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ABSTRACT 

 Ancestral environmental conditions can instruct offspring development, 

although the mechanism(s) underlying such transgenerational epigenetic 

inheritance is unclear. In murine models focused on paternal dietary effects, we 

and others have identified tRNA fragments (tRFs) in mature sperm as potential 

carriers of epigenetic information. In our search for molecular targets of specific 

tRFs, we observed that altering the level of 5’-tRF Glycine-GCC (tRF-GG) in 

mouse embryonic stem cells (mESCs) and preimplantation embryos modulates 

the expression of the endogenous retrovirus MERV-L and genes regulated by 

MERV-L. Intriguingly, transient derepression of MERV-L is associated with 

totipotency of two-cell stage embryos and a subset of two-cell-like mESCs.  

 Here, I reveal the mechanistic basis for tRF-GG regulation of MERV-L. I 

show that tRF-GG supports the production of numerous small nuclear RNAs 

associated with the Cajal body, in mouse and human embryonic stem cells. In 

particular, tRF-GG modulates the levels of U7 snRNA to ensure an adequate 

supply of histone proteins. This in turn safeguards heterochromatin-mediated 

transcriptional repression of MERV-L elements. Importantly, tRF-GG effects on 

histone mRNA levels, activity of a histone 3’UTR reporter, and expression of 

MERV-L associated transcripts can all be suppressed by appropriate 

manipulation of U7 RNA levels. I also show that hnRNPF and H bind directly to 

tRF-GG, and display a stark overlap of in vivo functions to tRF-GG. Together, 

this data uncovers a conserved mechanism for a 5’ tRNA fragment in the fine-
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tuning of a regulatory cascade to modulate global chromatin organization during 

pre-implantation development. 
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CHAPTER I 

INTRODUCTION 

Overview 

Crops in cultivation often throw “rogues” that do not grow true to the 

variety sown. However, in 1915, William Bateson and Caroline Pellew described 

something peculiar about the “rogue” culinary peas that emerged sporadically 

from genetically identical self-fertilized seeds: their genetics did not agree with 

the prevailing chromosome theory of heredity, commonly referred to as 

Mendelian inheritance (Bateson and Pellew, 1915). The “rogue” phenotype was 

not only dominant in initial crosses, resulting heterozygous offspring continued to 

dominate crosses as if homozygous. This was in disagreement with how genes 

that reside on chromosomes are expected to segregate according to Mendel’s 

laws, and Bateson and Pellew used this example as a counterargument to the 

chromosome theory of heredity. Fate would have it that this work was largely 

ignored given that Thomas Hunt Morgan published definitive evidence in support 

of Mendelian heredity that same year (Morgan, 1915). Curiously, Alexander Brink 

described something similar to Bateson and Pellew in Zea mays at the red1 (r1) 

locus decades later, which he termed paramutation (Brink, 1956, 1958). As in the 

“rogue” peas, these paramutagenic alleles that controlled the aleuronic 

pigmentation of maize emerged spontaneously, and converted one allele form to 

another in a heritable manner, violating Mendel’s Law of Segregation.  

Exceptions, even if rare, to Mendelian inheritance often point to gaps in 

our understanding of eukaryotic genetics. Given hindsight, Alexander Brink and 
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colleagues did not attempt to describe paramutation as a violation of Mendelian 

inheritance, but sought alternative explanations that built upon the chromosome 

theory of heredity, such as chromosomal communication via homolog pairing, or 

cytoplasmic plasmids (Brink, 1956, 1958). We now know that the manner by 

which paramutable alleles are inherited immediately suggest the phenomenon as 

epigenetic in nature – the phenotypes are at times variable and reversible. In 

fact, these descriptions of paramutation were the earliest verifiable descriptions 

of transgenerational epigenetic inheritance (Arteaga-Vazquez and Chandler, 

2010; Heard and RA Martienssen, 2014) – the inheritance of epigenetic 

information across generations.  

Strictly defined, epigenetics refers to the perpetuation of phenotypes 

across cell divisions without changes to the DNA sequence (Ptashne, 2007; 

Berger et al., 2009). Molecular and genetic studies have identified numerous 

pathways associated with epigenetic gene regulation, including covalent DNA 

modifications (Jones and Takai, 2001), transcription factors (Takahashi and 

Yamanaka, 2006; Ptashne, 2007), chromatin architecture (Alabert and Groth, 

2012), small RNAs (Ghildiyal and Zamore, 2009; Borges and Martienssen, 

2015), and prions (Harvey, Chen and Jarosz, 2018). The environment, both 

intrinsic and external, plays a crucial role in shaping the cellular epigenome (Feil 

and Fraga, 2012). Well studied examples range from intercellular communication 

such as the canonical Wnt signaling pathway (Komiya and Habas, 2008), to the 

phenotypic plasticity of whole organisms such as vernalization in plants (Kim et 

al., 2009). In recent decades however, epigenetic mechanisms have been 
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implicated in inheritance of ancestral environmental cues in various organisms, 

harkening back to “Lamarckian” inheritance or the inheritance of acquired traits, 

and which led to the emergence of the field of transgenerational epigenetic 

inheritance (Heard and RA Martienssen, 2014; Miska and Ferguson-Smith, 

2016).  

As expected, transmission of epigenetic information across generations 

requires stable modifications to the germline epigenome. However, this process 

faces two theoretical barriers – the Weissman principle of the germplasm (1893), 

and epigenetic reprogramming (Morgan et al., 2005; Heard and RA Martienssen, 

2014). An abundance of studies in various model organisms, including plants, 

worms, flies, and rodents have revealed how ancestral environmental cues can 

bypass these barriers to affect epigenetic information in the germline, and how 

this information can be propagated through many generations (Daxinger and 

Whitelaw, 2012; Heard and RA Martienssen, 2014; Bošković and Rando, 2018). 

In addition, interest in the field continues to expand, given implications of public 

health and disease, as epidemiological evidence suggests that risk of metabolic 

diseases can be epigenetically inherited (Hales and Barker, 1992; Bateson, 

2001; Lumey et al., 2007). Importantly, the extent to which, and the mechanisms 

by which, this process occurs in mammals remain elusive and controversial 

(Pembrey et al., 2014; Rando and Simmons, 2015; Horsthemke, 2018).  

I describe herein a novel mechanism by which epigenetic information may 

be passed on through the male germline in mammals. First, I briefly review the 

topics that form the basis of the biology described (Chapter I), and then present 
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data suggesting a novel carrier of epigenetic information (tRNA fragment) 

capable of regulating embryonic gene expression (Chapter II). I next describe our 

efforts to uncover the molecular function of this tRNA fragment in the mouse 

embryo (Chapter III), and finally discuss the implications and potential 

experiments that could lead to further molecular insight and discovery (Chapter 

IV). In addition, I discuss experiments that could potentially contribute to our 

understanding of small fragment diversity (Appendix I) and tRNA fragment 

binding partners (Appendix II), which have not been published.  

 

Inter- and transgenerational epigenetic inheritance 

Mendelian and Non-Mendelian Inherited Epialleles 

 Phenotypic deviation is frequently observed in genetically identical 

organisms, termed epivariation due to the presumably epigenetic nature of this 

variation. In certain rare cases however, these variations are heritable through 

many generations, sometimes in a non-Mendelian manner, as in paramutation. 

Importantly, these epialleles invariably demonstrate metastable phenotypes, or a 

probabilistic nature of expression, and eventually, phenotypic reversibility.  

Paramutation describes a process that results in heritable epigenetic 

changes of gene regulation and trans-homologue interactions (Chandler, 2007; 

Hollick, 2017). As one of the first examples of transgenerational epigenetic gene 

silencing, paramutation has been extensively studied in various organisms, 

including various species of plants, Drosophila, C. elegans, and mammals 

(Chandler, 2007). The most extensively studied cases of paramutation are of 
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maize pigmentation loci such as r1 and booster (b1), which encode 

transcriptional factors that regulate production of flavonoid pigments and 

therefore have easily detectable phenotypes (Chandler, Eggleston and 

Dorweiler, 2000). However, detectability does not equate paramutability, as 

various loci of different pathways have been shown be involved in or amenable to 

paramutation (Chandler and Stam, 2004; Regulski et al., 2013).  

 

Figure. 1.1 Properties of b1 paramutation. (A) B-I and B′ phenotypes (dark 
and light colored plants, respectively) and diagrams of the b1 locus and 
associated regulatory regions; because maize is diploid, the two diagrams for 
each plant represent the two alleles. The b1 locus (white box labeled b1) 
encodes a transcription factor that activates the anthocyanin biosynthetic 
pathway, which produces purple coloration. When b1 is highly transcribed (B-I, 
thick arrow above white box), a dark purple plant is observed. When 
transcription is low (B′, thin arrow above white box), a lightly pigmented plant is 
observed. B-I and B′ have identical DNA sequences, including seven tandem 
copies of an 853–base pair (bp) repeat unit, located ~100 kb upstream of 
the b1 coding region [indicated by seven black arrows within green (B-I) or red 
(B′) blocks]. The green and red blocks symbolize the distinct chromatin 
structures within the repeats in B-I and B′, respectively. Extensive data 
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demonstrate that the tandem repeats are required for b1 paramutation and the 
high expression in B-I. The repeats have not been found elsewhere in the maize 
genome and are transcribed noncoding sequences that produce 24-nt siRNAs 
in both alleles. (B) The result of crossing B-I and B′ is that B-I is always changed 
into B′ by unknown mechanisms. The diagram portrays a two-step process 
(orange arrows), such that before establishment of paramutation both B-I and B′ 
epigenetic states exist (left). Paramutation is established between early 
embryogenesis and the formation of 10 leaf primordia through unknown 
mechanisms mediated by the repeats (symbolized by the double-headed gray 
arrow), resulting in B-I being changed into B′ (right). The new B′ allele (B-I in the 
previous generation) is denoted B′*, is mitotically and meiotically stably silenced, 
and is as capable as B′ at changing B-I into B′ in subsequent generations (not 
diagrammed). From (Chandler, 2010). Reprinted with permission from AAAS.  
 

Importantly, the critical factor for paramutagenic alleles appears to be the 

number of repetitive sequences (Kermicle, Eggleston and Alleman, 1995; Hövel, 

Pearson and Stam, 2015; Hollick, 2017). In the famous example of the b1 locus 

(Fig 1.1), the paramutagenic B’ and paramutable B-I alleles both contain seven 

tandem repeat expansions of an 853-bp sequence – otherwise unique in the 

genome – in an enhancer region 100-kb upstream of the transcription start site 

that is required for paramutation to occur (Stam et al., 2002; Belele et al., 2013). 

Other examples of paramutation result from silencing mechanisms targeting 

transposable elements (TEs), which are inherently repetitive (Hollick, 2017). 

Therefore, repetitive sequences, whether exogenous or endogenous, appear to 

be the signal that recruits ancient host genomic surveillance mechanisms that 

target these genes for heritable silencing.  

The silencing of these repetitive sequences that mediate paramutation 

behavior rests upon a major pillar of epigenetic information transfer – RNA 

interference (RNAi) (Hollick, 2017). Forward genetic screens have revealed the 

requirement of RNA-dependent RNA polymerase (RdRP) components in maize 
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(Dorweiler et al., 2000; Hollick and Chandler, 2001), which are integral to small-

RNA directed DNA methylation (RdDM) mechanisms that primarily target 

repetitive elements such as transposons for de novo cytosine methylation 

(Matzke, Kanno and Matzke, 2015). Since RdDM in Arabidopsis also requires 

histone 3 lysine 9 (H3K9) methylation marks to recruit RdRP to generate 24nt 

small-RNAs (Nobuta et al., 2008; Erhard et al., 2009; Hale et al., 2009), all three 

major epigenetic information carriers appear to be involved in the 

transgenerational gene silencing of paramutable repeat elements in plants 

(Heard and RA Martienssen, 2014; Hollick, 2017). Paramutation in Drosophila 

and C. elegans similarly require the production of species-specific classes of 

small-RNAs, and their reinforcement of gene silencing also require H3K9me3 

marks (Ashe et al., 2012; Shirayama et al., 2012; Luteijn and Ketting, 2013; Le 

Thomas et al., 2014; Zhang et al., 2014), underscoring the importance of the 

epigenetic crosstalk in the targeting and reinforcement of heritable gene silencing 

in the germline in animals and plants.  

At about the same time as Brink and Marcus Rhoades were describing 

paramutation, Barbara McClintock recognized that the Activator and Suppressor 

Mutant transposons she discovered “cycled” between active and silent phases 

that are heritable through multiple generations (McClintock, 1951, 1961). These 

“cycling” transposons spontaneously generated epialleles of genes residing 

nearby, resulting in transgenerational leaf and seed color changes (Slotkin and 

Martienssen, 2007a; Lisch, 2012). In contrast to the unusual non-Mendelian 

inheritance patterns of paramutation, most cases of heritable epivariation 
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segregate in a Mendelian manner during meiosis, albeit in a metastable and 

reversible way. Examples of epialleles are abundant in plants, including in 

Arabidopsis, where powerful genetic screens laid bare the mechanistic basis of 

epivariation, which show a striking similarity to that of paramutation. With regards 

to the epialleles that resulted from McClintock’s “cycling” transposons, the activity 

of transposons correlates with their level of DNA methylation (Chandler and 

Walbot, 1986) and heterochromatic marks (Li, Freeling and Lisch, 2010). 

Specifically, the expression of a hairpin transcript that generates trans-acting 

small-interfering-RNAs (siRNAs) induces transcriptional gene silencing through 

increased levels of DNA methylation surrounding the transposons (Slotkin, 

Freeling and Lisch, 2005). These siRNAs in turn influence the local chromatin 

context of TEs, as mutants in maintenance DNA methyltransferases, histone 

deacetylases, and chromatin remodelers lose transposon silencing potential 

(Law and Jacobsen, 2010). As in paramutation, epigenetic crosstalk is critical, as 

histone modifications and RNAi can rescue methylation defects to some extent 

(Mathieu et al., 2007; Mirouze et al., 2009; Zemach et al., 2013; Creasey et al., 

2014).  

Perhaps the most famous and well-studied case of epivariation and 

transgenerational epigenetic inheritance in mammals involves the agouti viable 

yellow (Avy) allele in the mouse. Here as in plants, the Avy allele arose from a 

spontaneous insertion of a transposon – an intracisternal A particle (IAP) 

retrotransposon 100kb upstream of the agouti gene. The long terminal repeat 

(LTR) of the IAP element acts as an alternative promoter that causes ectopic 
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expression of agouti protein, resulting in pleiotropic phenotypes of yellow fur, 

diabetes, and increased susceptibility to tumors (Daxinger and Whitelaw, 2012). 

Just like the cycling transposons in maize, Avy mice display phenotypic 

mosaicism for IAP activity, due to variation in DNA methylation, resulting in 

deviation of coat color phenotype. Importantly, this epivariation is heritable 

through the maternal germ line, as embryo transfer experiments show that coat 

color is transmitted via oocytes, instead of potential intrauterine environmental 

effects (Morgan et al., 1999). Mechanistically, the heritability of Avy in mouse 

relies on similar pathways to those in Arabidopsis, including DNA methylation, 

histone deacetylases and chromatin remodelers (Daxinger and Whitelaw, 2012).  

Together, epialleles that are meiotically inherited in plants and animals 

present a converging picture: they invariably arise from novel transposon 

insertions, and the genomic surveillance mechanism that leads to silencing of 

these transposons, while ancient, can be leaky, leading to metastable and 

reversible phenotypes. Perhaps most importantly, certain TEs consistently evade 

surveillance pathways in unexpected ways. For example, IAP elements escape 

complete demethylation in primordial germ cells and preimplantation embryos 

(Lane et al., 2003; Smith et al., 2012), but this process appears to differ in the 

male and female germline, resulting in maternal specific inheritance of DNA 

mosaicism, as in the Avy example (Daxinger and Whitelaw, 2012). This dichotomy 

reveals two key insights into the processes of inter- and transgenerational 

epigenetic inheritance: male and female germ-lines have distinct reprogramming 

pathways, and TEs continue to conflict with eukaryotic genomes by “exploiting” 
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these windows of opportunity in a contemporary evolutionary arms race. 

Excitingly, the interactions of the host surveillance pathway and the transposon 

may generate new avenues of evolution that drive organismal innovation and 

genetic conflict, such as the probable case of genomic imprinting.  

 

Genomic Imprinting 

Recognized by mule breeders over 3000 years ago, but not formally 

described until 1991 at the Igf2r locus (Morison and Reeve, 1998), the process of 

genomic imprinting in mammals and flowering plants (Rodrigues and Zilberman, 

2015) presents a case for epigenetic information which can be said to be 

“programmed”: imprinted loci demonstrate highly heritable monoallelic 

expression (Kinoshita, Ikeda and Ishikawa, 2008; Bartolomei and Ferguson-

Smith, 2011). The accurate parent of origin epigenetic marking, or in other words, 

the “escape” of epigenetic reprogramming, of these loci have over time become 

essential for normal mammalian development: elegant pronuclear transplantation 

experiments in mice demonstrated that appropriate imprinting is required for 

early mammalian development (McGrath and Solter, 1984; Surani, Barton and 

Norris, 1984). In humans, phenotypically distinct diseases also result from 

deletion of either the maternal or paternal imprinted region of chromosome 

15q11-q13 (Angelman’s syndrome or Prader-Willi disease, respectively, Knoll et 

al. 1989). It could be hypothesized therefore, that imprinting represents an 

evolved epigenetic inheritance, fixed into the population after coincidentally 

acquiring some essential developmental functions.  
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Our current understanding of the mechanism for imprinting in mammals 

supports this hypothesis. Maintenance of imprinted marks is provided by 

Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) ZFP57 

(Li et al., 2008) and ZNF445 (Takahashi et al., 2019a). KZFPs are one of the 

fastest evolving gene families in mammals, and generally function to recruit 

repressive epigenetic modifiers that deposit H3K9me2/3 marks to TEs in a 

species-specific manner (Imbeault, Helleboid and Trono, 2017). At least in the 

case of ZFP57, its methylation-dependent binding to TGCmCGC present in 

imprinting control regions (ICRs) protects methylation erasure in preimplantation 

embryos, when global waves of DNA-demethylation take place (discussed 

below). Binding also recruits KAP1 (or TRIM28) and histone methyltransferases 

for H3K9 to further reinforce the memory of epigenetic silencing. Genomic 

hallmarks of ICRs include repeat invasion and expansion, including at the PEG10 

locus, and intronless pseudogenes, such as those in the SNRPN locus 

implicated in Prader-Willi-Angelman syndrome (Renfree, Timothy A Hore, et al., 

2009). Together, these facts point to novel retrotransposition events of TEs, 

which naturally evade epigenetic reprogramming, as key drivers of ICRs.  

Taken together, given the numerous examples of paramutation, 

epivariation, and genome imprinting in plants and animals, heritable epigenetic 

variation exists in nature. These events mostly result from random integrations of 

TEs that lead to heritable epigenetic changes in expression of gene(s) located 

near the transposition event (Slotkin and Martienssen, 2007b). Various 

epigenetic mechanisms function cohesively to maintain the transgenerational 
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inheritance of these variable alleles, depending on the arsenal available to that 

organism, and which epigenetic marks are completely or incompletely erased 

during germline and embryonic reprogramming. In certain cases, such as 

imprinting in plants (Vaughn et al., 2007; Schmitz et al., 2011) and mammals 

(Renfree, Timothy A. Hore, et al., 2009; Barlow and Bartolomei, 2014), these 

random epialleles ultimately resulted in “programmed” escape alleles (possibly 

from an epigenetic selective sweep) that is functionally integral to the proper 

development of the organism. However, these variations of epialleles do not 

support an adaptive epigenetic mechanism that could contribute to 

macroevolution. Support for “soft inheritance” or Lamarckian inheritance would 

require examples of adaptive epigenetic variation induced by the environment 

that is heritable across many generations, in animals and plants. Evidence 

supporting this idea remains elusive.  

 

Transgenerational effects of environmental perturbations  

 Various environmental stressors have been shown to induce specific 

adaptive (or nonfunctional, or even maladaptive) phenotypes in future 

generations that are associated with changes in epigenetic states. In plants, 

maternal exposure to a variety of abiotic stresses, such as temperature (Brink, 

Styles and Axtell, 1968; Lacey, 1996), light (Schmitt, Niles and Wulff, 1992; 

Galloway, 2005), hyperosmotic stress (Wibowo et al., 2016), and nutrient 

availability (Miao, Bazzaz and Primack, 1991; Schmitt, Niles and Wulff, 1992; 

Secco et al., 2015), can induce adaptive phenotypes in the offspring. Maternal 
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effects are also apparent for biotic stresses such as predation (Agrawal, Laforsch 

and Tollrian, 1999) and pathogenic bacteria (Slaughter et al., 2012). These 

adaptive phenotypes have in many cases been shown to have an epigenetic 

basis (Secco et al., 2015; Wibowo et al., 2016), with the best studied example 

being vernalization (Andrés and Coupland, 2012). Following prolonged exposure 

to cold, the ability to flower is re-acquired through epigenetic silencing of a floral 

repressor FLOWERING LOCUS C, via H3K27 methylation and antisense 

transcription silencing of the locus (Song et al., 2012). However, this process is 

robustly reset in the germline and early embryo (Sheldon et al., 2008), and 

cannot be inherited as an acquired trait (infamously attempted and failed by the 

Russian agronomist Trofim Lysenko). Attempts to demonstrate adaptive 

epigenetic variation in stress tolerance have also had limited success in plants, 

and maternal effects generally disappear within a couple of generations (Pecinka 

and Mittelsten Scheid, 2012).  

Interestingly, temperature, especially heat stress, appears to be a 

consistent modulator of epigenetic inheritance in plants and animals, particularly 

in terms of the expression of TEs (Horváth, Merenciano and González, 2017). 

This effect was noted by both McClintock (McClintock, 1983) and Brink (Brink, 

Styles and Axtell, 1968) for maize TEs. Interestingly, this derepression of TEs in 

response to heat stress can be propagated for several generations (Ito et al., 

2011; Suter and Widmer, 2013; Migicovsky, Yao and Kovalchuk, 2014). 

Transgenerational effects of heat stress on TE expression have also been noted 

in C. elegans in terms of transgene silencing (Klosin et al., 2017), and Drosophila 
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in terms of heterochromatin associated position-effect variegation (Gowen and 

Gay, 1933; Hartmann-Goldstein, 1967). However, the epigenetic mechanisms 

underlying TE derepression upon ancestral heat stress are usually species 

specific (Horváth, Merenciano and González, 2017), and it is also unclear how 

loosening of TE repression could impart adaptive fitness in the offspring.  

Onset of diseases later in life have long been associated with adverse 

intrauterine environments in humans, in particular the nutritional status of the 

mother (Hales and Barker, 1992, 2001; Lane, Robker and Robertson, 2014). For 

example, cohort studies from the Dutch Hunger Winter clearly demonstrates that 

prenatal exposure to famine is associated with obesity, diabetes and 

cardiovascular diseases later in life (Lumey et al., 2007). These studies helped 

lay the foundation for the developmental origins of health and disease, a formal 

variation of the “thrifty phenotype” hypothesis (Hales and Barker, 2001). Given 

the critical dependence of the fetus on intrauterine factors, it is expected that 

perturbations to the maternal environment would affect fetal development, i.e. 

fetal programming (Lane, Robker and Robertson, 2014; Rando and Simmons, 

2015). Along these lines, in utero exposure to endocrine disruptors such as 

diethylstilbestrol (fetal poisoning) leads to birth defects (Titus-Ernstoff et al., 

2010), infertility (Palmer et al., 2001), and cancer (Herbst, Ulfelder and 

Poskanzer, 1971) later in life. However, these effects were gone by the second 

generation (Titus-Ernstoff et al., 2010), reminiscent of intergenerational maternal 

effects in plants (Fig. 1.2) (Heard and RA Martienssen, 2014).  
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Figure 1.2. Transgenerational and Intergenerattional Epigenetic Effects. 
Epigenetic changes in mammals can arise sporadically or can be induced by the 
environment (toxins, nutrition, and stress). In the case of an exposed female 
mouse, if she is pregnant, the fetus can be affected in utero (F1), as can the 
germline of the fetus (the future F2). These are considered to be parental effects, 
leading to intergenerational epigenetic inheritance. Only F3 individuals can be 
considered as true transgenerational inheritance in the absence of exposure. In 
the case of males in which an epigenetic change is induced, the individual (F0) 
and his germline (future F1) are exposed; the F1 is thus considered as 
intergenerational. Only F2 and subsequent generations can be considered for 
evidence of transgenerational inheritance. From (Heard and RA Martienssen, 
2014). Reprinted with permission from Elsevier.  
 

Mechanistically, early embryonic development is highly sensitive to 

oviductal fluid composition (Leese et al., 2008), in large part determined by 

maternal nutrition (Fleming et al., 2012), which can influence blastocyst cell 

delineation (Kwong et al., 2000; Sun et al., 2014) and placentation (Fowden et 

al., 2008). Importantly, pre-gestational and gestational influences on 

development are believed to occur through environment-induced modification of 
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the embryo’s epigenome (Hochberg et al., 2011). One of the best known 

examples involve studies of the Avy locus in mice, where specific manipulations 

of methyl-donor availability during pregnancy can alter the heritability of the 

epiallele (Waterland and Jirtle, 2003). These direct maternal nutritional effects on 

the embryonic epigenome were later confirmed in axin fused mice (Waterland et 

al., 2006), and have been demonstrated to modulate epiallele DNA methylation 

in human populations (Dominguez-Salas et al., 2014). Other prominent maternal 

dietary manipulations in mouse models include high-fat diet (Sasson et al., 2015; 

Huypens et al., 2016) and zinc deficiency (Beach, Gershwin and Hurley, 1982). 

However, there is scant evidence that these effects can persist for more than one 

generation through the maternal lineage in animal models (Benyshek et al., 

2008) and epidemiological studies (Pembrey et al., 2006). Instead, the epigenetic 

signal appears more readily passed on in the paternal lineage following maternal 

exposure in utero (Aiken and Ozanne, 2014; Rando and Simmons, 2015).  

Transgenerational effects of undernutrition in the male lineage have been 

documented to occur in human populations (Kaati, Bygren and Edvinsson, 2002; 

Pembrey et al., 2006). In studies of the Overkalix cohort, food availability in 

paternal grandparents is linked to obesity and cardiovascular disease in the 

grandchildren in a sex specific manner. Critically, the time of exposure was 

important to the observed effect: poor food availability in early adulthood was 

linked to decreased mortality risk, while the opposite is true for exposure in early 

adolescence (Pembrey et al., 2006). This perhaps reflects the differential 
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sensitivity of male gametes to environmental perturbations during different 

processes of sexual development.  

Despite strong evidence from epidemiological and animal model studies 

suggesting that paternal effects can influence up to two generations of offspring 

development, very few studies have reported phenotypes that persist past three 

generations in mammals (Dunn and Bale, 2011; Rando, 2012; Soubry, 2015). It 

is therefore unlikely that transgenerational effects of the environment can broadly 

influence macroevolution in humans, or any other organisms for that matter 

(Heard and RA Martienssen, 2014; Horsthemke, 2018). Crucially, it is clear that 

early nutritional cues can adversely affect offspring health later in life. Given the 

implications for public health, numerous rodent and other animal models have 

been developed with the explicit intent of understanding the extent and 

mechanism of inter- and transgenerational epigenetic inheritance in mammals. 

A wide range of environmental perturbations can trigger paternal lineage 

offspring programming (Rando, 2012; Soubry, 2015; Boškovi´c and Rando, 

2018). Rodent models have focused on three primary categories of 

environmental triggers: dietary interventions, stress exposures, and toxin 

exposures (Lane, Robker and Robertson, 2014). To identify pathways affecting 

metabolic parameters such as glucose control and lipid metabolism in the 

offspring, dietary intervention paradigms include high-fat diets, low-protein diets, 

and caloric restriction (Anderson et al., 2006; Jimenez-Chillaron et al., 2009; 

Carone et al., 2010; Ng et al., 2010a). Other studies attempt to explore parental 

effects on altered cortisol release, metabolism, and blood-brain barrier function 



	 18	

(Bale, 2015), stress exposures include social defeat (Dietz et al., 2011), maternal 

separation (Gapp et al., 2014a), and chronic unpredictable stress (Rodgers et al., 

2015), or simply odorant conditioning (Dias and Ressler, 2014). Finally to directly 

study ancestral toxic exposure on offspring development, a range of toxins and 

bioactive compounds have been utilized, from endocrine disruptors (vinclozolin, 

BPA etc.) (Anway et al., 2005; Manikkam et al., 2013) to drugs of abuse such as 

alcohol (Lam et al., 2000), nicotine (Vallaster et al., 2017), cocaine (Vassoler et 

al., 2013) and morphine (Slamberová, Riley and Vathy, 2005). Many studies 

attempt to model late childhood and early adulthood stresses as in the Overkalix 

cohort, and involve perturbations applied from weaning to sexual maturity 

(Carone et al., 2010; Ng et al., 2010b; Fullston et al., 2012). Most however are 

more interested in fetal development as in the Dutch Hunger Winter, and 

therefore subject pregnant females to the chosen treatment (Jimenez-Chillaron et 

al., 2009; Pentinat et al., 2010; Drake et al., 2011; Dunn and Bale, 2011; Frantz 

et al., 2011; Ding et al., 2012; Martínez et al., 2014; Radford et al., 2014). 

Intriguingly, as observed in the Overkalix cohort in humans, the majority of 

studies observe a sex-specific effect, perhaps reflecting sex-specific germline 

reprogramming (Barlow and Bartolomei, 2014), or simply sex-specific embryonic 

developmental differences (Lane, Robker and Robertson, 2014).  

What is the molecular mechanism for paternal transfer of epigenetic 

information? The jury is still out on this question (Fig. 1.3). First, non-germline 

mechanisms including seminal fluid, cryptic maternal effects, and transfer of 

microbiome can contribute to male-line effects (Curley, Mashoodh and 
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Champagne, 2011; Rando, 2012). Only a handful of studies have intentionally 

ruled these possibilities out by demonstrating gametic epigenetic information 

transfer (Dias and Ressler, 2014; Chen, M Yan, et al., 2016; Huypens et al., 

2016; Sharma et al., 2016). Second, most studies never rule out DNA sequence 

mutation as a possible mechanism, which becomes particularly problematic for 

treatments that could specifically influence DNA repair pathways (Skinner, 

Guerrero-Bosagna and Haque, 2015). For example, while outbred rats exposed 

to vinclozolin in utero exhibit diminished male fertility for up to four generations 

(Anway et al., 2005), inbred rats subjected to the same treatment demonstrated 

no such effect (Schneider et al., 2008), raising the possibility that genetic 

variability actually underlies the observed phenotype (Shea et al., 2015). Third, 

reported epigenetic alterations to sperm and offspring in response to 

perturbations have been diverse and seemingly conflicting. These include sperm 

chromatin (Vassoler et al., 2013; Siklenka et al., 2015a; Ben Maamar et al., 

2018a), cytosine methylation (Carone et al., 2010; Ng et al., 2010b; Fullston et 

al., 2012; Dias and Ressler, 2014), and small RNAs (Gapp et al., 2014a; 

Rodgers et al., 2015; Chen, M Yan, et al., 2016; Grandjean et al., 2016; Sharma 

et al., 2016). Could all of these pathways mediate paternal epigenetic inheritance 

in mammals? If so, do they collaborate or exclusively signal one or a combination 

of environmental signals? Finally, what is the signaling pathway that causes 

specific epigenetic changes in the mature sperm, and how does this influence 

development of the fertilized embryo? Answering these burning questions will be 
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central to our understanding of inter- and transgenerational paternal epigenetic 

inheritance.   

 

Figure 1.3. Mechanisms of transfer of information about ancestral 
environment or physiology over generations. Many mechanisms of 
transmission of information about environmental experience or physiological 
state can underlie inheritance over a single generation, from parents to 
progeny, both genome-associated (for example, covalent modifications of 
histones, sncRNAs, including tsRNAs (tRFs) and miRNAs, and DNA 
methylation, among others) and genome-independent (for example, 
microbiome transfer). Paternal effects are not always mediated by gametes but 
may act via the mother indirectly. From (Perez and Lehner, 2019). Reprinted 
with permission from Springer Nature.  
 

Escape of epigenetic reprogramming  

 In order to understand how certain genomic regions or regulatory factors 

can escape germline and early embryonic reprogramming, a mechanistic 

understanding of the processes themselves is necessary. Germ cells and 

embryos are unique in their epigenomic features at the chromatin, DNA 

methylation and small RNA composition levels. I will briefly describe these 
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unique aspects of both male, female germ lineages and developing embryos in 

animals, but a detailed description of mammalian male germline epigenetic 

reprogramming will be discussed in the next subchapter. 

 Chromatin in germ cells is highly unique in terms of both packaging and 

distribution of materials (Kimmins and Sassone-Corsi, 2005). In most animals, 

including mammalian sperm, histones are replaced by protamines to allow 

compaction of DNA into the sperm head (Sassone-Corsi, 2002). This essential 

process involves temporal replacement of nucleosomes with histone variants 

(Kimmins and Sassone-Corsi, 2005; Montellier et al., 2013), then transition 

proteins, and finally protamines. Mammalian sperm genomes are 

hypermethylated at 90% of CpGs, particularly at repeats, guided by piRNAs (see 

below) (Popp et al., 2010). However, a subset of promoter CpGs independent of 

CpG islands are hypomethylated (Messerschmidt, Knowles and Solter, 2014; 

Molaro et al., 2014), and have been shown to be associated with the remaining 

2-10% of nucleosomes (Hammoud, David A. Nix, et al., 2009; Brykczynska et al., 

2010; Erkek et al., 2013), although this topic remains highly controversial 

(discussed below) (Yamaguchi et al., 2018). It is yet unclear how these regions 

escape epigenetic reprogramming. There is evidence that histone retention is 

developmentally programmed during spermatogenesis (Siklenka et al., 2015a), 

and at least in zebrafish, sperm nucleosomes can act as placeholders to exclude 

DNA methylation and facilitate gene activation at embryonic genome activation, 

or EGA (i.e. act as epigenetic memory) (Liu et al., 2018; Murphy et al., 2018). 

Lastly, small-RNAs in sperm also carry a distinct cargo of mostly tRNA fragments 
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but also miRNAs, gained apparently via exosome fusion (discussed below) 

(Chen, M Yan, et al., 2016; Sharma et al., 2016, 2018). These small-RNAs that 

are gained during transit through the epididymis represent another source of 

epigenetic information that can potentially contribute to paternal epigenetic 

inheritance (Champroux et al., 2018).  

The epigenomic features of female gametes are quite different from their 

male counterparts, although also distinct from somatic cells. Oocytes likewise 

have germline specific histone variants, such as H1oo in mammals (Tanaka et 

al., 2001), and display distinct post-translational modification profiles genome-

wide, including H3K4me3 which spreads across domains of promoters and 

distant loci (Dahl et al., 2016; Liu et al., 2016; Zhang et al., 2016). Probably due 

to epigenetic crosstalk, these intergenic H3K4me3 domains also correspond to 

hypomethylation of DNA (Zhang et al., 2016). These broad domains cover about 

40% of the maternal genome (Mayer et al., 2000; Wang et al., 2014), in stark 

contrast to the heavily methylated sperm genome. Surprisingly, gene bodies that 

are transcribed during oogenesis become hypermethylated in the mature oocyte 

(Tomizawa, Nowacka-Woszuk and Kelsey, 2012). Mechanistically, 

Dppa3/PGC7/Stella protects DNA from de novo and maintenance methylation in 

oocytes (Li et al., 2018; Han et al., 2019). This protective effect is at least 

partially mediated by preventing the nuclear accumulation of DNA methylation 

regulator UHRF1 (Bostick et al., 2007). Finally, while the biogenesis of the 

maternal pool of small-RNAs in mammalian oocytes is understudied, the 

available data paint a peculiar picture: a reliance on endo-siRNAs, and 



	 23	

dispensable piRNAs and miRNAs (Tam et al., 2008; Watanabe et al., 2008; Yang 

et al., 2016). Although abundant piRNAs exist in oocytes targeting specific TEs 

such as LINE-1 and IAP elements (Aravin et al., 2008; Ohnishi et al., 2010; 

Kabayama et al., 2017), depletion of piRNA biogenesis pathway genes show no 

apparent phenotype (Deng and Lin, 2002; Fazio et al., 2011; Reuter et al., 2011). 

In addition, miRNA activity is suppressed in oocytes, possibly to prevent 

degradation of maternally deposited mRNAs essential to early embryonic 

development (Ma et al., 2010; Suh et al., 2010). These unusual features of 

mammalian oocyte small RNAs are at least partially mediated by expression of 

specific isoforms involved in small RNA activity, such as oocyte specific Ago2 

(Freimer et al., 2018) and Dicer (Flemr et al., 2013).  

