
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Automated Shaped Charge Design: Applying
Dakota Optimization to CTH Kinetic Energy
Results
Sebastian Arcangelo Konewko
Marquette University

Recommended Citation
Konewko, Sebastian Arcangelo, "Automated Shaped Charge Design: Applying Dakota Optimization to CTH Kinetic Energy Results"
(2019). Master's Theses (2009 -). 542.
https://epublications.marquette.edu/theses_open/542

https://epublications.marquette.edu
https://epublications.marquette.edu/theses_open
https://epublications.marquette.edu/diss_theses


AUTOMATED SHAPED CHARGE DESIGN:  

APPLYING DAKOTA OPTIMIZATION TO CTH KINETIC ENERGY 

RESULTS 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
By 

Sebastian Arcangelo Konewko 

 

 

 

 

 

 

 

 

 

 

 

A Thesis Submitted to the Faculty of the Graduate School, Marquette University, 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science in Mechanical Engineering 

 

 

 

Milwaukee, Wisconsin 

August 2019 



ABSTRACT 

AUTOMATED SHAPED CHARGE DESIGN:  

APPLYING DAKOTA OPTIMIZATION TO CTH KINETIC ENERGY RESULTS 

 

 

Sebastian Arcangelo Konewko 

 

 

Marquette University, 2019  

 

 

 

Advances in computational power present an opportunity to further optimize the 

design of an engineered energetic system. This work presents the application of a 

proposed optimization scheme which combines the shock-physics hydrocode CTH with 

the DAKOTA optimization package to automate shaped-charge jet design. The formation 

of an explosively driven hypervelocity jet is highly dependent on the original shaped 

charge liner geometry. By parameterizing this geometry, and by developing a 

characteristic objective function from CTH simulations, a process can be established 

where the Dakota code iteratively builds an optimal shaped charge.  

This work attempts to use this methodology to reproduce a reference geometry. 

This is done by characterizing the liner geometry with two parabolas and post-processing 

an objective function from the kinetic energy profile of the resulting jet. Multi-

dimensional parameter studies, gradient optimizations and genetic algorithms are used to 

probe the parameter space. 
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1 INTRODUCTION 

 

 

The advent of computational power has greatly increased the potential for 

optimization design processes. In the field of explosive design, this can be a very useful 

tool. Traditionally, explosives have been designed through an iterative experimental 

process. This is particularly time-consuming for shaped charge design as slight changes 

in liner geometry can have extensive impacts on the hypervelocity jets. 

 The shaped charge’s hypervelocity jet is highly dependent on the initial liner 

geometry. Extensive experimental research has been done characterizing different 

geometries and their corresponding jets (P.Y. Chanteret, 1984) (U.S. Army Materiel 

Command). Additionally, hydrocodes are being increasingly used to simulate different 

shaped charge geometries to compare simulated and experimental results (Wickert, 

2013)(Woodley, 2016) (Coddet, 2015). However, seeing as this work has industrial and 

military applications, the intellectual property regarding the design of modern shaped 

charge geometries is a closely held secret. 

 Today, the presence of high performance computers allows one the ability to 

iteratively simulate different shaped charge geometries and compare their results. 

Therefore, the ability to couple an optimization package, such as Dakota, to CTH, a 

hydrocode, has extreme potential. In a practical setting, one can choose a reference metric 

produced by the CTH simulation and optimize it by varying the geometry of the liner. 

To this end, this study is unique in that the optimization target is not the maximization of 

a property of the shaped charge jet. As a proof of concept, the goal of the study is to 

reproduce a reference shaped charge geometry. To do this, one must architect an 

objective function such that its global minima uniquely maps to a set of reference 
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parameters. This process and its mathematic implications is discussed in much more 

detail further in the body of work. 

When conducting an optimization one has, almost literally, an infinite set of parameters 

that can constrain a problem. To reduce computational load, this work specifically 

focuses on the geometric implications of changing a shaped charge liner.  

 Equally numerous are the number of metrics one can use to assess the validity of 

the iterative parameters. Advances in optimization have produced techniques which can 

evaluate the legitimacy of a design based on multiple objective functions. Once again, to 

simplify the optimization problem, this study forces the assessment of parameters on one 

objective function.  

In concurrence with the previous constraint, this broadly defines the system in 

question as: 

𝑂𝐹 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 

where 𝑥𝑛 are variables that represent the geometry of a liner and OF is the objective 

function. 

In many ways, this study can be thought of the continuation of work done by 

Logan Beaver (Beaver, 2017). His optimization study concerned the optimization of a 

cylindrical explosive charge and involved coupling Dakota to a hydrocode. 

This problem was unique in that, due to the geometry of the system, it was possible to 

reduce the optimization to a 1D problem. In parameter space, this corresponded to two 

dimensions, the inner and outer radius of the liner. In addition, analytic solutions exist 

that describe the behavior of the cylindrical charge. Solutions outlined by Gurney provide 

a surface relating the two liner values to the kinetic energy that the charge can produce. 



 3 

This work differs from that study mainly in the level of pre and post processing 

needed to accurately simulate the energetic material system. First a shaped charge is 

inherently a multi-parameter object. The simplest liner geometry, a “V” shape with 

constant thickness, requires at least three parameters to create it (Baker, 2011). These 

include the thickness, the slope and the height of the liner. Therefore, when 

parameterizing the geometry of the charge, an additional pre-processing step is needed 

where a “geometry script” takes the parameters to be optimized and outputs a set of 

points that define the shaped charge liner. 

Second, the creation of an objective function is more involved. One can look to 

many different metrics to assess the legitimacy of a liner geometry. Therefore, additional 

post-processing needs to be done on the results of the CTH simulation. 

Finally, Beaver allows for the variation of materials in his study. It would be very 

interesting to see the relationship between material properties, specifically how a material 

reacts differently to principle versus shear stress, influences the design of the shaped 

charge liner. However, this introduces too much non-linearity to the problem and would 

shift the focus from a geometric optimization to a study on material properties. Therefore, 

it is outside the scope of this work. 
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2 COMPUTATIONAL ENVIRONMENT 

 

 

2.1 HPC HARDWARE 

 

 

The optimization study was designed to be run on a United States High 

Performance Computer (HPC). Specifically, the Topaz machine was used to run the 

optimization studies (SGI ICE X (TOPAZ) USER GUIDE). It is built with a total of 

3,456 standard computing nodes each with two 2.3-GHz Intel Xeon Haswell 18-core 

processors (36 cores) and 128 GBytes of DDR4 memory. As its operating system, Topaz 

uses SGI's Performance Suite. This is a combination of Linux and SGI-specific tools. 

