster of XIST+ cells clearly separated from cells with a silenced 

transgene. This suggested that the iPSCs were epigenetically silencing either the 

reverse tetracycline-controlled transactivator (rtTA) required for inducible XIST 

expression, or the tetracycline response element (TRE) upstream of the XIST 

transgene. Attempts to subclone the cells in order to obtain a stable line with a high 

fraction of XIST expressing cells were unsuccessful. Thus, many of the neural 

differentiation experiments conducted in this thesis used a heterogenous starting 

population of iPSCs with roughly 70-80% of cells expressing XIST at the onset of 

differentiation. 
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XIST silencing in aged organoids 

 In addition to a reduced starting population of XIST-expressing cells, I also ran 

into a much more drastic example of transgene silencing in long-term differentiation 

cultures. I found that in organoids grown for 90 days and treated with dox from the onset 

of differentiation, there was an extremely low fraction of XIST-expressing cells (Figure 

A-1B). We quickly made the realization that the “ubiquitous” promoter that was used to 

drive rtTA expression in our transgenic lines, EF-1a, has been reported to be 

completely silenced in human iPSC-derived neurons (Guillaume et al., 2006). This 

suggested to us that replacement of rtTA driven by another promoter could rescue the 

transgene silencing phenotype that we see in aged organoids. To test this hypothesis, I 

generated lentiviruses carrying rtTA driven by the ubiquitin C promoter and containing a 

fluorescent marker (Figure A-1C – pLV-rtTA). 7 days after transduction of day 83 

organoids that had been treated with dox since the onset of differentiation (d0 dox), we 

saw restricted patches of red fluorescent cells, indicating patchy transduction of the 

organoids (data not shown). After fixing, sectioning, and performing RNA FISH on these 

organoids, we saw areas with high numbers of XIST+ cells (Figure A-1B). Such a high 

degree of XIST expression was unprecedented in d90 organoids and was not seen in 

organoids without lentiviral transduction. This encouraged us to generate a stable cell 

line containing rtTA driven by CAG, a promoter that has been shown to resist silencing 

in human neurons (Muotri et al., 2005), inserted into one allele of the AAVS1 site using 

CRISPR/Cas9 technology (Figure A-1C – CAG-rtTA). This generated a cell line that 

was resistant to geneticin (G418) due to the neomycin resistance gene present in this  
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Figure A-1: Rescuing transgene expression with reintroduction of rtTA 
 
A) Representative image of RNA FISH in iPSC colony with a patch of XIST expressing 
cells. B) RNA FISH for XIST in 90d organoids treated with dox from the onset of 
differentiation. Bottom panel demonstrates increase in XIST expression with pLV-rtTA 
transduction. C) Schematic of rtTA expression cassettes used in this study. Top two 
panels are cassettes inserted at AAVS1 locus on chr19. Bottom panel is randomly 
integrating lentiviral plasmid. Note the lack of dedicated promoter for NeoR in CAG-
rtTA. D) RNA FISH for XIST in organoids at days 14, 31, and 49 of differentiated treated 
with dox from day 0 and either treated with no antibiotic, puromycin, or G418. E) 
Representative phase contrast images of organoids at day 49. F) IF for SOX2 in d49 
organoids treated with puro or no antibiotics. Scale bars for (A, B, D, and F) are 100µm. 
Scale bars for (E) are 1mm. 
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Figure A-1: Rescuing transgene expression with reintroduction of rtTA 
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construct. I termed this cell line clone 5a (C5A), and it was used extensively in chapter II 

of this thesis. 

 Knowing that rtTA was the limiting factor in aged organoids that were treated with 

dox from the onset of differentiation, we reasoned that selecting for rtTA expression 

using the antibiotics present on the rtTA cassettes could increase XIST expression. To 

test this, we differentiated cerebral organoids, as described in chapter III, from the C5A 

line described above. Dox treatment was started at day 0, along with either no antibiotic 

selection, puromycin (puro), or G418. As shown in Figure A-1D, the level of XIST 

expression was similar at early stages of differentiation. At later stages, both the 

untreated and G418 treated samples lost significant XIST expression, while the puro 

treated organoids retained XIST expression in nearly all cells. However, the puro 

treated organoids were also significantly smaller at day 49 (Figure A-1E) when 

compared to untreated organoids and were composed almost entirely of SOX2+ neural 

progenitors (Figure A-1F), suggesting that puromycin is toxic to terminally differentiated 

neurons which silence the EF-1a promoter. These same effects of puro and G418 were 

confirmed in iPSCs, whereby puromycin selection leads to a pure population of XIST 

expressing cells, while G418 treatment has no effect. 

The different action of these two drugs may reflect differences in how the 

promoters are arranged in the two rtTA-expression cassettes (Figure A-1C). In the puro-

containing cassette, selection for puromycin resistance also selects for expression of 

rtTA likely due to the back-to-back arrangement of the promoters. In non-expressing 

cells, these promoters may be silenced by CpG methylation at that one locus. On the 

other hand, the CAG-rtTA cassette utilizes the endogenous AAVS1 site promoter to 
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drive neomycin resistance and the spatially separated CAG promoter to drive rtTA 

expression. In this case, selection with G418 does not concomitantly select for rtTA 

expression.  