Fertilization triggers extensive epigenetic reprogramming in both parental 

nuclei. Sperm-specific nucleosomes are globally replaced by the replication-

independent histone variant H3.3 in most organisms (Bonnefoy et al., 2007; 

Santenard et al., 2010; Autran et al., 2011). Recent allelic characterization of 

H3K4me3 and H3K27me3 suggests that the H3.3 that replaces sperm histones 

does not retain immediate epigenetic “copying” (Zhang et al., 2016; Zheng et al., 

2016). Nevertheless, there is evidence that heterochromatic and polycomb 

associated proteins are present in the male pronucleus shortly after sperm 

decondensation (Santos et al., 2005), which awaits genome-wide analysis.  

On the contrary, the maternal genome retains its maternally deposited 

chromatin for at least a few cell cycles, notably H3K4me3 (Zhang et al., 2016) 

and H3K9me2/3 (Arney et al., 2002), which only start to be displaced following 
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EGA. In yet another demonstration of epigenetic crosstalk, paternal DNA 

cytosine methylation, like its chromatin content, are rapidly turned over (actively 

demethylated) (Mayer et al., 2000; Oswald et al., 2000). While there is active 

demethylation in the maternal genome as well, this represents a small part of the 

passive demethylation that occurs globally due to nuclear exclusion of DNMT1 

(Howell et al., 2001; Ratnam et al., 2002; Nakamura et al., 2007). 

Mechanistically, the maternally deposited, H3K9me2/3 binding, STELLA blocks 

entry of TET proteins and DNMT1 globally (Nakamura et al., 2007; Li et al., 

2018). Interestingly, while paternally deposited STELLA protects demethylation 

at paternal ICRs by binding to H3K9me2 (Nakamura et al., 2007), maternally 

deposited STELLA plays no role in protecting maternal ICRs from demethylation 

(Li et al., 2018). Instead, an oocyte specific and later somatic isoform of DNMT1 

are able to evade exclusion and maintain methylation at these ICRs (Cirio et al., 

2008; Hirasawa et al., 2008; Kurihara et al., 2008). This evasion is achieved via 

recruitment by KAP1/TRIM28 (Messerschmidt et al., 2012), which is bound to 

KZFPs ZFP57 (Li et al., 2008; Mackay et al., 2008) and ZFP445 (Takahashi et 

al., 2019b) at ICRs.  

Importantly, young retrotransposons such as IAPs in mice (Smith et al., 

2012), Alu’s and LINE-1s in humans (Guo et al., 2014), consistently escape 

proper demethylation, and may contribute to epigenetic reprogramming escape 

by Avy epialleles (Daxinger and Whitelaw, 2012). It is probably not a coincidence 

that young retrotransposons are marked by H3K9me2/3 in embryonic tissue 

(discussed below) (Walter et al., 2016), and this could be the precise mechanism 
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by which these loci escape reprogramming. In other words, perhaps the same 

mechanisms that protect ICRs from DNA demethylation in PGCs and during 

embryogenesis may protect young retrotransposons from being reprogrammed 

as well. More strikingly, the logic works in reverse as well: perhaps young 

retrotransposons escaping genetic reprogramming accidentally acquired 

important regulatory roles in development, and genomic imprinting arose from 

such novel transposition events (Rodriguez-Terrones and Torres-Padilla, 2018).  

With the advent of ultra low-input chromatin profiling and small RNA 

technologies, our understanding of the unusual features of mammalian oocyte 

and sperm epigenetic landscape has greatly improved. However, key questions 

remain to be addressed that are critical to the mechanistic understanding of inter- 

and transgenerational epigenetic inheritance. First, the genomic locations of 

H3K9me2/3 nucleosomes in the sperm and oocyte genome pre-fertilization, and 

the mechanism by which they are copied, needs to be elucidated, since these 

nucleosomes clearly demarcate locations that are capable of escaping both 

chromatin and DNA methylation erasure. Second, is there crosstalk between 

small RNAs carried in both sperm and oocytes, and the epigenetic 

reprogramming taking place in the nucleus? All signs point towards the 

affirmative. Plants, worms and flies utilize small-RNAs to communicate with 

nuclear epigenetic machinery in the germline (Volpe and Martienssen, 2011; 

Heard and RA Martienssen, 2014; Miska and Ferguson-Smith, 2016), and 

piRNAs guide epigenetic reprogramming of the male mammalian germline 

(Aravin et al., 2008; Kuramochi-Miyagawa et al., 2008). This crosstalk has not 
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been identified in oocytes however, where siRNAs and piRNAs appear to 

exclusively target post-transcriptional gene silencing of endogenous retroviruses, 

or ERVs (Tam et al., 2008; Watanabe et al., 2008).  

If crosstalk in the oocyte does not exist, can sperm-borne small-RNAs 

generate signaling or communication pathways to influence the epigenetic 

landscape of the developing embryo? A recent study suggests that sperm-borne 

small RNAs minimally impact the maternally deposited pool of small RNAs 

quantitatively (Yang et al., 2016). However, microinjections of sperm-borne small 

RNAs have been repeatedly shown to mediate paternally induced phenotype in 

the offspring (Rassoulzadegan et al., 2006; Gapp et al., 2014b; Rodgers et al., 

2015; Chen, M Yan, et al., 2016; Sharma et al., 2016; Conine et al., 2018). 

Perhaps sperm-borne small RNAs are functionally privileged by being bound to 

effector proteins or contain the proper modifications? This leads to the question 

of the mechanistic basis by which sperm-borne small RNAs can regulate 

epigenetic reprogramming in PGCs and early development in mammals, which I 

will introduce herein.  

 

The Sperm Epigenome 

Epigenesis 

In mice, epigenetic reprogramming of the male germline begins at 

embryonic day 7.5 (E7.5), in the global erasure of epigenetic marks laid just a 

few days ago (Fig. 1.4) (Seki et al., 2007). Here, newly emerged primordial germ 

cells (PGCs) experience global erasure of H3K9 methylation, increase in 
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H3K27me3 and various histone variants, and global loss of DNA methylation as 

they migrate to the genital ridge at E10.5-11.5 (Seki et al., 2007; Popp et al., 

2010). Once PGCs populate the gonads, sexual dimorphism occurs and male 

PGCs continue to proliferate until an arrest at E14 (Tam and Snow, 1981), where 

they remain arrested until post-natal day 2. However, de novo DNA methylation 

of repeat elements and establishment of paternal imprints continue to occur in 

these quiescent cells (Kato et al., 2007; Watanabe et al., 2011), mediated by 

DNMT3A/B and DNMT3L proteins (Bourc’his and Bestor, 2004), and this process 

is essentially complete by birth.  

 

Figure 1.4. Male germ cell nomenclature and developmental dynamics of 
mouse spermatogenesis. A) Gametogenesis starts during embryonic 
development when primordial germ cells (PGCs) are defined and migrate to 
the genital ridge to form the gonads. Spermatogenesis initiates shortly after 
birth in synchronized waves. At 10 days post birth (P10), spermatogonial stem 
cells differentiate into primary spermatocytes that are committed to undergo 
meiosis. Two consecutive cell divisions (meiosis I and II (MI and MII)) without 
an intermediate S-phase result in the production of haploid gametes that are 
called round spermatids. These cells can be found as early as P20 and then 
undergo spermiogenesis during which the cells elongate and develop sperm-
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specific structures such as the acrosome and the flagellum to form mature 
sperm cells. B) The process of gametogenesis is associated with extensive 
epigenetic reprogramming accompanied by drastic changes in DNA 
methylation and histone modifications such as H3K9me2. During later stages 
of spermatogenesis, global changes in histone composition and finally a 
histone-to-protamine exchange result in chromatin compaction. C) The three 
PIWI proteins encoded in the mouse genome show very specific expression 
profiles throughout spermatogenesis and reflect functionally distinct aspects of 
the piRNA pathway at different stages of spermatogenesis. From (Ernst, Odom 
and Kutter, 2017). Reprinted with permission from Springer Nature.  
 

This de novo DNA methylation is thought to be guided by piRNAs, which 

begin to be expressed at this stage – bound by mouse PIWI homologs MILI and 

MIWI2 (Kuramochi-Miyagawa et al., 2008; Di Giacomo et al., 2013). The 

biogenesis of these so called pre-pachytene piRNAs begins with single-stranded 

Pol II transcripts from defined genomic locations called piRNA clusters (Aravin et 

al., 2006; Lau et al., 2006). However, retrotransposon transcripts also make up a 

large proportion of piRNA precursors at this stage of development (Aravin et al., 

2007, 2008). Once exported into the cytoplasm with the help of Maelstrom 

(Castañeda et al., 2014), the RNA helicase MOV10L1 unwinds and shuttles 

piRNA precursors to be cleaved by the endonuclease PLD6 or Zucchini (Zheng 

et al., 2010; Ipsaro et al., 2012; Han et al., 2015; Vourekas et al., 2015). MILI 

then binds with a strong bias towards 5’ uridines (Cora et al., 2014), and 3’ 

exonucleolytic shortening of the 3’ end proceeds until the protected footprint of 

PIWI proteins has been reached – 26nt for MILI and 28nt for MIWI2, the 

characteristic lengths for these respective piRNA species (Girard et al., 2006; 

Aravin et al., 2007; Kawaoka et al., 2011; Saxe et al., 2013). Finally, piRNAs are 

2’-O methylated by RNA methyltransferase HENMT1 for stability and proper 
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binding to PIWI proteins (Lim et al., 2015). These MILI-bound primary piRNAs 

have strong homology to retrotransposons such as LINE-1 and IAPs, and MILI 

sliced transcripts anti-sense to primary piRNAs generate secondary piRNAs, 

which can be bound by either MILI or MIWI2, initiating an amplification loop 

called the ping-pong cycle (Aravin et al., 2008). In this way, piRNA populations 

can be pruned to enrich for actively expressed TEs. MIWI2-bound piRNAs then 

translocate into the nucleus, where it detects nascent TE transcripts and recruits 

DNMT3/B/L for two waves of de novo DNA methylation over older followed by 

younger TEs (Molaro et al., 2014; Itou et al., 2015; Kojima-Kita et al., 2016).  

MIWI2 is also able to recruit histone methyltransferases to establish repressive 

chromatin marks over TEs (Pezic et al., 2014). However, this pathway is far from 

comprehensive, as there appears to be both MIWI2-independent nuclear 

silencing of TEs (Manakov et al., 2015; Nagamori et al., 2015), and MILI-

independent pre-pachytene piRNA biogenesis pathways in fetal testis 

(Vasiliauskaitė et al., 2017). Importantly, the function of pre-pachytene piRNAs 

does not appear to be in the repression of novel retrotransposition events per se, 

but instead in maintaining the proper chromatin landscape amenable to 

recombination during meiosis following birth (Zamudio et al., 2015).  

At post-natal day 2, male PGCs resume cell division, giving rise to self-

renewing type-A spermatogonia, which in turn give rise to meiotically active type-

B spermatogonia (Bellve et al., 1977). Meiosis synchronously commences at 

P10, as spermatogonia move into the seminiferous tubule as pre-

leptotene/leptotene, zygotene, pachytene, and finally diplotene spermatocytes at 



	 30	

P20, following the completion of meiosis I. During this period, H3K9me2 is lost as 

part of the developmental program driving H3K4me3 gain to allow for 

engagement of recombination machinery such as SPO11 (Zamudio et al., 2015). 

Pre-pachytene piRNA-guided de novo DNA methylation over H3K9me2 marked 

TEs appears to bookmark and prevent H3K4me3 encroachment over these 

genomic regions, thereby preventing aberrant double-stranded breaks that can 

lead to meiotic arrest.  

 

Figure 1.5. Multiple roles of action for pachytene piRNAs during mouse 
spermatogenesis. Pachytene piRNA expression starts during prophase of the 
first meiotic division when spermatocytes reach the pachytene stage. This 
expression is orchestrated by the transcription factor A-MYB, which drives 
expression of piRNA clusters and other piRNA pathway-related genes. 
Pachytene piRNAs are transcribed from distinct clusters in the genome often 
carrying bidirectional promoters. piRNA precursors are then processed in the 
same fashion as pre-pachytene piRNAs and mature pachytene piRNAs 
associate with either MILI or MIWI. Pachytene piRNAs engage in a myriad of 
functions throughout spermatogenesis, including the post-transcriptional 
silencing of TE transcripts but also non-TE-related functions. After meiosis, 
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round spermatids undergo extensive epigenetic remodeling, resulting in a 
genome-wide derepression due to the incorporation of histone variants, 
followed by transition proteins that lead to a transcriptional shutdown, and 
finally replacement of histones with protamines leading to chromatin 
condensation. During this differentiation process, pachytene piRNAs regulate 
spermatogenic mRNAs and lncRNAs that become transcribed due to the 
genome-wide derepression. Furthermore, MIWI is involved in the piRNA-
independent stabilization of spermiogenic mRNAs to allow storage and 
translation after the transcriptional shutdown. Toward later stages, pachytene 
piRNAs direct global mRNA degradation in association with MIWI, which 
recruits CAF1 to induce deadenylation resulting in mRNA decay. From (Ernst, 
Odom and Kutter, 2017). Reprinted with permission from Spinger Nature.  
 

After rapid completion of meiosis II, a process called spermiogenesis 

begins in round spermatids at P20 (Fig. 1.5) (O’Donnell, 2014). During 

spermiogenesis, sperm-specific structures such as the flagellum form, but 

another crucial epigenetic reprogramming process also occurs – nuclear 

compaction. Histones are replaced first by testis-specific histone variants, then 

transition proteins, and finally highly basic protamines, resulting in up to 20 fold 

genomic compaction (Balhorn, 2007). To facilitate epigenetic transition, histone 

variants are loosely packaged and spurious transcription is initiated globally, 

including the expression of TEs (Soumillon et al., 2013; Ernst et al., 2016).  

The silencing of these TEs and spuriously transcribed mRNAs including 

long-non-coding RNAs are predominantly mediated by a second class of piRNAs 

bound by MIWI, called pachytene piRNAs (Girard et al., 2006; Grivna et al., 

2006; Lau et al., 2006), but also esiRNAs (Watanabe et al., 2008), via post-

transcriptional gene silencing. Pachytene piRNAs are transcribed from large 

intergenic non-coding and 3’-UTRs of protein-coding gene loci, with an apparent 

dearth of repeat content (Girard et al., 2006; Robine et al., 2009; Vourekas et al., 
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2012). Biogenesis of pachytene piRNAs are largely similar to pre-pachytene 

piRNAs, with notable differences including transcription directionality (Li et al., 

2013; Homolka et al., 2015) and unique RNA G-quadruplex structures (Vourekas 

et al., 2015). Interestingly, pachytene piRNAs not only help to silence TEs during 

the latter stages of spermiogenesis, but regulate meiotic gene expression (Goh 

et al., 2015; Zhang et al., 2015), elimination of mRNAs in post-meiotic elongating 

spermatids (Gou et al., 2014), and mRNA storage for later translation following 

transcriptional shutdown (Vourekas et al., 2012).  

The Sperm Histone Code? 

Most relevant to the mechanism of inter- and transgenerational epigenetic 

inheritance through the male germline, histone to protamine transition is 

incomplete, and about 5-10% of histones remain associated with the genome in 

mature sperm (Hammoud, David A Nix, et al., 2009; Brykczynska et al., 2010). 

The genomic locations of these residual nucleosomes remain highly 

controversial, with groups claiming either developmental gene promoter or gene-

dessert enriched nucleosomes in mature sperm (Saitou and Kurimoto, 2014; 

Yamaguchi et al., 2018; Yoshida et al., 2018). It has been argued that the 

discrepancy in nucleosome position mapping results from MNase over-digestion 

(Carone et al., 2014), and a recent study does support this line of reasoning 

(Yoshida et al., 2018). In addition to technicalities, while it is plausible that these 

residual nucleosomes have the potential to mediate paternal memory and 

therefore act as a carrier of inter- and transgeneration epigenetic information in 
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the mammalian male germline, several counter-arguments have to be 

considered.   

Firstly, the question of penetrance and the propagation of specific 

epigenetic marks across developmental time-scales in various tissues with 

divergent functions. As detailed above, two successive rounds of epigenetic 

reprogramming occur in the embryonic germline – first directly following 

fertilization, and then a few days later in PGCs. It is therefore unlikely that any 

later developing tissues of the embryo (F1) or even future generations of 

offspring from the developed embryo (transgenerational epigenetic inheritance) 

could “remember” its original paternal chromatin marks or DNA cytosine 

methylation. Indeed, recent genome-wide sequencing of DNA cytosine 

methylation, H3K4me3 and H3K27me3 in sperm, oocyte, and allelically resolved 

pre-implantation embryos suggest extensive genome-wide erasure and 

remodeling of these epigenetic marks quickly following fertilization (Wu et al., 

2016; Zhang et al., 2016; Zheng et al., 2016).  

In addition, it is unclear how changes in the paternal environment could 

directly shape DNA cytosine methylation and histone modifications in the post-

natal testis. First, as detailed above, de novo epigenetic marks are guided by 

pre-pachytene piRNAs, which essentially act as safeguards to prevent 

spermatocytes that have undergone inappropriate epigenetic silencing of TEs 

from continuing into spermiogenesis (Zamudio et al., 2015). Next, during and 

following meiosis II, spurious transcription occurs genome-wide because of or in 

order to facilitate the histone to protamine transition. It is widely known that 
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histone replacement occurs most often over transcribed promoters (Dion et al., 

2007). It is therefore more likely that un-replaced histones reside in 

transcriptionally silent regions (i.e. gene desserts). In addition, even if histone 

marks can be retained at developmental promoters in sperm (Siklenka et al., 

2015b), it is hard to envision environmental cues that would allow for specific 

targeting of precise histone marks. For example, if paternal diet leads to a global 

increase or decrease in methylation metabolites such as SAM or α-ketoglutarate 

in the testis, there is no clear mechanism of how this would specifically affect 

H3K4 vs. H3K9 vs. H3K29 methylation, which would have conflicting roles in 

gene regulation in the developing sperm and in embryonic development. 

Taken together, while a sperm histone code remains an attractive 

mechanistic model for paternal epigenetic inheritance, with convincing evidence 

backing up the basic requirements of this model (Hammoud, David A Nix, et al., 

2009; Siklenka et al., 2015b), much work remains to address how specific 

environmental cues can fine tune and/or evade the sledgehammer that is 

embryonic and germline epigenetic reprogramming.   

 

The Case for Sperm-borne Small-RNAs  

After spermiogenesis, testicular sperm release into a long convoluted 

tubule known as the epididymis (Cornwall, 2009). Testicular sperm are 

transcriptionally inert and morphologically comparable to mature sperm, yet are 

nonfunctional gametes. It is during epididymal transit that spermatozoa undergo 

maturation, and acquire progressive motility and the ability to fertilize the oocyte. 
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The epididymis is grossly separated into three regions – the caput (head), corpus 

(body), and the cauda (tail). The caput and corpus carry out sperm maturation 

events, while the cauda mainly acts as a storage site (Robaire, Hinton and 

Orgebin-Crist, 2002). The epididymal lumen is a highly proteinaceous and 

metabolically active environment that subtly balances the pH, osmolarity, and 

secretory proteins that reshape the sperm proteome (Robaire, Hinton and 

Orgebin-Crist, 2002). The caput epididymis quickly resorbs all testicular proteins 

and secrets its own contents of proteins into the lumen. Of particular importance 

are proteins involved in not only sperm motility but also interactions with the zona 

pellucida of the oocyte, which are also delivered via membranous vesicles 

containing these proteins called epididymosomes (Yanagimachi et al., 1985; 

Sullivan, 2015). Originating from the epididymal epithelial cells via apocrine 

secretion (van Niel, D’Angelo and Raposo, 2018a), these apical blebs bind to 

and modify the sperm proteome and supports it post-ejaculatory functions 

(Sullivan, Frenette and Girouard, 2007; Sullivan and Saez, 2013).  

Recent studies have identified small RNAs as novel carriers of sperm 

epigenetic information in mammals (Rassoulzadegan et al., 2006; Peng et al., 

2012a; Kiani et al., 2013; Gapp et al., 2014b; Chen, M Yan, et al., 2016; 

Grandjean et al., 2016; Sharma et al., 2016, 2018; Guo et al., 2017; Conine et 

al., 2018; Zhang et al., 2018), which has been a central carrier of germline 

epigenetic information in essentially all intensively studied organisms (Castel and 

Martienssen, 2013; Miska and Ferguson-Smith, 2016). Small RNAs implicated in 

male germline inheritance and early embryonic development in various models 
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include miRNAs (Rassoulzadegan et al., 2006; Kiani et al., 2013; Grandjean et 

al., 2016; Conine et al., 2018), tRNA fragments or tRFs (Chen, M Yan, et al., 

2016; Sharma et al., 2016; Zhang et al., 2018) and long-noncoding RNAs (Gapp 

et al., 2018). However, other small and long RNAs can potentially mediate 

paternal information as well, as ribosomal RNA fragments (also abundant in 

mature sperm, unpublished data) (see Appendix I) have been shown to mediate 

cellular proliferation (Chen et al., 2017).  

Importantly, epididymosomes also contain abundant small RNAs 

(Belleannée et al., 2013; Sharma et al., 2016, 2018). Work from our lab has 

shown that these small RNAs are capable of being trafficked to epididymal sperm 

via epididymosomes (Sharma et al., 2018). tRFs make up the majority of small 

RNAs gained during epididymal transit, although earlier figures of around 80-90% 

of total caudal sperm small-RNAs may be higher than what is actually gained 

(unpublished data). Nevertheless, these tRFs and other small RNAs overwhelm 

the initial pool of piRNAs, and it has been shown that tRFs carried by sperm can 

play important roles in early embryonic development (Chen, M Yan, et al., 2016; 

Sharma et al., 2016). In addition, the miRNAs that are gained during epididymal 

transit, possibly via epididymosome fusion or further processing during this 

period (Yuan et al., 2016), regulate embryonic gene expression and are required 

for proper pre- and peri-implantation embryonic development (Conine et al., 

2018). Taken together, these studies support the idea that the sperm epigenome 

can be shaped once it exits the testis, while it is trafficked through the epididymis. 

Given that the epididymis is a highly metabolically active epithelial tissue, it could 
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potentially be a privileged environmental sensor that can modify the sperm 

epigenome, leading to inter- or transgenerational epigenetic inheritance (Sharma 

et al., 2016).  

Intriguingly, there is precedent in plants and worms for the modification of 

the germline epigenome by somatic tissue (Bourc’his and Voinnet, 2010; Castel 

and Martienssen, 2013). In plants, germline cells arise from somatic stem cells, 

and selective epigenetic reprogramming must occur particularly over TEs. 

Arabidopsis male gametophytes contain a supportive vegetative nucleus that 

expresses transposons, and can deliver small-RNAs antisense to these 

transposons to the two sperm nuclei to silence TE expression there (Slotkin et 

al., 2009). In addition, C. elegans injected with or ingesting double stranded RNA 

leads to potent gene silencing for up to five generations (Fire et al., 1998). While 

these organisms and their germline development are distinct from mammals, 

their existence suggests an evolutionary need for germline epigenetic pruning by 

somatic tissue, apparently in relation to silencing of transposons.  

Functionally, it is unclear how epithelial cells in the epididymis may sense 

the environment, and/or sort small RNAs and proteins into epididymosomes. In 

other words, no signaling pathways have been identified that can cause specific 

epigenetic changes in sperm (whether it be small RNAs or histones). However, it 

is known that exosomal contents are fine-tuned via various intracellular trafficking 

processes, and that their contents differ starkly in normal and pathological states, 

and across cell types (van Niel, D’Angelo and Raposo, 2018b). It has also been 

shown that certain RNA binding proteins are specifically involved in sorting of 
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certain miRNAs via binding to cognate motifs (Villarroya-Beltri et al., 2013). 

Therefore, it is plausible that a possible pathway for stress sensing and 

epididymosomal sorting exists. Lastly, the ribonuclease(s) responsible for tRNA 

fragment biogenesis in the epididymis is unknown. The RNase A family, of which 

Angiogenin is a part of (thought to be responsible for most tRNA fragment 

cleavage, see below), has undergone a huge expansion in mammals, with 

humans carrying 15 distinct RNase genes, 13 of which are predicted to be 

functional (Cho, Beintema and Zhang, 2005). These genes are located on 

chromosomal clusters. However, ANG (RNase 5) is not expressed in the 

epididymis, and instead RNases 4, 9-13 are highly expressed (Li et al., 2010), 

although 9-13 do not appear to have intact RNase activity (Castella et al., 2004; 

Cho, Beintema and Zhang, 2005; Cheng et al., 2009). Intriguingly, RNase 9 itself 

appears to play a role in epididymal sperm maturation, despite its loss of catalytic 

activity (Westmuckett et al., 2014). Much work remains to be done to understand 

the biogenesis and sorting of small RNAs into epididymosomes, and whether and 

how this tissue could potentially sense metabolic changes that could lead to 

modifications of the sperm epigenome.  

 

Forms and Functions of tRNA Fragments 

 Of particular interest in the sperm epigenome are the large abundance of 

tRNA fragments, or tRFs, and their potential regulatory roles in the early embryo. 

tRFs represent a relative new-comer to the small-RNA (sRNA) field, while the 

three main classes – microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), and 
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small-interfering RNAs (siRNAs) have been extensively characterized with well-

established functions (Ghildiyal and Zamore, 2009). These sRNAs all associate 

with the ancient Argonaute family proteins, and regulate gene expression and 

development in eukaryotes (Stefani and Slack, 2008). In contrast, while certain 

species of tRFs, such as those derived from the 3’ end via cleavage at the T 

loop, appear to be cleaved by Dicer and associate with Argonaute family proteins 

(Haussecker et al., 2010; Mary T. Couvillion et al., 2012; Kumar et al., 2014a; 

Andrea J. Schorn et al., 2017; Martinez, Choudury and Slotkin, 2017), the 

majority of tRFs described in the literature display a different biogenesis and 

functional pathway. Perhaps because of this potential functional diversity, and 

intrinsic high copy number, studies on tRFs have expanded in the last decade 

(Keam and Hutvagner, 2015).  
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Figure 1.6. Classification of tRNA-Derived Fragments (tRFs). Fragments from 
tRNAs color coded to indicate area of origin. White circles indicate an intron 
present in some tRNAs (e.g., chr16.trna4-ProAGG) that are normally spliced out 
by TSEN and CLP1. From (Kumar, Kuscu and Dutta, 2016). Reprinted with 
permission from Elsevier.  
 

Pre-tRNA fragments 

tRNAs are heavily modified post-transcriptionally, including splicing, 

cleavage of leader and trailer sequences, addition of non-templated ‘CCA’ 

sequence at the 3’ end, and chemical modifications (Torres, Batlle and Ribas de 

Pouplana, 2014). Consequently, a kaleidoscope of tRNA fragments has been 

found to be generated from tRNAs at various stages of their life cycle (Fig. 1.6). 

Following transcription of tRNAs by RNA Polymerase III, leader and trailer 

sequences are cleaved by RNase P and Z respectively, and a non-templated 
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CCA is added to the 3’ end of the trailer-free tRNA by tRNA nucleotidyl 

transferase (Aebi et al., 1990). Lee and colleagues identified such a trailer 

derived 19nt tRF they called tRF-1001, derived from pre-tRNASer-TGA (Lee et al., 

2009). Found in high levels in proliferative cancer cells, knockdown of tRF-1001 

impaired G2-M transition. The same tRF was identified by Haussecker and 

colleagues, which they reported to be associated with AGO3 and 4 (Haussecker 

et al., 2010). However, they did not find inhibitory activity of this tRF on a reporter 

complementary to tRF-1001, in contrast to the presumed role of AGO-associated 

sRNAs in gene silencing. The exact function of these trailer tRFs derived from 

pre-tRNAs remains unknown.  

Certain species of tRNAs also contain introns that need to be spliced out. 

In vertebrates, a kinase called CLP1 plays a key role in the tRNA endonuclease 

complex (TSEN) that catalyzes tRNA intron splicing (Schaffer et al., 2014). 

Mutations in CLP1 causes neurodegeneration in zebrafish and mouse models, 

and humans (Hanada et al., 2013; Karaca et al., 2014; Schaffer et al., 2014). 

Loss of efficient pre-tRNA splicing led to an accumulation of linear introns and 

tRFs derived from these introns, particularly from the tyrosine pre-tRNA (Hanada 

et al., 2013). The authors also showed that these tRFs sensitize cells to oxidative 

stress induced p53 activation, and p53-dependent cell death. However, the exact 

signal that leads tRFs to induce p53-sensitized apoptosis is unclear.  

 

Short miRNA-like 3’ tRFs 
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A myriad of tRFs are formed from mature tRNAs. Numerous studies have 

focused on tRFs derived from the 3’ end, after the T-loop of the tRNA, with sizes 

around 18-22 nt, also known as tRF-3s (Fig. 1.6). The reported biogenesis and 

function of tRF-3’s are mixed in the literature. While most studies show that tRF-

3s are Dicer dependent (Babiarz et al., 2008; Cole et al., 2009; Yeung et al., 

2009; Couvillion, Sachidanandam and Collins, 2010; Maute et al., 2013), others 

show these tRFs to be Dicer-independent (Li et al., 2012; Kuscu et al., 2018). In 

terms of function, tRF-3s play different roles in various biological contexts. For 

example, a growth essential Tetrahymena Piwi requires tRF-3s to properly recruit 

a nuclear exonuclease Xrn2 to stimulate its activity (Couvillion, Sachidanandam 

and Collins, 2010; Mary T. Couvillion et al., 2012). tRF-3s also appear to 

stimulate cancer growth opportunistically: a 22-base tRF-3 from tRNA-Gly-GCC 

associates with AGO proteins to repress RPA1 in B Cell lymphomas (Maute et 

al., 2013); Dicer-independent tRF-3s derived from tRNA-Leu can repress 

expression of a variety of genes in HEK293 cells, one of which specifically 

derived from tRNA-Leu-CAG, binds to ribosomal mRNAs to enhance translation 

(Kim et al., 2017). Further work is needed to explore a unifying mechanistic 

understanding of tRF-3s.  

 

5’tRNA halves and others 

Another abundant and well-characterized class of tRFs, called tRF-halves 

or tiRs, are mostly cleaved in the anti-codon loop by RNase A superfamily related 

endonucleases such as Angiogenin (Yamasaki, Ivanov, G. F. Hu, et al., 2009; 
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Emara et al., 2010; Li et al., 2012; Honda et al., 2015), with longer lengths 

between 28-40 nt. These tRFs have been implicated in numerous contexts as 

well, including in phloem sap (Zhang, Sun and Kragler, 2009a), the archae 

Haloferax volcanii (Gebetsberger et al., 2012b), and Trypanosoma brucei 

(Fricker et al., 2019), although they are mostly associated with stress or in 

hormone-responsive tissues. Honda and colleagues demonstrated that in breast 

and prostate cancer cell lines, generation of tRF-halves involved in cellular 

proliferation are sex-hormone responsive and dependent on ANG, with expected 

cleavage ends of cyclic-phosphate on the 5’-tRFs and amino-acids on the 3’-

tRFs (Honda et al., 2015). Others show tRF-halves induced upon a diverse range 

of stress conditions, including etoposide and caffeine treatment, nutritional 

deficiency, hypoxia and oxidative stress, heat-shock and hypothermia, UV 

irradiation, and arsenite-stress (Fu et al., 2009b; Yamasaki, Ivanov, G. F. Hu, et 

al., 2009; Emara et al., 2010; Ivanov, Mohamed M. Emara, et al., 2011; 

Gebetsberger et al., 2017a). A consensus emerges that during stress, ANG-

induced tRNA cleavage occurs by translocation of ANG into the cytoplasm (Pizzo 

et al., 2013) or via dissociation from its inhibitor ribonuclease/angiogenin inhibitor 

1 (RNH1) (Thompson and Parker, 2009). How a variety of cellular stresses in 

various organisms can lead to dissociation of ANG from RNH1 or translocation of 

ANG is unknown. One explanation is based on the formation of stress granules, 

which are conserved RNP granules formed from pools of stalled untranslating 

mRNPs (Protter and Parker, 2016). First and most straightforwardly, the 

degradation of tRFs could potentiate translational inhibition by simply reducing 
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the pool of tRNAs. In addition, tRF halves could potentially act as a trigger to 

nucleate stress granules, leading to wide-spread translational inhibition observed 

in numerous cell types and organisms (Zhang, Sun and Kragler, 2009a; Ivanov, 

Mohamed M. Emara, et al., 2011; Gebetsberger et al., 2012b; Goncalves et al., 

2016). Here, the mechanism of how tRFs inhibit translation has been well worked 

out for a specific tRF derived from 5’ half of tRNA-Ala and 5’ half of tRNA-Cys. 

5’tiRNAs derived from tRNA-Ala and tRNA-Cys specifically displace eIF4G/A 

from uncapped and capped mRNAs, and eIF4F from the m7G cap (Ivanov, 

Mohamed M. Emara, et al., 2011). This displacement apparently occurs through 

binding of 5’tiRNA-Ala to YB-1/YBX1, a translational repressor known to displace 

eIF4G from RNA and eiF4F from m7G cap (Evdokimova et al., 2001; Nekrasov et 

al., 2003). This interaction could potentially be mediated by the G-quadruplex 

structure that 5’ tRF-Ala and tRF-Cys can form (Ivanov et al., 2014), although 

how widespread this capability of tRFs to form this structure is an open question, 

as is the in vivo validity of RNA G-quadruplex formation (Guo and Bartel, 2016).  

Nevertheless, in terms of evidence supporting YBX-1 mediated tRF-

regulation of cellular proliferation, Goodarzi and colleagues also identified a role 

for this particular interaction in breast cancer cell proliferation. However, their 

CLIP-seq data suggests that YBX-1 in breast cancer cells predominantly interact 

with a tRF-species that has not been identified elsewhere, derived from the 

center of the tRNA around the anti-codon loop, also known as tRF-2s (Fig. 1.6) 

(Goodarzi, Liu, Hoang C.B. Nguyen, et al., 2015a). The biogenesis of tRF-2s is 

unknown, although they appear to be products resulting from cleavage at the T- 
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and D-loops simultaneously. Previous evidence suggests that these cleavages 

are Dicer dependent, although those authors did not detect tRF-2s (Babiarz et 

al., 2008; Cole et al., 2009). In any case, these YBX1-bound tRF-2s also appear 

to be stress-induced products, as it is common for cancer cells to experience 

hypoxia, and they act as natural tumor-suppressors through their interaction with 

YBX-1 leading to 3’UTR control of oncogenic target RNA expression. Together, 

the authors propose these tRF-2s to act through a “sponge”-like mechanism, 

soaking up YBX-1 which would otherwise be bound to oncogenic mRNAs to 

facilitate their mRNA stability and translation (Goodarzi, Liu, Hoang C.B. Nguyen, 

et al., 2015a). It remains unclear however, how prevalent are tRF-2s in these 

cancer cells to effectively act as sponges, since the authors present no 

quantitative measurements such as northern blots or competition assays 

between tRFs and oncogenic mRNAs. It is also unclear how prevalent tRF-2s are 

in general, since it has not been observed in any other deep-sequencing study of 

tRFs.  

Taken together, Angiogenin-dependent tRF-halves and those bound to 

YBX-1 appear to prevent cellular proliferation in cancer cells and during stress. 

Specifically, stress granules in part triggered by tRFs appear to have protective 

effects on cells in numerous cellular and disease contexts, and in a variety of 

organisms, possibly through inhibition of translation to prevent exhaustion of 

metabolites during stress. Indeed, this paradigm appears to hold true even in 

normal cellular contexts, as ANG-dependent tRFs appear to promote 



	 46	

hematopoietic stem cells quiescence and maintenance of cell fate through 

repression of translation (Goncalves et al., 2016).  

Interestingly, tRF-halves appear to have more diverse roles than 

translational inhibition in one specific cell type – the embryo. Recently, three 

separate studies confirmed that mammalian sperm contain very high levels of 

tRF-halves, in contrast to other tissue types which contain mostly miRNAs, or 

piRNAs in the testis for instance (Peng et al., 2012a; Chen, Menghong Yan, et 

al., 2016; Sharma et al., 2016). Their particular function in sperm appears to be 

that of epigenetic inheritance – the levels of specific tRFs, particularly those 

derived from tRF-Glycine, Lysine, and Histidine, are consistently modulated in 

fathers fed a low-protein diet (Sharma et al., 2016). One particular tRF-half, 

derived from tRNA-Gly-GCC, regulates the expression of a set of genes in the 

embryo associated with the endogenous retroelement MERVL (Sharma et al., 

2016), while larger gene expression changes are associated with modulation of 

the complete set of diet-responsive tRFs (Chen, Menghong Yan, et al., 2016). 