More information can be found in SGI ICE X (TOPAZ) USER GUIDE. 

Optimization jobs were submitted on these computation nodes and stored in work 

directories. Data was post-processed in these directories and visualized locally.  

 

2.2 COMPUTATIONAL TOOLS 

 

 

This work relies on the coupling of the CTH and Dakota projects.  

CTH is a shockphysics based hydrocode developed out of Sandia Natinal 

Laboratories and is used to simulate the shaped charge event (McGlaun, 1990). It is 

primarily an Eulerian code with the exeption of an intermediate Lagrangian step where 

cells deform to track material motion. CTH conatins one, two and three dimensional 

rectiliner, cylindrical and spherical meshes. CTH uses a second order convection scheme 

to advect material, flux thermodynamic quantities and material properties through cells. 

The Jones-Wilkins-Lee and other equatons of state are availible to model the reaction 

products of explosives.In addition, the CTH employs a variable time step determined by 
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the Courant stability criterion (Simon G. Edwins, 2002) (Crawford). In a two dimenional 

calculation, a saftey factor of 0.6 is multiplied by the minimal allowed time step.  

Dakota is an optimization suite also based out of Sandia National Laboratories 

(Adams). The Dakota software provides a flexible environment for the user to explot 

when optimizing systems. One can “loosly couple” Dakota to any input and output 

system and use the various optimization schemes to search for optima. The Dakota toolkit 

includes gradient and non-gradient based schemes, stochastic expansion methods, 

surrogate optimization and others. 

Dakota and CTH were “loosly coupled” so that Dakota fed parameters controling 

liner geometry into a “black-box function” and optimized the resulting objective function. 

CTH was used to simulate the various shaped charge geometries. The shaped charge jet 

kinetic energy was parsed from the simulation, characterized and developed into the final 

objective function. 

To maximize computational efficency, ideally, Dakota and CTH would both be 

run in parallel together. However this is currently not possible on an HPC. Due to quirks 

of PBS on Topaz, if Dakota launches a parallel CTH job, this job will not run on the 

computer nodes that are already reserved by the Dakota launch. Instead, the parallel CTH 

job is submitted to the PBS queue were more time would be spent waiting for a job to 

launch. This is a problem which can be remeiated however it lies outisde the scope of this 

work. 

Therefore, for this study, a parallel Dakota is optimization is launched. 

Subsequently, Dakota will spawn concurrent serial CTH simulations. This prevents the 

user from fully exploiting the node. 
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All shell scripts were written in bash. Any script that involved mathematic 

operations was written in python3 (version 3.6.7). Numpy (version 1.14.2), Scipy 

(version 1.1.0) and Matplotlib (version 1.4.3) modules were used to support the python 

libraries. The Topaz GCC version of these codes was used. 

 

2.3 COMPUTATIONAL FRAMEWORK 

 

 

The Dakota/CTH coupling was executed using several scripts. These can be 

classified into three groups: governing scripts, executables and template scripts. 

Governing scripts are scripts that are only run once and meant to control the entire 

optimization environment. Executables are scripts that are run every time a new 

simulation is needed and finally, template scripts are shell scripts that are modified every 

time a new simulation is launched. 

 

 

Dakota/CTH Scripts 
Governing 

Scripts 

Rundak: This bash script submits the optimization job to the PBS 

queue. 

Dakota.in: This is the Dakota input script. It contains information about 

the optimization scheme and the parameters that are being controlled. 

Cth_simulation.sh: This script controls the interface between Dakota 

and CTH. It can be thought of as a “black-box” which takes inputs from 

Dakota to CTH and outputs from CTH to Dakota. 

Executables Cth.processor.sh: This bash script controls and launches each CTH 

simulation. From it, geometry is updated, CTH is launched and post-

processing is performed. 

CurveFit.py: This python script post-processes the CTH results and 

produces an objective function that Dakota can optimize. 

Template 

Scripts 

Geometry.template.py: This python script produces the geometry that 

is unique to every CTH simulation. Dakota directly changes the 

parameters in this script. 

Cth.template: This is the CTH input script. Every simulation, new 

geometries are inserted in this script. 

Table 1: A list of scripts and their functions used in the optimization study 
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As previously explained, a “black-box” style interface was used to couple 

Dakota’s optimization toolkit with CTH’s simulations. For this technique, Dakota 

interacts with a “black-box” function by changing allotted parameters. These variables 

control the CTH simulation. Once the simulation has concluded, post-processing is done 

on the results and an objective function is found. This is fed back into the Dakota 

optimization and the parameters are changed according to whichever optimization 

scheme is used. This framework is illustrated below. 

 

 

 

Figure 1: A schematic of the optimization study 

 

 

Depending on the optimization scheme, different levels of parallelization could be 

accomplished. This depends on how strict the order of simulations must be. For example, 

a local gradient method calculates one “absolute point” and the derivative of each 
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dimension around it. Therefore, it can only run 2n+1 parallel simulations (where n is the 

number of dimensions). On the other hand, a gradient-free, evolutionary algorithm 

requires a large sample size each iteration for its optimization scheme. Therefore, the 

parallelization is equal to the iteration’s sample size. A basic scheme, such as a parameter 

study, does not make informed decisions based on past function evaluations. These types 

of schemes can run all CTH processes independently.  

In theory, one could compile all of these processes coupling the codes in a more 

rigous way however this would not give the user much computational releif. This is 

because the vast amount of computational resourcees used in the optimization are 

dedicated to the various CTH simulations. Minimal post processing is needed to form the 

objective function and any calculations that Dakota performs are equally trivial. 