Overall, these experiments suggest that in cells treated with dox from the onset 

of differentiation, silencing of the rtTA locus leads to loss of XIST expression with 

differentiation even in a cell line containing CAG-rtTA. A similar process occurs in 

iPSCs, where the rtTA locus is stochastically silenced in a population of cells leading 

them to lose the ability to initiate XIST expression. 

Attempting to initiate XIST expression in postmitotic neurons 

 As discussed in chapter II, in both in a pure monolayer culture of postmitotic 

neurons and in organoids where the NSCs and neurons can be spatially distinguished, 

addition of dox does not lead to the initiation of XIST expression in neurons. Based on 

the results from the previous section, we reasoned that the EF-1a promoter is likely 

silenced in these cells leading to a loss of rtTA expression, which may be responsible 

for the inability of these cells to initiate XIST expression. 

To test this hypothesis, I differentiated iPSCs into a pure population of neurons 

by adding the g-secretase inhibitor compound E (CE) at day 21 of differentiation, which 

causes synchronized neuronal differentiation with no remaining neural stem cells by day 

28 (Figure II-5A). On day 28, I added dox in order to initiate XIST expression and also 

transduced the cells with the previously described pLV-rtTA in order to exogenously 

express rtTA. Unlike neurons that had been treated with dox from the onset of 

differentiation (d0 dox), there were essentially no XIST+ cells in this condition (Figure A-

2A-B). This is despite the robust increase in rtTA expression levels in all conditions, as  
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Figure A-2: Introducing exogenous rtTA in postmitotic neurons to initiate XIST 
expression 
 
A) RNA FISH for XIST in d35 monolayer neurons treated with compound E on day 21 
for 7 days. pLV-rtTA was transduced in cells where indicated. Dox was added on the 
day indicated. B) Quantification of the fraction of XIST-expressing cells in each 
condition of (A). 123-305 cells were counted for each condition (median=176). C-D) 
qPCR for rtTA (C) and XIST (D) normalized to GAPDH for cells in each condition of (A). 
AU, arbitrary units. E) Schematic of hypothesized methylation status of rtTA and XIST 
loci in transgenic cells. EF-1a promoter is likely progressively silenced over time in 
neurons, but not completely at this stage. TRE upstream of XIST is suspected to be 
robustly silenced in dox naïve neurons. 
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measured by qPCR (Figure A-2C), which led to an expected increase in both the 

fraction of XIST+ cells (Figure A-2B) and XIST expression (Figure A-2D) in the d0 dox 

condition. 

Together, these results suggest that in d0 dox cells, rtTA is the limiting factor for 

XIST expression, while in dox-naïve neurons something other than rtTA is limiting. It is 

most likely that the TRE upstream of the XIST transgene is silenced by DNA 

methylation (Figure A-2E), as has been reported in the literature for tetracycline 

inducible systems (Gödecke et al., 2017). 

Discussion 

  The experiments described above outline my attempts to counteract the finding 

of a decreased proportion of XIST expression cells in long-term iPSC culture and in 

differentiated cells, especially neurons. There are several important lessons to be taken 

away from these findings that can be applied to any studies using the tetracycline 

inducible system as well as for general design of expression cassettes. 

Foremost, in this study the major cause of progressive loss of inducible 

transgene expression with differentiation was loss of rtTA expression. This happened 

both stochastically in iPSCs and due to silencing of a developmentally regulated 

promoter with differentiation. Transgene expression could be rescued with re-

introduction of rtTA. It seems that rtTA may protect the TRE from methylation, which is 

why this rescue was possible only in cells that had previously been exposed to dox and 

may mean that rescue is limited by the starting proportion of XIST expressing cells. In 

dox naïve cells, the TRE was not protected from methylation, likely leading to the 

inability for XIST to be initiated even with adequate rtTA expression. The fact that  
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NSCs, but not neurons, are capable of initiating XIST expression suggests that there 

could be developmentally regulated methylation of the TRE in the final transition from 

NSCs to neurons.  

Additionally, back-to-back transgene cassettes in this case led to joint expression 

profiles, which can be advantageous in that it allows for selection of continued 

transgene expression. It could also lead to silencing of a ubiquitous promoter when 

paired with a developmentally regulated promoter. The fact that C5A did not 

demonstrate an increase in XIST expressing cells could have several root causes. 

Perhaps most likely is that the spatial separation, and therefore uncoupled expression, 

of promoters driving antibiotic selection and rtTA expression means that selection for 

G418 only guarantees that the rtTA cassette is inserted in the AAVS1 locus, not that it is 

expressed. A low starting level of CAG driven rtTA expression would prevent robust 

expression of XIST in differentiated cells.  