Both groups show that injection of tRF-sized RNAs can induce the diet-

associated phenotypic changes in the embryo, although Chen et al. goes further 

by showing these tRFs can actually lead to the same changes in offspring 

development observed through IVF.  

The mechanism by which tRFs may act to regulate gene expression in the 

embryo, and how this can lead to changes in offspring development is still an 

open question. Our work did show that at least for tRF-Gly-GCC regulation of 

MERVL, translational inhibition does not appear to be the mechanism 
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(elaborated in Chapter II). However, this does not mean that the other abundant 

tRF halves do not impose translational limitation of the embryo, as ribosomal 

gene expression is a major gene expression signature for both data sets from 

both groups. In addition, the biogenesis of these tRFs in sperm is unknown. 

While we show that these tRFs are delivered via epididymosomes as sperm 

transit through the epididymis (Chapter II) (Sharma et al., 2016, 2018), we do not 

know the detailed pathway by which the epididymis may sense dietary changes 

and generate changes in specific tRFs, or even the protein responsible for 

cleavage – the tRF-halves identified do show characteristics of cleavage by 

RNase A family members, however.  

Intriguingly, the unique functions of tRF-5s in reproductive tissue is also 

observed for pollen in Arabidopsis and land plants, although these pollen tRF-5s 

are not halves but instead cleaved by Dicer in the T-loop with an average length 

of 19 nt, and act through AGO1 (Martinez, Choudury and Slotkin, 2017). Their 

function here in pollen, as in mammalian embryos, is also to silence TEs, albeit 

through unconventional mechanism particularly evident during relaxed epigenetic 

silencing conditions of loss of DDM1 SWI/SNF chromatin remodeler family 

protein. An important open question is therefore, whether tRF-Gly-GCC silences 

MERVL in a conserved mechanism in mammals.  

 

The role of tRNA modifications in the generation of tRFs 

A potential way that tRF-cleavage is modulated, whether it be paternal diet 

during sperm maturation or under specific stress conditions, is through changes 
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in the levels of tRNA modifications (Schaefer et al., 2010; Tuorto et al., 2012; 

Durdevic et al., 2013; Blanco et al., 2014; Guzzi et al., 2018; Zhang et al., 2018). 

Schaefer and colleagues were the first to demonstrate the role of tRNA 

modifications in tRF biogenesis (Schaefer et al., 2010). Specifically, they show 

that cystone-5 methylation (m5C) of tRNA-Gly-GCC, tRNA-Val-AAC, and tRNA-

Asp-GTC is DNMT2 dependent, and protects them from cleavage by ANG during 

stress in Drosophila S2 cells and mouse embryonic fibroblasts. However, the 

functional relevance of m5C protection against recombinant ANG is questionable 

– ANG is a mammalian member of the RNase A superfamily, and its 

overexpression in whole flies led to severe developmental defects (Genenncher 

et al., 2018). Furthermore, overexpression of the Drosophila RNase family 

member RNase X25 did not affect tRF cleavage (Ambrosio et al., 2014; 

Genenncher et al., 2018). Importantly, DNMT2 or NSUN2 knockouts in whole 

adult flies did not result in increased tRFs, with NSUN2 mutants actually resulting 

in a decrease of tRFs in whole flies (Genenncher et al., 2018).  

The function of DNMT2 as a methyltransferase of tRNA m5C is conserved 

in mice, as demonstrated by Zhang and colleagues, who in a follow-up to Chen 

et al., identified DNMT2 as a key modulator of tRNA m5C and m2G modifications 

of Gly-GCC, Asp-GTC and Val-AAC (Zhang et al., 2018). This follows on 

previous study from another epigenetic inheritance model of the Kit gene, where 

miRNAs in sperm were implicated, which also required DNMT2 (Kiani et al., 

2013). In terms of sperm-borne epigenetic signaling, loss of DNMT2 actually 

abolished the inheritance of high-fat diet induced phenotype in the offspring, 
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which the authors show is dependent on changes in the small RNAs fraction of 

sperm-borne RNAs. In addition, Zhang and colleagues show that cleavage of 

tRNAs carrying m5C in vivo was dependent on DNMT2, although the results 

demonstrating RNase cleavage of oligos carrying m5C at the DNMT2-dependent 

tRNA position in vitro was inconclusive at best (Zhang et al., 2018). Furthermore, 

the data does not directly support DNMT2-dependent m5C protection of tRF 

cleavage as a trigger of the downstream developmental phenotype induced by 

high fat diet, and how paternal high fat diet could lead to down-regulation of 

specific RNA methyltransferases or availability of metabolites involved in 

methylation of RNAs, and the location of where this regulation occurs, remains 

unclear. Perhaps in tissues that produce large amounts of tRFs, such as primary 

cells in the epididymis, RNA methyltransferases or methylation metabolites such 

as S-adenosylmethionine are depleted, leading to increased endonuclease 

cleavage of tRNAs into tRFs (Sharma and Rando, 2017).  

On the other hand, NSUN2 has a much larger repertoire of tRNAs in mice, 

including tRNA-Leu-CAA, Met-CAT, Thr-TGT, Glu-CTC, and overlapping with 

DNMT2 targets Asp-GTC and Gly-CCC (Blanco et al., 2014). Nsun2 loss in both 

Drosophila and mice suffer translational inhibition and stress, particularly in 

neurons, but also in various stem cells (Tuorto et al., 2012; Blanco et al., 2014, 

2016). Interestingly, reminiscent of DNMT2 catalyzed m5C in tRNAs, NSUN2 

catalyzed m5C also appears to have a protective effect against ANG dependent 

tRF cleavage, although both in vivo tRF deep sequencing data and in vitro 

cleavage in of m5C are far from convincing (Blanco et al., 2014). In addition, as in 
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the DNMT2 studies, only circumstantial, but no direct evidence is presented 

demonstrating tRF-mediated effects on translational inhibition during stress 

response in stem cells or in neurons (Tuorto et al., 2012; Blanco et al., 2014, 

2016). In any case, m5C appears to help maintain tRNA stability to a certain 

extent, although the exact mechanism by which cleavage of various tRFs occurs 

and the degradation of tRFs carrying m5C following cleavage remains unclear.  

Another tRNA modification that has been studied in terms of mediating 

tRNA stability and tRF cleavage is pseudouridylation (Guzzi et al., 2018). Here, 

Guzzi and colleagues implicated PUS7, a pseudouridine synthase, in the 

generation of tRFs derived from various tRNAs, particularly 18nt tRFs derived 

from the 5’ end of tRNA-Ala/Cys/Val (mTOG) (Guzzi et al., 2018). The authors 

claim that the level and function of these tRFs depends on the presence of the 

pseudouridine modification, and therefore on the presence of PUS7, and that 

loss of PUS7 lead to translational inhibition and imbalances in stem cell 

developmental niche. Again, as with m5C, data supporting this claim is 

inconclusive at best. In addition, the particular prevalence of these tRFs is not 

explored, given that pseudouridylation is a widespread modification found 

throughout essentially every tRNA at multiple nucleotides. Nevertheless, these 

mTOGs were similar to those studied by Ivanov and colleagues in form and 

function (inhibition of translation), although those were mostly tRNA halves, but 

the regulatory region appears to be the same – the initial segment before the D-

loop (Ivanov, Mohamed M. Emara, et al., 2011). Pseudouridylation is also found 

in rRNAs and snoRNAs, and since these RNAs also produce sRNAs, it might be 
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interesting going forward to understand whether this modification and others also 

influence sRNA-generation from these other RNAs. This possibility appears likely 

since cystone-5 methylation has already been shown to determine processing of 

vault-RNA derived sRNAs (Hussain et al., 2013), and the levels and functions of 

miRNAs (Squires et al., 2012; Kiani et al., 2013; Yuan et al., 2014). In addition, 

given the diversity of post-transcriptional modifications on tRNAs (Lorenz, Lünse 

and Mörl, 2017), and the known function of these modifications to impart 

structural stability and translational fidelity (Chou et al., 2017), important work 

remains to determine the potential roles that these modifications play in tRF 

biogenesis and function (Durdevic and Schaefer, 2013; Lyons, Fay and Ivanov, 

2018).  

 

tRF questions to consider  

For tRF-3s, is its abundance in cancer altogether an existential accident, 

or does this abundant class of tRFs play an essential function in mammalian 

development? One possible answer is given by Schorn and colleagues, who 

showed that under relaxed epigenetic conditions, such as in Setdb1 or Dnmt1 

knockout mouse embryonic stem cells (which the authors claim simulates early 

embryos or germ cells undergoing epigenetic reprogramming), tRF-3s are 

recruited to silence ERVs (Andrea J. Schorn et al., 2017). However, the 

biogenesis pathway for these tRFs and effector protein involved in silencing are 

unclear. Nevertheless, their study argues that cellular reprogramming elicits 

derepression of LTR retroelements, and given the natural complementarity of 
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tRF-3’s to the primer-binding site (PBS) of LTR ERVs, cells utilize them as 

esiRNAs to control rampant retrotransposition. A similar mechanism is described 

in Arabidopsis, although the tRFs Martinez and colleagues described in pollen to 

silence TEs are short tRFs derived from the 5’ end, or tRF-5s (Martinez, 

Choudury and Slotkin, 2017). Then, the implication for cancer cells or growing 

Tetrahymena being that since these cell types do not experience relaxed 

epigenetic silencing, their utilization of tRF-3s in silencing of TEs is unlikely to be 

observed. However, since certain cancers do arise from loss of epigenetic 

silencing, particularly in H3K9 methylation which is important for transposon 

silencing in mammalian cells (Nguyen et al., 2002; Yang, 2004; Kondo et al., 

2008), these cells present an important avenue for testing of the hypothesis 

proposed by Schorn et al. that during relaxed epigenetic silencing cells utilize 

tRF-3s as esiRNAs to silence transposon expression.  

Another important issue to be resolved is whether all tRF-3s in the 

literature are derived from mature tRNAs (whereby they would end in a CCA), or 

pre-tRNAs, since both classes make up large fractions of total tRF-3s (see 

Appendix I). In terms of tRF biogenesis, certain species of tRF-5/3s may also be 

more amenable to Dicer cleavage under certain physiological conditions or in 

certain cell types, although how exactly this could occur is unknown.  

One barrier to a comprehensive understanding of tRFs in various 

biological contexts is the current method of identifying and quantifying tRFs – 

deep sequencing, is not consistently applied across laboratories. Important 

recent work has shown that modifications and changes in cloning methodology 
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can impact whether the tRFs are clonable, and therefore, assumed to be 

“present” in the sample by standard sRNA deep sequencing methods (Cozen et 

al., 2015) (see also Appendix 1). Future work will need to critically filter, clarify, 

and consolidate tRF deep sequencing data from various groups with the cloning 

strategy and mapping methodology in mind.   

 

Regulation of Endogenous Retrovirus Family ERV-L 

 

Figure 1.7. Schematic representations of the different transposable element 
groups found in mammalian genomes. Colored boxes demarcate coding 
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regions and the protein domains encoded within. From (Rodriguez-Terrones and 
Torres-Padilla, 2018). Reprinted with permission from Elsevier.  
 

There are two main types of TEs – type I DNA transposons, and type II 

retrotransposons, which are then divided into classes of non-LTR 

retrotransposons such as LINE-1 and SINE-1 superfamilies, and LTR 

retrotransposons such as IAP and Gypsy superfamilies (Figure 1.7) (Kapitonov 

and Jurka, 2008). Together, TEs have been highly successful in shaping 

eukaryotic genomes. For example, 40% of the mouse genomes are fossils of 

TEs, with about 10% derived from LTR retrotransposons, also known as 

endogenous retroviruses or ERVs (Consortium, 2002). ERVs appear to be 

remnants of ancient viral infections of the germline that have now become 

endogenous threats to genome stability. Despite the evolution of potent host 

silencing mechanisms, ERVs continue to win the evolutionary arms race – ERVs 

remain highly active in mice both in terms of expression and retrotransposition, 

and continue to shape genomes in mostly spontaneous mutations. These lead to 

a variety of negative functional consequences, including direct gene mutation, 

repeat-driven non-allelic recombination leading to translocations, expression mis-

regulation, and post-transcriptional processing defects (Kazazian, 2004; Slotkin 

and Martienssen, 2007a; Garcia-Perez, Widmann and Adams, 2016). In certain 

cases however, these novel transpositions can lead to genomic innovation (Sela 

et al., 2007; Biémont and Voytas, 2010; Dubin, Mittelsten Scheid and Becker, 

2018), and can even take on new regulatory roles during development 

(Jachowicz et al., 2017; Percharde et al., 2018). Here, I specifically focus on 
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introducing the silencing mechanisms of ERVs in mammals, and evidence of 

ERVs acquiring novel regulatory functions in mammalian development.  

 

Transcriptional silencing 

 Potent silencing mechanisms exist in the nucleus, where various 

epigenetic machineries act in tandem to silence expression of ERVs. DNA 

methylation and chromatin state are two highly conserved mechanisms that act 

cooperatively to silence retrotransposon expression in all mammalian cell types 

(Yoder, Walsh and Bestor, 1997). CpGs are more than 70% methylated 

throughout the genome of mammalian somatic tissue, with half of all human 

CpGs residing in repeats (Rollins et al., 2006). How exactly DNA cytosine 

methylation represses transcription is unclear however, but has been suggested 

to occur through two separate mechanisms – direct blocking of transcription 

factor binding, and recruitment of methyl-CpG binding MBD proteins and 

repressor complexes such as the NuRD complex (Li and Zhang, 2014). During 

preimplantation development and germline specification – where active and 

passive DNA cytosine demethylation leads to loss of genomic silencing capacity 

(Li and Zhang, 2014) – chromatin appears to take the lead (Walsh, Chaillet and 

Bestor, 1998; Messerschmidt, Knowles and Solter, 2014). In these tissues, ERVs 

are recognized and marked by repressive chromatin marks through a 

coordinated dance of epigenetic machineries. First, one of hundreds of KZFPs 

recognize specific sequences in TEs, particularly ERVs, with some KZFPs 

recognizing multiple classes of ERVs (Imbeault, Helleboid and Trono, 2017). 
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Importantly, KZFPs are rapidly evolving and appear to bind to evolutionarily 

young ERVs (Jacobs et al., 2014). The binding of KZFPs then leads to 

recruitment of the transcriptional regulator TRIM28 (KAP1) (Wolf and Goff, 2007, 

2009; Rowe et al., 2010), and associated methyltransferases of H3K9 (such as 

SET domain containing proteins G9A/EHMT2, SETDB1, and SUV39H) (Schultz 

et al., 2002; Matsui et al., 2010; Maksakova et al., 2013; Liu et al., 2014; Yeung 

et al., 2019). KZFPs also recruit de novo DNA cytosine methyltransferases 

(DNMT3A/B/L) (Walsh, Chaillet and Bestor, 1998; Liang et al., 2002; Quenneville 

et al., 2012; Turelli et al., 2014), and these epigenetic machineries together drive 

heterochromatin formation by binding of HP1 (Lachner et al., 2001), finally 

leading to silencing of ERV transcription.  

Within this system, H3K9me2/3 appears to mark and repress specific 

subsets of ERVs, with H3K9me2 preferentially acting to repress class III ERVLs, 

and H3K9me3 marking class II ERVKs (Maksakova et al., 2013; Walter et al., 

2016). This epigenetic place holding potentially demarcates the evolutionary age 

of LTR-ERV classes, and whether KZFPs have evolved to specifically recognize 

and recruit H3K9me3 machinery to the genomic region. Interactions between 

various chromatin-associated factors and their associated marks is crucial, as 

depletion of histone lysine demethylase KDM1a (Macfarlan et al., 2011), histone 

deacetylase HDAC1 (Reichmann et al., 2012), and SUMO (Yang et al., 2015; 

Cossec et al., 2018) all lead to derepression of various classes of ERVs. The 

various histone marks also compensate for each other following loss of specific 

marks over certain classes of ERVs (Walter et al., 2016). Last but not least, 
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chromatin building blocks play a major role in repression of ERV expression, as 

ERVs appear to exploit both globally under assembled chromatin (Ishiuchi et al., 

2015b; Yang et al., 2015), and even reductions of a specific histone variant H3.3 

(Elsässer et al., 2015). Taken together, the mammalian nucleus contains a dense 

network of transcriptional repressors centered on the packaging of chromatin and 

methylation of DNA to suppress ERV expression, ranging from the specific 

(KZFPs) to the general (histone levels). Given that histones (and their variants) 

also appear to be general repressors of zygotic genome activation (Almouzni and 

Wolffe, 1995; Amodeo et al., 2015; Joseph et al., 2017a), a large proportion of 

which involves transcription of ERVs (Peaston, A. V Evsikov, et al., 2004; 

Macfarlan et al., 2012a), whether expression of ERVs during early embryonic 

development is consequential or essential remains a fascinating open question.  

 

Post-transcriptional silencing 

Despite extensive transcriptional silencing, certain classes of ERVs 

remain highly expressed, particularly during early embryogenesis and germline 

specification. Paradoxically, this expression leads to their successful silencing by 

small-RNAs, as in plants, where transcription is necessary for small-RNA 

mediated de novo DNA methylation (Law and Jacobsen, 2010). Perhaps this 

system allows for more efficient targeting of the highly polymorphic families of 

retroelements by relying on their own sequences to target gene-silencing 

machinery, instead of solely relying on the evolution of KZFPs to chase down 
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rapidly evolving ERV sequences and possibly new invasions of exogenous 

retroviruses.  

As mentioned above, the post-transcriptional silencing pathway for ERVs 

during germline specification involves pre-pachytene piRNAs that target 

expressed ERVs via binding to slicers MILI, resulting in the ping-pong cycle that 

enriches for highly expressed ERVs, such as IAPs, which in turn targets MIWI2 in 

the nucleus for epigenetic silencing of genomic ERV sequences (Aravin et al., 

2007, 2008; Kuramochi-Miyagawa et al., 2008).  

While the piRNA system functions well in male primordial germ cells, it is 

absent in the oocyte and early embryonic development. Instead, endogenous 

siRNAs generated by Dicer and loaded onto AGO2 appear to be the key silencer 

of ERVs during oogenesis and early embryonic development (Svoboda et al., 

2004; Murchison et al., 2007; Tam et al., 2008; Watanabe et al., 2008), while 

miRNAs instead appear to be subdued during these two stages of development 

(Ma et al., 2010; Suh et al., 2010).  

During early embryonic development, ERVs become severely 

derepressed (Peaston, A. Evsikov, et al., 2004; Macfarlan et al., 2012a). 

Surprisingly, the expression of these ERVs does not appear to be detrimental, 

but are instead prominent markers of early cleavages, and help orchestrate 

synchronous gene activation (Göke et al., 2015; Franke et al., 2017) and 

chromatin organization (Jachowicz et al., 2017). Well studied examples include 

ERVL activation during embryonic genome activation (EGA) in mouse and 

human embryos (De Iaco et al., 2017; Hendrickson et al., 2017), and LINE1 
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elements marking 4-8 cell transition in mouse (Jachowicz et al., 2017), which 

apparently also act in part to silence the MERVL transcription program 

(Percharde et al., 2018). The silencing of these ERVs, both transcriptionally and 

post-transcriptionally, is not well understood in the early embryo. For example, in 

terms of MERVL silencing after the 8-cell stage, there is evidence that silencing 

is partially mediated by RNAi via Dicer (Svoboda et al., 2004), and LINE-1 itself 

recruits KAP1/TRIM28 to mediate transcriptional silencing (Percharde et al., 

2018). However, these programs appear insufficient to fully suppress MERVL 

expression, since each pathway only partially represses the expression of 

MERVL. In addition, the mechanism that is deployed to silence other ERVs, 

including LINE-1 itself, and IAP elements, remains obscure.  

 

tRNA-fragment based silencing of ERVs in early embryos? 

Could there be alternative pathways to silencing of ERVs during early 

embryonic development? Interestingly, several studies have implicated tRFs in 

the silencing of endogenous or exogenous retroviruses. Wang and colleagues 

showed that respiratory syncytial virus (RSV), a non-Long Terminal Repeat 

(LTR) RNA virus, induced tRF levels in human A549 cells from 1.7% of normal 

sRNA library to 36.5% during infection (Wang et al., 2013). Curiously, the 

majority of these tRFs were derived from the 5’ half of tRNAs (tiRs) in an ANG-

dependent manner, with some, such as those of the 5’ half of Glu-CTC being up-

regulated more than 400 times upon RSV infection. Surprisingly, the authors 

claim that tRF-GluCTC promotes RSV replication by suppressing the expression 
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of APOER2 through complementarity to the 3’UTR of APOER2, in a miRNA-like 

pathway. This result is surprisingly for many reasons: 1. None of the tRFs 

derived from GluCTC are miRNA length (22 nt). 2. The link between APOER2 

and RSV replication is circumstantial. 3. The authors do not demonstrate how 

RSV infection could lead to ANG cleavage of tRNAs.  

 Quite separately, it has been shown that DNMT2 and NSUN2 mutants 

cannot repress heat-shock induced LTR-retrotransposon expression in 

Drosophila (Genenncher et al., 2018). As mentioned above, the same group 

previously showed that loss of DNMT2 mediated m5C leads to increased tRF 

biogenesis in S2 cells (Schaefer et al., 2010), and independent studies linked 

DNMT2 and NSUN2 catalyzed m5C in tRF biogenesis in mice (Blanco et al., 

2014, 2016; Zhang et al., 2018), with the implication being that maybe tRFs could 

possibly play a role in silencing of TEs in general. However, Genenncher and 

colleagues actually show that in whole flies, DNMT2 and NSUN2 mutation does 

not influence tRF biogenesis, possibly even leading to loss of tRFs (Genenncher 

et al., 2018), and could not demonstrate a direct link between tRF biogenesis and 

TE silencing. However, ERVs are known to demonstrate tissue specific 

expression, particular in the testis and ovary, and further study needs to focus on 

these tissues to definitively rule out the role of tRFs in silencing of endogenous 

retroviruses in Drosophila. Curiously, a catalytically dead mutant of DNMT2 that 

does not reconstitute tRNA methylation was able to repress retrotransposon 

expression in the presence of loss of endogenous DNMT2, suggesting that the 

RNA-binding activity of DNMT2 provides TE silencing. One potential mechanism 
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by which this could occur via tRNA quenching – implying that tRNAs are used by 

ERVs for expression, and the binding of DNMT2 and NSUN2 to tRNAs acts as a 

sink for tRNAs, in affect silencing retrotransposition and expression.  

 This hypothesis is plausible given the fact that tRNAs are used as a primer 

for reverse transcriptases of exogenous and endogenous LTR retroviruses 

(Marquet et al., 1995). Indeed, as discussed above, Schorn and colleagues show 

that 18 and 22nt tRFs derived from the 3’ terminal of mature tRNAs target the 

tRNA primer binding site (PBS) in the LTR of endogenous retroviruses to silence 

their retrotransposition (Andrea J. Schorn et al., 2017). However, it is unclear 

whether inhibition of retrotransposition itself silences expression, as data from 

other groups in Drosophila nurse cells suggest no correlation between 

expression and retrotransposition ability of ERVs (Wang et al., 2018). Along 

these lines, tRF-5s apparently also target transposons in plant pollen via 

complementarity, although whether these tRF-5s could act through their 

counterpart tRF-3s as in mammalian cells is an open question (Martinez, 

Choudury and Slotkin, 2017).  

In yet another mechanism, work from our lab showed that tRF-5s derived 

from Gly-GCC, or tRF-GG, represses transcriptional silencing of MERVL and its 

target genes specifically (Sharma et al., 2016). In Chapter II and III, I will go into 

the details of what we uncovered regarding the mechanism of tRF-GG repression 

of MERVL in the early embryo, but to understand this mechanism, I will first give 

a more in depth introduction to what we know about the regulation of MERVL 

expression and its function in the early embryo.  
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From Escapee to Functional Contributor – the story of ERVL 

 The first invasion of MERVL (MuERVL) was more than 80 million years 

ago before the split of placental mammals, while apes and mice lineages both 

experienced individual major expansions (Bénit et al., 1999; Franke et al., 2017). 

MERVL no longer actively retrotransposes, although it produces virus-like 

particles (Bénit et al., 1999; Ribet et al., 2008). The majority of ERVL genomic 

inserts are solo LTRs, accounting for 60-70% of the thousands of annotated 

copies throughout the mouse genome (Franke et al., 2017). Murine specific 

ERVL LTRs are annotated MT2_Mm, and share significant homology to MaLR 

and MLT LTRs, most of which are highly transcribed in mouse oocytes and early 

embryos (Peaston, A. Evsikov, et al., 2004; Veselovska et al., 2015). Human 

ERVL (HERVL) LTRs, annotated as MLT2A1, function much the same way, with 

specific activation during EGA at the eight cell stage (Hendrickson et al., 2017).  

Importantly, ERVL LTRs have co-opted and act as alternative promoters 

to regulate the EGA specific expression of >1500 in mouse and >100 genes in 

humans (Macfarlan et al., 2012a; Franke et al., 2017; Hendrickson et al., 2017). 

In mice, these include hundreds of protein coding genes, long noncoding RNAs, 

and pseudogenes, potentially leading to de novo evolution and functionalization 

of these genes during embryogenesis (Franke et al., 2017). The exact functions 

of MERVL co-opted genes are vaguely defined, with the exception of the well-

studied transcription factor Zscan4, which plays a role in promoting global 

demethylation by inducing ubiquitination and degradation of Uhrf1 and Dnmt1 
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(Dan et al., 2017), and maintaining chromosome stability by preventing telomere 

shortening (Zalzman et al., 2010). Strikingly, the expression of MERVL and its 

co-opted genes (also referred to as MERVL target genes) collectively regulate 

the developmental potential of early embryos (Huang et al., 2017). However, its 

spurious expression in adult tissue is detrimental, causing the genetic disorder 

facioscapulohumeral muscular dystrophy (FSHD) (Tassin et al., 2013). The 

elucidation of ERVL target gene functions altogether remains an important future 

direction of study.  

 The regulation of ERVL and its associated genes have become hotly 

studied in recent years due to its association with the totipotent cell fate (Baker 

and Pera, 2018), the stabilization and creation of which in culture could enable 

more efficient generation of chimeric animals for research, and organ production 

for transplantation. These studies have concentrated in mouse embryonic stem 

cells (mESCs), where surprising, a minor fraction of these pluripotent cells 

spontaneously cycle into a cell state that highly expresses ERVL, and 

importantly, demonstrate increased developmental potency (Macfarlan et al., 

2012a; Ishiuchi et al., 2015a).  

A myriad of regulators of ERVL expression and its associated totipotent-

like (or 2-cell like) state have been identified, which has also bettered our 

understanding of the molecular basis of totipotency itself. First, the uniquely 

accessible and dynamic early embryonic chromatin state permits the spurious 

transcription of ERVs, including ERVL elements (Boskovic et al., 2014; Wu et al., 

2016; Schulz and Harrison, 2019). Indeed, depletion of numerous chromatin 
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factors involved in condensation and compactness of chromatin, such as CAF1 

(Cheloufi et al., 2015; Ishiuchi et al., 2015a), NuRD complex members (Matsui et 

al., 2010; Macfarlan et al., 2011; Yang et al., 2015), and other deacetylase and 

polycomb associated complexes (He et al., 2019) can all lead to derepression of 

MERVL target genes.  

Following initial exploration of gene expression, transcription of ERVL 

starts in earnest at the major EGA via direct binding of the ERVL LTR by DUX 

family transcription factors, itself a ERVL target gene in mouse (De Iaco et al., 

2017; Hendrickson et al., 2017; Whiddon et al., 2017). Other MERVL target 

genes also appear capable of reinforcing ERVL expression and propagation of 

the 2-cell like state (Iaco et al., 2019). The expression of DUX itself appears to be 

regulated by small DNA binding proteins from the DPPA family (Huang et al., 

2017; Eckersley-Maslin et al., 2018; Iaco et al., 2018). The expression of MERVL 

and its target genes also coincides with genome-wide demethylation (active in 

the paternal and passive in the maternal genome) (Messerschmidt, Knowles and 

Solter, 2014), although the exact role that MERVL plays in the initiation or 

facilitation of this process is unclear (Eckersley-Maslin et al., 2016; Dan et al., 

2017). The expression of ERVL and its target genes continues unabated for a 

few cell divisions until the 8 cell stage in mice, where they are finally silenced 

(Peaston, A. Evsikov, et al., 2004). As mentioned above, the repression of ERVL 

is both transcriptional and post-transcriptional, mediated TRIM28 guided 

deposition of heterochromatic marks in the nucleus (Guallar et al., 2012; 

Schoorlemmer et al., 2014; Percharde et al., 2018), by RNAi in the cytoplasm 
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(Svoboda et al., 2004), and also apparently indirectly by miR34 (Choi et al., 

2017). Whether these silencing mechanisms are conserved in human embryos is 

unclear. It is also unclear whether any other nuclear processes play a role in the 

silencing of ERVL, since its expression disrupts chromatin organization globally 

in the early embryo (Wu et al., 2016; Kruse et al., 2019).  

 

Cajal Body and Histone Locus Body Functions 

 Our study of the mechanism underlying tRF-Gly-GCC regulation of 

MERVL also led us to an unexpected biological process – Cajal bodies and 

histone biogenesis, which I will briefly introduce here.   

The Cajal body (CB) is a nuclear organelle present in all eukaryotes 

studied so far, and is identified most reliably with the silver impregnation 

technique originally used by its founder, Ramon y Cajal (Gall, 2000; Nizami, 

Deryusheva and Gall, 2010). It is also identified by the marker protein p80 coilin, 

as the CB was first named coiled bodies in human and mouse cells (Monneron 

and Bernhard, 1969), and by CB-specific RNAs (scaRNAs). Surprisingly, the 

conservation of coilin is relatively low, as its orthologs have not been identified in 

non-vertebrate model organisms such as S.cerevisae and C.elegans, even 

though organelles with parallel functions exist in these organisms. In Arabidopsis, 

Drosophila, and mice, in which coilin mutations have been studied, coilin is 

required for CB formation, but neither coilin nor a typical CB is essential for 

viability (Tucker et al., 2001; Jady et al., 2003; Collier et al., 2006; Deryusheva 

and Gall, 2009; Liu et al., 2009). Nevertheless, coilin plays an important 
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developmental role in mice and presumably mammals, as knockout of coilin in 

mice leads to a semi-lethal phenotype, where homozygotes die as embryos in a 

semi-penetrant manner, and adults have fertility and fecundity defects (Tucker et 

al., 2001). CB loss also leads to formation of “residual” bodies each with a subset 

of CB components (Jády, Bertrand and Kiss, 2004). Therefore, coilin appears to 

coalesce the formation of CB rich in dense interactions between RNAs and 

proteins, reminiscent of phase-separating organelles such as P-granules and 

nucleoli (Machyna, Heyn and Neugebauer, 2013). In turn, this “phase-separation” 

and therefore concentration of snRNP machinery may speed up snRNP 

formation (Novotný et al., 2011).  

 For decades, the CB has been presumed to be the location of assembly 

and/or modification of the splicing snRNPs, since they are enriched in proteins 

and RNAs (U1 to U6) involved in splicing (Carmo-Fonseca et al., 1992; Matera 

and Ward, 1993; Stanĕk et al., 2003; Schaffert et al., 2004; Staněk et al., 2008). 

In addition, scaRNAs such as U85, closely related and identical in structure and 

function to snoRNAs, are complexed with Fibrillarin and dyskerin, to guide 2’-O-

methylation and pseudouridylation respectively, of other snRNAs in the CB 

(Darzacq, 2002; Kiss et al., 2002; Liu et al., 2009). Another prominent component 

of CB is the survival motor neuron protein (SMN) (Matera and Frey, 1998; 

Carvalho et al., 1999), which is required for proper functioning of motor neurons 

in the spinal cord (Miguel-Aliaga et al., 2000; Chan et al., 2003; Rajendra et al., 

2007), and also appears to be involved in assembly of snRNPs with the Sm ring 

(Pellizzoni, J and G., 2002; Shpargel and Matera, 2005; Battle et al., 2006). 
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However, CB function does not appear to be limited to snRNP maturation, as 

proteins involved in a variety of other nuclear functions, including transcription 

and cell signaling, are also enriched here (Machyna, Heyn and Neugebauer, 

2013). A major future challenge will be to remediate the dichotomy between 

seemingly essential functions of the CB and the lack of phenotype upon CB loss. 

Indeed, lack of CBs in Drosophila devoid of coilin do not suffer decreases in 

snRNA levels nor their modifications (Deryusheva and Gall, 2009).  

In experiments designed to identify Drosophila CB in tissues of the fly, U7 

snRNP and U85 scaRNAs surprisingly detected not one, but two independent 

nuclear organelles. One of these organelles was invariably associated with the 

locus containing all histone genes in Drosophila (Liu et al., 2006, 2009). 

Subsequently named the histone locus body (HLB), these organelles are distinct 

from CB in mammalian cells (Bongiorno-Borbone et al., 2008; P.N. Ghule et al., 

2008). Instead of coilin, the nucleator and marker of HLB appears to be NPAT 

(Ye et al., 2003; White et al., 2011), and the dedicated function of the HLB is the 

transcription and processing of replication-dependent histone pre-mRNAs 

(Marzluff and Koreski, 2017). Replication-dependent, or canonical, histone genes 

are only required as the name implies, during DNA replication to form chromatin, 

and therefore have to be regulated temporally. Consequently, these genes 

evolved multiple unique characteristics – they are intronless, and generate non-

poly-adenylated pre-mRNAs associated with its own unique set of processing 

machinery (Fig. 1.8) (Marzluff and Koreski, 2017).  
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Figure 1.8. Life Cycle of Histone mRNA. A schematic of the life cycle of 
histone mRNAs and SLBP in mammalian cells. Note that SLBP participates in 
every part of the histone mRNA life cycle, and is also cell cycle-regulated. 
Abbreviations: SLBP, stem-loop binding protein; P, phosphorylation; Pol II, 
polymerase II. From (Marzluff and Koreski, 2017). Reprinted with permission 
from Elsevier.  

Canonical histone pre-mRNAs carry a 3’ extension containing a stem loop 

bound by stem-loop binding protein (SLBP), that is cleaved via guidance by the 

U7 snRNP, in concert with a variety of other factors, including Lsm10/11 as part 

of the SM ring, FLASH (Frey et al., 1995; Bongiorno-Borbone et al., 2008; Prachi 

N Ghule et al., 2008; Brooks et al., 2015), MUTE (Bulchand et al., 2010), and the 

histone-cleavage complex (HCC) (Gick et al., 1987; Sullivan, Steiniger and 
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Marzluff, 2009; Romeo, Griesbach and Schümperli, 2014). Two distinct sites 

within the pre-mRNA guide cleavage to form the mature 3’ end, the stem-loop, 

and the histone-downstream element (HDE), which basepairs with U7 snRNP 

just 3’ of the cleavage site (Strub, Galli and Bimstiel, 1984; Schaufele et al., 

1986; Bond, Yario and Steitz, 1991). U7 snRNA is a <70nt RNA containing a 

2,2,7 trimethyl G cap (Cotten et al., 1988). The core U7 snRNP is assembled in 

the cytoplasm, and consists of U7 snRNA bound to five Sm proteins, B, D3, E, F, 

and G, found in all spliceosomal snRNPs, with Lsm10 and 11 replacing the 

normal SmD1 and 2 proteins in the ring (Pillai et al., 2001). Lsm11 binds to 

FLASH, which is essential for proper processing of histone pre-mRNAs (Burch et 

al., 2011). The active form of the U7 snRNP, or the “holo” form, is assembled in 

the nucleus during S phase, where the core complex recruits the HCC, which 

consists of symplekin, CstF64, CPSF100, and CPSF73, the endonuclease that 

cleaves the pre-mRNA (Kolev and Steitz, 2005; Sullivan, Steiniger and Marzluff, 

2009).  