More information on how the scripts interact can be found in the Appendix. 
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3 OPTIMIZATION SCHEMES 

 

 

Three optimization schemes were used to examine the parameter space of the 

shaped charge. The architecture of the Dakota schemes (and subsequent objective 

functions) is such that the optima is defined to be the minima of the objective function. 

 Many modern numerical optimization techniques exist [ (Rao, 2009)]. This study 

exploits three main schemes. 

The underlying assumption throughout all of this is that the objective function can 

explicitly be expressed as a function of the chosen parameters 

𝑂𝐹 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 

 

3.1 MULTIDIMENSIONAL PARAMETER STUDY 

 

 

 The most basic of the optimization schemes, this technique involves partitioning 

the domain of the parameters and evaluating the objective function at these points. Then, 

one can manually select the maximum from the resulting points. The Dakota call for this 

optimization scheme is “multidim_parameter_study” and an example of the required 

input for three variables is shown below (ADAMS): 

method, 
multidim_parameter_study 

           partitions = 9 10 15 
 

 The number of partitions indicates how many times the domain is divided evenly. 

This means, for this example, the first variable is evaluated at ten different locations, the 

second variable is evaluated at 11 and the third variable is evaluated at 16 different 

locations. In all, this results in 1,760 different function evaluations. One can see that the 
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number of total evaluations climbs very fast. This is especially true as the number of 

variables increase. 

To use this method as a reliable optimization scheme, one must partition the 

domain finely so that a smooth surface is established and the optima is evident. This is 

computationally very expensive. In addition, the drawback is that the multidimensional 

study does not use past evaluations to inform decisions on what parameters to test in the 

future. Therefore, it will spend time testing points that are not in an optimal domain. To 

reduce the number of “bad” iterations, one could reduce the number of partitions along 

the domain. However, this would result in a poorly resolved parameter space and a low 

fidelity optima. 

 However, computationally speaking, a silver lining can be drawn from this. Since 

all the test points are determined a priori, the concurrency of this optimization method is 

very high. In fact, this is an embarrassingly parallel process as no iteration requires 

information from past simulations.  

Regardless, this optimization scheme is good to use as a launching pad for future 

simulations. One can resolve a sparse parametric space to find a rough optimal domain. 

Then, one can use a secondary optimization scheme that focuses on the constrained 

domain. In the case of gradient methods, one can use the optima found by the parameter 

study as the initial point of the scheme. In general, these types of two stage techniques are 

referred to as hybrid schemes (ADAMS). 
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3.2 GRADIENT DECENT 

 

 

A more efficient optimization scheme is the gradient decent method. To call this 

optimizer the “conmin_frcg” call is placed in the input deck (Adams). The conmin_frcg 

optimization scheme uses a Taylor expanded, central difference technique to calculate the 

gradient at a point (J Haslinger, 2003). One assumes that the function being optimized is 

continuous and differentiable. The infinitesimal interval (h) is found by multiplying the 

initial variable value by 10-4 then adding or subtracting appropriately. The central 

difference gradient used is shown below: 

𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 

This is operation applied to each dimension independently. The gradient is formed 

by assessing these values along their respective dimensions.  

𝑓′(�⃑�) = [𝑓′(𝑥1),  𝑓′(𝑥2) … 𝑓′(𝑥𝑖) ] 

The process for selecting a new point involves two steps. First an intermediate test 

point is selected along each dimension. The new value along the dimension in question is 

determined by using Newton’s method (Ahmad Shukri Nazri, 2017): 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

 However, the rest of the dimensions are given by subtracting their appropriate 

central difference values from the previous point such that the function is minimized. In 

totality, this can be expressed as (Adams): 
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𝑥𝑖,𝑛+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ =

𝑥1,𝑛 −
𝑓(𝑥1,𝑛)

𝑓′(𝑥1,𝑛)

𝑥2,𝑛 −  𝑓′(𝑥2,𝑛)

⋮
𝑥𝑖,𝑛 − 𝑓′(𝑥𝑖,𝑛)

 

 Once an intermediate test point has been found for each dimension, the objective 

function is calculated. Finally, the parameters that correspond to the optimal objective 

function are selected as the initial point for the new iteration. 

Even if a forward or backward difference scheme is more computationally 

efficient, the central difference scheme is used to ensure greater fidelity in the resulting 

gradient (Rhinehart, 2018). 

 Since a central difference scheme is used to determine the gradient, the objective 

function must be calculated 2n + 1 times per iteration (where n is the number of 

dimensions in the function space). This means that the concurrency of this optimization 

scheme alternates between 2n + 1 for the gradient step and n when the algorithm is 

searching for a new initial point. This is evident as each iteration informs the location for 

where the subsequent iteration will be calculated. There is no way to separate the order of 

the optimization and therefore it is an inherent drawback to using a gradient method. 

An example of the input used for subsequent optimizations is show below: 

 
method, 

conmin_frcg 
convergence_tolerance = 1e-8 

          max_iterations = 100 

 

In this example, two optional stopping calls are added to the input. For the 

convergence tolerance option to be satisfied and stop the optimization, the given value 
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must be greater than the difference in objective function divided by the previous 

objective function.  

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 >  
𝑂𝐹𝑖−1 − 𝑂𝐹𝑖

𝑂𝐹𝑖−1
 

The second call is more straight forward. For the optimization to be terminated 

because of this flag the program must complete more than the listed number of iterations. 

Note that this is not referencing individual evaluations of objective function rather total 

calculations needed to establish a gradient. Therefore, if a function’s parameter space has 

three dimensions, seven calculations of objective function are needed to establish the 

gradient and another three are required to find a new initial point. However, these ten 

objective function evaluations would only count as a single iteration. 

 In general, this method is extremely efficient at finding minima. However, it is 

vulnerable and subject to get stuck in local solutions (J Haslinger, 2003). Without an 

informed initial guess, it is hard to find global optima.  

Even with a reasonable initial condition, if the function being optimized is not 

well behaved, it is very difficult to converge on a reasonable solution. This is subject to 

happen especially in computational studies (such as this one) where the simulations 

themselves are subject to noise. This introduces many local optima that will likely trip up 

this gradient optimization scheme. 