 Because transgene expression is such a widespread phenomenon in biology, 

several common strategies for maintained expression have improved biological 

research. One recent paper examined a similar phenomenon to that described in this 

appendix, where tetracycline inducible expression was silenced with differentiation 

(Gödecke et al., 2017). In order to reverse the DNA methylation detected at the TRE 

locus, the researchers fused rtTA to the demethylase Ten-eleven translocation 

methylcytosine dioxygenase 1 (TET1). This led to demethylation of the TRE locus and 

allowed for transgene expression, albeit with relatively low efficiency. 

Excitingly, we have preliminary evidence that the rtTA-TET1 fusion may reverse 

transgene silencing in our system, allowing for the induction of XIST expression in 
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differentiated neurons. This prospect would allow the study of XIST-mediated silencing 

in a postmitotic cell type for the first time. From a disease modeling perspective, if 

neurons are capable of initiating silencing this would greatly increase the experimental 

utility of dosage compensation for studying DS neurobiology. The ability to transition a 

neuron from a trisomic to disomic state would provide a unique opportunity to the 

examine whether trisomic neurons have ongoing functional deficits that could be 

reversed with dosage compensation. This could also have exciting translational 

ramifications for the potential of XIST as a therapeutic strategy for DS. 

 Materials and Methods 

iPSC maintenance and differentiation 

iPSCs were grown and maintained as described in chapter II. Organoids were 

generated using the Paşca (2015) protocol with the modifications described in chapter 

III. Monolayer neurons were generated with the protocol described in chapter II and 

were treated with 200µM CE at day 21 for 7 days. Dox was used at a concentration of 

500ng/ml. Puromycin was used at a concentration of 3µg/ml. G418 was used at a 

concentration of 40µg/ml. 

Generation of iPSC line with CAG-driven rtTA 

First, transgenic iPSC clones (Jiang et al., 2013) were screened for heterozygous 

insertion of EF-1a-driven rtTA using genomic PCR. These clones were then transfected 

with a CAG-driven rtTA plasmid with AAVS1 homology arms (CAG-rtTA) which was a 

gift from Paul Gadue (Addgene plasmid #60431) and a sgRNA/Cas9 plasmid directed at 

AAVS1 which was a gift from Masato Kanemaki (Addgene plasmid #72833) using 
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PBAE nanoparticles (Eltoukhy et al., 2012; Zugates et al., 2007) at a 30:1 dilution. After 

3 hours, media was changed to E8 with 10µM of the ROCK inhibitor Y-27632. A total of 

5µg DNA were transfected. After 48 hours, selection with 40µg/ml G418 was started 

and continued for 2 weeks. Insertion of the transgene was confirmed with genomic 

PCR. 

Lentiviral production and transduction 

 293FT cells (ThermoFisher) were used to generate lentiviral particles. 293FT 

cells were passaged 1:2 into a T75 flask the day before transfection. On the day of 

transfection, 9µg of transfer plasmid, 3µg of envelope plasmid, and 5.5µg of packaging 

plasmid were transfected using Lipofectamine 2000 (ThermoFisher) per the 

manufacturer’s instructions into one T75 flask containing 293FT cells at ~80% 

confluence. The pLV-rtTA plasmid is also known as pSLIK3 and was created by Melvys 

Valledor (Valledor et al., 2018). The envelope (PMD2.G, addgene plasmid #12259) and 

packaging (PsPax2, addgene plasmid #12260) plasmids were a gift from Didier Trono. 

The day after transfection, the media was changed to either neuron media (for 

monolayer culture, as described in chapter II) or organoid media. Two days after 

transfection, the conditioned media was filtered through a 0.45µm low binding filter 

(ThermoFisher) and added directly to the neurons (d28 of differentiation) or organoids 

(d83 of differentiation). The next day, the media was replaced with fresh unconditioned 

media. About 3 days after transduction and dox treatment, cells began to fluoresce in 

the red channel with close to 100% efficiency in monolayer neurons and at a much 

lower efficiency with patchy distribution in organoids. 
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Cell fixation, immunofluorescence, and RNA FISH 

 These steps were performed as described in chapter II for both iPSCs, 

monolayer neurons, and organoids. The Stellaris XIST probe was used for RNA FISH.  

RNA extraction, reverse transcription, and qPCR 

 These steps were performed as described in chapter III. 50-100ng of RNA was 

reverse transcribed and cDNA was used at a 1:10 dilution for qPCR. The primers used 

for qPCR are listed in Table A.1. GAPDH was used for normalization and quantification 

was performed using the DDCt method (Livak and Schmittgen, 2001) with normalization 

performed separately for each clone. 
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Table A-1: qPCR primers used in appendix 

Gene Primer Sequence 

rtTA F 5’-AAA-TCA-GCT-CGC-GTT-CCT-GT-3’ 

R 5’-TGT-TCC-AAT-ACG-CAG-CC-3’ 

XIST F 5’-GCA-GGT-CCA-AGA-AAT-TTG-AAC-AC-3’ 

R 5’-AGA-GTG-CCA-GGC-ATG-TTG-ATC-3’ 

GAPDH F 5’-TGC-ACC-ACC-AAC-TGC-TTA-GC-3’ 

R 5’-GGC-ATG-GAC-TGT-GGT-CAT-GAG-3’ 

F = forward; R = reverse 
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