Surprisingly, despite the coordinated fashion by which histone genes are 

expressed, they lack common transcription regulatory elements. There is 

however, a dedicated transcription factor activated at S-phase entry by Cdk2 

called NPAT, which is necessary for transcription of all replication-dependent 

histone genes (Ma et al., 2000; Zhao et al., 2000; Ye et al., 2003). NPAT is also 

required for HLB formation, which coordinates the transcription of entire clusters 

of histone genes – multiple tandem repeats of each copy of canonical histone 

gene as in Drosophila and sea urchin, or jumbled clusters on separate 



	 70	

chromosomes as in mammals. However, NPAT is an atypical transcription factor, 

as it is a very large unstructured protein that does not directly bind to DNA (Terzo 

et al., 2015). Transcriptional elements associated with individual histone genes 

are also found very widely in the genome, such as Oct-1 or Pou2f1 for H2b 

(Zheng, Roeder and Luo, 2003). A comprehensive ChIP-seq study also identified 

E2f, Smad, and YY1 as transcription factors that bind to specific subsets of 

histone genes, in a somewhat cell-cycle and cell-type dependent way (Gokhman 

et al., 2013). Of these, E2f transcription factors are enriched in G1-S transition, 

and are rapidly degraded following S-phase (Marti et al., 1999), and were thus 

proposed as a “master regulator” of histone gene expression. However, E2f 

knockout MEFs only showed a moderate decrease in histone gene expression 

(Gokhman et al., 2013). NPAT does however appear to interact extensively with 

itself and other constitutive HLB proteins, such as FLASH, itself a large 

unstructured protein (Yang et al., 2014; Tatomer et al., 2016).  

The 3’-end processing of canonical histone genes is tightly coupled to 

transcription in a cell-cycle dependent manner. First, transcriptional elongation 

factors such as NELF (Narita et al., 2007) and Ars2 (Kiriyama et al., 2009; 

Gruber et al., 2012) result in misprocessing of histone mRNA. Additionally, while 

U7 snRNP and FLASH are constitutively present in the HLB, they interact with 

the HCC in a cell-cycle dependent manner (Tatomer et al., 2016). This leads to 

activation of the U7 snRNP to drive 3’-end processing of histone pre-mRNAs. 

Levels of SLBP are also cell cycle regulated (Whitfield et al., 2000). Together, 

these studies support a model where NPAT, when phosphorylated at S-phase 
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entry, changes conformation to allow for rapid recruitment of a range of 

transcription factors and processing machinery required for efficient and rigorous 

transcription of cell-cycle dependent histone genes (Marzluff and Koreski, 2017). 

Additionally, YY1 and CTCF, which have been shown to bind at the HLB at 

specific border regions, may act in coordinate to drive strong boundary formation 

to isolate the HLB domain (Gokhman et al., 2013; Nora et al., 2017; Weintraub et 

al., 2017). 

Of note, there is one study that links small-noncoding RNAs with histone 

mRNA processing (Köhn et al., 2015). Y3 noncoding RNA, a RNA polymerase III 

transcript conserved in eukaryotes, associates with Ro60 and may plays a role in 

DNA replication and RNA quality control (Köhn et al., 2015). Knockdown of Y3 

with anti-sense oligos disrupts HLB formation and increase in misprocessed 

histone pre-mRNAs. The authors proposed that Y3 imposes this regulation on 

histone processing through its interactions with CPSF, an important pre-mRNA 

processing factor.  

At the end of S-phase, when cells no longer require new histone 

production, histone mRNAs are rapidly degraded through regulation of the stem-

loop (Whitfield et al., 2000) and requires translation of the mRNAs (Slevin et al., 

2014). It appears that after nuclear processing, the mature mRNA associated 

with the histone 3’ exonuclease (3’hExo), which shortens the mRNA by 2-3nt, 

while the full length of the mRNA is restored by uridylation (Yang et al., 2006; 

Lackey, Welch and Marzluff, 2016).  When degradation is initiated by inhibition of 

DNA replication, 3’hExo triggers the process by removing 5-7nt into the step loop 
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(Hoefig et al., 2013). How this process occurs in unknown. Following this 

chewing, 3’hExo no longer binds to the degrading mRNA, TUT7 polyuridylates 

the transcript (Lackey, Welch and Marzluff, 2016). This process leads to SLBP 

dissociation, possibly through the loss of stem-loop stability, leading to 3’ to 5’ 

degradation of the histone mRNA by the exosome (Hoefig et al., 2013).  

While it has been largely assumed that most of these processes regulating 

CBs and HLBs are conserved from Drosophila to mammals, the dynamics and 

regulation of CB and HLB in mammalian embryos remains unexplored. Given the 

unique cell cycle, chromatin and transcriptional mechanisms that occur in the 

early stages of mammalian embryonic development, and the expanding tools for 

genomic tools targeting miniscule sample sizes, this body of research is ripe for 

exploration. For example, the proper regulation of these loci, particularly in terms 

of regulation of histone expression, during early embryogenesis is crucial – 

mounting evidence suggests that the pool of maternally deposited histones 

relative to genomic DNA determines the timing of EGA (Amodeo et al., 2015; 

Jevtić and Levy, 2017; Joseph et al., 2017b).  
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CHAPTER II 

Repression of endogenous retrovirus transcription  

by a tRNA fragment 

Abstract 

 Paternal diet has been shown to influence offspring metabolism, although 

the mechanisms by which paternal dietary information is transmitted are 

unknown. Sharma et al. observed that protein restriction in mice affects small 

RNA levels in mature sperm, in particular 5’ fragments derived from glycine 

tRNAs. These tRNA fragments are apparently scarce in testicular sperm, but 

increases in abundance during epididymal transit. I show that epididymosomes, 

vesicles that fuse with sperm during maturation through the epididymis, have a 

concordant profile of tRNA fragments with sperm, and can deliver these 

fragments to immature sperm in vitro. Functionally, tRNA-glycine-GCC fragments 

repress genes associated with the endogenous retrovirus MERVL, in mouse 

embryonic stem cells and embryos. Surprisingly, this tRNA fragment represses 

the synthesis of MERVL transcripts, establishing a novel regulatory role for a 

tRNA fragment in the expression of an endogenous retroelement active in 

preimplantation embryos.  

Introduction 

 Increasing evidence supports the idea that ancestral environmental 

conditions can influence offspring phenotype via epigenetic inheritance 

mechanisms (Heard and RA Martienssen, 2014; Bošković and Rando, 2018). 

Within this burgeoning field spanning all well-studied organisms, a number of 
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mammalian models point to epigenetic inheritance of ancestral stress 

information, including nutritional limitations or excesses from both parental 

lineages (Dunn and Bale, 2009; Jimenez-Chillaron et al., 2009; Carone et al., 

2010; Ng et al., 2010a; Ding et al., 2012; Radford et al., 2012, 2014). Together, 

these works support the appealing, yet controversial, hypothesis that 

transgenerational epigenetic inheritance may contribute to human epidemiology 

of disease (Pembrey et al., 2014).  

Previous work in the Rando lab showed that male mice fed a Low Protein 

diet sire offspring with altered hepatic cholesterol biosynthesis (Carone et al., 

2010). Subsequently, it was shown that the diet induced intergenerational 

phenotype could be recapitulated via IVF, therefore supporting the hypothesis 

that the carrier of epigenetic information co-purifies with sperm and is delivered 

into the fertilized oocyte (Sharma et al., 2016). Studies in the underlying 

mechanisms of imprinting, position-effect variegation, epivariation and other 

epigenetic phenomena have revealed three major classes of epigenetic 

information carriers: DNA-cytosine methylation, chromatin state, and RNA, in 

particular small RNAs or sRNAs (Heard and RA Martienssen, 2014). Since 

previous efforts of epigenomic profiling studies in sperm argued against DNA-

cytosine methylation (Shea et al., 2015) or histone occupancy (Carone et al., 

2014) as functionally relevant in our model, we profiled the small RNA (sRNA) 

payload of sperm. Consistent with a previous report (Peng et al., 2012b), 

sequencing of sRNAs < 40nt isolated from cauda, in mature sperm, revealed that 

80% of all sRNAs with cloneable 3’ ends were derived from the 5’ ends of tRNAs 



	 75	

(Fig. 2.1). These tRNA fragments, also known as tRFs or 5’tiRs (Kumar, Kuscu 

and Dutta, 2016), are between 28-32 nt in length, with a series of predominant 3’ 

ends around the anti-codon loop, presumably derived from either degradation or 

alternative cleavage/processing of tRNAs (Fig. 2.1B-D). tRFs derived from Glu-

CTC, Gly-GCC, and Val-CAC were particularly abundant. Importantly, 

comparison of Low Protein to Control sperm revealed consistent changes in 

several small RNAs across eight paired replicate sperm samples (Fig. 2.1E-F), 

with 5’ fragments of tRNA-Glycine isoacceptors, Lys-CTT, and His-GTG being 

consistent up-regulated 2-3 fold, while miRNAs from the let-7 family were 

consistently down-regulated in Low Protein sperm. Together, the high abundance 

of specific tRFs derived from various isoacceptors, and their consistent 

misregulation in Low Protein sperm, suggests that these tRFs could act as 

epigenetic information carriers in our model. 
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Fig. 2.1. Dietary effects on small RNAs in sperm. (A) Size distribution of 
mature or cauda sperm sRNAs. (B-D) Arrowheads indicate predominant 3’ ends. 
(E) Dietary effects on sperm sRNA content. The scatterplot shows RNA 
abundance (in parts per million) for sperm isolated from control animals versus 
low-protein sperm, with various RNA classes indicated. Multiple points for tRFs 
result from sequence differences between genes encoding a given tRNA 
isoacceptor. (F) Heatmap showing RNAs responding to diet across eight paired 
sperm samples. Reprinted from (Sharma et al., 2016).  
 

Here, I set out to test the origin and explore the function of tRFs in mature 

sperm. I show that, consistent with deep sequencing and northern blotting data, 

the majority of tRFs in cauda sperm are gained after sperm exit the testis, within 

the epididymis, and that tRFs may be gained through the fusion of sperm with 

extracellular vesicles secreted from the epididymis called epididymosomes. In an 

attempt to probe potential functions of tRFs in the fertilized embryo, we identified 

one tRNA fragment – tRF-Gly-GCC, or tRF-GG, as a repressor of a subset of 

genes regulated by the long terminal repeat (LTR) of the endogenous 
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retroelement MERVL, in mouse embryonic stem cells and embryos. Given that 

tRFs have been shown to repress translation in various organisms and cell types, 

I investigated the possibility that tRF-GG regulates the translation of known 

MERVL repressors. Surprisingly, I find that impairing tRF-GG function had no 

effect on translation of MERVL regulators, and very subtle effects on translation 

in general. Instead, I show that tRF-GG represses nascent transcription of 

MERVL, rather than through the expected sRNA-mediated RNA decay pathway. 

I discuss how changes in the level of tRF-GG, and other sRNAs delivered via 

sperm and modulated by the epididymis, may lead to alterations in metabolic 

status in the offspring.  
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Results 

Epididymosomes can shape the RNA payload of sperm 

 tRNA cleavage occurs mostly in response to stress (Yamasaki, Ivanov, 

G.-F. Hu, et al., 2009; Ivanov, Mohamed M. Emara, et al., 2011a), and tRFs 

could therefore be merely degradation products with little directed biogenesis or 

function. Two observations are inconsistent with the hypothesis that tRFs in 

sperm are degraded remnants of RNAs present during spermatogenesis: dietary 

effects on levels of intact tRNAs in the testis were uncorrelated with tRF 

abundance changes in cauda sperm, and sRNAs from testicular tissue (Fig. 2.2) 

and even post-meiotic spermatids had a very low abundance of tRNA fragments 

according to deep sequencing and Northern blotting (Sharma et al., 2016). 

Instead, sRNAs isolated from the epididymis, where sperm continue to mature for 

several days after they exit the testis, exhibit high levels of various 5’ tRFs 

according to Taqman qRT-PCR (Fig. 2.2), deep sequencing and northern 

blotting. Particularly striking is the increase in tRF abundance from the proximal 

epididymis (caput) to distal region (cauda), where sperm has matured (Fig. 2.2). 

This raised the surprising possibility that tRFs in cauda sperm might originate 

from the epididymal luminal epithelium.  

During epididymal transit, sperm gain proteins via fusion with small 

extracellular vesicles known as epididymosomes (Sullivan, Frenette and 

Girouard, 2007; Sullivan and Saez, 2013; Dacheux and Dacheux, 2014). Since 

extracellular vesicles carry functional RNAs in many cell types (Valadi et al., 

2007; van Niel, D’Angelo and Raposo, 2018a), we hypothesized that 
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epididymosomes fuse with sperm to reshape its RNA payload during epididymal 

transit.  

 
Fig. 2.2. Sperm gain tRFs during epididymal transit, potentially through 
fusion with epididymosomes. (A) The epididymis is a long convoluted tubule 
separated anatomically into three sections, the proximal to testis (caput, light 
green), middle (corpus, not highlighted), and distal (caudal, dark green) 
epididymis, which leads mature sperm into the vas deferens. As sperm transit 
through the epididymis, it picks up extracellular vesicles called epididymosomes 
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(yellow for caput and orange for cauda), which at least in part facilitate its 
maturation. All graphs are color-coded as in this cartoon. (B) Expression of 
various tRFs and miRNAs relative to testis let7b, for testis, caput epididymis, 
epididymosomes, and sperm, as measured by Taqman qRT-PCR. (C) 
Expression of the same tRFs and miRNAs relative to testis let7b, for testis, 
cauda epididymis, epididymosomes, and sperm.  
 

Epididymosomes purified from caput and cauda epididymis by differential 

centrifugation were subject to deep sequencing, Northern blotting, and qRT-PCR 

for select tRFs and miRNAs (Fig. 2.2) (Sharma et al., 2016). Surprisingly, the 

levels of various tRFs of both caput (Fig. 2.2B) and cauda epididymosomes (Fig. 

2.2C) show a striking correlation with the levels of tRFs present in sperm from 

these epididymal regions. The correlation was particularly high for 5’ tRFs 

derived from glycine and valine isoacceptors, while certain 3’ tRFs such as those 

derived from GluCTC were relatively depleted in sperm (Fig. 2.2B-C). In 

contrast, sperm-borne miRNAs did not increase in abundance during epididymal 

transit, and were poorly correlated with epididymosome-bound miRNAs levels. 

These qRT-PCR data agree remarkably well with both deep sequencing of 

sRNAs and northern blotting of specific tRFs (Sharma et al., 2016). Together, 

these results show that the sRNA payload of caput and cauda epididymosomes 

resembles that of sperm within each compartment of the epididymis, and that 

sperm can potentially gain sRNAs as they transit through this tissue to 

maturation.  

To directly test the hypothesis that epididymosomes can reshape the RNA 

payload of sperm, we stringently purified sperm from the caput epididymis over a 

Percoll gradient, briefly incubated them with cauda epididymosomes, then 

pelleted and washed the “reconstituted” sperm (Fig. 2.3A). Fusion of cauda 



	 81	

epididymosomes was sufficient to deliver tRF-Val-CAC and tRF-Gly-GCC to 

caput sperm (Fig. 2.3B), confirming that tRF-bearing epididymosomes either are 

capable of fusing with sperm to deliver their small RNA cargo (Belleannée et al., 

2013), or adhere to caput sperm strongly enough to resist removal by several 

consecutive washing steps. These results were repeated using the more 

abundant caput sperm samples obtainable from the bull B. taurus, with cauda 

epididymosome fusion with caput sperm (n=4) resulting in delivery of tRF-Val-

CAC and other tRFs to relatively immature caput sperm (Sharma et al., 2016).  

 

Fig. 2.3. Epididymosomal fusion 
can deliver tRFs to sperm. (A) 
Caput sperm was stringently purified 
via percoll gradient centrifugation, 
then incubated with cauda 
epididymosomes at 30C for ***. The 
sperm was pelleted briefly, which 
does not pellet epididymosomes, and 
washed. (B) Taqman qRT-PCR of 
tRF-Val-CAC and tRF-Gly-GCC, two 
5’ tRFs that are gained from caput to 
cauda, for sperm alone, 
epididymosomes alone, and sperm 
fused with epididymosomes.  
 
 Taken together, these 

experiments are most consistent with 

a mechanism of RNA biogenesis in 

mammalian sperm in which tRFs 

generated in the epididymis are trafficked to sperm in epididymosomes, although 

we note that they do not rule out the alternative hypothesis: that intact tRNAs in 

immature sperm are cleaved in maturing sperm to generate tRFs during 
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epididymal transit. Definitive identification of the tissue of origin of tRFs in mature 

sperm will require epididymis-specific expression of polymorphic “tracer” tRNAs 

(Sharma et al., 2018), or the inactivation of tRNA cleaving enzymes in either 

testes or epididymis.  

tRF-GG regulates a subset of the MERVL-driven totipotency program 

 What are the potential downstream targets of the diet-regulated RNAs in 

sperm? As mechanistic experiments are technically challenging in the desired 

cell type (the early mouse embryo), we first use embryonic stem (ES) cells as an 

experimental system amenable to mechanistic analysis. We interfered with the 

function of specific tRFs using antisense LNA-containing oligonucleotides in ES 

cell culture, and assayed mRNA abundance as readout of tRF inhibition effects. 

Most antisense oligos had no effect on mRNA abundance (Fig. 2.4A), 

suggesting that the targeted tRFs are not functional in ES cells, or that they exert 

regulatory effects that are not assayed by mRNA abundance. In contrast, 

interfering with tRF-Gly-GCC function resulted in dramatic up-regulation of ~70 

genes, with several genes being up-regulated over 10-fold (Fig. 2.4B). Up-

regulation of these genes was consistently observed by microarray (Fig. 2.4A, 

n=7), and further confirmed by RNA-Seq (Fig. 2.4C, n=4). These genes were 

unaffected by antisense LNA oligos directed against the 5’ ends of other tRNA-

Gly isoacceptors or against the middle or the 3’ end of tRNA-Gly-GCC (Fig. 

2.4A). This last finding strongly suggests that changes in gene expression 

caused by interfering with tRF-Gly-GCC are unlikely to be an artifact of interfering 

with the function of the intact tRNA. 
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Fig. 2.4. tRF-GG represses MERVL transcriptional program in mESCs and 
mouse embryos. (A) Affymetrix microarray data for mRNA abundance in 
embryonic stem cells transfected with indicated LNA antisense oligo. Note 
specificity for MERVL associated genes in tRF-Gly-GCC knockdown but not 
other isoacceptors. (B) Microarray data for mRNA abundance in embryonic stem 
cells transfected with an LNA antisense oligo targeting the 5’ end of tRF-Gly-
GCC. Scatterplot shows mRNA abundance in in anti-GFP knockdown cells (x 
axis) vs. tRF-Gly-GCC inhibition (y axis). Data represent average of seven 
replicates. (C) RNA-Seq data was pooled from four replicate samples of ES cells 
transfected with shRNA against GFP, or with the anti-tRF-Gly-GCC LNA oligo, as 
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indicated. (D) Schematic showing genomic context for four tRF-Gly-GCC target 
genes, showing MERVL LTRs associated with all target genes. Some additional 
target genes, such as the Tdpoz cluster, are not as closely associated with 
MERVL LTRs but instead are located in large MERVL-rich genomic clusters, and 
have also been shown to be part of the MERVL-regulated gene expression 
program (Macfarlan et al., 2012b). (E) Inhibition of tRF-Gly-GCC affects MERVL 
target expression in 4-cell embryos. Averaged single embryo RNA-Seq data for 
control (n=28) or tRF-inhibited (n=27) embryos. Among genes upregulated at 
least 2-fold on average, those previously described as MERVL targets are 
indicated separately. (F) Examples of single embryo data for two MERVL targets. 
Here, each bar represents mRNA abundance from a single embryo, with 
embryos ordered from highest to lowest expression for each condition. 
 

Surprisingly, all the genes up-regulated in tRF-Gly-GCC knockdowns are 

highly expressed in 2-cell and 4-cell embryos, and have been shown to be 

regulated by the long terminal repeat (LTR) of the endogenous retroelement 

MERVL (Macfarlan et al., 2011, 2012b) (Fig. 2.4D). To determine whether the 

effects of tRF-Gly-GCC inhibition observed in tissue culture also hold in a more 

physiological context, we microinjected zygotes (n=27) with an antisense oligo 

directed against tRF-Gly-GCC. These embryos were then allowed to develop to 

the 4-cell stage and subjected to single embryo RNA-Seq (Fig. 2.4E). Strikingly, 

we observe significant up-regulation of 72 transcripts in embryos subject to tRF-

Gly-GCC inhibition compared to control embryos (n=28), with the majority of up-

regulated genes having previously been identified as MERVL targets (Macfarlan 

et al., 2012b) (Fig. 2.4F), and overlapping the same genes we observed as tRF-

Gly-GCC targets in mESC experiments.  
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Paternal dietary effects on gene regulation in preimplantation embryos 

 

Fig. 2.5. Paternal diet affects embryonic gene expression through small-
RNAs in sperm. (A) Embryos generated by IVF were cultured for varying times, 
then subject to single embryo RNA-Seq. (B) Single-embryo RNA-Seq data for 
preimplantation embryos represented via principal component analysis. The first 
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two principal components explain 74% of the total variance in the dataset, and 
cleanly separate the five embryonic stages shown here. (C) Abundance of mRNA 
in two-cell embryos generated via IVF using control versus low-protein sperm 
(n = 41 C and 39 LP embryos). Cumulative distribution plots for tRF-Gly-GCC 
targets (P = 4.5 × 10−7, Kolmogorov-Smirnov test), other MERVL targets 
(Macfarlan et al., 2012b) (P = 2.5 × 10−13), and all remaining genes, showing the 
percentage of genes with the average log2(LP/C) indicated on the x axis. Low-
protein embryos exhibit a significant shift to lower expression of MERVL targets. 
Bottom panels show individual embryo data for two targets. (D) Small RNAs 
isolated from control or low-protein cauda sperm were microinjected into control 
zygotes. RNA-seq (n = 42 C and 46 LP embryos) reveals down-regulation of tRF-
Gly-GCC targets (P = 4.8 × 10−14) driven by low-protein RNAs. (E) Effects of 
synthetic tRF-Gly-GCC on two-cell gene regulation, showing significant (P = 
0.0001) down-regulation of target genes in embryos injected with tRF-Gly-GCC 
(n = 26) versus GFP controls (n = 11). The inset shows effects of tRF-Glu-CTC 
(n = 6). (F) Effects of epididymal passage on embryonic gene regulation. Intact 
sperm isolated from the rete testis (n = 12) or cauda epididymis (n = 9) were 
injected into control oocytes, and mRNA abundance was analyzed as described 
above. (G) Dietary effects on ribosomal protein gene expression at four 
embryonic stages. Graph shows cumulative distribution for Low Protein effect on 
all ribosomal protein genes at the indicated stages. Grey line shows distribution 
of dietary effects on all non-RPG genes, for all four stages. (H) Blastocyst stained 
with DAPI (blue) and anti-CDX2 (green) to image total cell number and 
trophectoderm cells. (I) Low Protein diet reproducibly alters developmental 
tempo. For embryos generated via IVF using Control or Low Protein sperm, plot 
shows the number of blastocysts with the indicated number of cells.	 
 
 Given the robust connection between a diet-regulated small RNA and a 

highly specific set of target genes, we asked whether targets of tRF-Gly-GCC are 

regulated in preimplantation embryos generated using sperm from animals 

consuming Control or Low Protein. We generated embryos via in vitro fertilization 

(IVF), and then carried out RNA-Seq of individual embryos cultured to the 2-cell 

(n=80), 4-cell (n=82), 8-cell (n=4), morula (n=73), and blastocyst (n=41) stages of 

preimplantation development (Fig. 2.5A). Principal component analysis of all 

embryos analyzed revealed robust clustering of embryos by developmental stage 

(Fig. 2.5B), with the first two principal components representing oocyte-derived 

transcripts (PC1), and products of embryonic genome activation (PC2). 
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 We next turned to dietary effects on mRNA abundance. As single embryo 

RNA-Seq data are not suitable for identification of modest changes in individual 

mRNA targets, we sought to identify consistent changes in larger gene sets, 

primarily focusing on the subset of MERVL targets identified in our ES cell 

studies, and on the remaining ~500 MERVL targets defined by MacFarlan et al. 

At the 2-cell stage both tRF-Gly-GCC targets, as well as remaining MERVL 

targets, were downregulated in Low Protein embryos relative to Control (Fig. 

2.5C, p=1.1 X 10-16 KS test). We carried out several independent tests of the 

hypothesis that tRF-Gly-GCC in sperm affects expression of MERVL targets in 

early embryos. First, to test the hypothesis that small RNAs are responsible for 

the effect of diet on MERVL targets, <40 nt RNA populations from Control and 

Low Protein sperm were purified and injected into IVF-derived zygotes, and gene 

expression was analyzed in resulting 2-cell embryos. Compared to Control RNA 

injections, Low Protein RNA recapitulated the modest but systematic inhibition of 

tRF-Gly-GCC target genes in 2-cell embryos (Fig. 2.5D), supporting the 

hypothesis that paternal diet affects preimplantation gene expression via its 

effects on the RNA payload of sperm. Second, to further define the relevant RNA 

species from Low Protein sperm, microinjection of a 30 nt oligonucleotide 

corresponding to tRF-Gly-GCC resulted in lower levels of MERVL genes in a 

subset of 2-cell embryos (Fig. 2.5E). Finally, as our data show that most tRFs in 

sperm are gained during epididymal transit, we generated embryos via 

intracytoplasmic sperm injection (ICSI) using either testicular spermatozoa or 

cauda sperm. Consistent with the higher levels of tRF-Gly-GCC present in cauda 
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sperm, we find that embryos generated using cauda sperm expressed MERVL 

targets at lower levels than those generated using testicular sperm (Fig. 2.5F). 

Together, the effects of diet on IVF-derived embryos, the small RNA injections, 

and ICSI using various sperm populations all support the hypothesis that tRF-

Gly-GCC in sperm is capable of delaying or repressing MERVL targets in 2-cell 

stage embryos. 

Finally, we note that tRF-Gly-GCC is only one of several high-abundance 

RNAs regulated by Low Protein diet, and MERVL-driven genes are not the only 

diet-responsive genes in preimplantation embryos. Most notably, ribosomal 

protein genes (RPGs) were expressed at lower levels in Low Protein embryos 

relative to Controls at several stages (Fig. 2.5G). Given that RPG expression is 

often linked to cell proliferation, we counted cell number after four days of 

embryo culture – at the blastocyst stage – finding that paternal diet affected the 

developmental clock (Mitchell, Bakos and Lane, 2011; McPherson et al., 2013), 

with Low Protein embryos (n=23) developing slower relative to Control embryos 

(n=26) (Fig. 2.5H-I). Future studies will be needed to determine whether altered 

preimplantation growth kinetics, or regulation of the MERVL program, are 

responsible for eventual metabolic consequences in offspring. However, as the 

MERVL program is linked to totipotency (Macfarlan et al., 2012b), we speculate 

that regulation of MERVL-linked genes by tRF-Gly-GCC might affect placental 

size or function, leading to downstream effects on metabolism known to be 

secondary to altered placental function (Rando and Simmons, 2015). 
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tRF-GG represses nascent synthesis of MERVL RNAs  

 
Fig. 2.6. tRF-GG does not function in translation. (A) Genome browser tracks 
showing increased expression of MERVL target gene Sp110 for both RNA and 
ribosome footprints upon tRF-GG KD. (B) tRF-GG has little or no role in global 
translation of mRNAs. Note the high level of correlation between change in 
ribosome footprints and RNA levels upon tRF-GG KD. Note the highlighted 
MERVL target genes fall close to the diagonal (i.e. no change in translation 
efficiency). (C) Very few genes had consistent changes in translation efficiency 
upon tRF-GG KD, and no changes were observed for known MERVL regulators 
or other chromatin factors that play a role in repressing endogenous retroelement 
expression.  
 

Finally, I turn to the mechanism by which tRF-Glycine-GCC regulates 

MERVL expression in mouse embryonic stem cells and preimplantation embryos. 

Since tRFs repress translation in various cellular and organismal contexts 
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(Yamasaki, Ivanov, G.-F. Hu, et al., 2009; Ivanov, Mohamed M. Emara, et al., 

2011a; Bąkowska-Żywicka et al., 2016; Goncalves et al., 2016; Gebetsberger et 

al., 2017b; Guzzi et al., 2018; Luo et al., 2018), I first investigated the possibility 

that tRF-GG represses the translation of MERVL activators or related machinery. 

To study the effects of tRF-GG on translation, I carried out ribosome profiling 

(Ingolia, Lareau and Weissman, 2011) along with RNA-seq in mouse ES cells to 

measure changes in ribosome occupancy genome-wide upon tRF-GG KD (Fig. 

2.6). Consistent with our previous microarray data, tRF-GG inhibition led to the 

derepression of a subset of MERVL target genes at the RNA level, with a 

concurrent increase in ribosome occupancy over the same transcripts (Fig. 2.6A-

B). Surprisingly, inhibition of tRF-GG had little to no effect on translation 

efficiency of mRNAs genome-wide. While there were a few genes that were 

consistently changing in mRNA abundance and ribosome occupancy, notably 

histone genes (see Chapter III), most changes in translation efficiency could not 

be statistically verified. In particular, we could not identify any genes that could 

be plausibly linked to MERVL expression demonstrating consistent changes in 

RNA abundance, ribosome occupancy, or translation efficiency, upon tRF-GG 

inhibition (Fig. 2.6C). From this data, we conclude that tRF-GG does not globally 

repress translation, and plays no role in translational repression of specific 

factors that could be involved in either activation or repression of MERVL 

expression.  

tRNA fragments have in some cases been reported to function in complex 

with Argonaute proteins and act effectively like microRNAs or endo-siRNAs 
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(Deng et al., 2015; Andrea J. Schorn et al., 2017; Martinez, Choudury and 

Slotkin, 2017). However, the repressive activity of tRF-GG on MERVL expression 

does not appear to be a consequence of sequence homology between tRF-GG 

and the MERVL element, based on three observations. First, there is no 

significant sequence homology between tRF-GG and MERVL (which uses tRNA-

Leu for replication), and many of the tRF-GG target genes are in any event 

regulated by “solo” LTRs, which have lost the MERVL primer binding sequence. 

Second, LNAs targeting the 3’ end of tRNA-Gly-GCC have no effect on MERVL 

target expression (Fig. 2.4A). Third, transfection of ES cells with various 

synthetic 3’ tRNA fragments of potential relevance to either tRF-Gly-GCC or to 

MERVL has no significant effect on MERVL target gene expression (Fig. 2.7A), 

arguing against tRF-GG affecting levels or function of other tRNA fragments that 

might have more direct roles in MERVL control. Taken together, these data do 

not support a role for Argonaute-mediated targeting of MERVL mRNA (or DNA) 

sequences in tRF-GG regulation of this gene set. 
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Fig. 2.7. tRF-GG repress MERVL transcription. (A) Expression of the MERVL 
target gene Tdpoz4 is unaffected by several potentially relevant 3’ tRNA 
fragments. ES cells were transfected either with the antisense LNA targeting the 
5’ tRF-Gly-GCC, or with either 5 or 100 ng of one of four synthetic 3’ tRFs. 
Tested oligos include two short 22 nt 3’ fragments of mature (CCA-tailed) tRNA-
Gly-GCC and tRNA-Leu-CAG – the former has the potential to form a complex 
with 5’ tRF-Gly-GCC and so its activity could be modulated by manipulating 5’ 
tRF availability, while the latter was chosen due to the use of this tRNA in priming 
MERVL replication. We also included two longer (37 nt) 3’ tRFs derived from 
tRNA-Gly-GCC which differ in whether they carry 4 or 5 5meC nucleotides, as a 
recent study reported significant differences between these oligonucleotides in 
both RNA stability and structure (Zhang et al., 2018). Importantly, with the 
exception of the LNA targeting 5’ tRF-GG, none of the other oligos, even at 
elevated concentrations, had any significant effect on MERVL target gene 
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expression in ES cell cultures. (B) Metabolic labeling of RNA with 4sU libraries 
demonstrate expected behavior of long-noncoding RNAs (fast transcription rate) 
and sno/scaRNAs nascent RNA processing (slow transcription rate due to 
splicing and post-transcriptional processing) (Windhager et al., 2012). (C) 
Metabolic labeling scatterplot showing effects of tRF-GG inhibition on total RNA 
(x axis) vs. newly-synthesized 4SU-labeled RNA (y axis). (D) Metabolic labeling 
reveals transcriptional derepression upon tRF-Gly-GCC inhibition. Genome 
browser tracks show total RNA levels, and newly-synthesized RNAs obtained 
after 15 or 30 minutes of 4-thiouridine (4SU) labeling, for ES cells transfected 
with esiRNAs targeting GFP, or an LNA oligonucleotide antisense to tRF-Gly-
GCC. Effects of tRF inhibition on previously-described MERVL-associated target 
genes (Sharma et al., 2016) are nearly identical for total RNA as well as newly-
synthesized RNA. (E) Pol-II ChIP qPCR shows increased Pol-II occupancy on 
MERVL and MERVL target gene promoters, but not other types of ERV 
promoters. (F) Increased MERVL-LTR driven TdTomato signal upon tRF-GG 
knockdown. Two independent MERVL LTRs, or a MERVK LTR as control, were 
cloned into a vector driving TdTomato expression.  
 Alternatively, tRF-GG may repress nascent synthesis of MERVL target 

genes. Consequently, we set out to distinguish between tRF-GG regulation of 

target gene synthesis vs. RNA decay. Metabolic labeling with 4-thiouridine (4sU) 

(Rabani et al., 2011) was used to label newly synthesized RNAs in murine E14 

ESC cultures following inhibition of tRF-GG function using an LNA-containing 

antisense oligo. The 4sU method efficiently captured nascent RNA synthesis, 

and recapitulated previously reported characteristics of 4sU libraries, including 

depletion of snoRNAs due to slow intron processing at snoRNA host genes (Fig. 

2.7B) (Windhager et al., 2012). Replicating our prior findings, inhibition of tRF-

GG resulted in dramatically increased levels of total MERVL target mRNA 

abundance (Fig. 2.4, 2.6, 2.7C-D). Importantly, we also observed increased 

levels of MERVL target genes following tRF-GG inhibition in the purified 4sU-

labeled, newly-synthesized, mRNA fraction, indicating that tRF-GG represses 

target gene synthesis rather than stability (Fig. 2.7C-D). In addition, MERVL 

target derepression was accompanied by increased RNA Pol2 levels on target 
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genes (Fig. 2.7E), and could be recapitulated using two independent MERVL 

LTR-driven tdTomato fluorescent reporters (Fig. 2.7F, see methods). We 

conclude that tRF-Gly-GCC plays a role in transcriptional repression of MERVL 

LTRs. 

 Next, we asked how transcription of MERVL-driven genes is controlled. 

Like many retroelements, MERVL LTRs are packaged into, and repressed by, 

heterochromatin (Macfarlan et al., 2012b). Interfering with chromatin assembly, 

for instance via knockdown of the CAF-1 histone chaperone (Ishiuchi et al., 

2015b), results in derepression of MERVL-driven transcripts. To investigate the 

effects of tRF-Gly-GCC on chromatin architecture, we carried out ATAC-Seq 

(Buenrostro et al., 2015) in mouse ES cells to measure changes in chromatin 

accessibility genome-wide upon tRF-GG KD (Fig. 2.8). Our ATAC-seq libraries 

recapitulated previously described characteristics of Tn5-transposed genomes 

(Fig. 2.8A-C). Consistent with the enhanced transcription observed at MERVL 

LTRs, we find that inhibition of tRF-GG resulted in a broad increase in chromatin 

accessibility over MERVL elements and throughout heterochromatin (Fig. 2.8D-

F), with minimal changes in ATAC-Seq signal over euchromatic transcriptional 

start sites (Fig. 2.8G-I). To extend these findings to a more developmentally 

relevant scenario, we microinjected IVF-derived zygotes with a synthetic tRF-GG 

oligonucleotide to mimic the process of sperm delivery of tRFs to the zygote. We 

assayed chromatin accessibility in control and injected embryos by ATAC-qPCR, 

confirming that increasing tRF-GG levels resulted in a decrease in accessibility at 
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MERVL elements (Fig. 2.8J). Thus, tRF-Gly-GCC manipulation alters chromatin 

accessibility in both ES cells and in preimplantation embryos. 
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Fig. 2.8. tRF-GG regulates chromatin compaction. (A) Fragment size 
distribution of ATAC-seq libraries show characteristic enrichment of transcription 
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factor sized, mono- and di-nucleosome periodicity fragments. (B) Fragments less 
than <140nt in size demonstrate an enrichment over the expected nucleosome 
depleted region of transcriptionally active TSS’s genome-wide. (C) Mono-
nucleosome sized fragments demonstrate a bimodal enrichment over actively 
transcribed TSS’s genome-wide. (D) Circos plot showing ATAC-Seq data for 
control and tRF-GG-inhibited ES cells across chromosome 11. Inner circle shows 
Repeatmasker density, and blue/red trace in the outer ring shows the change in 
ATAC signal between tRF KD and control ES cells, with red indicating more than 
1.5 fold increased chromatin accessibility following tRF-GG inhibition. (E) 
Increased accessibility at heterochromatin and weakly-transcribed regions in 
tRF-GG-inhibited ES cells. Heatmap shows log2 fold change in ATAC-Seq reads 
following tRF-GG inhibition, aggregated across the indicated types of chromatin 
(Bogu et al., 2015). (F) As in (E), with tRF-GG effects on ATAC-Seq occupancy 
and RNA abundance averaged across the indicated repeat elements. (G-I) 
Examples showing average ATAC-Seq signal across the indicated genomic 
elements – Refseq genes (G), MERVL elements (H), or MERVK elements (I). (J) 
tRF-GG injection decreases chromatin accessibility at MERVL elements in 
preimplantation embryos. Zygotes were microinjected with a synthetic tRF-GG 
oligonucleotide, or control injected (H3.3-GFP mRNA), and developed to the 2-
cell stage. Groups of 5 embryos were then pooled and subject to Tn5 
transposition as in ATAC-Seq, then assayed by q-PCR for both MERVL and a-
tubulin. Data show the fold decrease in accessibility for tubulin-normalized 
MERVL in tRF-GG-injected embryos compared to control embryos in three 
replicates – horizontal line shows average of the three replicates. 
  