 

3.3 SINGLE OBJECTIVE GENETIC ALGORITHM  

 

 

To combat the local solutions one converges upon in the previous method one can 

move away from a gradient based method. An example of a “gradient-free” optimizer is 
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the genetic algorithm. In Dakota, this optimization scheme is called “Soga” or Single-

Objective Genetic Algorithm.  

The concept for this algorithm is based on the genetics seen in everyday life 

(Michaeli, 2003). It likens the parameters that make up a function to the genes that make 

up life forms. 

𝑂𝐹 = 𝑓(𝑔𝑒𝑛𝑒1, 𝑔𝑒𝑛𝑒2, … , 𝑔𝑒𝑛𝑒𝑛) 

Comparable to natural selection, once a new objective function is calculated, it is 

compared to other iterations. Typically, the parameters which produced less optimal 

objective functions are discarded. The general approach to a genetic optimization is 

shown below. 

 

 

 

Figure 2: A schematic of a genetic algorithm 
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Where the genetic algorithm mostly resembles natural selection is in the 

reproduction step. These comparisons are shown in the table below. 

 

 

Principle Biology Optimization 

Replication Asexual Reproduction Copying existing parameters 

Mutation Random changes in genetic 

material 

Changing random 

parameters randomly 

Birth Creation of new genetic 

string 

Selecting a new parameter 

set 

Life Survival in an environment Evaluation of the new 

parameter set 

Selection Selection of most adapted 

organism 

Discarding select parameters 

Table 2: A list of comparisons between biology and the genetic optimizer. Table adopted 

from Michaeli, 2003. 

 

Using these steps, one can create a schematic for a reproduction step. This is 

shown in the graphic below. The objective of the example shown below is to maximize 

height in the population. 
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Figure 3: A schematic of the reproduction cycle in a genetic algorithm. Adapted from the 

Dakota Reference Guide. 

 

 

 This “spawning process” can be expressed more formally. First, any number of 

parents (up to the total number of variables) are selected. In this scenario, two parents 

will be used.  

𝑂𝐹𝑃𝑎𝑟𝑒𝑛𝑡 1 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 

𝑂𝐹𝑃𝑎𝑟𝑒𝑛𝑡 2 = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑛) 

 Now a child is spawned. The crossover step is implemented and variables from 

both parents are selected for the child. 

𝑂𝐹𝐶ℎ𝑖𝑙𝑑 = 𝑓(𝑥1, 𝑦2, … , 𝑦𝑛) 
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 Next, the mutation step occurs. In this step, a user supplied probability dictates the 

likelihood that a “mutation” will occur in the child’s genes. This is manifested by 

replacing a parent variable with a mutation value. 

𝑂𝐹𝑀𝑢𝑡𝑎𝑛𝑡 𝐶ℎ𝑖𝑙𝑑 = 𝑓(𝑥1, 𝑦2, … , 𝑀𝑖 , … , 𝑦𝑛) 

The purpose of the mutation step is to create some artificial noise in the optimization 

scheme. This is vital to avoid focusing on local minima. 

 One exerts control over the optimization by manipulating the different levels of 

the reproduction (Nikos D. Plevris, 2013).  

 For example, one can control the way that crossover occurs. One can choose a bit 

crossover method where the list of parental parameters are exchanged N number of times. 

This is the type that was shown above. However, one can choose a more stochastic 

approach where child parameters are chosen randomly from any parent above a fitness 

threshold. 

 Additionally, one can control the mutation that occurs within the child population. 

Besides simply changing the likelihood of a mutation occurring, one can control how it 

manifests in the “child genome” (Adams). One can specify the distribution of the variable 

domain so that some values are more statistically likely than others. Distributions 

included uniform, normal and Cauchy. Furthermore, one can even choose to convert a 

variable’s value into binary. In this case, the mutation manifests by “flipping” a random 

bit.  

 Finally, one can control the portion of the population that can crossover and the 

portion that is eliminated at the end of the reproduction. Traditionally, only the fittest are 

allowed to contribute variables to the next population and the least fit are eliminated. 
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However, this can encourage local solutions and does not include “genetic variety” 

outside of the domain that was initially provided. Therefore, a more sophisticated 

approach is to select a random distribution weighted towards the fit population for 

crossover and the least fit for elimination. 
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4 OPTIMIZATION SETUP 

 

 

4.1 OBJECTIVE FUNCTIONS 

 

 

Finally, one must find an objective function to optimize. Maximum jet kinetic 

energy, penetration length or even spall angle are valid examples of objective function. In 

theory, this can be something completely arbitrary and “loosely coupled” to the 

parameters that control it. In other words, it is not mandatory to have full control over the 

all parameters contributing to functionality of the objective function when looking for 

optima. 

𝑂𝐹 = 𝑓(𝑥𝑘𝑛𝑜𝑤𝑛,  𝑥𝑢𝑛𝑘𝑛𝑜𝑤𝑛) 

In this case, leaving relevant variables “free” creates a family of solutions whose 

dimension is equal to the number of unknown variables. However, the purpose of this 

study is to reproduce a unique result not a family of solutions. Therefore, to create an 

objective function whose global minima is uniquely defined, one must list and optimize 

all parameters controlling the objective function. This section discusses the formation of 

the two objective functions used in this study, the next section outlines the methodology 

used to select the full scale of representative variables for the objective function. These 

points will be further discussed when parameterizing the shaped charge. 

In addition, it is equally important to create an objective function that emphasizes 

the physics of the shaped charge system over numerical artifacts in the CTH code. For 

example, while one may find some solutions by maximizing the peak kinetic energy in 

the domain, most Dakota solutions will be of liners producing low mass flecks of high 

velocity material; a fundamentally poor shaped charge design. To this end, it is more 
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advantageous to post-process global CTH results into objective functions. It is also useful 

for the post-processing itself to introduce some functionality so that the CTH noise is 

minimized. This noise is mainly attributed to the low resolution of the CTH simulations. 

Essentially, some noise in the results was chosen as a tradeoff for computational speed. 

As previously explained, since the goal of this study is to converge on a set 

design, information from both the reference and iterative designs must be included in the 

objective function. Therefore, the general structure of the OF is to select a metric and 

subtract the iterative result from the reference result. This way the objective function 

space converges on the reference parameters. 

This study focuses primarily on the “kinetic energy profile” of the shaped charge 

jet. After a CTH simulation is run, a data dump file is generated containing the values of 

kinetic energy along the centerline of the jet. The kinetic energy profile is created by 

pairing the kinetic energy values with their respective location along the jet. To create a 

normalized profile, the kinetic energy values are normalized with the reference run’s 

maximum kinetic energy and the y values are normalized with the reference run’s jet 

length. An example of these profiles is shown below. 
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Figure 4: A comparison between a kinetic energy profile built from raw data and a kinetic 

energy profile whose axes have been normalized. 

 

 

 Further post processing parses metrics from the normalized profile to be used for 

objective functions. 

 The first metric used to formulate the objective function is a normalized angle of 

the kinetic energy profile. The following steps are used to parse this value from the 

normalized kinetic energy profile. 

1. Curve fit a linear profile to the normalized plot. This will yield the slope of the fit. 

2. Convert the slope to radians and normalize this value with 𝜋 2⁄  

3. Construct the final objective function by subtracting the iterative normalized 

angle from the reference normalized angle. Square this difference. 

𝑂𝐹 =  (𝜃𝑟 − 𝜃𝑖)2 
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 An example of this is illustrated below. 

 

 

 

Figure 5: An illustration of a normalized kinetic energy profile and corresponding 

normalized angle  

 

 

 This objective function is useful as it directly describes the differences in slope 

between the reference and iterative CTH simulations. One can easily observe that if the 

iterative normalized angle is equal to the reference value the function is zero and is 

considered “optimized.” 

 In addition, this process is thought to minimize CTH noise. Firstly, the root values 

that form the objective function are pulled from global CTH phenomena. Secondly, the 

combination of linear and non-linear scaling introduces a “post-processing” layer of 

functionality that also smooths the objective function.  
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 Exploiting a linear regression, the second objective function is even more of a 

functional “black box” as the first. The following steps are taken to calculate it. 

1. Curve fit a linear profile to the normalized plot of the reference kinetic energy 

profile. This will yield reference values for the slope and y-intercept. 

2. Every iteration, find the R2 value between the iterative normalized KE profile and 

the curve fit reference profile. 

3. Construct the final objective function by subtracting this value from one. 

𝑂𝐹 = 1 − 𝑅𝑖
2 

 An example of this is shown below. 

 

 

 

Figure 6: An illustration of the linear regression between two normalized kinetic energy 

profiles. The blue is the normalized KE profile and the green is the reference KE profile 

generated by the target shaped charge geometry. 
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 Just like the first OF, this objective function exploits a global trend of kinetic 

energy, reducing possible noise from CTH. 

 

 

4.2 SHAPED CHARGE PARAMETERIZATION 

 

 

 As previously stated, the goal of this study is to reproduce a “reference” SC 

geometry by characterizing its kinetic energy profile. To begin, the SC liner was 

parameterized by characterizing it as two equal parabolas separated by a constant 

thickness. Specifically, the parameterized liner profile is given by: 

𝑦1 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

𝑦2 = 𝑎𝑥2 + 𝑏𝑥 + (𝑐 − Δℎ) 

 Arbitrary values of coefficients a, b and c are selected (and show below) to 

construct the “target design.” The goal of the Dakota optimization will be to reproduce 

these coefficients.  

 

 

a b c 

0.30 0.40 5.00 

Table 3: The list of reference parameters used to generate the reference shaped charge 

metrics. These will be the target parameters for the Dakota optimization 

 

 

 The parabolas range from 0 to 3 cm and when they are inserted in the CTH input 

deck they are expressed by 15 evenly spaced points. An example of a SC with this 

parabolic geometry is shown below. 
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Figure 7: An illustration of the reference shaped charge geometry corresponding jet. 

Thickness is 0.20 cm a=0.30 b=0.40 c=5.00 

 

 

One could argue that Δℎ is a natural fourth parameter for Dakota to optimize. 

However, due to the added computational cost this would cause, the liner thickness was 

chosen to be constant. In addition, and perhaps more important, leaving the thickness of 

the parabolic liner constant grants the optimization conservation of mass throughout each 

simulation. In other words, no matter how a, b and c vary, the mass will stay the same. 

This counterintuitive result is shown to be true in the appendix.  

Choosing a value for the liner thickness requires an iteratively informed decision. 

Preliminary CTH simulations were run varying the thickness of the liner. Then, metrics 

were compared to assess the quality of the resulting jet. These include maximum and 
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total kinetic energies, jet length, and candidate reference values for future objective 

function. These comparisons are shown in the table below: 

 

 

 Δℎ 
(cm) 

L 

(cm) 
Δ𝐿 

(cm) 

MKE (KJ) Σ𝐾𝐸 (MJ) a,b 𝜃𝑛 

Parabolic 

Geometry 

0.05 62.95 34.0 33.60 9.21 0.869, -0.660 0.45530 

0.1 58.25 29.9 27.43 9.11 0.857, -0.687 0.45111 

0.2 50.65 23.2 20.39 5.58 0.818, -0.790 0.43658 

0.3 44.45 17.3 15.17 3.40 0.749, -0.905 0.40929 

0.4 39.75 13.2 11.69 2.16 0.670, -0.985 0.37594 

0.5 35.95 9.6 9.27 1.36 0.568, -1.085 0.32899 

Table 4: A comparison between different liner thicknesses and corresponding max jet 

length, jet length, maximum kinetic energy, total kinetic energy, coefficients to the linear 

fit of the normalized kinetic energy profile and normalized angle. 

 

 

Shown below are CTH images of jet profiles and corresponding density plots for 

select thicknesses. 

 

 

 
Figure 8: Illustrations of the shaped charge jet procured from various thicknesses. From 

left to right, thicknesses of 0.05, 0.10, 0.20, 0.50 cm  
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Figure 9: A comparison of density versus distance of shaped charge jets of varying 

thickness. Upper left, t= 0.05 cm, upper right t=0.20 cm, lower left t=0.10 cm, lower right 

t=0.50 cm 

 

 

 The criterion for selecting a constant thickness was to maximize the metrics 

shown in the table above. Naturally, the lower thicknesses, having less mass, were 

accelerated much faster. This results in higher kinetic energy. However, creating well-

formed jets each simulation is an additional concern. Besides the obvious reduction in 

efficiency that occurs when jet breakup occurs in real world applications, this 

phenomenon cripples the numerical methods as it reduces the sample size of points from 

which an objective function is parsed. 
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Observing the images above, for the lower thicknesses it becomes evident that jet 

breakup is prevalent. Therefore, it is important to choose a value that will consistently 

result in well-formed jets regardless of the range of geometries that the optimization 

requires.  