 Taken together, our data strongly supports the conclusion that tRF-GG 

represses the nascent synthesis of MERVL RNA by regulating the chromatin 

architecture surrounding MERVL in mouse embryonic stem cells and 

preimplantation embryos. Surprisingly, this repression of chromatin accessibility 

by tRF-GG was not limited to MERVL specifically, but heterochromatin in 

general.  

Discussion 

 This study focused on exploring the biogenesis and function of diet-

regulated tRNA fragments in sperm. Surprising, I observed that epididymosomes 

could shape the RNA payload of sperm via fusion. The RNA payload of sperm is 
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heavy in 5’ fragments derived from tRNAs, or tRFs, and is modulated by paternal 

diet. As to the function of these tRFs in preimplantation embryos, we focused on 

one particularly abundant diet-regulated tRF, tRF-Gly-GCC, because it is the 

most abundant sRNA in mature sperm that is consistently up-regulated in 

response to paternal diet. We found that tRF-Gly-GCC represses the expression 

of endogenous retroelement MERVL, which is active in the initial stages of 

embryonic development. I show that instead of acting through the well-

understood Argonaute-mediated RNA degradation pathway, or the plausible 

repression of translation, tRF-Gly-GCC represses the nascent synthesis of 

MERVL transcripts by regulating chromatin compaction surrounding these 

elements. Together, these results illuminate a pathway by which environmental 

conditions experienced by the father can influence the very earliest stages of 

preimplantation development.  

tRF-Glycine-GCC controls chromatin architecture and expression of MERVL 

 Several aspects of the finding that tRF-Gly-GCC controls chromatin 

architecture surrounding not only MERVL, but also heterochromatin in general, 

and yet represses the nascent synthesis of MERVL elements specifically, are 

unexpected.  

First, the transcriptional silencing of transposons and associated 

repression of chromatin surrounding transposons by tRF-GG are more 

reminiscent of the piRNA pathway in Drosophila and RNA-induced transcriptional 

silencing (RITS) is fission yeast S. pombe (Sienski, Dönertas and Brennecke, 

2012; Mohn et al., 2014; Holoch and Moazed, 2015). Neither of these processes 
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are thought to be active in our system, as RITS requires RNA-dependent RNA 

polymerase, which is absent from mammals (Stein et al., 2003), and piRNAs are 

active in the mammalian testes, not mouse embryonic stem cells or 

preimplantation embryos. The lack of homology between tRF-GG, or the 3’ end 

of tRNA-Gly-GCC, and the MERVL LTR or any part of MERVL, also argue 

against an Argonaute mediated RNA-silencing pathway. tRF-GG may therefore 

regulate heterochromatin and MERVL transcription through a potentially novel 

pathway.  

Second, our ATAC-seq data suggests that tRF-GG participates in 

maintaining heterochromatin compaction in general, rather than the expected 

limited genomic regions surrounding MERVL (Fig. 2.8D-E). MERVL LTR 

elements are interspersed throughout the genome, in around 650 full length 

copies or 37000 solo-LTRs (Schoorlemmer et al., 2014), but only make up a 

small fraction of all transposable elements in the mouse genome (Nellåker et al., 

2012). However, heterochromatin in mouse embryonic stem cells encompass 

much larger genomic regions, sometimes megabases long (Fig. 2.8D), which are 

enriched in heterochromatic histone marks H3K27me2/3, H3K9me2/3, and DNA 

cytosine methylation (Bogu et al., 2015; Walter et al., 2016; Tosolini et al., 2018). 

These regions also appear to be the first to become replicated during S phase 

(data not shown), in apparent contrast to their penchant to becoming under-

assembled. MERVL LTRs are not the only transcriptionally active retroelements 

in mouse embryonic stem cells, as LTR retroelements such as IAP and MERVK, 

and many long interspersed nuclear elements (LINEs) are all expressed 
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(Elsässer et al., 2015; Walter et al., 2016). Therefore, it is extremely surprising 

that inhibition of tRF-GG derepresses the synthesis of MERVL and its target 

genes specifically. This specificity of expression from generality of chromatin 

openness could potentially result from the tendency for mouse embryonic stem 

cells to express MERVL target genes in its transient exploration of the 2-cell like 

state (Macfarlan et al., 2012b; Ishiuchi et al., 2015b; Eckersley-Maslin et al., 

2016). In fact, it has become apparent that undercompaction of chromatin leads 

to derepression of specific retroelements in many model systems (Qian et al., 

1998; Ishiuchi et al., 2015b). In addition, the transcription factor that is required 

for expression of MERVL and its target genes appears to be ready, if not primed 

to be expressed in mouse embryonic stem cells (De Iaco et al., 2017; 

Hendrickson et al., 2017; Whiddon et al., 2017; Iaco et al., 2019). Detailed 

molecular understanding of how MERVL and its target genes can efficiently 

exploit chromatin under-assembly, and the molecular roles that these oftentimes 

retro-transposed or highly duplicated genes play in early embryonic 

development, will help elucidate the biological consequences of tRF-GG 

regulation of this gene set. Future work will also explore the mechanistic nature 

of how tRF-GG helps maintain chromatin architecture in the early embryo, and 

the metabolic consequences that this early modulation may impose on post-

implantation development. 

Sperm small RNAs influence pre-implantation development 

Due to the small cytoplasmic volume of mammalian sperm, it is commonly 

assumed that sperm epigenetic information must be carried in the nucleus, either 
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via DNA cytosine methylation or chromatin state (Hammoud, David A Nix, et al., 

2009; Rando and Simmons, 2015). However, our study reveals important 

regulatory roles that sperm sRNAs can play in the early embryo, potentially by 

altering preimplantation development kinetics and placentation (Fig. 2.5G-I). 

While we demonstrate the regulatory potential of one particularly abundant diet-

regulated sRNA, tRF-GG, we found that paternal diet also alters a myriad of 

other sRNAs, including tRFs and miRNAs (Fig. 2.1). Of these, let7 family 

miRNAs play particularly pleiotropic roles in shaping animal development 

(Büssing, Slack and Grosshans, 2008), and further study will elucidate the 

potential regulatory roles let7 and other sperm-borne sRNAs in embryonic 

development. Furthermore, our study further solidifies evidence that either 

purified sperm RNAs or synthetic RNA mixtures microinjected into the embryo 

are capable of recapitulating paternally induced phenotypes in offspring (Gapp et 

al., 2014b; Rodgers et al., 2015; Chen, Menghong Yan, et al., 2016; Grandjean 

et al., 2016), and therefore, that sperm-borne RNAs represent a viable source of 

epigenetic information that can shape offspring development. However, it is yet 

unclear how changes in different sRNAs (individual miRNAs vs gel-purified tRFs, 

for example) can lead to converging phenotypes (such as control of glucose 

levels) (Chen, Menghong Yan, et al., 2016; Grandjean et al., 2016). It will be key 

to address how different sRNAs delivered by sperm can influence 

preimplantation development in a pleiotropic manner to influence offspring 

metabolism.  

Epididymosomes can reshape the RNA payload of sperm 
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 Finally, a profound conundrum in paternal epigenetic inheritance has been 

the signaling pathway by which stressful environments experienced by the father 

can lead to changes in the sperm epigenome, whether via chromatin state 

(Siklenka et al., 2015b; Ben Maamar et al., 2018b), cytosine methylation 

(Radford et al., 2014), or sRNAs (Gapp et al., 2014a; Rodgers et al., 2015). Our 

data suggest an alternative pathway that bypasses gametogenesis per se, but 

instead involves the post-developmental maturation of sperm during its transit 

through the epididymis (Fig. 2.1-3, Sharma et al. 2015). Our data uncover the 

temporal dynamics of small RNA biogenesis during post-testicular maturation, 

and strongly suggest a role for epididymosomes in transmitting small RNAs from 

somatic cells of the epididymis to maturing gametes. This is reminiscent of soma-

to-germline communication previously observed in other organisms, although 

mostly associated with oocyte development (Castel and Martienssen, 2013). 

Future studies will shed further light on the role of the epididymis in sensing 

environmental conditions and the factors responsible for biogenesis and 

modulation of tRNA cleavage and/or sorting into epididymosomes in response to 

environmental conditions.  

 

Materials and Methods 

Mouse husbandry  

Mice used in this study were primarily FVB/NJ strain background, obtained 

from Jackson Laboratories. All animal care and use procedures were in 

accordance with guidelines of the Institutional Animal Care and Use Committee. 
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Animals were raised on one of two diets – defined Control diet (Bioserv AIN-93g) 

or a Low Protein diet based on AIN-93g (10% of protein rather than 19%, 

remaining mass made up with sucrose) – as previously described (Carone et al., 

2010). Importantly, as we have found in natural matings that paternal dietary 

effects are substantially less penetrant when using females from our long-term 

mouse colony, we restricted all experiments here to females whose parents or 

grandparents had been obtained from the animal vendor.  

As we have previously found that siblings, whatever their diets, are more 

epigenomically similar than are Control animals that are not siblings, all analyses 

are restricted to paired siblings. In other words, all dietary effects on small RNAs 

in sperm, testis, etc., were assessed only for pairs of littermates split to Control or 

Low Protein diet, or for pools of animals split to diets in which all animals in a 

given pool are matched one to one with littermates in the other pool. For 

example, in Fig. 2.1, the eight pairs of sperm samples include seven pairs of 

individual sibling males, and one pair of sperm pools with two animals in each 

pool, with all four animals in the two matched pools being from the same litter. 

Similarly, paternal dietary effects on offspring metabolism or preimplantation 

gene regulation always utilize male siblings on different diets as the sperm 

donors. Finally, the majority of analyses of early embryonic gene expression 

were carried out using clutches of oocytes from individual females (typically ~20-

25 oocytes per female) that had been split into two groups for Control or Low 

Protein IVF (using sperm from sibling males), or for Control IVF embryos that 

were treated with and without tRF-Gly-GCC injection (using the same Control 
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sperm sample in both cases for IVF), and so forth. Experimental data were then 

combined for multiple such paired experiments.  

Testis, epididymis, and sperm collection 

Testes were dissected from 10-12 week mice fed on Control or Low 

Protein diet, directly frozen in liquid nitrogen and stored at -80 °C until RNA 

extraction. Cauda and Caput epididymides were dissected from mice and placed 

in Whitten’s Media pH 7.4 (100 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM 

MgSO4, 5.5 mM Glucose, 1 mM Pyruvic acid, 4.8 mM Lactic acid (hemicalcium), 

and HEPES 20 mM) at 37 °C. To collect caput sperm two incisions were made at 

the distal end of caput and using a 26G needle holes were poked in the rest of 

the tissue to let the caput sperm ooze out. For cauda sperm collection, cauda 

epididymides were gently squeezed to allow the caudal fluid to ooze out. After 

incubation for 15 minutes at 37 °C, sperm containing media was transferred to a 

fresh tube where they were incubated for another 15 minutes and the sperm-free 

epididymis tissues were directly frozen in liquid nitrogen and stored at -80 °C. 

After incubation at 37 °C for total of 30 minutes, sperm were collected by 

centrifugation at 2000 x g for 2 minutes, followed by a 1X PBS wash, and a 

second wash with lysis buffer (0.1% SDS and 0.5% Triton-X) for 10 minutes on 

ice to eliminate somatic cell contamination, and finally washed with 1X PBS 

before freezing down. Unlike cauda sperm, which are motile, caput sperm cannot 

swim up to allow a pure sperm sample collection. For the primary caput sperm 

dataset, sperm were obtained from 8 pairs of caput epididymis, pelleted, washed 

with PBS, and washed again with lysis buffer (0.1% SDS and 0.5% Triton-X) for 
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10 minutes on ice to eliminate somatic cell contamination. Sperm sample purity 

was confirmed by microscopic examination of the samples. For sperm 

“reconstitutions” caput sperm were purified over a Percoll gradient, washed with 

PBS, then either mock incubated at 37C or incubated with purified cauda 

epididymosomes at 37C as described in (Krapf et al., 2012). After fusion 

reactions, sperm were pelleted, washed with PBS, pelleted again and snap 

frozen.  

Epididymosome preparations 

Epididymosomes were prepared as previously described (Belleannée et 

al., 2013). In brief, gently extruded contents of the epididymis were centrifuged at 

2000 × g to remove sperm, and the resulting supernatants were centrifuged at 

10000 x g for 30 minutes to get rid of cellular debris. Next the supernatants were 

subjected to an ultracentrifugation at 120 000 × g at 4 °C for 2 h (TLA100.4 rotor; 

Beckman). Pellets were washed in cold PBS and subjected to a second 

ultracentrifugation at 120 000 × g at 4 °C for 2 h. These pellets were then 

resuspended in 50 µl of PBS and used for RNA extraction. A small aliquot was 

used for performing electron microscopy and Nanosight analysis of the 

epididymosomes. 

RNA Extraction 

For epididymosome RNA extraction, samples are thawed and the total 

volume of the sample was adjusted to 60 µl with filtered water (Macron). 33.3 µl 

of lysis buffer (6.4 M Guanidine HCl, 5% Tween 20, 5% Triton, 120 mM EDTA, 

and 120 mM Tris pH 8.0), 3.3 µl Proteinase K (>600 mAU/ml, Qiagen 19131), 
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and 3.3 µl water was then added to the sample. The sample was then incubated, 

with shaking, at 60 °C for 15 minutes on an Eppendorf thermomixer. One volume 

of water (100 µl) was then added and the sample transferred to a phase lock 

column (5 PRIME). For phase separation 200 µl of TRI Reagent (MRC inc) and 

40 µl BCP (1-bromo-2 chloropropane, MRC inc) were added. The samples were 

then mixed by inversion 10-15 times, followed by centrifugation at 14,000 RPM 

for 4 minutes (a second addition of TRI reagent and BCP can also be performed 

for more pure RNA). The aqueous phase was then removed and transferred to a 

low binding RNase/DNase free microcentrifuge tube (MSP), followed by the 

addition of 20 µg of glycoblue (Ambion) and 1 volume (~200 µl) of Isopropanol. 

The RNA was then precipitated for 30 minutes or greater at -20°C, followed by 

centrifugation at 14,000 RPM for 15 minutes at 4°C, and one wash with 70% cold 

ethanol followed by centriguation at 14,000 RPM for 5 minutes at 4°C. Finally, 

the RNA was reconstituted in water (10 µl for gel size selection for small RNA 

cloning). For sperm RNA extraction, the same procedure was followed, apart 

from the addition of 3.3 µl 0.1M DTT with the lysis buffer and Proteinase K rather 

than the water. Also, prior to the incubation at 60 °C on the thermomixer the 

sperm pellet was disturbed physically using a pipette tip, and repeated pipetting. 

Finally, after the addition of the TRI reagent, sperm samples were vortexed for 5 

minutes to ensure complete breakdown of the sperm. For testis and epididymidis 

samples, tissues were vortexed in 3-5 volumes TRI reagent with glass beads for 

30 minutes at 4°C. The samples were then briefly spun and removed from the 
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beads and BCP was added, followed by phase separation, and Isopropanol 

precipitation (as above). 

Small RNA Cloning 

Small RNA cloning was carried out as in (Gu et al., 2012). Total RNA was 

combined with an equal volume of Gel Loading Buffer II (Ambion), loaded onto a 

15% Polyacrylamide with 7M Urea and 1X TBE gel, and run at 15W in 1X TBE 

until the dye front was at the very bottom of the gel (~25 minutes for Criterion 

minigels). After staining with SYBR Gold (Life Technologies) for 7 minutes, and 

destaining in 1X TBE for 7 minutes, gel slices corresponding to 18-40 nucleotides 

were then cut from the gel. Gel slices were then ground (using a pipette tip or 

plastic pestle) and 750 µl of 0.3 M NaCl-TE pH 7.5 was added and incubated 

with shaking on a thermomixer overnight at room temperature. The samples 

were then filtered using a 0.4 µm Cellulose Acetate filter (Costar) to remove gel 

debris. The eluent was transferred to a new low binding microcentrifuge tube and 

20 µg of glycoblue and 1 volume of Isopropanol (~700 µl) were added. Samples 

were precipitated for 30 or more minutes at -20 °C. Size selection of the small 

RNAs was then followed by the ligation of a 3’ adaptor and then a barcoded 5’ 

adaptor as described in (Gu et al., 2009). The libraries were then converted to 

DNA using Superscript III (Invitrogen) and amplified by sequential rounds of 

PCR, to first add short primer tails and then longer primer tails, providing the 

products with the correct adaptor sequences for deep sequencing. Libraries were 

subsequently sequenced by an Illumina HiSeq 2000 at the Umass Deep 

Sequencing Core. 
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Normalization and data analysis  

For each small RNA library, rRNA-mapping reads (which were highly 

abundant in testis and epididymis samples, but rare in epididymosome and 

sperm samples) were removed. Remaining reads were mapped to murine 

tRNAs, to the unique sequences present in the 467 defined pachytene piRNA 

clusters (Li et al., 2013), to Repeatmasker (tRNA entries from Repeatmasker 

were deleted to avoid duplicating tRNA-mapping reads), to miRbase, and to 

Refseq, yielding 27385 data points for each library (Sharma et al. 2015 Table 

S1-S2). piRNAs are defined as reads mapping to Repeatmasker along with 

reads mapping to the unique piRNA clusters. In this analysis pipeline, all reads 

mapping to a given entity – all fragments of the Lcn5 mRNA, for example, or all 

the various size fragments of tRNA-Gly-GCC – are accumulated into a single 

data point. Importantly, in the case of multiple tRNA fragment species – 23 vs. 27 

nt tRF-Gly GCC, for example – various length species from the same tRNA 

typically behaved concordantly in comparisons, justifying this grouping. Non 

rRNA-mapping reads were normalized to parts per million mapped reads for 

subsequent analyses. For scatterplots, individual tRNA genes were grouped 

based on the uniqueness of the 5’ 30 nucleotides – of the 14 tRNA-Gly-GCC 

genes in the mouse genome, 11 have indistinguishable 5’ ends, so data for these 

11 tRNA-Gly-GCC genes were merged for all scatterplots. This results in 190 

unique 5’ tRF points for most analyses. For analysis in Fig. 2.4, we accumulated 

all reads for a given anticodon for the sake of visual clarity. In Fig. 2.4E, 

individual samples with values more than 3 standard deviations away from the 
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mean abundance of that RNA across 16 sperm samples were adjusted to 3 

standard deviations away from sperm mean value prior to summing read counts 

for the scatterplot, to minimize the visual impact of a small number of RNA 

species with extreme outlier values. For heatmaps Fig. 2.4F, only RNAs with a 

mean abundance >50 ppm are shown. 

ATAC-seq libraries were mapped to mm10 using Bowtie2 (v2.3.2) with the 

following parameters: -D 15 -R 2 -N 1 -L 20 -i S,1,0.50 --maxins 2000 --no-

discordant --no-mixed. Fragment lengths were separated using Python, and 

coverage of reads in various chromatin states was analyzed in R (v3.4.1) using 

data from ChromHMM 

(https://github.com/guifengwei/ChromHMM_mESC_mm10). All coverage data 

was normalized by global read depth prior to further analysis. Circos plots (v0.69-

2) were generated from coverage data calculated by Bedtools (v2.25.0). 

 RNA-seq libraries were demultiplexed using Novobarcode (v3.02.08). 

Single end libraries were trimmed of 3’ adapters using Fastx-toolkit (v0.0.14). 

Quantification was done using RSEM (v1.2.29) to RefSeq GTF annotation, 

mapped with Bowtie (v1.0.0) to mm10 using default parameters.  

TaqMan assays 

tRF and miRNA quantification was performed using custom designed 

TaqMan MicroRNA Assays according to manufacturer’s recommended protocols 

(Applied Biosystems). 10 ng of total RNA isolated from mice as described above 

were reverse transcribed using the TaqMan MicroRNA reverse transcription kit. 

q-RT-PCR was performed in 15 µL reactions using TaqMan Universal PCR 
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Master Mix, following standard program (10 min at 95 °C, then 15 sec at 95 °C 

and 1 min at 60 °C for 40 cycles). Serial dilutions of template were run to confirm 

amplification efficiency of all TaqMan probes. 

ES cell culture and transfection 

E14 ESC lines were grown in DMEM (Gibco), and transfections were 

carried out in in OptiMEM in 6 well plates (28), with 9.5cm2 wells of ES cells 

seeded at a density of 3.5X105 cells/mL. 1 ng of antisense LNA containing 

oligonucleotides (Synthesized by Exiqon) were transfected using Lipofectamine 

2000 (Invitrogen) for 16 hours, then ESCs were allowed to recover for 32 hours. 

Controls included lipofectamine only (Mock) and anti-GFP shRNA transfections. 

RNA extraction was performed at the end of 48 hours using standard Trizol 

protocol. RNA extracted from mouse ES cells was prepared for hybridization on 

Mouse GeneChip 2.0 ST arrays (Affymetrix) using the GeneChIP WT PLUS kit 

from Affymetrix.  

Interfering with tRF-Gly-GCC function 

Two distinct oligonucleotides were used in this study to interfere with tRF-

Gly-GCC function. For the majority of ES transfections, we used an LNA-

containing antisense oligonucleotide with the following sequence: 5’-

ACCACTGAACCACCAA-3’. We also noted that an unmodified antisense 

oligonucleotide – 5’-GCG AGA AUU CUA CCA CUG AAC CAC CAA UGC-3’ – 

could derepress MERVL targets in ES cells (not shown). We therefore used this 

antisense in zygote microinjections, as the different lengths and ends of this oligo 

relative to the LNA make MERVL repression unlikely to be a gain of function of 
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both antisense oligos. In addition, preliminary microinjections (n=3 embryos 

each) using the LNA antisense also resulted in upregulated MERVL target 

expression in 4-cell embryos (not shown), giving us confidence that both 

approaches to tRF-Gly-GCC inhibition work in both ES cells and intact embryos.  

MERV-L reporter construction and FACS  

The 2C::tdTomato construct described in (Macfarlan et al., 2011) was 

obtained from Addgene, and contains the MERVL LTR nt 1-730 ligated into 

pcDNA3 hygro tdTomato plasmid. Sp110::tdTomato and MERVK::tdTomato were 

created from digested 2C:tdTomato using the same restriction sites, and the 

inserts were made by specific PCR amplification of the MERV-L LTR upstream of 

Sp110, and a MERVK LTR element located 5’ of Tdpoz2, using nested PCR 

primers to the genomic sequences. To derive stable cell lines, E14 9 mESCs 

were transfected with 2 µg of plasmid using Lipofectamine 2000 (Invitrogen), and 

selected using 150 µg/mL of hygromycin for 7 days. Surviving cells were re-

plated into a 100 mm dish at low density, and tdTomato+ single colonies were 

picked and expanded, and confirmed using PCR. Stable cell lines were 

transfected with either LNA antisense to tRF-Gly-GCC (Exiqon) or anti-GFP 

esiRNA (described above), then sorted by FACS 48-hours post-transfection at 

the UMass Medical School Flow Cytometry Core, using a FACSAria II Cell Sorter 

(BD).  

Pol2 chromatin immunoprecipitation 

Pol-II antibodies used: sc-899X (Santa Cruz, n=3 replicates) and ab5095 

(Abcam, n=2 replicates). 2 µg of antibodies were conjugated to 50 µL of 
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Dynadeads M-280 overnight with 0.1% BSA in PBS. 1X107 mESCs transfected 

with anti-tRF-GG LNAoligos and anti-GFP esiRNA were fixed in 1% 

formaldehyde for 5 mins at RT. Cells were lysed in 650 µL of nuclei lysis buffer 

(50 mM Tris-HCl pH 8, 10 mM EDTA pH 8, 1% SDS, 1X protease inhibitor 

cocktail) for 10 mins on ice. Chromatin was sheared on a Covaris S220 using the 

following settings: peak power 105, Duty Factor 2, 200 cycles, 300 seconds per 

130 µL microtube. 130 µL of chromatin (~2X106 cells) was diluted with 900 µL of 

ChIP dilution buffer (50 mM Tris-HCl pH 8, 0.167 M NaCl, 1.1% TritonX100, 

0.11% sodium deoxycholate) and 500 µL RIPA-150 (50 mM Tris-HCl pH8, 0.15 

M NaCl, 1 mM EDTA pH 8, 0.1% SDS, 1% Triton-X100, 0.1% sodium 

deoxycholate). An appropriate volume was also saved for input DNA, and 

extracted as below. Chromatin was added to Pol-II antibody conjugated 

Dynabeads and gently rotated for 4 hrs at 4 °C. Beads were washed once in 

RIPA-150, twice in RIPA-500 (50 mM Tris-HCl pH 8, 0.5 M NaCl, 1 mM EDTA pH 

8, 0.1% SDS, 1% Triton-X100, 0.1% sodium deoxycholate), twice in RIPA-LiCl2 

(50 mM Tris-HCl pH 8, 1 mM EDTA pH 8, 1% NP40, 0.7% sodium deoxycholate, 

0.5 M LiCl2), and twice with TE buffer pH 8, 5 mins at 4 °C on rotator per wash. 

Beads were eluted with 200 µL elution buffer (10 mM TrisHCl pH 8, 0.3 M NaCl, 

5 mM EDTA pH 8, 0.5% SDS) with 1 µL RNase A (Qiagen) at 65 °C for 4hrs. 

Supernatant was removed from beads then incubated overnight at 55 °C with 1 

µL Proteinase K (20 mg/mL). Finally, DNA was extracted using phenolchloroform 

isoamyl alcohol, and precipitated with isopropanol and glycogen. DNA 

concentrations were determined using Qubit (Thermo-Fisher), then 0.5 ng of 
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DNA was loaded for each qPCR reaction. Data in Fig. S9C were normalized to 

IgG control ChIPs, then the ratio was calculated for tRF-GG inhibition vs. GFP 

controls.  

Metabolic labeling 

E14s were labeled in 500mM 4sU containing media for 15 or 30mins, then RNA 

was isolated using Trizol and isopropanol precipitation. 50 µg of total RNA was 

mixed with 0.2mg/ml of EZ-Link Biotin-HPDP (Themo Fisher) in 500 µL reaction 

then incubated for 2hr at 37°C in a shaking thermomixer (750 rpm). Biotinylated 

RNA was then extracted using phenol:chloroform:isoamyl alcohol (PCI) with 

phaselock gels and precipitated using isopropanol. RNA pellet was resuspended 

in 10µL water, and mixed with 30µL of washed Dynabeads MyOne Streptavidin 

C1 beads (Invitrogen) in binding buffer (10 mM Tris-HCl pH7.5, 300 mM NaCl, 

0.1% Triton-X). The slurry was rotated for 20 mins at room temperature to 

immobilize biotin-tagged RNA, then placed on magnetic stand and washed with 

500µL high salt buffer (50 mM Tris-HCl, 2M NaCl, 0.5% Triton-X). The 

supernatant from the first high-salt wash is the unlabeled total RNA. Beads were 

then stringently washed in high salt buffer, then two times in binding buffer, then 

once in low salt buffer (5 mM Tris-HCl, 0.1% Triton-X). The biotin-tagged RNA 

were extracted from the beads with 100 mM DTT at 65°C for 5 mins twice. 

Finally, labeled and unlabeled fractions were PCI extracted and RNA was 

isopropanol precipitated, and used to construct RNA-seq libraries.  

RNA-seq for 4sU-labeled Libraries 
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 5 µg of total RNA was depleted of ribosomal RNA using Ribo-Zero rRNA 

Removal Kit (Human, Mouse, Rat, Illumina). Less total RNA was used as input 

from metabolic labeling experiments for both 4sU labeled and unlabeled 

fractions. Illumina deep sequencing compatible libraries were constructed from 

rRNA-depleted RNA using an optimized version of a protocol described by Heyer 

et al. adding a purification using the RNA Clean and Concentrator (Zymo 

Research) in between procedures. Ribosome profiling data was published 

previously (GSE74537). Briefly, cell extract was incubated with Rnase A+T1, 

separated on a sucrose gradient to obtain 80S ribosomes, RNA was isolated by 

phenol-chloroform and ran on a gel to acquire 26-32nt RNAs. RNAseq libraries 

were made from RNA isolated using Trizol + isopropanol precipitation. Libraries 

were quantified, multiplexed and either single-end or paired-end sequenced on 

Illumina NextSeq 500 sequencer. 

ATAC-Seq 

 E14 mES cells were transfected with antisense tRF-Gly-GCC LNA or 

mock-transfected and grown for 24 or 48 hours prior to harvesting and counting. 

ATAC-seq protocol was done essentially the same as described in Buenrostro et 

al. Briefly, after titration, 4 µL of TDE1 was determined as sufficient for 50000 

cells. Tagmented DNA was amplified using Kapa HiFi Hotstart polymerase, and 

libraries were cleaned up using Ampure XT DNA beads. Libraries were 

quantified, multiplexed and paired-end sequenced on an Illumina NextSeq 500 

sequencer. 

In vitro fertilization  
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In vitro fertilization was performed according to “Manipulating the Mouse 

Embryo” Second Edition (Hogan et al., no date). FVB/NJ mice were used as egg 

donors and sperm was isolated from males fed dietary regimes as above. 

Fertilization took place in 250 µL HTF media covered in mineral oil, pre-gassed in 

5% CO2 at 37 °C.  

Embryo RNA microinjection experiments 

Zygotes for microinjection studies were generated by IVF using sperm 

from mice fed Control diet. After four hours of IVF, the zygotes were washed 

three times in HTF medium and placed in a drop of KSOM medium at 37 °C in 

5% CO2 5% O2 for 2 hours. Embryos were then transferred to FHM medium 

containing 0.1% PVA, and subjected to 10 micromanipulation. Embryos were 

microinjected with either H3.3-GFP mRNA alone (Santenard et al., 2010) (control 

group) or H3.3-GFP mRNA plus one of several synthetic tRNA fragments 

(experimental group), or with H3.3-GFP mRNA plus gel-purified small RNAs (18-

40 nts) isolated from Control vs. Low Protein sperm. RNA injections were carried 

out using a Femtojet (Eppendorf) microinjector at 100 hPa pressure for 0.2 

seconds, with 7 hPa compensation pressure. RNAs used for microinjections and 

their concentrations were: 100 ng/µl of H3.3- GFP mRNA, 200 ng/µl of tRF-Gly-

GCC antisense RNA (5’GCG AGA AUU CUA CCA CUG AAC CAC CAA UGC 

3’), 200 ng/µl of tRF-Glu-CTC sense RNA (5’ UCC CUG GUG GUC UAG UGG 

UUA GGA UUC GG 3’), and 200 ng/µl of tRF-Gly-GCC sense RNA with modified 

residues (5’ GCA JUL GUG GUU CAG UGG DAG AAU UCU CGC 3’ where J=2’-

O-methyluridine, L=N2-methylguanosine, D=dihydrouridine). For sperm small 
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RNA microinjections, total RNA was extracted from either Control or Low Protein 

sperm, 18-40 nucleotides RNA was size selected on a gel and purified for 

microinjections, used at either 0.5 ng/µl (Fig. 2.5D). After the microinjections, 

embryos were placed back into culture and H3.3-GFP fluorescence was verified 

at the 2-cell stage. GFP-positive injected embryos were cultured until the late 2-

cell stage (32 hours post IVF for most injections, 28 hours for the tRF-Gly-GCC 

injections in Fig. 2.5E) or 4-cell stage (tRF-Gly-GCC antisense RNA 

microinjections, Fig.2.4E-F), at which point embryos were collected and 

processed for single-embryo RNA sequencing.  

Intracytoplasmic Sperm Injection (ICSI) 

The testes and epididymis of 8-12 week old FVB/NJ mice were dissected 

into PBS. For rete sperm isolation, the efferent duct leading from the rete testis to 

the caput epididymis was located and the testis was removed under a stereo 

microscope and placed into a fresh dish containing PBS. After 2 washes with 

PBS, several cuts in the Rete testis were made, releasing its contents including 

the rete sperm. Released rete testis contents were transferred into an eppendorf 

tube, spun at 14,000 RPM for 2 minutes, and washed twice with modified nuclear 

isolation medium (NIM) with 1% polyvinyl alcohol. Sperm were finally 

resuspended in 500 µl NIM 1% PVA for use in ICSI. For cauda sperm isolation, 

the cauda epididymis was isolated and placed in PBS. The cauda sperm were 

then released by making an incision in the cauda epididymis followed by 

squeezing to release the epididymal contents. The cauda sperm were then spun 

and washed as the Rete sperm. For sperm heads (both rete and cauda), after 
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collecting the sperm in PBS in an eppendorf tube, the sperm were spun at 

14,000 RPM and washed once with PBS. The sperm were then resuspended in 

500 µl PBS and then drawn through a 26G needle on a 1 ml syringe between 20-

30 times. The shearing force from being drawn in and out of the needle removes 

the sperm head from tail for the majority of sperm. The sperm were then washed 

twice in NIM 1% PVA and finally resupended in 100-500 µl NIM 1% PVA for use 

in ICSI. Females were superovulated by an intraperitoneal (i.p) injection of 

pregnant mare’s serum gonadotropin (PMSG; 5 IU) followed by an i.p. injection 

of human chorionic gonadotropin (hCG; 5 IU) 48 hours later. Eggs were then 

collected from the oviducts of the females 13-16 hours later by placing the 

dissected ampulla of the oviduct 11 into KSOM containing 3 mg/ml hyaluranidase 

to digest the cumulus cells away from the eggs. After several minutes in 

hyaluranidase the eggs were washed 4-5 times in KSOM, finally being placed in 

KSOM in a 37 °C incubator until injected. For ICSI, plates were made with drops 

of NIM 1% PVA for washing the injection needle, drops of NIM 1% PVA with 

sperm, drops of FHM with 0.1% PVA for the eggs to be added to for injection, 

and finally covered with mineral oil. 10-15 eggs at a time were placed into the 

FHM + 0.1% PVA drops on the injection plate for subsequent injection. Sperm 

(heads or whole) were then picked and injected into the eggs. After completion of 

the 10-15 injections, the injected eggs were maintained at room temperature for 

5 minutes, washed 4 times in KSOM, and then placed in 50 µl KSOM in a 37 °C 

5% O2 incubator for development. The process was repeated for a total of 80-

120 injections per day. 28 hours post-injection, 2-cell embryos were collected into 
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5 µl TCL buffer with 1% βME and then stored at -80°C for processing into single 

embryo RNA-sequencing libraries.  

Single embryo RNA-Seq 

Single embryo RNA-Seq was carried out using the SMART-Seq protocol, 

as described in (Ramsköld et al., 2009; Shalek et al., 2013). Data were mapped 

using RSEM, and were normalized to parts per million mapped reads after 

removing microRNA, snoRNA, and rRNA-mapping reads. Embryos with fewer 

than 10,000 detectable transcripts were removed from the dataset. For a given 

condition (Control, Low Protein, testicular sperm ICSI, etc.) we calculated the 

geometric mean of the mRNA abundance across all relevant embryos to 

minimize the influence of outliers, and filtered for genes with a geometric mean 

abundance >5 ppm. The cumulative distribution of the log2 fold change between 

different conditions is then plotted for various comparisons in Fig2.5. For analysis 

of MERVL target gene expression, we used all genes changing at least 2-fold in 

our ES cell Affymetrix and RNA-Seq data (Sharma et al. 2015 Tables S4-S5) for 

tRF-Gly-GCC targets, and we used the union of tables S2 and S6 from 

MacFarlan et al for remaining MERVL targets.  

Immunofluorescence experiments and analysis of embryos 

To determine the effects of different diets on cell fate in the mouse 

embryo, IVF experiments were performed as described above, using sperm from 

sibling males either on Control or Low Protein diets. 4 hours after IVF, embryos 

were washed in HTF medium and placed in KSOM drops for long-term culture, in 

a 5% CO2 5% O2 incubator. Embryos were collected at embryonic day 4 (E4) at 
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mid-blastocyst stage and fixed in 4% PFA for Cdx2 staining. 