 Keeping the above in mind, a value of 0.20 cm was chosen both to maintain 

quality and to maximize length and kinetic energy values of the jet. Between the 0.10 and 

0.20 cm thickness run, one observes jet breakup in both simulations. The 0.20 cm 

thickness value was favored as the breakup occurs to separate the jet from the slug. This 

contrasts with the thinner thickness where breakup occurs in the body of the jet. 

 In conclusion, the shaped charge geometry has been parameterized as two 

parabolas separated by a constant thickness of 0.20 cm. The target parameters that the 

Dakota optimization will attempt to reproduce are:  

𝑎 = 0.30
𝑏 = 0.40
𝑐 = 5.00

 

 In conjunction with the objective function formulation, one has assumed that the 

objective function can explicitly be expressed a function of a, b and c.  

𝑂𝐹 = 𝑓(𝑎, 𝑏, 𝑐) 

 Additionally, one can imagine what an ideal solution space would look like. In an 

applied setting, it is usually allowed for an objective function to have multiple solutions. 

In other words, if the objective function characterizes penetration, the presence of 

multiple geometric solutions is not a problem.  

 However, given that this particular optimization problem is to reproduce a 

specific geometry, the presence of multiple solutions would indicate a failure to capture 

the relevant physics in the objective function. As was alluded to in the previous section, 
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this would indicate that there is hidden functionality in the objective function that is not 

represented due to the absence of relevant parameters. 

𝑂𝐹 = 𝑓(𝑎, 𝑏, 𝑐, 𝑥𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠) 

 An idea case is a space which is a bijection between a, b, c and the metric being 

measured (Cormen, 2009). By subtracting all the values of the space from the reference 

value of the metric, one centers the space with the reference geometry. Finally, the 

objective function is found by squaring the space.  

𝑂𝐹 = (𝑓(𝑎, 𝑏, 𝑐)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑓(𝑎, 𝑏, 𝑐)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)2 

The resulting objective function solution space uniquely defines the reference 

geometry and sets it at zero.  

0 = 𝑓(𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟) 

 In other words, an ideal solution space is one where the OF has only one zero that 

is uniquely mapped by the reference parameters. 

Realistically, one should expect a surjective map between a, b, c and the objective 

function. Then, it is the user’s job to find the appropriate global minima of the solution 

space. 

 

 

4.3 DEBUGGING CTH 

 

 

 A challenge to this optimization problem, and algorithmic optimization in general, 

is that if a single evaluation of the objective function is not properly calculated the entire 

scheme fails. In other words, if the black box CTH simulation does not produce an 

objective function the Dakota optimizer will abort the optimization. Therefore, it is of the 

utmost importance to keep CTH functioning properly. 
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 Post detonation, flecks of material can come off the main body of the jet. These 

flecks are very small and have proportionally low mass. As they advect through the 

domain, numerical instabilities within the CTH code will propose un-physical conditions 

for them. These can be entertaining as the hydrocode can propose temperatures well 

above that of the sun or material sound speeds that are higher than the speed of light. 

 As these instabilities present themselves, the CTH will increase its time step. 

Once the lowest allowable time step is achieved, CTH aborts the simulation prematurely. 

Since the data dump file is written only after the first and last time step, the post-

processing scripts will fail to produce an objective function. This obviously presents 

problems for Dakota as it will not receive an output to further the iterative process. 

Therefore, what started as a numerical instability manifesting on a tiny little fleck of 

material results in the total shutdown of the optimization. 

 To debug this issue, the first recourse should be to use the CTH discard section. In 

the CTH input deck, one can use this section to judiciously eliminate problematic 

material based on thermodynamic values. While this may work for individual CTH runs, 

developing discard conditions that asses all numerical instability for the entire domain of 

geometries is very difficult. In fact, as optimization studies were conducted, about one in 

five hundred runs was stopped because of this problem. 

 Instead, a different methodology was used, in conjunction with the discards, to 

combat this problem. If the simulation terminates unexpectedly, a sub-routine in the black 

box cth_simulator.sh file is activated. This process generates new liner geometry using 

parameters that are composed from original input added to a perturbation. A second 

simulation is run with the new liner. A maximum of two additional runs can be simulated 
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after the original has failed. If CTH does not conclude the third simulation, the problems 

are likely deeper than a numerical instability.  

Effectively, the accuracy of the objective function parsed from the simulation is scarified 

for the health of the entire optimization. Since the discards take care of most of the 

DTMIN issues, prevailing sentiment is that the sparse use of this technique is justified. 

 A second issue with broadly defining the parameter space is that not all parabolic 

liners will produce a suitable jet. This is inherently different from the first issue. First, the 

simulation runs to completion. Therefore, the data dump file is created and the 

perturbative geometry sub-process is not run. Second, and more important, it is generated 

by user error not numerical instability. 

 An example of a problematic shape charge with this issue is shown below. 

 

 

 

Figure 10: An illustration of poor liner geometry and corresponding jet. Observe the 

underdeveloped shaped charge jet. The parameters used for this simulation were a = 0.10, 

b = 0.20, c = 3.00. 
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Figure 11: A plot showing the y - velocity profile (from a tracer) of the problematic SC 

jet. Observe that it does not meet the three km/s minima to write to the data dump file. 

 

 

 To solve this problem, this study proposes the simple solution of shrinking the 

domain in question. If one restricts the domain to a comfortable range of values the 

problem is eliminated. However, this prohibits the user from exploring the limits of the 

domain and it does not elucidate the stark transition from the null to jet producing shaped 

charge design.  

 A more sophisticated solution would be to create an additional discrete parameter 

for Dakota to optimize. This can be a simple binary output that describes whether a well-

developed jet is formed. Of course, this requires an additional level of post-processing 

and the computational power to explore the added initial parameter domain. 

 This is left as future work. 
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5 RESULTS AND ANALYSIS 

 

 

Before one even starts with the optimization process, it is important to see that 

varies enough to be optimized. In case of this study, both objective functions are based on 

the normalized kinetic energy profile. One can plot the KE profiles generated by the 

extremal cases of the geometric domain. This acts as a check to make sure there is 

enough variation between the cases.  

 

 

 

Figure 12: A comparison of kinetic energy profiles from various geometries. Sharp 

Geometry: a = 1.00, b=1.50, c=3.00 Reference Geometry: a = 0.30, b = 0.40, c=5.00 Flat 

Geometry: a = 0.13, b = 0.255 c = 7.00 
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 By inspection, one observes that the extremal cases vary significantly. Therefore, 

assuming the OF is smooth, this is a space that can be optimized. 

 

 

5.1 NORMALIZED ANGLE 

 

 

The first objective function used to analyze the parabolic shape charge was the 

normalized angle metric. A parametric study was run on this space. A sample of the input 

file is shown below: 

method, 
multidim_parameter_study 
partitions = 9 9 9 

 
variables, 

continuous_design = 3 
lower_bounds         0.13  0.255  3.00 
upper_bounds         1.0   1.50   7.0 
descriptor           'A'   'B'    'C' 

  

 As one can see, nine partitions are called for each dimension. This divides the 

space 1000 times. In addition, one can see the domain that the variables can span. 

Reiterating what was stated in the Reference Run section, the target parameters are: 

𝑎 = 0.30 

𝑏 = 0.40 

𝑎 = 5.00 
 

 This study was run on ten nodes with ten parallel calculations allowed on each 

node. This means that 100 concurrent CTH simulations could be run. The results from 

this initial calculation are shown in the images below: 
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Figure 13: A collection of surfaces varying c showing relationships between a, b and OF. 

Recall that one seeks to minimize the OF therefore dark blue areas are target points. The 

first plot’s axis has been changed to match the rest of the plots. Original plots are shown 

in the appendix. 

 

 

Immediately, one observes that the functionality of the surface is comparable 

across all plots. One can describe the surface as a curved sheet with its ends pointing 

upwards. It appears that by varying the parameter “c” one affects two things. First, the 

general trend is that by increasing c the function is scaled. Specifically, as the left point 

decreases the right gradually increases. The exception to this is the shift seen between the 

last two plots. Here the right point is decreased while the left is increased.  
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Secondly, as these extremal points move, the “optimal valley” seems to shift 

accordingly. If the leftmost point is high the valley shifts away from it while if it moves 

down, the valley is attracted. This behavior is reminiscent of placing weights on a bed 

sheet and moving the edges of the sheet up and down. If one holds an edge of the sheet 

up high, the weight will travel away and vice versa.  

 By parsing through the array of test points, this optimization scheme found an 

optima at: 

 

 

af bf cf OF 

0.3233 0.3933 4.7778 0.1266e-8 

Table 5: The optimal parameters as found by the parametric study 

 

 

Using this insight, a gradient optimization scheme was used to probe the solution 

space and attempt to reproduce the reference result. An example input that flags this 

gradient method is shown below: 

method, 
conmin_frcg 

convergence_tolerance = 1e-8 
max_iterations = 100 

 
variables, 

continuous_design = 3 
cdv_initial_point    .6    0.1   6.50 
lower bounds         0.0   -1.0  3.00 

           upper bounds         1.5   1.00  7.0 
          descriptor           'A'   'B'   'C' 

 

As one can see, the domain for a, b and c has been increased. This should not 

influence the results as the gradient should keep the function bounded. However, if the 

function does escape the parameter study domain, this would indicate an unknown 

process is occurring. In other words, it is a good check. 
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Displayed below is a table of seven different optimization studies.  

 

 

Run ai bi ci af bf cf OF 

1 0.60 0.10 6.50 0.6001 0.0772 6.5009 0.3046e-2 

2 0.50 0.20 6.00 0.4972 0.1986 6.0003 0.1658e-2 

3 0.50 0.50 5.00 0.4864 0.5129 4.9734 0.2835e-2 

4 0.15 0.30 3.25 0.1513 0.3006 3.2501 0.1988e-1 

5 0.30 0.40 5.00 0.3054 0.4003 5.0032 0.5356e-5 

6 0.3233 0.3933 4.7778 0.3241 0.3933 0.4778 0.1266e-8 

7 0.1167 0.8632 6.5468 0.1142 0.9142 6.5446 0.3895e-8 

Table 6: A comparison of a gradient optimization study run with different initial 

parameters. Run 1-3 are arbitrary points. Run 4 is on the “Hill” to the lower left of the 

domain. Run 5 is run on the reference point. Run 6 is on the minima found by the 

multidim param study. Run 7 is run on the Soga point (shown later). 

 

 

 These results are largely unsatisfactory. When examining the Dakota output files, 

the low objective function value suggests that all results have converged upon a valid 

solution. However, scrutinizing the final a, b and c values, it is evident that the 

optimization scheme did not march far and that every solution that is displayed is caught 

in some local minima. Additionally, the small variation between the input and output 

parameters indicates that these are not minima characteristic to the objective function, 

rather they are valleys caused by the noise of the CTH simulations.  

Additionally, it is concerning that even Run 5, which was initialized at the target 

coordinates, traveled to an objective function that was greater than objective function 

values at supposed non-solutions. However, this may be explained by some numerical 

artifact. 

In summary, since this gradient method is too susceptible to converge on local 

minima, a new methodology that searches for global minima needs to be implemented. 
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 Therefore, the natural optimization scheme to use next is a gradient-free genetic 

algorithm. For this particular case study, a single objective function genetic algorithm (or 

evolutionary algorithm) is used. 

method, 
     soga 
         max_iterations = 1000 
         population_size = 50 

 
variables, 

continuous_design = 3 
      lower_bounds         0.1   0.2  3.00 

upper_bounds         1.0   1.50  7.0 
descriptor           'A'   'B'   'C' 

  

 For this run, the number of maximum iterations is set to 1000 and the initial 

population size is set to 50. Additionally, one can see, the domain is once again 

constricted. This is due to the problems outlined in the Debugging CTH section. To 

summarize, a larger domain introduces geometries that do not produce valid jets. 