Immunofluorescence staining was performed as described in (Torres-Padilla et 

al., 2006). Primary antibody used was Anti-CDX2 (BioGenex) at 1:100. 

Secondary antibody used was AlexaFluor 488 goat anti-mouse IgG (Molecular 

Probes) at 1:500. After the final wash, stained blastocysts were mounted in a 

gradient of Vectashield mounting medium with DAPI, in drops to retain the three-

dimensional structure of the blastocyst. Microscopy was performed on a Zeiss 

Axiovert 200 inverted microscope with Orca-ER camera (Hamamatsu, NJ), using 

a 40x/1.4 NA oil objective. Z-sections were taken every 3 µm through the entire 

embryo. Analysis and cell counting was performed using Zeiss AxioVision4.9.1 

software. 
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CHAPTER III 

The molecular function of tRNA fragment Gly-GCC 

Abstract 

 Small RNAs derived from mature tRNAs, referred to as tRNA fragments or 

“tRFs”, are an emerging class of regulatory RNAs with poorly understood 

functions in cellular regulation. We recently identified a role for one specific tRF – 

5’ tRF-Gly-GCC, or tRF-GG – in repression of genes associated with the 

endogenous retroelement MERVL, but the mechanistic basis for this regulation 

was unknown. Here, we show that tRF-GG plays a role in production of a wide 

variety of noncoding RNAs normally synthesized in Cajal bodies. Among these 

noncoding RNAs, tRF-GG regulation of the U7 snRNA modulates 

heterochromatin-mediated transcriptional repression of MERVL elements by 

supporting an adequate supply of histone proteins. Importantly, the effects of 

inhibiting tRF-GG on histone mRNA levels, activity of a histone 3’ UTR reporter, 

and ultimately on MERVL regulation could all be suppressed by the U7 RNA. We 

show that the related RNA-binding proteins hnRNPF and H bind directly to tRF-

GG, and are required for Cajal body biogenesis. Together, our data reveal a 

conserved mechanism for 5’ tRNA fragment control of noncoding RNA 

biogenesis and, consequently, in global chromatin organization. 

Introduction 

 It has been known for some time that mature tRNAs can be cleaved in 

response to cellular stressors (Lee and Collins, 2005), but only recently have the 

resulting cleavage products – broadly known as tRNA fragments, or tRFs – been 
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appreciated as potential regulatory molecules in their own right (Keam and 

Hutvagner, 2015). Although tRNA fragments have in some cases been reported 

to function in complex with Argonaute proteins and act effectively like microRNAs 

or endo-siRNAs (Deng et al., 2015; Andrea J Schorn et al., 2017; Martinez, 

Choudury and Slotkin, 2017), they have also been reported to have Argonaute-

independent regulatory functions ranging from inhibition of translation to control 

of apoptosis (Elbarbary et al., 2009; Zhang, Sun and Kragler, 2009b; Ivanov, 

Mohamed M. Emara, et al., 2011; Gebetsberger et al., 2012a; Mary T Couvillion 

et al., 2012; Sobala and Hutvagner, 2013; Goodarzi, Liu, Hoang C B Nguyen, et 

al., 2015; Molla-Herman et al., 2015; Kim et al., 2017). The diversity of proposed 

mechanisms for tRF function in part reflects the multitude of types of tRNA 

fragments that have been identified – 22 nt fragments derived from the 3’ ends of 

mature tRNAs have been found associated with Argonaute proteins (Kumar et 

al., 2014b; Kuscu et al., 2018) and have been suggested to direct cleavage of 

retrotransposon RNAs (Andrea J Schorn et al., 2017; Martinez, Choudury and 

Slotkin, 2017), whereas longer (28-32 nt) fragments arising from tRNA 5’ ends 

appear to play more diverse mechanistic roles. For instance, 5’ fragments of 

valine tRNAs serve as global repressors of translation in archaea, yeast, and 

mammals, and in some cases appear to act by interfering with translational 

initiation (Gebetsberger et al., 2012a; Bąkowska-Żywicka et al., 2016; Guzzi et 

al., 2018; Luo et al., 2018).  

 We previously showed that interfering with a 5’ fragment of tRNA-Gly-

GCC (hereafter, tRF-GG) using an antisense LNA oligonucleotide resulted, in 
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both murine ES cell culture and in preimplantation embryos, in derepression of 

~50 genes associated with the long terminal repeat (LTR) of the endogenous 

retroelement MERVL (Sharma et al., 2016). This functional link between a tRNA 

fragment and LTR element control is particularly interesting given the ancient and 

widespread role for tRNAs in LTR element replication – tRNAs almost universally 

serve as primers for reverse transcription of LTR elements (Marquet et al., 1995) 

– as well as recent studies reporting that 3’ tRNA fragments can interfere with 

multiple stages of the LTR element life cycle (Deng et al., 2015; Andrea J Schorn 

et al., 2017; Martinez, Choudury and Slotkin, 2017). In the case of tRF-GG-

mediated control of MERVL elements, however, we find no identifiable homology 

between the 5’ tRF-GG and either the LTR or the primer binding sequence of 

MERVL (which is primed by homology to Leucine tRNAs), making it unlikely that 

MERVL regulation occurs through homology-directed RNA targeting.  

 Here, we set out to uncover the mechanistic basis for repression of 

MERVL-associated genes by tRF-Gly-GCC. To our surprise, we find that control 

of MERVL elements is a downstream result of an evolutionarily-conserved 

function for tRF-GG in supporting noncoding RNA production. Manipulation of 

tRF-GG levels in human and mouse ES cells affects the levels of a wide range of 

noncoding RNAs, including snoRNAs, scaRNAs, and various U RNAs, all of 

which are normally produced in a subnuclear organelle known as the Cajal body. 

One such RNA, the U7 noncoding RNA, is essential for 3’ UTR processing of 

histone pre-mRNAs. We show that tRF-GG control of U7 levels has downstream 

effects on histone mRNA and protein levels, as well as global chromatin 
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compaction, and that the effects of tRF-GG on histones and on MERVL target 

gene transcription can be suppressed by manipulating U7 snRNA levels. Finally, 

we identify the related proteins hnRNP F/H as direct binding partners for tRF-GG, 

and show that these RNA-binding proteins are required for normal Cajal body 

biogenesis and for repression of MERVL-driven gene expression. Taken 

together, our data reveal a novel pathway for tRNA fragment function in 

mammals, linking tRNA cleavage to regulation of noncoding RNA production. 

Results 

tRF-GG is a positive regulator of histone genes 

 To explore the mechanistic basis for global heterochromatin opening 

during tRF-GG inhibition, we turned to RNA-Seq and ribosome footprinting data 

(Sharma et al., 2016) to identify potential effects of tRF-GG inhibition on 

expression of key chromatin regulators such as CAF-1. In addition, given the 

species-specific genomic locations of many ERVs such as MERVL, we also 

gathered RNA-Seq data in H9 human ES cells subject to tRF-GG inhibition, to 

identify conserved and divergent transcriptional consequences of tRF-GG 

inhibition. In both mouse and human ESCs, tRF-GG inhibition did not affect 

expression of any known chromatin regulators of MERVL such as CAF-1, 

Kdm1a, or Ehmt1. Intriguingly, tRF-GG inhibition in human ESCs had minimal 

effects on HERV expression, indicating that ERV regulation by this tRNA 

fragment is confined to mouse ES cells. 
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Figure 3.1. tRF-Gly-GCC represses expression of histone genes via the 3’ 
histone stem loop. A) mRNA abundance for two example histone genes – 
Hist1h1e (top) or Hist1h2bh (bottom) – in four replicates of mock-transfected, 
GFP KD, and tRF KD ES cells, as indicated. B) Scatterplot comparing RNA 
abundance for histone genes (purple diamonds) and all other genes in GFP KS 
ES cells (x axis) and tRF-inhibited ES cells (y axis). Note that nearly all histone 
genes fall below the x=y diagonal here. C) Cumulative distribution of the effects 
of tRF inhibition on histone mRNA expression, with y axis showing cumulative 
fraction of genes exhibiting any given log2 fold change in expression (x axis). 
Main panel shows data from murine ES cells (n=4 replicates), while inset shows 
data for human ESCs. See also Figure S3.2 A-C. D) q-RT-PCR for Hist2h3b 
showing effects of transfecting the anti-tRF LNA, a synthetic tRF-Gly-GCC 
oligonucleotide bearing most of the expected nucleotide modifications present in 
tRNA-Gly-GCC, and two synthetic nucleotides without any modified nucleotides. 
However, although the modified synthetic tRF was more active in this assay, we 
found no significant effect on tRF modification in several other assays (not 
shown), so this was not pursued in further detail. E) tRF-Gly-GCC regulates the 
histone 3’ UTR. We generated stable ES cell lines carrying a luciferase reporter 
bearing the 3’ UTR of Hist2h3b (Figure 3.2F shows data for an independent cell 
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line bearing the Hist1h4j 3’ UTR). Bar graph shows average changes to reporter 
activity in response to control KD, tRF LNA, or the modified tRF oligo. 

 

Figure 3.2. tRF KD effects on histone levels in human and mouse ESCs. 
A-B) CDF plots for tRF-GG KD effects on histone gene expression in mouse (A) 
and human (B) ESCs. Inset in (A) shows effects of tRF-GG KD on ribosome 
occupancy of histone genes. Comparable effects on histone RNA and RBF levels 
suggest that tRF-GG does not directly regulate histone regulator SLBP, which 
regulates both histone mRNA processing/stability as well as its translation 
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{Marzluff, 2017 #2869}. C) Dot plot showing effects of tRF-GG knockdown on 
individual histone genes (these data are replicated in Figure 3.1C). D) Example 
Western blots for histone H3 and GAPDH in ES cells subject to control or anti-
tRF-GG transfection. The four lanes show successive 2-fold dilutions. E) 
Quantitation of histone levels. Dots show H3 and H4 levels for individual 
experiments, normalized either to β-Actin or to GAPDH, as indicated. Associated 
lines show mean and s.e.m. for each experiment. F) As in Figure 3.1E, for stable 
ES lines carrying a dual luciferase reporter with Renilla luciferase fused to the 
Hist1h4j 3’ UTR. G) Luciferase activity for the Hist2h3b UTR reporter, showing 
reporter activity in ES cells transfected with LNA antisense oligos targeting the 
indicated 5’ tRFs. Bars show average and standard deviation, n=4 replicates. 
 
 Instead, we identified two conserved molecular phenotypes resulting from 

tRF-GG inhibition in both human and mouse ES cells: repression of histone 

mRNAs (Figures 3.1A-C, Figure 3.2), and decreased expression of a variety of 

noncoding RNAs (see below). Given our finding of global heterochromatin 

decompaction in tRF-inhibited cells (previous chapter), and the common 

derepression of ERV elements in undercompacted genomes (Lenstra et al., 

2011; Ishiuchi et al., 2015a), we focus first on tRF-GG effects on histone genes. 

We confirmed by qRT-PCR that tRF-GG inhibition causes a decrease in histone 

mRNA abundance (Figure 3.1D), and that reduced histone mRNA levels are 

accompanied by a decrease in histone protein levels (Figures 3.2D-E). 

Importantly, we find that direct tRF “overexpression” via transfection of ES cells 

with a synthetic 28 nt tRF-Gly-GCC also resulted in increased histone mRNA 

abundance (Figure 3.1D), demonstrating that repression of histone genes 

observed in response to tRF-GG inhibition does not represent an off-target gain 

of function exhibited by our anti-tRF-GG LNA oligo. Together, our gain and loss 

of function studies demonstrate that tRF-Gly-GCC plays a conserved role in 
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histone mRNA expression, with the MERVL LTR representing a sensitized 

reporter for chromatin assembly specifically in murine ES cells. 

Figure 3.3 Cell cycle 
effects of tRF-Gly-GCC 
inhibition. A) 
Unsynchronized ES cells 
were either control or 
anti-tRF-GG LNA 
transfected, and 2 days 
later were characterized 
by FACS using propidium 
iodide staining. Nearly 
identical cell cycle 
profiles reveal no effect 
of tRF-GG inhibition on 
the fraction of S phase 
cells. B) Time course of 
S phase progression in 
the presence and 
absence of tRF-GG 
inhibition. ES cells were 
transfected either with 
anti-GFP siRNAs or with 
the LNA antisense to 
tRF-Gly-GCC, then 
arrested in G1 phase via 
thymidine block for 16 
hours. FACS plots show 
DNA content at the 
indicated times after 
release from thymidine 
block. tRF KD cells 
release into S phase and 
proceed to G2/M with 
identical kinetics, 
although there is a subtle 
G2/M exit delay in the 
tRF KD cells reflected in 

the lower frequency of G1 cells at 6 and 8 hours post-release. Note that tRF KD 
cells exhibit a right-shifted peak of fluorescence intensity in G2/M – this is likely 
due to the greater availability of naked DNA for the DNA intercalator propidium 
iodide. Consistent with this, reanalysis of previous FACS data for SLBP deficient 
HCT cells (Jimeno-González et al., 2015) also reveals increased fluorescence 
intensity in G2 cells. Taken together, our data do not support the hypothesis that 
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increased histone levels in tRF-inhibited cells arise from an increased fraction of 
S phase cells. C) Additional replicates for t=6 hours after release from thymidine 
block. 
 

What is the mechanistic basis for tRF-GG-mediated repression of the 

histone genes? Histone expression is largely confined to the S phase of the cell 

cycle and could thus report on changes in cell cycle profile. However, FACS 

analysis of tRF-GG-inhibited ES cells revealed no change in the fraction of cells 

in S phase (Figure 3.3). Histone expression is highly regulated at levels from 

transcription to translation; perhaps the most unique feature of histone 

expression is the role of several cis-acting RNA elements in the histone 3’ UTR – 

a short stem loop known as histone stem loop (HSL) that binds to stem loop 

binding protein (SLBP), and the histone downstream element (HDE) that binds to 

the U7 noncoding RNA and the associated U7 snRNP – in regulation of histone 

pre-mRNA processing (Dominski and Marzluff, 1999; Marzluff and Koreski, 

2017). To separate the effects of tRF-GG manipulation on the histone 3’ UTR 

from effects on the histone promoter or coding sequence, we generated stable 

ES cell lines carrying luciferase reporters fused to one of two histone UTRs 

(Figure 3.1E, Figure 3.2F). Transfection of synthetic tRF-GG drove increased 

luciferase activity (30%, p = 0.0002), while tRF-GG inhibition resulted in 

decreased luciferase levels (with values ranging from 14% to 32% in five 

separate experiments – each in at least triplicate – with p values ranging from 

0.038 to 0.000019). tRF inhibition had no effect on a stable ES cell line carrying 

the wild-type luciferase reporter (data not shown), indicating that the histone 3’ 

UTR is necessary to confer regulation. Moreover, loss of histone reporter activity 
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was specific to tRF-GG inhibition, as it was not observed in response to four 

other tRF-directed antisense LNA oligonucleotides (Figure 3.2G). We conclude 

from these data that tRF-GG regulates histone mRNA abundance via the histone 

3’ UTR. 

tRF-GG affects histone expression and MERVL repression via control of U7 

noncoding RNA 

 

Figure 3.4. tRF-Gly-GCC supports production of U7 and other noncoding 
RNAs. A) Effects of tRF inhibition on various gene families in human H9 ES 
cells. Individual dots show individual species for the indicated families, illustrating 
the widespread downregulation of histone and snoRNA genes in response to 
tRF-Gly-GCC inhibition. Ribosomal protein genes are shown as a representative 
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highly-expressed but tRF insensitive gene family for comparison. Importantly, the 
role for tRF-GG in control of histone mRNAs and various noncoding RNAs was 
previously missed because prior analyses focused on polyadenylated mRNA 
abundance, while the current study analyzed rRNA-depleted total RNA samples 
(Methods). See also Figure 3.5. B) CDF plots showing the distribution of tRF 
effects on the indicated gene families, as in Figure 3.1C. C) Manipulating tRF-
GG levels affects U7 ncRNA production. ES cells were transfected 
either with LNA antisense oligos targeting tRF-Ser-GCT, tRF-Val-CAC, or tRF-
GG, or with synthetic tRF-GG oligos either bearing appropriate modified 
nucleotides (modified) or lacking these modifications (unmodified). U7 levels 
were quantitated by Northern blot (n=4), and normalized relative to 5S rRNA 
levels. Change in U7 levels is expressed relative to tRF-Ser-GCT inhibition, 
revealing a significant (p=0.03) decrease in U7 levels in response to tRF-GG 
inhibition, as well as modestly increased U7 levels in tRF-GGsupplemented 
cells. See also Figure 3.6. D) Effects of tRF-GG KD on histone 3’ UTR reporters 
are suppressed by supplementation with additional U7 snRNA. ES cells were 
transfected with the LNA antisense to tRF-GG, with or without additional in vitro-
synthesized U7 RNA. Effects of tRF-GG KD were significant (p = 0.0039 and 
0.00013 for H3 and H4 reporters, respectively), while tRF-GG KD + U7 was 
statistically indistinguishable from control (p=0.24 and 0.48, respectively). 
  

 Proper biogenesis of the histone mRNA involves a complex 

ribonucleoprotein assembly of 3’ UTR-associated proteins, as well as the 

noncoding U7 RNA which directs UTR processing via base pairing to the HDE of 

the histone 3’ UTR (Marzluff and Koreski, 2017). Intriguingly, in addition to 

downregulation of histone genes, we noted that the other consequence of tRF-

GG KD in both human and mouse ES cells was decreased expression of several 

major classes of noncoding RNA, including snoRNAs, and scaRNAs (Figures 

3.4 A-B, Figure 3.5). Notably, all of these RNAs share a common biogenesis 

pathway with U7, as these RNAs are all processed in Cajal bodies (Wu and Gall, 

1993; Gall, 2000; Machyna, Heyn and Neugebauer, 2013). To determine whether 

tRF-GG also affected levels of U7 RNA (which was not detected in our RNA-Seq 

data, potentially as a consequence of its secondary structure), we assayed U7 
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levels in tRF-GG KD and overexpression cells by Northern blotting (Figure 3.4C) 

and q-RT-PCR (Figure 3.5B,D). Consistent with the effects of tRF-GG 

manipulation on other noncoding RNAs, we find that inhibition of tRF-GG led to 

reduced U7 expression, while transfecting cells with the synthetic tRF-GG oligo 

supported higher expression of U7. Together, these findings reveal a conserved 

role for tRF-GG in promoting noncoding RNA production associated with Cajal 

bodies, and suggest that its effects on the histone 3’ UTR result from altered U7 

levels. 

 

Figure 3.5. tRF-GG inhibition affects a variety of noncoding RNAs. A-B) 
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qRT-PCR for five noncoding RNAs, normalized relative to Actb. Average and 
standard deviation are shown for three replicate experiments in H9 human ESCs, 
with each experiment comparing transfections with the anti-tRF-GG LNA 
antisense, the modified synthetic tRF-GG oligo, or a scrambled oligo control 
(Methods). Y axis shows log2 fold change relative to the scrambled oligo control. 
The four ncRNAs in (A) were assayed in one experiment, while the U7 q-RT-
PCRs represent an independent set of transfections and so are shown 
separately. C-E) Data for E14 murine ESCs. (C) shows individual replicates for 9 
separate experiments comparing effects of scrambled oligo, tRF-GG antisense, 
and tRF-GG transfection, on Sno116 (normalized to Actb). (D) shows data for the 
four indicated noncoding RNAs (Actb-normalized), comparing tRF-Gly-CCC 
antisense, tRF-GG antisense, and tRF-GG to the scrambled oligo control. Data 
for Sno57, U3, and U7 were gathered in duplicates, while Sno116 data included 
9 replicates for scramble, tRF-GG KD, and tRF-GG OE, and 2 replicates for tRF-
Gly-CCC KD. (E) shows data for Tdpoz2 and Hist2h3b in the replicate pairs 
shown in (D), with the overexpression of these genes in tRF-GG KD cells 
providing additional replication of the findings documented in Fig.3.1 and the 
previous chapter. 
 
 The hypothesis that tRF-GG control of U7 levels is responsible for 

changes in histone and MERVL expression makes the prediction that 

manipulating U7 levels should suppress tRF-GG effects on histone expression 

and MERVL targets. We therefore transfected our histone 3’ UTR mESC line with 

the anti-tRF-GG LNA – which results in decreased U7 levels – with or without 

supplementation of additional U7 RNA, and assayed luciferase activity and 

MERVL target gene expression by qRT-PCR. Restoring U7 levels in tRF-GG KD 

cells reversed the inhibition of histone expression in these cells as assayed by 

both luciferase reporters (Figure 3.4D) and by qRT-PCR (Figure 3.6A). The 

converse also held true – antisense oligonucleotides directed against U7 were 

able to reverse the increase in histone levels in ES cells transfected with excess 

tRF-GG (Figure 3.6A). Importantly, restoring histone mRNA levels via U7 

replenishment in tRF-GG-inhibited cells was able to partially suppress the 

transcriptional derepression of MERVL-linked genes as assayed both by qRT-
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PCR and using a MERVL-driven fluorescent reporter cell line (Figure 3.6B-D). 

This supports a pathway in which MERVL repression is downstream of tRF-GG-

mediated histone expression, rather than being secondary to the tRF’s effects on 

snoRNA or other noncoding RNA production. 

 

Figure 3.6. U7 suppresses effects of tRF-GG on histone mRNAs and 
MERVL targets. A) qRT-PCR for HIST3F and HIST4B (normalized to ACTB) in 
H9 hESCs transfected with scrambled LNA, LNA against tRF-GG with or without 
synthetic U7 RNA, or synthetic tRF-GG with or without antisense 
oligonucleotides targeting U7. Data show mean and standard deviation for three 
biological replicates. These data confirm the ability of tRF-GG to support histone 
mRNA expression, and show that the effects of tRF-GG – both positive and 
negative – on histone expression can be suppressed by appropriate manipulation 
of U7 ncRNA levels. B-C) U7 supplementation partially rescues the derepression 
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of MERVL targets in response to tRF-GG inhibition in murine ESCs. qRT-PCR 
data for Tdpoz4 and Tdpoz5, normalized to Actb, are shown for 11 biological 
replicates. (B) shows the relative effect of U7 on the background of tRF-GG 
inhibition (p=0.00015 and 4.9e-5 for Tdpoz4 and Tdpoz5, respectively), with dots 
showing individual replicates and line+whiskers showing mean +/- s.e.m. (C) 
shows the effects of tRF-GG KD, with or without U7 supplementation, relative to 
Control ES transfections – lines connect paired transfections of the anti-tRF LNA 
with or without U7 supplementation. Note that y-axis does not begin at zero. In all 
cases, we observe a modest but consistent rescue (average log2 FC of -0.7) of 
Tdpoz repression upon U7 supplementation. The partial rescue here could result 
from inefficient utilization of exogenously supplied U7 ncRNA, either due to the 
absence of modified nucleotides in the synthetic RNA, inadequate levels of U7, 
or exogenous U7 not being produced at the appropriate subcellular locus (the 
Cajal body). D) Fold change in tdTomato-positive MERVL LTR reporter ESCs 
following tRF-GG knockdown with or without U7 supplementation. 
 
hnRNPF/H are tRF-GG binding proteins and are robust repressors of the 

2C-like state 
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Figure 3.7. tRF-Gly-GCC binds to hnRNPF/H. A) Biotin-oligo pulldowns from 
murine ES cell extracts. Silver stained gel shows two replicates each for 
pulldowns using biotin-tRF-GG or biotin-tRF-Lys-CTT, as indicated. Arrow 
indicates ~50 kD band enriched in tRF-GG pulldowns. B) Domain architecture of 
hnRNPF and hnRNPH. C) Peptide counts for hnRNPH in control, tRF-Lys-CTT, 
or tRF-GG pulldowns. D) Western blots show hnRNPF/H recovery following tRF-
GG or tRF-Lys-CTT pulldown. Pulldowns were washed 4 X 3 minutes with 50 
mM Tris pH 8.0 supplemented with 100 mM (W1), 250 mM (W2), or 500 mM 
(W3) NaCl. E) Gel shift analysis of hnRNPH1 binding to tRF-GG. A synthetic 
oligonucleotide corresponding to tRF-Gly-GCC 
(GCAJULGUGGUUCAGUGGDAGAAUUCUCGC) was labeled at the 3’ end 
using fluorescein 5-thiosemicarbazide, then incubated at 3 nM in equilibration 
buffer (0.01% Igepal, 0.01 mg/ml carrier tRNA, 50 mM Tris, pH 8.0, 100 
mM NaCl, 2 mM DTT) for 3 hours along with increasing concentrations of purified 
hnRNPH1 protein from 1.35 nM to 2000 nM. See also Figure 3.8. F-G) Fit of gel 
shift binding data for tRF-Lys-CTT and tRF-Gly-GCC. Fitting the binding 
data yields an estimated Kd of hnRNPH1 of ~230 nM for tRF-Gly-GCC, and >1 
mM for tRF-Lys-CTT. H) Fluorescence polarization data for hnRNPH1 
incubations with labeled tRF-Gly-GCC. Polarization values against the protein 
concentrations are fit to the Hill equation using the Igor Pro software. 
 
 Finally, we turn to the question of how tRF-GG alters noncoding RNA 

production. To identify direct binding partners of tRF-GG, we used a 3’-

biotinylated tRF-GG to isolate candidate tRF-binding proteins from mESC whole 

cell extracts. tRF-GG, but not the unrelated tRF-Lys-CTT oligo, pulled down a 

protein of ~50 kD (Figure 3.7A). We carried out four replicate mass spectrometry 

analyses, in three cases analyzing bulk tRF-GG or tRF-Lys-CTT pulldowns, and 

in one case first gel-purifying the tRF-GG-enriched ~50 kD band. Together, these 

efforts identified several potential binding partners enriched in tRF-GG pulldowns 

relative to the control tRF-Lys-CTT pulldown. Based on follow-up functional 

studies of several top candidates (Appendix II), we focus on the highly 

homologous pair of heterogeneous nuclear ribonucleoproteins (hnRNP) hnRNPF 

and hnRNPH (Figures 3.7B-C). These RNA-binding proteins function 

redundantly in vivo, and will therefore be referred to below as “hnRNPF/H”. Using 
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an antibody that detects both hnRNPF and hnRNPH, we confirmed the 

interaction between tRF-GG and hnRNPF/H by Western blotting – hnRNPF/H 

was robustly detected in tRF-GG pulldowns, with only modest hnRNPF/H levels 

detected following tRF-Lys-CTT pulldown (Figure 3.7D). Furthermore, we 

expressed and purified hnRNPH1 protein, and carried out quantitative gel shift 

and fluorescence polarization analyses of hnRNPH1 binding to a fluorescently-

labeled tRF-GG oligonucleotide. Both assays revealed specific binding between 

hnRNPH1 and tRF-GG, in contrast to the nearly undetectable binding observed 

for tRF-Lys-CTT (Figure 3.7E-H, Figure 3.8). We note that the apparent Kd for 

hnRNPH1 binding to tRF-GG is roughly 5-fold weaker (Kd, app ~230 nM) than that 

for a positive control – a previously-described hnRNPF/H binding site identified in 

the SV40 pre-mRNA (Alkan, Martincic and Milcarek, 2006) (Kd ~50 nM). Given 

that hnRNPF/H are abundant enough to regulate targets bound with 50 nM 

affinity, and the potential for tRF-GG to occur at much higher abundance than 

typical pre-mRNA targets, the apparent Kd of hnRNPH1 for tRF-GG is well within 

a plausible physiologically-functional range. 
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Figure 3.8. Direct binding of hnRNPH1 to tRF-Gly-GCC. Quantitative gel shift 
for hnRNPH1 binding to tRF-Gly-GCC is reproduced from Figure 3.7E, along with 
binding data for tRF-Lys-CTT and a positive control oligo (Alkan et al., 2006). 
Although hnRNPH1 exhibits moderately (~5-fold) weaker binding to tRF-GG than 
to the positive control, two considerations suggest that this binding could 
potentially be physiologically relevant. First, the positive control oligo was 
identified in a 3’ UTR shown to be regulated by hnRNPF/H. Depending on 
cellular growth conditions, a given tRNA fragment could easily exceed the 
concentration of any given 3’ UTR, so the cellular concentration of hnRNPF/H is 
clearly high enough for this affinity to fall into the physiologically-relevant range. 
Second, we note that our in vitro binding studies were performed with a synthetic 
28-nt oligonucleotide bearing a FITC-modified 3’ end, while we recently found 
that the majority of 5’ fragments of tRNA-Gly-GCC in murine epididymis and 
sperm are 31-nt species bearing a cyclic 2’-3’ phosphate at the 3’ end (Sharma 
et al., 2018). It is thus plausible (but difficult to test given the reliance of our 
binding assay on 3’-modification) that hnRNPF/H binding to the naturally 
produced tRFGG is of greater affinity than that documented here. 
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Figure 3.9. hnRNP F/H represses the MERVL program. A) Changes in the ES 
cell transcriptome following hnRNPF/H knockdown. Scatterplot shows mRNA 
abundance compared between control KD cells (x axis) and hnRNPF/H KD cells 
(y axis). Data are shown as median mRNA abundance for three biological 
replicates. B) hnRNPF/H KD results in histone mRNA downregulation. 
Cumulative distribution plot shows log2 fold change (hnRNPF/H KD/Ctrl) for 
histone genes, and all other genes, as indicated. C) Effects of hnRNPF/H KD on 
expression of the MERVL program. Cumulative distribution plots show log2 fold 
change (hnRNPF/H KD/Ctrl) for tRF-GG target genes (Sharma et al., 2016), 
other genes previously associated with the MERVL program (Macfarlan et al., 
2012b), and all other genes, as indicated. D) hnRNPF/H suppresses ES cell 
entry into the 2C-like state. ES lines carrying a MERVL LTR-driven tdTomato 
(Macfarlan et al., 2012b)were subject to control or hnRNPF/H KD, with bars 
showing mean +/- standard deviation (n=5 replicates) of the percentage of 
Tomato-positive cells. E) hnRNPF/H is required for normal Cajal body 
morphology and gross chromatin architecture. Panels show typical images for 
the Cajal body marker coilin (green), the MERVL LTR-driven Tomato reporter 
(red), or DAPI (blue), in control or hnRNPF/H KD ES cells. See also Figure 3.10. 
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F) Quantitation of Cajal body number per cell. Stacked bars show the percentage 
of cells exhibiting 0 through 4+ coilin-positive puncta, as indicated. Data 
represent the average of two replicate transfections, with 85 total control and 98 
hnRNPF/H KD cells quantitated across the two experiments. 

 
Figure 3.10. Effects of hnRNPF/H on Cajal bodies and MERVL expression. 
A) Immunofluorescence images of MERVL LTR:tdTomato ES cells transfected 
with siRNAs against either GFP or against hnRNPF and hnRNPH. Images show 
anti-Coilin IF, tdTomato fluorescence, DAPI counterstaining, and all three 
merged, as indicated. Interestingly, in preliminary immunofluorescence 
experiments using our MERVL LTR reporter cell line, we observed that 
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hnRNPF/H is undetectable in spontaneously arising tdTomato-positive cells (data 
not shown), suggesting that hnRNPF/H degradation could potentially be involved 
in spontaneous ESC transitions to the 2C-like state. B) Browser shot of Tcf3 and 
Eloc mRNA abundance in ES cells subjected to the indicated knockdowns. 
Alternative exon inclusion events are shown in red. C) Validation of hnRNPF/H-
regulated alternative splicing events by semiquantitative PCR. Three alternative 
splicing events – hnRNPF/H-dependent skipping of cassette exons in Brd8 and 
Cd81, or an hnRNPF/H-dependent detained intron in Srsf5 – identified in our 
hnRNPF/H RNA-Seq data are validated here by PCR. None of these alternative 
splicing events was recapitulated in the tRF-GG KD samples, confirming that 
tRF-GG only affects a subset of hnRNPF/H functions. D-E) Altered rRNA 2’-O-
methylation in tRF-GG KD cells. We carried out Ribometh-seq and calculated 
methylation “A scores” as previously described (Birkedal et al., 2014; Marchand 
et al., 2016). (D) shows a scatterplot of methylation scores for known 18S and 
28S rRNA methylation sites, with significant changes in methylation highlighted in 
red dots. (E) shows the change in methylation level for the known rRNA 
nucleotides. 
 
 Do hnRNPF/H share any of the in vivo functions we identified for tRF-Gly-

GCC? To determine potential roles for hnRNPF/H in histone gene regulation and 

MERVL repression, we carried out RNA-Seq in ES cells subject to double 

knockdown of both hnRNPF/H – we note that hnRNPF and H can compensate 

for one another; for example, both hnRNPH RNA and protein are upregulated in 

hnRNPF knockdown cells (not shown). Double knockdown of hnRNPF/H resulted 

in dramatic alterations in expression of several hundred genes (Figure 3.9A), 

including significant downregulation of developmentally-relevant genes (Sfrp4, 

Otx2, Dact2, Spry1/4, Gbx2, Notum, Notch4, Sall1, Fgf15, Tdgf1, Inhbb, Ltbp3, 

Fgf4, Pou4f2, Prdm14, Lefty2, Bmp4, etc.). The misregulation of this wide array 

of differentiation-associated genes presumably results from the recently 

discovered role for hnRNPF/H in alternative splicing of Tcf3, a key transcription 

factor involved in stem cell maintenance and differentiation (Yamazaki et al., 

2018). 
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 Consistent with the possibility that tRF-GG functions through hnRNPF/H 

binding, we find that hnRNPF/H also affected the same groups of genes 

regulated by tRF-GG, with hnRNPF/H knockdown resulting in downregulation of 

histone genes and a dramatic derepression of the MERVL program (Figures 

3.9A-C). Using a MERVL reporter ES cell line (Macfarlan et al., 2012a), we find 

that hnRNPF/H KD led to a ~30-fold increase in Tomato-positive cells (Figure 

3.9D, Figure 3.10A), confirming the derepression of the MERVL program 

observed in the RNA-Seq dataset. Importantly, transfection of synthetic tRF-GG 

had no effect on MERVL repression in the absence of hnRNPF/H (Figure 3.9D), 

consistent with the hypothesis that tRF-GG acts by binding these proteins. Next, 

given the general role for tRF-GG in supporting the output of multiple Cajal body 

products, we examined Cajal body morphology in hnRNPF/H KD cells, using the 

well-known Cajal body marker coilin (Gall, 2000). In contrast to control ES cells, 

which exhibit one or two bright Cajal bodies per nucleus, we find that knockdown 

of hnRNPF/H leads to more diffuse coilin staining (Figures 3.9E-F, Figure 

3.10A). Moreover, DAPI staining was clearly distinctive in hnRNPF/H KD cells, 

with the typical discrete chromocenters being replaced by more diffuse “lumpy” 

DAPI staining (Figure 3.9E), potentially secondary to the dramatic changes in 

histone expression in these cells. Taken together, our data reveal a novel role for 

hnRNPF/H in supporting normal Cajal body function in mouse embryonic stem 

cells, with downstream consequences for histone expression and chromatin-

mediated repression of MERVL elements. 

Discussion 
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 Here, we investigated the mechanism by which tRF-Gly-GCC represses 

MERVL-associated gene expression in ES cells and preimplantation embryos. 

Surprisingly, we find that tRF-GG indirectly represses MERVL-driven 

transcription as a downstream consequence of its effects on noncoding RNA 

biogenesis. tRF-GG regulates a cascade of events through its role in supporting 

U7 snRNA levels, which in turn enhances expression of canonical histone genes, 

ultimately resulting in increased heterochromatin-dependent repression of LTR-

associated genes (Figure 3.11).  

 

Figure 3.11. Schematic of proposed mechanism for tRF-GG function. 
Together, our data support a model in which 5’ tRF-Gly-GCC binds to Hnrnpf/h 
and serves to support production of a variety of noncoding RNAs in Cajal bodies. 
Central to the current study is control of U7 ncRNA production, which plays a 
central role in processing of the histone 3’ UTR via base-pairing to the histone 
downstream element (HDE). Altered expression of histones then leads to 
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downstream effects on the expression of MERVL-associated genes in murine 
embryonic stem cells and preimplantation embryos. 
 
 Our data demonstrate the effects of tRF-GG on MERVL target genes are 

mediated by altered histone gene expression. We document effects of tRF 

inhibition and tRF “overexpression” on histone expression by q-RT-PCR, by deep 

sequencing, and by quantitative Western blot, we confirm the expected 

downstream effects on chromatin compaction by ATAC-Seq, and finally we show 

that tRF regulation of histone genes can be recapitulated using two distinct 

histone 3’ UTR reporters. Moreover, the effects of tRF-GG manipulation – both 

inhibition and overexpression – on histone regulation and on MERVL target 

repression can be suppressed by appropriate manipulation of the U7 noncoding 

RNA. Our data argue that, rather than being directly targeted by tRF-GG via 

sequence homology between tRNAs and the PBS of LTR elements, MERVL 

instead represents a highly sensitive reporter of global chromatin status in mouse 

embryonic stem cells. Further supporting this idea is the fact that histone 

downregulation, rather than ERV derepression, is a conserved consequence of 

tRF-GG inhibition in both mouse and human ES cells.  

tRF-Gly-GCC supports Cajal body output 

 Upstream of the histone 3’ UTR, we document a surprising and conserved 

role for tRF-GG as a positive regulator of noncoding RNA production, with effects 

of tRF manipulation on the histones resulting from altered levels of the U7 

noncoding RNA. Indeed, perhaps the most unanticipated discovery described 

here is the finding that the 5’ tRF-Gly-GCC supports production of noncoding 
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RNAs that are normally synthesized or processed in the Cajal body. This is 

demonstrated using both gain and loss of function approaches in both mouse 

and human ES cells. Given the wide range of functions ascribed to Cajal body 

ncRNAs, our data also predict that tRF-GG may affect additional downstream 

pathways beyond the MERVL program previously described. Confirming this 

prediction, we find subtle effects of tRF-GG inhibition on rRNA 2’-O-methylation 

(Figure 3.10 D-E), which is mediated by snoRNAs, as well as a small global 

increase (~5%) in intron retention in tRF-inhibited cells, consistent with the 

observed decrease in spliceosomal RNAs. Thus, fine-tuning of Cajal body output 

by tRF-GG affects cellular functions ranging from splicing to translation to global 

chromatin packaging. 

hnRNPF/H are novel regulators of the 2C-like state 

 What is the proximate mechanism by which tRF-GG supports production 

of Cajal body RNAs? We identify a strong candidate for a relevant effector 

protein, finding that the closely related hnRNPF and H proteins bind directly to 

tRF-GG in extracts and in vitro. Moreover, functional studies reveal that 

hnRNPF/H and tRF-GG exhibit heavily overlapping regulatory roles in vivo, 

identifying a novel and surprising role for hnRNPF/H in control of the MERVL 

program in mES cells. Indeed, hnRNPF/H represent the strongest repressors of 

the 2C-like state yet observed, as the ~30-fold derepression of the 2C-like state 

in response to hnRNPF/H KD is comparable to, and in fact more dramatic than, 

that previously observed following Chaf-1 or Ubc9 knockdown (Ishiuchi et al., 

2015a; Cossec et al., 2018).  
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 hnRNPF/H are RNA-binding proteins with relatively well-characterized 

roles in mRNA splicing (Wang, Dimova and Cambi, 2007; Wang et al., 2012; 

Yamazaki et al., 2018), and our RNA-Seq analysis of hnRNPF/H KD cells reveal 

hundreds of altered splicing events (see Figure 3.10B-C for examples), 

consistent with previous studies (Yamazaki et al., 2018). How do these changes 

in RNA splicing – or, alternatively, some unrelated activity of hnRNPF/H – 

ultimately drive repression of the MERVL program? Given the dramatic changes 

in Cajal body morphology documented in hnRNPF/H KD cells (Figure 3.9D-E), 

we favor the hypothesis that one or more hnRNPF/H-regulated transcripts plays 

a key role in Cajal body function, with altered U7 RNA production altering histone 

production and thereby driving changes in the highly heterochromatin-sensitive 

MERVL program. A number of specific target(s) of hnRNPF/H could be 

responsible for supporting normal Cajal body biogenesis, as a large number of 

chromatin and RNA-binding proteins (such as Hnrnpa2b1) with potential roles in 

Cajal bodies exhibit altered splicing patterns in hnRNPF/H-depleted cells. Given 

that tRF-GG only affects a small subset of hnRNPF/H functions – tRF-GG 

inhibition has no effect on Tcf3 splicing (Figure 3.10B), for example – we 

speculate that the hnRNPF/H targets responsible for Cajal body biogenesis are 

the most sensitive to subtle changes in hnRNPF/H function. It will be interesting 

in future studies to determine the mechanism by which tRF-GG enhances the 

function of hnRNPF/H – whether tRF-GG stabilizes hnRNPF/H for example, or 

whether hnRNPF/H functions in complex with tRF-GG at a subset of targets. 

Implications for tRF-Gly-GCC function in the early embryo 
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 We finally turn to the question of the physiological contexts in which tRF-

Gly-GCC is likely to play an important role in cellular function. In typical somatic 

tissues, tRNAs are cleaved in response to a variety of stress conditions; for 

example tRNA cleavage occurs in response to arsenite treatment of neurons to 

produce tRNA fragments which help to direct global translational downregulation 

(Ivanov, Mohamed M. Emara, et al., 2011). Curiously, beyond the case of stress-

dependent tRNA fragment production, it is increasingly clear that tRNA cleavage 

occurs commonly in the germline of multiple organisms even under apparently 

stress-free growth conditions (Couvillion, Sachidanandam and Collins, 2010; 

Peng et al., 2012a), and tRF-GG is one of the most abundant small RNAs 

present in mammalian sperm and delivered to the zygote upon fertilization. 

Although we previously showed that manipulating tRF-Gly-GCC levels in the 

zygote altered expression of ~50 MERVL-associated transcripts, these results 

were based on single-embryo mRNA-Seq which only reports on transcripts 

bearing a polyA tail. However, the wide variety of noncoding RNAs affected by 

tRF-Gly-GCC are predicted to affect an extensive list of additional cellular 

processes from ribosome biogenesis (snoRNAs) to splicing (scaRNAs and U 

RNAs) to global chromatin compaction (U7). How modulation of these various 

functions by tRF-GG delivery to the zygote affects later processes during 

preimplantation development, and whether any of these alterations have lasting 

consequences for offspring phenotypes, will be of great interest. 

Materials and Methods 

Mouse ES cell culture and transfections 
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All murine ES cell lines were grown in DMEM (Gibco) containing 10% fetal 

bovine serum and leukemia inhibitory factor (Serum+LIF culture conditions) and 

all transfections were carried out using OptiMEM and Lipofectamine 2000 

(Invitrogen) according to the manufacturer’s instructions at splitting, unless 

otherwise specified. Inhibition of tRF-Gly-GCC function in mESCs was performed 

as described in Sharma et al, 2016. Controls included Lipofectamine 2000 only 

(Mock), anti-GFP esiRNA transfections and/or a scrambled anti-tRF-GG LNA 

oligo. Transfection of various 3’tRFs was performed as for the 5’tRF-GG. 

Concentrations tested were 5 ng and 100 ng.  

 U7 rescue experiments were performed by supplementing the tRF-Gly-

GCC inhibition transfection reaction with 50 ng of in vitro synthesized U7 snRNA 

per 3X10^5 cells. Mouse U7 small nuclear RNA was generated through in vitro 

transcription from pGEM-Teasy-U7 plasmid (generous gift from Z.Dominski) 

using mMessage mMachine T7 kit (Ambion) following plasmid linearization with 

HindIII restriction enzyme. Human U7 was cloned from hESC cDNA into the 

pGEM-Teasy plasmid and used as in mouse experiments. Media was changed 

after 16 hrs and cells were allowed to grow for additional 32 hrs. Cells were 

processed for various experiments at the end of the 48-hour period. U7 

knockdown was achieved by transfecting 10 ng of modified anti-sense 

oligonucleotides targeting U7 synthesized with phosphorothioate linkages. 

 Double hnRNPF/H knockdown was performed by transient transfection of 

20 pmols of siRNAs against mouse hnRNPF and hnRNPH transcripts, 

respectively (sc-38273 and sc-35580, Santa Cruz Biotechnologies) in 12-well 
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format. 40 pmols of siRNA-A (sc-37007, Santa Cruz Biotechnology) was used as 

knockdown control. Efficiency of knockdown was validated by Western Blotting 

and RNA-sequencing. Cells were collected 48 hours after transfection for various 

downstream experiments. 

Cell culture (H9) 

Line H9 (WA09) human embryonic stem cells were cultured on Matrigel 

(Corning) in mTESR1 media (Stem Cell Technologies) in 5% CO2 at 37°C. 

Nucleofection of oligos was done using Human Stem Cell Nucleofector Kit 1 

(Lonza Bioscience), according to manufacturer’s instructions. 2 ng of LNA was 

nucleofected by 24-well plate. Nucleofection efficiency was checked using 

pEGFP plasmid control, with successful experiments having more than 80% 

GFP+ cells. Cells were harvested 12hours post-nucleofection for RNAseq and 

qRT-PCR.  

RNA-seq 

5 µg of total RNA was depleted of ribosomal RNA using Ribo-Zero rRNA 

Removal Kit (Human, Mouse, Rat, Illumina). Less total RNA was used as input 

from metabolic labeling experiments for both 4sU labeled and unlabeled 

fractions. Illumina deep sequencing compatible libraries were constructed from 

rRNA-depleted RNA using an optimized version of a protocol described by Heyer 

et al., adding a purification using the RNA Clean and Concentrator (Zymo 

Research) in between procedures. Ribosome profiling data was published 

previously (GSE74537), with libraries constructed using the same procedure. 
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Libraries were quantified, multiplexed and either single-end or paired-end 

sequenced on Illumina NextSeq 500 sequencer. 

Ribometh-seq 

Ribometh-seq was done essentially as previous described (Marchand et al., 

2016). Briefly, 500 ng of total RNA was fragmented with 100mM alkaline solution 

at 95 °C for 10 mins. Fragmented RNA was then 3’ dephosphorylated with T4 

PNK for one hour, followed by 5’ phosphorylation using T4 PNK in the presence 

of ATP for one hour. RNA was concentrated using Zymo RNA Clean and 

Concentrator, and libraries were constructed from 100 ng of prepared RNAs 

using NEBNext Small RNA Library Prep Kit following manufacturer’s instructions. 

Ribometh-seq libraries were single-end sequenced on an Illumina NextSeq 500 

sequencer. 

Deep sequencing data analysis 

 RNA-seq libraries were demultiplexed using Novobarcode (v3.02.08). 

Single end libraries were trimmed of 3’ adapters using Fastx-toolkit (v0.0.14). 

Quantification was done using RSEM (v1.2.29) to RefSeq GTF annotation, 

mapped with Bowtie (v1.0.0) to mm10 using default parameters.  

 For splicing analysis, reads were mapped using STAR aligner (v2.5.3a) 

using the “two-pass” method. Briefly reads were mapped to mm10 genome using 

default settings, then reads were remapped to the collective set of junctions 

predicted from the first pass. Alternative splicing was analyzed using JUM (2.0.2, 
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(Wang and Rio, 2018)). Alternative splicing events with a p-value less than 0.05 

were extracted for further analysis.  

 ATAC-seq libraries were mapped to mm10 using Bowtie2 (v2.3.2) with the 

following parameters: -D 15 -R 2 -N 1 -L 20 -i S,1,0.50 --maxins 2000 --no-

discordant --no-mixed. Fragment lengths were separated using Python, and 

coverage of reads in various chromatin states was analyzed in R (v3.4.1) using 

data from ChromHMM 

(https://github.com/guifengwei/ChromHMM_mESC_mm10). All coverage data 

was normalized by global read depth prior to further analysis. Circos plots (v0.69-

2) were generated from coverage data calculated by Bedtools (v2.25.0).  

 Ribometh-seq libraries were mapped using Bowtie2 and the 5’ locations of 

the forward read was quantified using Bedtools.  

qRT-PCR and semi-quantitative PCR 

 For mESCs, RNA was isolated using Trizol (Ambion) according to the 

standard protocol and the samples were treated with TurboDNase to eliminate 

genomic DNA contamination. Following TurboDNase treatment, RNA was 

purified using Zymo RNA clean and concentrator 5 kit, quantified on Nanodrop 

and RT reaction was performed using SuperScript IV RT kit (Invitrogen) 

according to the manufacturer’s protocol. Obtained cDNA was diluted 2X for 

MERV-L target gene qPCR) and 10X for histone and β-actin amplification (based 

on the standard curves obtained for the primers used) and Kapa SYBR Fast 

Universal Mastermix was used in all q-RT-PCR reactions. The amplification 

conditions were: 95C for 3 minutes followed by 40 cycles of 95C for 5s and 60C 
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for 20 s (with a plate-reading step between each cycle) based on the previously 

reported conditions for histone qPCR. All the reactions were read on the BioRad 

CFX96 qPCR detection machine. The same protocol, with human-specific 

primers, was performed for H9 human cells. 

 For semiquantitative PCRs to confirm candidate alternative splicing 

events, primers were designed in flanking exons. The number of PCR cycles 

were empirically determined to avoid saturation of PCR amplicons.   

Western Blotting 

 Mock or tRF-GG inhibited cells were grown as before and 48 hours after 

transfection, cells were trypsinized and counted. A defined number of cells 

(usually 50000) was spun from each group, washed in PBS, pelleted and lysed 

directly by boiling at 100 °C for 15 minutes in 2X Laemmli Sample buffer 

containing β-mercaptoethanol. 2X serial dilutions of the cell lysates were loaded 

onto a 15% SDS-polyacrylamide gel. Following protein resolution on the gel, 

proteins were transferred to a nitrocellulose membrane for 1 hour at 100 V 

through wet transfer. Membrane was blocked in 5% milk in TBSt for at least an 

hour prior to the addition of primary antibodies overnight at 4 °C. Primary 

antibodies used were anti-histone H3 (Millipore, #07-690), anti-histone H4 

(Millipore, #05-858), anti β-actin (abcam ab8224) and anti-GAPDH (abcam 

ab9485). Membranes were then washed 3X in TBSt for 15 minutes at room 

temperature. Membrane was incubated with secondary antibody in 5% milk for 1 

hour at room temperature. Secondary antibodies used were anti-mouse IgG, 

HRP-linked (Cell Signaling, #7076S) and anti-rabbit IgG, HRP-linked (Cell 
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Signaling 7074S). Following 3 additional TBSt washes, the substrate for HRP 

was added (Amersham ECL Western Blotting Analysis System, GE) and the 

blots were exposed on the Amersham Imager 600 machine.  

Northern Blotting 

 DNA probes for snoRNAs were ordered from IDT and 5’ end-labeled with 

[γ-32P] using PNK (NEB). U7 was present in very low abundance and had to be 

probed using a full-length [γ-32P]C labeled RNA probe synthesized from a pGEM 

plasmid containing a cloned mouse U7. 2ug of total RNA was separated on a 6% 

urea PAGE gel. RNA was transferred onto a Hybond-N+ membrane (GE 

Healthcare) by semi-dry transfer method (BioRad) in SSC buffer. RNA was then 

crosslinked to the membrane at 254nm. Probes were then hybridized to RNA 

overnight with agitation at 68C. Membranes were then washed, and exposed to 

BioMax film (Kodak) for up to three days. Data was quantified using ImageJ. 

Histone 3’ UTR luciferase reporter assay. 

 Histone H3b (Hist2h3b) and histone H4j (Hist1h4j) 3’UTR sequences 

(~300 nucleotides) were cloned into the PsiCheck 2 vector downstream of the 

Renilla luciferase coding sequence, between XhoI and NotI restriction sites. As 

PsiCheck2 vector does not encode for a eukaryotic selectable marker, cells were 

co-transfected with PsiCheck2-empty or PsiCheck2-Histone3’UTR together with 

a carrier plasmid pCDNA3.1+ Hygro and stable cell lines were generated as 

described in (Connelly, Thomas and Deiters, 2012). Following 7 days of 

Hygromycin selection, individual clones were picked, expanded and tested for 

luciferase expression. Based on their expression level, one clone from all cell 
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lines was selected for subsequent experiments. Reporter ES cell lines were 

transfected as previously. 48 hours after transfection, cells were washed 2X with 

PBS and cell lysate for the luminescence reading was prepared as directed by 

the Dual-Luciferase Assay System (Promega). Firefly and Renilla luminescence 

was measured using GLOMAX 96 Microplate Luminometer, and	Renilla 

luminescence was normalized to the internal control of Firefly luminescence. 

Cell cycle analysis 

 E14 mESCs were transfected with antisense 5’tRF-Gly-GCC LNA-

containing oligo or mock transfected as described above. Media was changed 16 

hours after transfection. After 24 hours, cells were synchronized in G1/S-phase 

of the cell cycle by single thymidine block (5 mM thymidine in culture media) for 

16 hours. Following treatment, cells were washed 2X with PBS, and fresh culture 

media without thymidine was added and were allowed to progress through the 

cell cycle. Cells were collected by trypsinization and 2X PBS washes at time zero 

and every 2 hours for an 8 hour period after removal of the thymidine block. Cold 

70% Ethanol was added to cells dropwise with light vortexing and cells were 

fixed for 30 minutes at 4 °C. Following fixation, cells were pelleted, washed 2X 

with PBS and treated with RNase A (final concentration 0.2 mg/ml). Cells were 

stained with Propidium Iodide solution (final concentration 10 mg/ml) and DNA 

content was analyzed using FACScan Flow Cytometer (Becton Dickinson). 

Oligonucleotide pulldowns and mass spectrometry. 

 Mouse ES cells were washed 2X with PBS and collected by trypsinization. 

Around 20 million cells were lysed in NP-40 buffer (50 mM Tris pH 7.5, 0.1% NP-
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40, 150 mM NaCl, 1 mM CaCl2, 1 mM DTT, 40 U SuperaseIn, 1X Protease 

inhibitor cocktail) on ice for 15 minutes. Lysates were cleared by centrifugation 

for 15 minutes at 4°C and maximum speed and the supernatant was transferred 

to a new tube. The lysates were then divided in 2 and incubated with 500 pmols 

of tRF-Gly-GCC-biotin or tRF-Lys-CTT-biotin for 1 hour at room temperature with 

end-over-end rotation. Following the incubation, 100 µl of C1 Dynabeads were 

added to the reactions and incubated with end-over-end rotation for an additional 

hour. Captured RNPs were then washed three times each with low salt buffer (30 

mM Tris-HCl pH7.5, 120 mM KCl, 3.5 mM MgCl2, 0.5 mM DTT), medium salt 

buffer (30 mM Tris-HCl pH7.5, 300 mM KCl, 3.5 mM MgCl2, 0.5 mM DTT) and 

high salt buffer (30 mM Tris-HCl pH 7.5, 0.5 M KCl, 3.5 mM MgCl2, 0.5 mM DTT) 

for 5 minutes at room temperature. Following the last wash, elution was 

performed by disrupting the biotin-streptavidin bond using 95% formamide and 

10 mM EDTA at 65°C for 5 minutes. Eluate was boiled in 2X Laemmli sample 

buffer and loaded into 4-20% gradient polyacrylamide gel. Gels were stained by 

Coomassie Brilliant Blue solution for 1 hour at room temperature, then destained 

overnight in the destaining solution (40% MeOH, 10% acetic acid). Bands were 

cut from the gel and submitted for Mass Spectrometry at the UMass Medical 

School Mass Spectrometry facility.  

Streptavidin RNA pulldown assay  

 For each assay, 2.5 uM of biotin labelled RNA was incubated with 

streptavidin beads (Invitrogen) according to the manufacturer’s instructions. 

Beads were then incubated for 2 h with cellular lysate in binding buffer (0.01 
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mg/mL tRNA, 0.01% NP40, 0.1 mg/mL BSA, 50 mM Tris-Cl (pH 8.0), 100 mM 

NaCl, and 1/20 SuperaseIn (Ambion). After 2 hours of rotation at room 

temperature, the beads were washed with 200 µl of wash buffer (100 mM NaCl, 

50 mM Tris-Cl (pH 8.0), 0.01% NP40, and 0.01 mg/mL tRNA) for 4 times. 

Proteins were eluted from beads with sample buffer for 5 min at 95 °C and equal 

amounts are run on an SDS polyacrylamide gel and analyzed by Western 

analysis.  

hnRNPH1 purification 

 The sequence encoding amino acids 1–449 of mouse hnRNPH1 was 

cloned into pMal-ac (New England Biolabs) downstream an N-terminal maltose-

binding protein (MBP) tag and the cloned construct was transformed into 

BL21(DE3) cells. The cells were induced with 1 mM isopropyl 1-thio-β-D-

galactopyranoside for 3 h, at 37 °C. to express the protein with an N-terminal 

MBP tag. The cells were lysed in 200 mM NaCl, 50 mM Tris, pH 8.8, 2 mM DTT, 

and EDTA-free protease inhibitor tablet.  Amylose (New England Biolabs) affinity 

column was used for the first step of purification of hnRNPH1. Protein fractions 

were eluted in lysis buffer supplemented with 10 mM maltose. Fractions 

containing the protein were pooled and dialyzed into an S-column buffer (20 mM 

NaCl, 50 mM MOPS pH 6.0, 2 mM DTT). Purification was followed by HiTrap S 

at 4 °C. Elution of the protein fractions was achieved by a salt gradient ranging 

from a low salt buffer (20 mM NaCl, 50 mM Tris MOPS pH 6.0, 2 mM DTT) to a 

high salt buffer (1 M NaCl, 50 mM MOPS pH 6.0, 2 mM DTT). Pure fractions 

were dialyzed in a Q-column buffer (20 mM NaCl, 50 mM Tris pH 8.8, 2 mM 



	 156	

DTT). Final purification was done using a HiTrap Q ion exchange column at 4 °C. 

Protein fractions were eluted by a salt gradient ranging from a low salt buffer (20 

mM NaCl, 50 mM Tris, pH 8.8, 2 mM DTT) to a high salt buffer (1 M NaCl, 50 

mM Tris, pH 8.8, 2 mM DTT). Pure fractions were determined by Coomassie-

stained SDS-PAGE, and purified hnRNPH1 was dialyzed into storage buffer (25 

mM Tris, pH 8.0, 25 mM NaCl, 2 mM DTT) and stored at 4 °C. Pure fractions 

were concentrated using an Amicon spin concentrator.  

Preparation of Fluorescently Labeled RNA 

 RNA oligonucleotides were 3′-end labeled with fluorescein 5-

thiosemicarbazide as previously described (Pagano, Clingman and Ryder, 2011). 

Briefly, RNA is first oxidized with sodium periodate and then reacted it with 

fluorescein 5-thiosemicarbazide to form a covalent bond. Labeled RNA is then 

purified over a Sephadex G25 column.  

Electrophoretic Mobility Shift Assay 

 Electrophoretic mobility shift experiments and data analysis were carried 

out as previously described with a few modifications (Pagano, Clingman and 

Ryder, 2011). Briefly, 3 nM of labeled RNA was incubated with a gradient of 

hnRNPH1 concentration in equilibration buffer (0.01% Igepal, 0.01 mg/ml tRNA, 

50 mM Tris, pH 8.0, 100 mM NaCl, 2 mM DTT) for 3 h. After equilibration, 

polarization readings were taken in a Victor plate reader. The samples were then 

mixed with bromocrescol green loading dye and loaded on a 5% native, slab 

polyacrylamide gel in 1× TBE buffer. The gels were run in 1× TBE buffer for 120 

min at 120 volts and at 4 °C and then scanned using a fluor imager (Fujifilm FLA-
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5000) with a blue laser at 473 nm. The fraction of bound protein against the 

protein was fit to the Hill equation using Igor Pro software.  

Immunofluorescence  

 E14 mouse ES cells were grown and transfected as described above, and 

plated onto gelatinized coverslips. For immunofluorescence, cells were washed 

2X in PBS and fixed in 4% paraformaldehyde for 20 minutes at room temperature 

with mild agitation. Fixed cells were permeabilized by 0.5% Triton-X solution for 

20 minutes at room temperature followed by 3 washes in PBS containing 0.05% 

Tween 20 (PBS-Tween). Blocking was performed using 5% milk in TBSt for 1 

hour at 37 °C. Cells were incubated in primary antibody in 3% BSA for 1 hour at 

37 °C, followed by 3 washed with PBS-Tween. Primary antibodies used were 

anti-coilin (Abcam, ab210785, 1:50 dilution) and anti-hnRNPF/H (Santa Cruz 

Biotechnology, sc-32310, 1:500 dilution). Following the washes, cells were 

incubated in secondary antibody conjugated with fluorophores for 45 minutes to 1 

hour at room temperature in the dark. Secondary antibodies used were Alexa 

Fluor 488 goat anti-mouse (1:1000 dilution), Alexa Flour 488 goat anti-rabbit 

(1:500 dilution). Following 3 additional washes with PBS-Tween, cells were 

mounted in Vectashield mounting medium containing DAPI for DNA visualization. 

Microscopy was performed on AxioObserver.Z1/7 microscope using 63X/1.4 NA 

oil objective. Images were analyzed using ImageJ software. 
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Discussion 

The mechanistic basis of paternal epigenetic inheritance, from the carrier 

of epigenetic information, to the signaling pathway that enables epigenetic 

modification to the germline, to how epigenetic signaling influences offspring 

development, has remained elusive (Heard and RA Martienssen, 2014; Rando 

and Simmons, 2015). Here, I have demonstrated the mechanism by which a 

tRNA fragment (tRF-GG), modified by paternal diet, may be delivered to sperm 

via epididymosomes, and ultimately transferred to an oocyte to influence 

embryonic gene expression, in particular to help repress MERV-L associated 

transcripts (Chapter II). Mechanistically, I show that the tRF-GG supports the 

production of numerous small nuclear RNAs associated with the Cajal bodies, 

particularly the levels of U7 snRNA, to ensure an adequate supply of histone 

proteins. This in turn safeguards heterochromatin-mediated transcriptional 

repression of MERV-L elements (Chapter III). Our work illustrates a potential 

mechanism by which paternal diet may influence offspring development, through 

changes in the levels of a novel small RNA, which acts as to trigger a cascade of 

events involving small-nuclear RNAs, histone mRNAs, chromatin compaction, 

and ultimately in the regulation of ERV expression in the early embryo.  

 

Epididymosome epidemiological epigenomics 

 First, my work suggests that epididymosomes are capable of shaping the 

sperm epigenome. Taqman assay of tRFs supported previous deep sequencing 

data showing that epididymosomal small-RNAs are surprisingly concordant with 
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sperm small-RNAs, and show a gain of tRFs after sperm exit the testis, and 

further as sperm transit from caput to cauda (Sharma et al., 2016). Recently, this 

work has been extended using tissue-specific metabolic labeling of RNA in vivo, 

definitively showing that cauda sperm carry small RNAs originating from the 

caput epididymis (Sharma et al., 2018). Taken together, these data demonstrate 

that soma-germline RNA transfer occurs in male mammals, most likely via 

vesicular trafficking from the epididymis to maturing sperm.  

 Future work needs to focus on how environmental conditions might 

influence the sperm epigenome. Understanding the molecular basis by which 

small-RNAs are sorted and packaged into epididymosomes will be crucial in 

uncovering the mechanism of communication between somatic cells of 

epididymis and the maturing gametes, and shed light on how environmental 

information is signaled to sperm. First, what is the endonuclease responsible for 

cleavage of tRNAs in the epididymis, or does further processing of tRNAs occur 

in sperm? Whole animal loss of function experiments in vivo for the highly 

expressed endonucleases, such as RNases 4, and 9-13 cluster, would be crucial 

to revealing the biogenesis pathway of tRFs in the epididymis. Further dissection 

using various tissue-specific Cre-drivers would then enable definitive 

identification of the specific tissue (epididymis or sperm) responsible for 

generating sperm-borne tRFs. Another important avenue of discovery will be the 

identification of the cell type(s) responsible for epididymosome biogenesis – 

using single-cell RNA-seq, and subsequently cell-type specific epitope tagging 

and FACS sorting to enable more detailed cellular capture follow-up studies.  
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In terms of further understanding the functions of other small-RNAs 

carried by sperm, a particularly interesting avenue is the modification of levels of 

miRNAs in sperm. Specific clusters of miRNAs appear to be lost as sperm exit 

the testis, and then gained as sperm travels through the epididymis, which are 

essential for embryonic development (Conine et al., 2018; Sharma et al., 2018). 

What is the mechanistic basis of this loss then gain? One possibility is in situ 

cleavage, as sperm are loaded with Dicer (Yuan et al., 2016), certain miRNAs 

could be continuously processed as the sperm matures. This possibility, while 

parsimonious, cannot explain how certain miRNAs are lost, then gained. An 

alternative possibility is that specific miRNAs are somehow gained via 

epididymosome fusion. Indeed, specific miRNAs are enriched in cauda 

epididymosomes, can be delivered to caput sperm, and can rescue gene 

expression defects associated with developmental deficiencies in embryos 

fertilized by caput sperm (Sharma et al., 2016, 2018; Conine et al., 2018). Loss 

of function studies in vivo of Dicer and DGCR8 with tissue specific Cre-drivers 

would help identify the biogenesis pathway for these miRNAs in the cauda 

epididymis. Furthermore, the determination of molecular targets of these miRNAs 

in the embryo is critical. This could be done using CLASH in mouse embryonic 

stem cells (Helwak et al., 2013), and/or more low-input amenable technologies 

such as TRIBE fused to AGO2 in embryos (McMahon et al., 2016), which 

together would further elucidate the underpinnings of sperm small-RNA 

regulation of embryonic gene expression.  

In terms of other sperm-delivered small-RNAs, future work needs to tease 
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out the potential roles that other tRFs that are gained during caput-cauda transit 

may play in embryonic development, using embryonic stem cells as a 

springboard for functional discovery in embryos. For example, 5’ tiRNAs derived 

from Val-CAC are gained more than 10 fold from caput to cauda in mature 

sperm. In addition, since sperm contributes such a small-fraction of small-RNAs 

to the oocyte, how these small-RNAs play such important roles in embryonic 

development needs to be further analyzed. Perhaps sperm-borne small-RNAs 

carry specific RNA modifications or come preloaded with effector proteins. Given 

technological improvements in modification-based immunoprecipitation of RNAs 

and ultra-low input mass-spectrometry quantifications of proteins and RNA 

modifications, the testing of modification-dependent effects of tRFs is possible. 

Finally, within the sperm small-RNA pool, the prevalence, composition, and 

potential functions of tRF-3’s remain unexplored. Our efforts to clone tRF-3’s 

have mixed results so far (Appendix I) (Sharma et al., 2018), although we have 

been able to detect tRF-3’s derived from Val-CAC and Gly-GCC using northern 

blotting. These tRFs therefore represent a significant blind spot in our 

understanding of sperm-borne small-RNA function and tRF function in 

mammalian cells in general. It is also of critical importance as work from others 

has shown that they might play a central role in silencing of young ERVs in 

mammalian cells (Andrea J. Schorn et al., 2017), and unveiling their roles in early 

embryos would be of utmost interest.  

One challenge to understanding the general applicability of various tRFs is 

the inconsistencies of groups in identification and naming of sometimes the same 
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tRNA fragments. Going forward, studies of tRNA fragments need to become 

more focused and unified in terms of use of terminology and technology. The 

diverse use of different terms for the same tRNA fragments also precludes an 

easy synthesis of the field of research in general, although some efforts have 

been made in this direction, with mixed reception (Kumar, Kuscu and Dutta, 

2016).  

 

tRF-GG regulates a subset of the MERVL totipotency program  

 Our work shows that one particular tRF, derived from Gly-GCC (tRF-GG), 

functions to repress the MERVL transcriptional program in early preimplantation 

embryos. This novel tRF function has the potential to influence the 

developmental rate of the embryo, as low protein sperm derived embryos (which 

contain higher levels of tRF-GG, and lower levels of MERVL activation at the 2/4 

cell stage) experience a delay to blastocyst formation. This result was surprising 

given that MERVL is associated with totipotency, and we expected perhaps a 

differential distribution of the number of trophectoderm vs inner cell mass cells in 

the blastocyst, possibly leading to differences in placentation. Since placentation 

is a key determinant of offspring metabolic health (Rando and Simmons, 2015; 

Woods, Perez-Garcia and Hemberger, 2018), this hypothesis would directly link 

regulation of MERVL expression via tRF-GG and the metabolic status of 

offspring.  

Nevertheless, available data supports our findings in terms of 

developmental phenotype resulting from MERVL misregulation in the early 
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embryo. Deletion of DUX, the transcription factor responsible for driving the 

MERVL transcriptional program, and knockdown of MERVL itself, lead to 

disruption of the pace of cell divisions and early embryonic developmental 

progression (Huang et al., 2017; Iaco et al., 2019). Furthermore, loss of Dppa2/4, 

potential inducers of DUX expression, leads to partial early embryonic lethality 

(Madan et al., 2009). In addition, loss of maternal G9a, which leads to 

derepression of MERVL and other ERVs, also leads to a developmental delay 

phenotype (Yeung et al., 2019). Taken together, the regulated expression of 

MERVL at the 2/4 cell stage appears to synchronize the developmental rate of 

the pre-implantation embryo, which sets it up for proper post-implantation 

development. Indeed, delay in blastocyst formation in humans is associated with 

lower implantation rates and poor pregnancy outcomes (Levens et al., 2008; Irani 

et al., 2018). Given that high-fat diet sperm-borne small-RNAs can recapitulate 

whole sperm induced metabolic consequences in the offspring (Chen, Menghong 

Yan, et al., 2016; Zhang et al., 2018), future work needs to investigate the 

molecular underpinnings of small-RNA induced changes in developmental rate, 

and directly test the hypothesis of whether changes in developmental rate 

resulting from paternal dietary perturbations can lead to changes in metabolic 

outcome of the offspring.  

 

tRF-GG regulates histone mRNA levels via control of U7 snRNA 

However MERVL misregulation could influence embryonic development, 

the latter part of my dissertation was focused on how tRF-GG regulates MERVL 
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expression (Chapter III). Surprisingly, our work suggests that tRF-GG represses 

the expression of small-nuclear RNAs, including the levels of snRNA U7. 

Therefore, influencing the levels of tRF-GG in sperm can potentially fine-tune 

small-nuclear levels in the embryo. Importantly, tRF-GG effects on histone 

mRNA levels, activity of a histone 3’UTR reporter, and expression of MERV-L 

associated transcripts can all be suppressed by appropriate manipulation of U7 

RNA levels. Of note, the observed partial rescue of U7 on tRF-GG effects on 

MERVL could result from two reasons that are not mutually exclusive: potential 

inefficiencies of U7 levels in all cells (which could result from transfection issues 

or U7snRP assembly), or that tRF-GG acts through other pathways to repress 

MERVL expression as well.  

Proximal experiments involve understanding the impact of perturbing U7 

levels in embryos, and in general, perturbations of small-nuclear RNA levels. 

Microinjections of anti-sense oligos targeting these small-nuclear RNAs, and 

subsequent single-RNA RNAseq would begin to elucidate the molecular 

functions of these small-nuclear RNAs in embryos. These experiments would be 

greatly aided however, first by a better understanding of the regulation of small-

nuclear RNA dynamics and histone expression in mammalian embryos. 

Investigations in this line of thinking promise to be interesting, as histone 

dynamics in mammalian embryos are unique in many ways, and many facets of 

this intricate regulation are not understood, including when embryonic histone 

genes become expressed to replace the maternal deposited pool, and whether 

small-nuclear RNAs play any role in regulation of embryonic development. Work 
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on these topics have so far focused on Drosophila and Xenopus embryos 

(Nizami, Deryusheva and Gall, 2010; Marzluff and Koreski, 2017), but signs point 

to the possibility that the story in mammalian embryos will be unique: preliminary 

staining of the Cajal bodies and histone locus bodies using Coilin as a marker 

gene has revealed interesting dynamics in the early embryo (Ana Boskovic 

unpublished data). In addition to immunostaining and imaging of specific marker 

genes for HLB and Cajal bodies, which would be greatly aided by live imaging 

techniques becoming possible in mammalian embryos, understanding the unique 

characteristics of the formation and dynamics of these bodies, which have the 

appearance of phase-separating nuclear bodies such as nuclear speckles 

(Trinkle-Mulcahy and Sleeman, 2017), would also illuminate the biophysical 

properties of the early mammalian embryo nucleus. Furthermore, deep 

sequencing of small-nuclear RNA pools and histone genes would also provide 

helpful supportive data. This is currently limited by deep sequencing technology 

used for single-embryo RNA-seq, which uses poly-A bead enrichment of mRNAs. 

However, this hump will certainly be overcome, as novel deep sequencing 

approaches are developed to target these currently ignored RNA species. 

Already, improved technology for ultra-low input small-RNA sequencing has 

helped us gain a better understanding of small-RNA dynamics in the early 

mammalian embryo (Yang et al., 2016). 

  

hnRNPF/H bind tRF-GG and repress the 2C-like state 

How does tRF-GG regulate small-nuclear RNA levels? Our current model 
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invokes the potential tRF-GG effector protein hnRNPF/H (Chapter III Figure 

3.11). Our work demonstrates that hnRNPF and H bind directly to tRF-GG, and 

display a stark overlap of in vivo functions to tRF-GG: repression of MERVL 

target gene expression and the 2-cell like state in mESCs, regulation of histone 

mRNA levels, and stabilization of the Cajal body. The identification of the exact 

mechanism by which hnRNPF/H regulates Cajal body formation/function, and by 

extension, what role tRF-GG plays in this process is paramount. First, does 

hnRNPF/H regulate small-nuclear RNA levels and/or their modifications? 

Addressing these questions directly using deep-sequencing, northern blotting, 

and qRT-PCR in mESCs depleted of hnRNPF/H would be of primary importance. 

LC-MS/MS, primer-extension analysis and/or novel deep sequencing methods 

mapping 2’-O-methylation and pseudo-uridinylation would help probe quantitative 

changes in modification levels of various small-nuclear RNAs.  

 

Figure 4.1. Molecular dissection of hnRNPF/H function. A) GO term 
enrichment for alternatively spliced targets of hnRNPF/H identified by JUM 
(Wang and Rio, 2018). B) Scatterplot of expression levels quantified by RNAseq 
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for all snoRNAs and scaRNAs in siCoilin vs siControl mESCs. C) Overlap of 
alternative spliced targets between hnRNPF/H and tRF-GG. A quantitative 
analysis of percent spliced index (PSI) values may provide a clearer picture of 
tRF-GG effect on hnRNPF/H splicing targets. D) Example browser tracks of 
splicing changes in two MERVL target genes in hnRNPF/H depleted mESCs 
(siFH). Note no change in tRF-GG inhibited cells.  
 

Next, if hnRNPF/H regulates the levels of small-nuclear RNAs, how does it 

do so, and what role does tRF-GG play in this regulation? This could be possibly 

accomplished through its involvement in the stabilization of the Cajal body, and 

its functions within. As discussed in Chapter III, a number of targets of 

hnRNPF/H could be responsible for supporting normal Cajal body biogenesis, as 

a large number of chromatin and RNA-binding proteins (such as Hnrnpa2b1) with 

potential roles in Cajal bodies exhibit altered splicing patterns in hnRNPF/H-

depleted cells (Fig. 4.1A). In an attempt to interrogate these targets, and to 

directly perturb Cajal bodies in vivo, we knocked down Coilin in mESCs and 

performed RNAseq. However, the dissociation of Cajal bodies by depleting Coilin 

in mESCs did not lead to changes in small-nuclear RNA levels (Fig. 4.1B), 

although depletion of Coilin in mouse and in Drosophila also do not show this 

phenotype nor changes in small-nuclear RNA modification levels, despite 

dissociation of Cajal bodies into residual bodies (Tucker et al., 2001; Jády et al., 

2003; Liu et al., 2009). Perhaps more precise experiments could be conducted if 

we have a better understanding of the direct mechanism of hnRNPF/H regulation 

of Cajal body function. Currently, our limited immunostaining experiments 

suggest that hnRNPF/H are depleted from Cajal bodies (Ana Boskovic personal 

communication.). Then, does hnRNPF/H impart its Cajal body function through 

its interaction with other RNAs (possibly lnc-RNAs or pre-mRNAs), which are 
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somehow involved in Cajal body formation/stabilization? This could also be the 

case if it becomes clear that hnRNPF/H does not regulate small-nuclear RNA 

levels or modifications. Since hnRNPF/H is known to regulate splicing of pre-

mRNAs, CLIP-seq and alternative splicing analysis of cells depleted of 

hnRNPF/H and tRF-GG, and a combination of the two, would help illuminate the 

interplay of these two factors in the regulation of pre-mRNAs and lnc-RNAs, and 

the possible nuclear compartments tRF-GG may influence hnRNPF/H function. 

Preliminary analysis reveals some overlap between tRF-GG and hnRNPF/H 

regulated alternative splicing targets (Fig. 4.1C). To identify specific hnRNPF/H 

regulated targets, we are conducting CLIP-seq in tRF-GG depleted mESCs. 

Future analysis of overlapping targets of hnRNPF/H and tRF-GG might help 

reveal how tRF-GG may enhance hnRNPF/H function in vivo. Together, these 

ongoing experiments will reveal how tRF-GG may reinforce hnRNPF/H binding at 

its target sites.  

What would be a possible mechanism by which tRF-GG reinforces 

hnRNPF/H binding to its pre-mRNA targets? In vitro studies using hnRNPF/H 

cognate binding oligos, purified hnRNPF/H and tRF-GG will help resolve the 

exact mechanism by which this occurs. In addition, as hnRNPF/H probably 

functions in a complex, some variation of protein-focused IP technique would 

help elucidate the proteins interacting with hnRNPF/H in vivo, including APEX or 

HRP proximity labeling followed by quantitative MS (Chen and Perrimon, 2017), 

which would help improve our understanding of the subcellular regions and 

proteins involved in hnRNPF/H function in conjunction with tRF-GG.  
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Finally, how does hnRNPF/H repress MERVL transcription and entry of 

mESCs into the 2-cell like state? There are two main possibilities: direct 

regulation of splicing and expression of a regulator of MERVL expression, or a 

more attractive model of some sort of RNA-mass action regulation of chromatin 

compaction. First, splicing analysis reveals that hnRNPF/H in fact regulates 

expression of several known MERVL regulators, such as Ehmt2 and Dppa4, and 

most relevant to our model, histone mRNA levels (Figure 4.1D, Figure 3.9B). 

Can alternative isoforms of MERVL regulators play important roles in repression 

of MERVL expression? This would add an interesting wrinkle in the story of 

MERVL repression and the regulation of early embryonic gene expression in 

general. CRISPR/Cas9 deletion of hnRNPF/H regulated alternatively spliced 

exons, or perhaps using anti-sense oligonucleotides to block splice sites (Havens 

and Hastings, 2016) applied to MERVL regulators would help expand our 

understanding of the role that protein isoforms may play in early developmental 

programming. This possibility is not however mutually exclusive from the second 

of RNA-mass action, since it has been shown that LINE-1 elements regulate 

MERVL both via direct action through protein binding (Percharde et al., 2018) 

and modulation of chromatin compaction in general (Jachowicz et al., 2017). 

Perhaps proper binding of lnc-RNAs and/or pre-mRNAs by hnRNPs acts as 

some sort of chromatin conformation buffer. Systematic loss of function studies 

of hnRNPs in mESCs and hESCs, and in mouse embryos, coupled with RNAseq, 

ATAC-seq, and Hi-C/Micro-C approaches would help directly test this possibility.  
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Big picture questions  

Whether tRF-GG ultimately functions in conjunction with or independently 

of hnRNPF/H to repress MERVL, the discovery that a novel small-RNA and a 

pre-mRNA binding splicing factor regulates MERV-L transcription reveals the 

intricate pathways involved in silencing of ERVs in mammalian cells. These 

pathways contribute to the already discovered transcriptional and post-

transcriptional mechanisms that help suppress the expression of ERVs. 

However, none of the previously discovered factors function from the start of 

fertilization to fine-tune MERVL expression, which is the case for tRF-GG which 

appears to be delivered by sperm. How much of this sperm-borne pool influences 

the oocyte derived pool remains to be addressed, which will require careful 

spike-in mediated UMI-derived small-RNA libraries, and possibly SNPs or 

metabolic labeling to separate the maternal from the paternal pool definitively.  

Regardless of the outcome of these particular experiments, the ability of 

sperm-borne RNAs to regulate embryonic gene expression presents a major new 

arc to the argument of genetic conflict hypothesis. At least three different species 

of RNAs, miRNAs (Rassoulzadegan et al., 2006; Grandjean et al., 2016; Conine 

et al., 2018), tRFs (Chen, M Yan, et al., 2016; Sharma et al., 2016; Zhang et al., 

2018), and lnc-RNAs (Gapp et al., 2018) have now be shown to influence 

offspring phenotype. These add to paternally imprinted alleles as an additional 

layer of influence which fathers contribute to the offspring, which were originally 

proposed to be in apparent conflict with maternal imprinting (Haig, 2004). A few 

aspects of the sperm-borne RNA hypothesis are worth considering long term. 
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First, since RNAs pools are capable of being modified, this confers some level of 

adaptability to the downstream-induced changes in gene expression. More 

detailed exploration of the breadth of sperm-borne RNAs capable of inducing 

gene expression changes in the embryo would be of extreme interest (discussed 

above). Second, what is the bandwidth of sperm? In other words, do all 

environmental changes lead to the alterations of the same small-RNAs, or do 

different stresses alter different RNAs, or possibly other epigenetic carriers of 

information? Currently, there is evidence that high-fat diet and low protein diet 

lead to changes in the same tRFs (Sharma et al., 2016; Zhang et al., 2018), 

although acute stress appears to modify long RNAs (Gapp et al., 2018). A more 

comprehensive analysis of changes in sperm-borne RNAs in response to various 

paternal paradigms would help address this question. It is also important to 

consider the downstream effects of these changes in sperm-borne RNAs or 

sperm-borne chromatin for that matter. What is the scope of gene expression 

changes, and consequently, phenotypic changes associated with paternal stress 

paradigms? We revealed a conserved tRF-dependent modulation of ERV 

expression through small-nuclear RNA regulation in our low-protein paradigm. 

Do all dietary stresses lead to small-RNA changes that modulate ERV 

expression? Does this encompass stress exposures and toxin exposures? 

Detailed embryonic gene expression analysis of changes associated with all 

paternal paradigms explored so far would reveal the extent or possibility of a 

unifying theory of paternal epigenetic inheritance. At least for the final phenotype, 

it appears that most paternal interventions lead to some sort of metabolic 
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outcome (Rando, 2012; Rando and Simmons, 2015). The exploration of how 

early embryonic gene expression lead to metabolic consequences later in life will 

also be critical to our ultimate understanding of the mechanistic underpinnings of 

paternal epigenetic inheritance.  

Finally, from an evolutionary perspective, are there certain conditions that 

are more amenable for the emergence of heritable forms of epigenetic variation, 

and how might this information become fixed genetically? This is perhaps an 

existential question for the field of transgenerational epigenetic inheritance. At 

least for our model, we have not extended studies into the F2 and 3 generations, 

although mammalian environmental epigenetic paradigms in general have not 

reported effects lasting more than 2 generations after exposure in male or female 

lineages. However, it is clear that epigenetic signatures are heritable indefinitely, 

as is the case of genomic imprinting and epialleles. A major intrigue in our study 

was the finding linking paternal diet and the expression of ERVs in the offspring, 

particularly a well-adapted ERV such as MERVL that has now assumed 

presumably important roles in embryonic development. More detailed studies in 

the potential developmental roles that ERVs such as MERVL play in mammalian 

embryos will help illuminate the possible adaptive avenues that could lead to 

triggering of lasting epigenetic memory. The apparent widespread nature of 

epialleles in plants (Heard and R Martienssen, 2014), and the rapid rate by which 

genomic imprinting is evolving in placental mammals (Spencer and Clark, 2014), 

suggest that robust opportunities in the evolutionary history of a species exist for 

adaptive epigenetic memory to have been, and are being evolved.  
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APPENDIX I 

Diverse cleavage of tRNA fragments 

Introduction 

 There are three well-understood classes of small non-coding regulatory 

RNAs (sRNAs) – microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), and 

small-interfering RNAs (siRNAs) (Ghildiyal and Zamore, 2009). These sRNAs 

associate with Argonaute proteins to regulate gene expression and development 

in Eukaryotes (Stefani and Slack, 2008). In recent decades however, deep 

sequencing of sRNAs, usually of RNAs less than 40nt, in lieu of miRNAs and 

piRNAs between 20-30nt in length, have revealed a diverse arsenal of small non-

coding RNAs derived from tRNAs, snoRNAs, rRNAs, and mRNAs (Kawaji et al., 

2008; Kumar, Kuscu and Dutta, 2016).  

Of these novel sRNAs, fragments of tRNAs, or tRFs, have gained 

particular attention due to their high copy number, evolutionary sequence 

conservation, and potential functional diversity (Keam and Hutvagner, 2015). 

Since tRNAs are post-transcriptionally modified in many ways, including splicing, 

cleavage of leader and trailer sequences, addition of non-templated ‘CCA’ 

sequence at the 3’ end, and chemical modifications (Torres, Batlle and Ribas de 

Pouplana, 2014), a kaleidoscope of tRNA fragments may therefore be generated 

from tRNAs at various stages of their life cycle (Fig. A1.1). Adding to this 

complexity various nucleases have been implicated in cleavage of tRNAs, 

including RNase III endonuclease Dicer (Babiarz et al., 2008; Cole et al., 2009), 

RNase Z (Haussecker et al., 2010), and RNase A superfamily related 
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endonucleases such as Angiogenin (Yamasaki, Ivanov, G. F. Hu, et al., 2009; 

Emara et al., 2010; Ivanov, Mohamed M. Emara, et al., 2011a; Li et al., 2012), 

with various associated lengths and ends (discussed in Introduction). In addition, 

tRNA modifications can hinder or promote cleavage by various nucleases (Tuorto 

et al., 2012; Guzzi et al., 2018; Lyons, Fay and Ivanov, 2018), influence 

biological function (Zhang et al., 2018), and impact whether the tRFs are able to 

be cloned, and therefore, assumed to be “present” in the sample by standard 

sRNA deep sequencing methods (Cozen et al., 2015).  

This study was aimed to better understand the last point – whether the 

method used to clone sRNAs is an important contributor to at least some of the 

diversity in the tRFs cloned by different groups. Here, there are two separate 

important factors to consider – whether tRNA modifications can impede cloning 

by generic methods, and whether certain tRFs are preferentially cloned due to 

differential biogenesis pathways. Since it has been shown that treatment of tRFs 

with dealkylating enzyme E. coli AlkB, which demethylates numerous commonly 

found tRNA methylation marks, can increase cloning efficiency of specific tRFs 

(Cozen et al., 2015), I will focus on cloning of tRFs resulting from different 

biogenesis pathways.  

Specifically, it has been known for some time that various species of tRFs 

result from cleavage of diverse endonucleases, and therefore have distinct 

biochemical differences at the 5’ and 3’ ends (Couvillion, Sachidanandam and 

Collins, 2010; Haussecker et al., 2010). Cleavage by Dicer and RNase III family 

endonuclease, leaves a characteristic 3’ hydroxyl group on one 3’ end, and a 5’ 
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monophosphate on the 5’ end of the other. The same ends result from 

exonuclease digestion. These ends allow efficient ligation by the T4 RNA ligase 

used in most sRNA cloning protocols. However, cleavage by RNase A 

superfamily endonucleases, such as Angiogenin (ANG), the nuclease implicated 

in cleavage of 5’ and 3’ tRNA-halves in certain mammalian cell lines (Yamasaki, 

Ivanov, G.-F. Hu, et al., 2009; Ivanov, Mohamed M. Emara, et al., 2011), forms a 

3’-monophosphate via a 2’3’-cyclic phosphate intermediate on the 3’ end of the 5’ 

tRNA-halves (or 5tiRs), and a 5’ hydroxyl on the 5’ end of the 3’ tRNA-halves (or 

3tiRs) (Kumar, Kuscu and Dutta, 2016). These ends do not allow for efficient 

ligation by traditional sRNA cloning methods, and attempts have been made to 

clone these tRFs or RNAs, with some success (German et al., 2009; Schutz, 

Hesselberth and Fields, 2010; Schifano et al., 2014; Peach, York and 

Hesselberth, 2015). For example, Peach et al. utilized E. coli RtcB RNA ligase to 

ligate cloning adapters to RNAs with 5’ hydroxyl termini, which allowed for 

specific cloning of 3tiRs, while Schutz et al. utilized the A. thaliana tRNA ligase to 

ligate adapters to RNAs with 2’3’-cyclic phosphates, which increased cloning 

efficiency for 5tiRs. However, these methods require expression and isolation of 

non-commercial enzymes or custom adapters, which has limited widespread 

utility.  

Results and Discussion 

We aimed to develop a sRNA cloning method that was adaptable to 

popular sRNA cloning methods, utilize enzymes that were commercially 

available, and could inform us of the diversity of sRNAs in sperm. T4 
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Polynucleotide Kinase (T4 PNK) is a widely used molecular enzyme that has 

both 5’-kinase (ATP-dependent) and 3’ phosphatase activity (ATP-independent) 

(Richardson, 1965; Cameron and Uhlenbeck, 1977; Wang, Lima and Shuman, 

2002). T4 PNK also has a modified version called 3’phosphatase minus (3’-

minus) which does not have 3’ phosphatase activity and exclusively 

phosphorylates 5’ hydroxyl groups, which we also used to treat sRNAs prior to 

cloning with Truseq Small RNA Library Preparation kit. The Truseq Small RNA kit 

utilizes a standard sRNA cloning method by ligating two short RNA adapters to 

either end of the sRNA, with the 3’ adapter being pre-adenylated to facilitate 

specific ligation (Viollet et al., 2011), which is a method also used in most custom 

RNA ligation protocols and the NEBnext Small RNA Library Prep kit. The 

NEBnext kit is also a popular and cheaper alternative for sRNA cloning, but has 

given us different results for tRFs as compared to the Truseq kit, which in our 

hands gives more comparable results to a previously used custom protocol (data 

not shown). This discrepancy between kits could potentially result from the 

primer hybridization steps in the NEBnext protocol that is suggested to minimize 

adapter-dimers, or differences in reagents used during ligation steps (for 

example PEG decreases ligation bias). Another potential area of discrepancy 

could result from cloning from total RNAs or gel-purified sRNAs, as this has also 

led to changes in the propensity to clone different types of sRNAs in our hands.  
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Fig. A1.1. Effect of T4 PNK (PNK) and T4 PNK 3’phosphatase minus (3minus) 
on cloning of sRNAs in cauda sperm, caput sperm, and testis. Reads were 
sequentially mapped as previously described (Sharma et al., 2016).  

 

The introduction of 30 mins of T4 PNK or 3’-minus treatment to cauda 

sperm sRNAs prior to cloning led to striking changes to the different types of 

sRNAs represented in the total library (Fig. A1.1). While the majority of cloned 

cauda sperm sRNAs were tRFs using the original Truseq protocol (63.56%), 

agreeing with previous results (Sharma et al., 2016), PNK or 3’-minus treatment 

led to a large reduction in tRFs cloned (19.83% and 13.89%, respectively). 

Instead, tRFs were replaced in the libraries by fragments derived from rRNA for 

all samples (Fig. A1.1). It is important to note that caput sperm and testis loss of 

tRFs were much more modest than that of cauda sperm (~2 fold vs 8 fold, 

respectively). Tellingly, PNK treatment of caput sperm sRNAs did not lead to an 

increase in cloned tRFs, while 3’-minus actually led to a reduction from 20.13% 



	 180	

to 5.72% (Fig. A1.1). Together, these data suggest that the majority of tRFs 

gained during epididymal transit are either Dicer generated, or further 

exonuclease digested products of RNase A family endonuclease cleaved tRNAs. 

Instead, the majority of sRNAs gained as sperm mature are rRNA fragments, 

which are actually similar in size to tRFs (~30-35nt, Fig. A1.2) (Fowler et al., 

2018). The major caveat in this conclusion is the assumption that cloning of 

different types of sRNAs are equally efficient, which is not true if certain species 

of tRFs contain hard-stop modifications (Cozen et al., 2015). Support for either 

possibility will come from northern blotting of testicular sperm (instead of whole 

testis, which could explain rRNA contamination in these libraries), caput and 

cauda sperm, for rRNA and tRNA fragments. When considering probes for 

northern blot analysis, one should ponder the rRNA sequence to probe in 

northerns, as different treatments reveal rRNA fragments derived from different 

parts of rRNAs (Fig. A1.3).  

Fig. A1.2. Dynamics of rRNA cleavage during sperm maturation. The 
majority of sRNAs cloned after PNK treatment are 30-35nt rRNA fragments, 
suggesting they are cleaved by RNase A 
superfamily proteins into this length.  
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Fig. A1.3. Certain regions of rRNA generate specific types of fragments with 
distinct ends. Note tissue differences are minor (Epi: epididymis). Potential 
explanations for these specific cleavage events include in vivo structure of rRNA 
and modifications.  
 

Enzymatic treatment of sRNAs also led to substantial changes in the 

species of tRFs preferentially cloned (Fig. A1.4, Fig. A1.5). PNK treatment 

revealed more tRF-5a and tRF-3a species (cleavage in and around the D loop 

and T loop, respectively) for a variety of tRNA from various anticodons, 

suggesting that RNase A family enzymes also cleave tRFs in the D and T loops, 

in addition to the anticodon loop. Importantly, in regards to 5tiRs and 3tiRs, PNK 

treatment also revealed a substantial amount of full-length RNase-A mediated 

cleavage products (Fig. A1.4). Interestingly, tRNAs of different anticodons have 

distinct enrichment of specific tRF species, and other potential tRF species 

cannot be captured regardless of enzymatic treatments. For example, tRFs 

derived from GlyGCC are mostly 5tiRs (Fig. A1.5B), while tRFs derived from 
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IleAAT are mostly 3tiRs (Fig. A1.5D). It is also important to note that the majority 

of 3’tRFs are derived from mature tRNAs, as mapping to tRNA sequences with 

an addition of CCA increased tRNA mapping reads approximately 2 fold in testis 

sRNAs and 50% in epididymis sRNAs.  

Taken together, our data support a model whereby tRFs are cleaved by 

specific RNases from mostly mature tRNAs, and specific species of tRFs are 

relatively stable as compared to the other segments derived from the same 

tRNA. The stability of these tRFs may derive from their structure after cleavage, 

the various modifications they carry, whether they become bound by specific 

proteins and therefore become shielded from further degradation, and the 

concentration of specific RNases in a given tissue. More work is needed to 

elucidate the specific mechanism by which various tRF species are generated 

and preferentially retained in specific cell types, including whether these tRFs 

support different biological functions through their interactions with different 

proteins.  
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Fig. A1.4. Effect of enzymatic treatment on tRF coverage. Cauda sperm was 
either not treated (A), treated with T4 PNK (B), or with PNK 3minus (C). 
Coverage of tRNAs with the same anticodon sequence was averaged across the 
RNA.  

 
Fig. A1.5. PNK treatment leads to preferential cloning of full length cleavage 
products (5tiRs) at the anticodon loop, whereas 3’minus reveals 3tiRs derived 
from a subset of tRNAs.  
 
Materials and Methods 

Small RNA cloning 
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 Small RNAs 18-40nt were size selected from denaturing polyacrylamide 

gel, and subjected to 30mins of enzymatic treatment by T4 PNK or T4 PNK 3’-

phosphatase minus (NEB), or directly subjected to cloning using the TruSeq 

Small RNA Library Preparation Kit (Illumina). Libraries were pooled and deep 

sequenced on the Nextseq 500 (Illumina) with single-end 75nt reads to cover the 

extent of all sRNAs cloned.  

Data analysis 

 Data was analyzed using the “seqmapping” method as previously 

described (Sharma et al., 2016) to avoid repeated mapping of reads to various 

repetitive elements. Briefly, adapters are removed from the 3’ end using the 

FastX toolkit (Hannon lab). Reads are then sequentially mapped to different 

repetitive classes using Bowtie2 (2.1.0), with mapped reads removed each round 

and a new Fastq file generated to remap to the new category. The number of 

mapped reads for each sample were counted using Samtools idxstats (v1.3). 

sRNA sizes of various classes was acquired by first converting bam files into 

Fastq files, and then sizes were compiled using the following command (awk ‘NR%4 

== 2 {lengths[length($0)]++} END {for (l in lengths) {print l, lengths[l]}}’ mapped_reads.fastq > 

mapped_reads_sizes.txt). Coverage of reads on various categories of repeat elements 

was compiled using the command (bedtools coverage -a rRNA18S.bed -b mapped_reads.bam -d > 

mapped_18S_cov.txt). Most tRNA anticodons contain numerous copies throughout the 

genome, and all reads mapping to the same anticodon were combined in these 

analysis.  	
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APPENDIX II 

tRF-proteome dynamics in mESCs 

Introduction 

Well-characterized small RNAs (sRNAs) such as miRNAs, siRNAs, and 

piRNAs have very defined biogenesis pathways and lengths, and all associate 

with Argonaute family proteins (Ghildiyal and Zamore, 2009). Recently, it has 

been found that sRNAs cleaved from tRNAs, known as tRNA fragments or tRFs, 

are found in various organisms and have been shown to support diverse 

functions (Keam and Hutvagner, 2015; Kumar, Kuscu and Dutta, 2016). The 

wide range of proposed functions could be potentially attributed to the 

heterogeneous nature of tRFs, in length, sequence, and modifications, 

depending on which part of the tRNA they are derived from (Kumar, Kuscu and 

Dutta, 2016). Consequently, a variety of different biogenesis pathways have 

been identified, and a myriad of protein effectors or binders have been identified 

for different types of tRFs.  

 Recently, a technique called gradient profiling by sequencing (Grad-seq) 

was described which allowed for analysis of the full ensemble of E. coli cellular 

RNAs in a functional context, based on their biochemical profiles (Smirnov et al., 

2016). Here, I describe my efforts to adapt this technique for unbiased tRF-bound 

RNP discovery in mouse embryonic stem cells (mESCs). I find that tRFs derived 

from different tRNAs interact with different protein complexes, supporting the 

notion that tRFs can facilitate a multitude of biological functions. I found that tRF-

Gly-GCC (tRF-GG), a tRF of interest in the lab, does not overlap with Mir34c and 
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associated RISC complex, arguing against Argonaute-based function for tRF-

GG. I also discuss potential ways in which the current protocol can be improved 

to gain a better handle on specific tRF-bound proteins.  

Results and Discussion 

 

Fig. A2.1. Grad-seq reveals potential binders to tRF-Gly-GCC. A. Grad-seq 
workflow. B. RNA was extracted from fractions and Taqman qRT-PCR was 
conducted for indicated sRNAs. C. PAGE analysis of proteins in various 
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fractions. Ago2 levels within each fraction was analyzed using western blot. D. 
qRT-PCR analysis of tRF-GG and Mir34c from fractions collected after gel 
filtration. E. Silver staining of proteins pooled from E and F fractions after gel 
filtration, and the associated proteomic analysis of each fraction.  
 
Identifying tRF-GG associated RNPs 
 

The first aim to adapting Grad-seq in mESC extract was to identify the 

protein(s) bound to tRF-Gly-GCC (tRF-GG). Grad-seq utilizes a 10-40% (wt/vol) 

glycerol gradient, which was not able to separate sRNAs well, with most sRNAs 

(including miRNAs and tRFs) in the first one or two fractions (which translates to 

about 1/12 total volume, data not shown). Therefore, I adjusted the gradient to 5-

25% wt/vol glycerol, and incorporated a longer ultracentrifugal spin. This resulted 

in better resolution of tRF-GG from miRNA-34c (Mir34c, Fig. A2.1A and B), a 

sRNA that should be bound to Argonaute proteins, specifically Ago2, in mESCs 

(Greve, Judson and Blelloch, 2013). To show that protein complexes maintain 

stability with associated sRNAs during the gradient protocol, I probed for 

enrichment of Ago2, a protein that binds miRNAs in mESCs. As expected, Ago2 

was mostly found in fractions 5-7 of the gradient, co-localizing with Mir34c as 

analyzed by qRT-PCR (Fig. A2.1B and C). Various RNA-binding protein centric 

techniques utilize UV crosslinking to more stably associated RNAs with their 

binding proteins. However, I found that crosslinking of mouse extract with a 

254nm UV crosslinker did not lead to noticeable changes in protein profiles 

through the fractions as assayed by polyacrylamide gel electrophoresis and qRT-

PCR of tRF-GG and Mir34c (data not shown), although it did lead to problems 

detecting epitopes in western blotting. Since tRF-GG appears to be relatively 
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stable through multiple fractionation techniques, crosslinking may therefore be 

unnecessary to maintain binding stability of tRF-GG, if not most tRFs.  

 To further partition tRF-GG interacting protein(s) from irrelevant proteins of 

a similar size, I added a gel-filtration step, which was able to further separate 

different types of sRNAs (Fig. A2.1A and D). Proteomic analysis of samples 

pooled from the fractions where sRNAs of interest were enriched revealed 

divergent types of proteins within each fraction (Fig. A2.1E), including 

hnRNPH1/2, which we identified using other techniques as a bona-fide binder to 

tRF-GG. Indeed, hnRNPH1/2 was enriched in Fraction F vs. E by 22:4 distinct 

mass spectra, supporting the biochemical relevance of the gradient profiling 

technique. 

Together, this data suggests that the Grad-seq protocol is able to separate 

RNPs associated with various sRNAs based on size. In particular, the gradient is 

able to segregate RNPs bound to tRF-GG from that bound to Mir34c, strongly 

arguing against an Argonaute based mechanism for tRF-GG function. However, 

a major caveat is that there remain hundreds of distinct proteins in each fraction, 

many of which are RNA-binding proteins (Fig. A2.1E). One potential way to 

better enrich for specific tRFs, and therefore tRF-bound RNPs, is by pre-

incubating the cell extract with biotinylated oligos, then subject the extract to a 

glycerol gradient followed by gel filtration if needed, to reduce the potential 

background normally observed in biotinylation-based purification of RNPs.  
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Gradient profiling reveals the diversity of tRF-bound RNPs 

To characterize the diversity of tRFs associated with various RNPs, I 

carried out deep sequencing of sRNAs isolated from select fractions of the 

gradient (i.e. Grad-seq). This revealed a wide distribution of different types of 

tRFs in various fractions of the gradient (Fig. A2.2A). tRFs derived from Gly-GCC 

were enriched in fraction 1 and 3, confirming previous qRT-PCR analysis (Fig. 

A2.1B, A2.2C). tRFs derived from Alanine anticodons and Gly-CCC, which have 

been shown to be associated with YBX1 in vivo (Ivanov, Mohamed M. Emara, et 

al., 2011b; Goodarzi, Liu, Hoang C.B. Nguyen, et al., 2015b), were 

predominantly enriched in fraction 1 and fraction 6. This could possibly result 

from binding of tRF-Ala with various protein complexes (Ivanov, Mohamed M. 

Emara, et al., 2011b). The majority of tRF species were enriched in fraction 6, 

where Mir34c and Ago2 is enriched, suggesting these tRFs could potentially be 

bound to and function with the RISC complex or protein complexes of similar 

density (Fig. A2.2A).  
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Fig. A2.2. Diversity of tRF-bound RNPs. A. Enrichment of tRFs derived from 
various anticodons throughout the gradient. Note all tRFs are depleted from the 
pellet (F13), which contains all ribosomes, confirmed via western blotting (data 
not shown). B. Fragment size distribution of tRFs throughout the fractions. C. 
Arsenite stress induces tRF-GG and Mir34c. Note the minimal redistribution of 
sRNAs across the fractions.  
 

Interestingly, there is also a change in the size distribution of tRFs found in 

various fractions: while fractions 1-6 had two peaks at 30nt and ~33nt, fractions 

9-13 were predominantly composed of tRFs that are 33nt long. This suggests 

that full length 5’ and 3’tiRNAs resulting from RNase A family protein (possibly 

ANG) cleavage are predominantly associated with very large protein complex 

more dense than the RISC complex but less than ribosomes. Future work 

focused on isolating RNPs bound to tRFs enriched in these fractions could 

elucidate novel mechanisms of tRF function in mESCs. 

 Lastly, it has been shown that various stresses can induce stress granule 

production and cleavage of tRNAs (Fu et al., 2009a; Yamasaki, Ivanov, G.-F. Hu, 



	 191	

et al., 2009), and that stress associated tRFs predominantly play a role in 

translation inhibition (Ivanov, Mohamed M. Emara, et al., 2011b; Goncalves et 

al., 2016). To interrogate whether stress induces tRF production in mESCs, I 

briefly treated mESCs with sodium arsenite for 1 hour. One hour treatment was 

chosen because 2 hour treatments at 500 uM led to extensive cell death, 

suggesting mESCs are highly sensitive to arsenite stress. I conducted qRT-PCR 

of gradient separated fractions following the Grad-seq protocol. Interestingly, I 

observed up-regulation of tRF-GG and Mir34c in arsenite stress conditions (Fig. 

A2.2C), suggesting that arsenite stress might induce production of not only tRFs, 

but also miRNAs. Furthermore, I failed to observe enrichment of tRF-GG with 

ribosomes (F13, or pellet), arguing against tRF-GG playing any role in translation 

inhibition during stress induced translational repression (see also Chapter II) 

(Sharma et al., 2016).  

 Taken together, Grad-seq profiling in mESCs for sRNAs revealed the 

diversity of tRF-bound RNPs (Fig. A2.2). The preferential enrichment of certain 

tRF species in specific fractions strongly supports the idea that different tRFs 

from different species can play a multitude of biological functions, through their 

interactions with a wide range of RNPs, and is a strong refutation of the 

argument that tRFs are degradation products with little biological function. The 

discovery that specific lengths of tRFs are associated with different protein 

complexes also supports that the idea that tRFs derived from different biogenesis 

pathways play separate functions in vivo. The gradient separation of RNPs also 
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holds promise as an alternative approach to purification of specific tRFs and their 

bound RNPs.  

Materials and Methods 

Grad-seq 

UV crosslinking was done at 254nm in ice cold PBS for 8000 µJ/cm3X100. 

Sodium arsenite stress was done in normal ES cell media at 500uM for one hour.  

About 100 million mouse embryonic stem cells (3 X 150mM dish) were 

scraped and washed in ice cold PBS, and lysed in 1mL of ice cold lysis buffer 

(10mM Tris-HCl pH7.5, 5mM MgCl2, 100mM KCl, 1% Triton-X, 2mM DTT, and 

EDTA-free Protease Inhibitor Cocktial (Roche)). After resuspension and lysis by 

repeated pipetting, the cells were allowed to lyse on ice for 10 mins, then cell 

debris was removed by 10min 1100g centrifugation. The supernatant can be 

snap frozen and stored, or further concentrated using Amicon Ultra 5k. The 

extract is overlay onto a 13ml 5-25% (wt/vol) glycerol gradient (20mM HEPES-

KOH pH7.5, 5mM MgCl2, 100mM KCl, 2mM DTT, glycerol wt/vol). The gradient 

was premade and allowed to chill to 4°C. The gradient was then spun at 35k, 4°C 

for 17hrs (overnight). Fractions were separated by hand into 960uL fractions, 

with the last fraction being the pellet (ribosomes).  

Each fraction is separated into two for protein and RNA isolation. RNA 

was extracted by adding SDS to 1% final, Proteinase K to final concentration of 

200ug/mL, incubated at 42°C for 45mins with gentle mixing. The RNA was 

separated from proteins by acid phenol/chloroform, then spun at 12000g for 

5mins in a phase lock tube. The supernatant was added to 0.1V of NaAc (3M, 
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pH5.2), 10mM final of MgCl2, and 1uL GlycoBlue, and mixed with 1V of 100% 

isopropanol. The whole mixture is placed at -20°C for at least 20mins, then 

pelleted at Vmax for 35mins, washed with 500uL of 70% ethanol. The RNA pellet 

was air dried and resuspended in ddH2O.  

Proteins can be concentrated on an Amicon Ultra 5K for western blotting, 

or TCA precipitated. This concentration step was particularly important for gel 

filtration. Gel filtration was done with 1ml concentrated solution of 3mL pooled 

fractions 1-3. This concentrate was applied to a Superdex 75 Increase 10/300 GL 

column with a flow rate of 0.25ml/min with the glycerol gradient buffer at room 

temperature. Fractions were collected in 1mL aliquots for 130 fractions (total 

volume 130mL, or 5X bed volume). Proteins or RNA were isolated from fractions 

as previously described, then subject to qRT-PCR.  

Deep Sequencing 

 sRNAs 15-45nt were isolated using a denaturing PAGE gel and extracted 

overnight with RNA extraction buffer (300mM NaCl, 1mM EDTA). The sRNA was 

ethanol precipitated and resuspended in H2O, and followed up with cloning using 

Truseq Small RNA Library Prep Kit (Illumina). Libraries were pooled and 

sequenced on the Nextseq 500. Data analysis was done as described in 

previous sections.  

Taqman qRT-PCR 

 tRF and miRNA quantification was performed using custom designed 

Taqman MicroRNA Assays according to manufacturer’s instructions (Applied 

Biosystems). 1ng of total RNA from each fraction was reverse transcribed using 



	 194	

the Taqman MicroRNA reverse transcription kit. qRT-PCR was performed in 

15uL reactions using Taqman Universal PCR Master Mix, following standard 

protocol. Serial dilutions of template were previously run to confirm amplification 

linearity and efficiency for all Taqman probes.  
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