Therefore, instead of developing methodologies to deal with these “bad” geometries, the 

geometries are omitted from the domain. 

 On these settings, the Soga optimizer uses all 1000 iterations. The optimal 

geometry that the Soga optimizer selected is as follows: 

 

 

af bf cf OF 

0.1167 0.8632 6.5468 3.0377e-10 

Table 7: The optimal parameters found by the Soga study 

 

 

Below a figure reporting the various Soga iterations is displayed. The color 

scheme represents the calculated objective function at each point. Once again, dark blue 

is considered optimal. 
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Figure 14: A scatterplot illustrating the trial points chosen by the Soga algorithm. The 

color scale displays the value of the normalized angle objective function 

 

 

 While one can say that the Soga algorithm does a good job focusing on areas 

where the global min might be, there is still the problem that the target parameters are not 

being reproduced. 

 Therefore, a shift in approach is necessary. Perhaps the most enlightening 

optimization was the parameter study. If it is true that c is just a scaling factor, then it can 

be removed from the objective function.  

Indeed, the Soga run also supports this conclusion. Looking at the Soga scatter 

plot, there appears to be a column of test points that originate from the a-b plane and rise 
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along the c axis. This would be a clear indicator that the objective function is independent 

of c. 

A possible technical explanation could revolve around the fact that the actual 

shape of the liner is independent from c. When the liner is defined, c is just the length 

where the liner is created. Therefore, there exists a family of identically shaped liners 

who are just being raised or lowered along the y axis. In effect, the only role c has is to 

increase the amount of explosive below the liner. It is fathomable to think that the 

objective function is independent of c. 

Therefore, one can reformulate the optimization problem as a two-variable 

minimization! Now, keeping c constant at 5.00, one redefines the objective function as: 

𝑂𝐹 = 𝑓(𝑎, 𝑏) 

 One can repeat the parameter study and Soga optimization. The gradient based 

optimization is not repeated as it will still be influenced by local noise. The optima from 

both simulations are shown in the table below: 

 

 

 af bf OF 

Parameter Study 0.3100 0.3733 2.7342e-7 

Soga 0.1910 0.7659 3.4237e-9 

Table 8: A comparison showing the optima obtained by the parameter study and Soga 

optimizer on the a and b space. 
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Figure 15: The normalized angle objective function surface with respect to a and b 

 

Figure 16: The scatter plot of test points chosen by the Soga algorithm in a and b space.  
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 Looking at both plots (especially the parameter study surface) it becomes evident 

that, unfortunately, a unique minima is not defined. Instead the objective function 

exhibits a family of solutions that lie in the “optimal valley.” One can slice the surface 

into multiple a, OF planes and select the minima of each plot. By fitting a linear curve to 

the minimal values, an expression is obtained explicitly relating the relationship between 

optimal a and b. This correlation is illustrated on the graph below. 

   

 

 

Figure 17: The a and b surface of the normalized angle objective function with a linear fit 

of minima 

 

 

 

 The solution space is visibly degenerate as the minima of the objective function is 

not uniquely represented by ar and br.  
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The equation of the line expressing the degenerate solution set is given by: 

𝑏 = ∅𝑎 + 𝜏 

For ∅ = −3.291 𝑎𝑛𝑑 𝜏 = 1.424 

 

In other words, going back to how the objective function is defined, any a and b 

parameters that lie along that line produce a shaped charge jet whose kinetic energy 

profile has the same slope as the reference kinetic energy profile.  

 While this is not the result that was expected, mathematically, it is a very 

interesting outcome. It would be one thing if there existed a set of points that expressed 

local or global minima. However, this case does not produce those kinds of unique 

solutions. What is observed instead is a linear solution space between a and b.  

 Usually, this type of space is characterized by a system which is under-

constrained (Shilov, 1977). In other words, there is a missing parameter which was not 

considered.   

 A second, more probable explanation, is that the functionality of this solution 

space is naturally produced by the physics of the CTH code. Reference the objective 

function. 

𝑂𝐹 =  (𝜃𝑟 − 𝜃𝑖)2 

 Considering 𝜃𝑟 is a constant and 𝜃𝑖 can be expressed as a CTH function of a and 

b, this can be rewritten as: 

𝑂𝐹 =  (𝜃𝑟 − 𝐶𝑇𝐻(𝑎, 𝑏))2 

Looking through this result, one can reinterpret the a, b and OF surface as a 

paraboloid with some CTH functionality at its minima. What is interesting is that it 
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appears like the parabola is rotated from the a, OF plane to incorporate some 

functionality in b.  

In any case, one can gain insight by selecting from the family of solution 

geometries to analyze the respective KE profiles. Six different shaped charge geometries 

are shown below.  

 

 

 
Figure 18: Displayed above are different shaped charge geometries with their respective a 

and b values generated from 𝑏 = −3.291 𝑎 + 1.424. 

 

 

 
 Pictured below are different comparisons displaying the resulting normalized 

kinetic energy profiles. 
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Figure 19: Illustrated above are the plots of each normalized KE profile. Observe that 

while the slopes are all very similar, there are differences with the length of the profile. 

 

 

KE=mx+b a=0.20 a=0.25 a=0.30 a=0.35 a=0.40 a=0.45 

m 0.8226 0.8176 0.8276 0.8256 0.8191 0.8198 

b 0.8026 -0.7920 -0.8050 -0.7990 -0.7867 -0.7843 

Table 9: Above a comparison of the coefficients of the linear curve fit of the normalized 

KE profile. Observe that, while the values of the slope stay uniform, there are differences 

in the y-intercept values. 

  

 

  These comparisons are very illuminating. It appears that, while the slope of the 

KE profiles is the same, the total kinetic energy is different! This makes sense as the 

objective function is a measure of the slope of the KE profile, not its magnitude. Using 

the KE profile’s y-intercept as the “missing parameter” one can explain the degeneracy in 
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the solution space. Therefore, one can describe the functionality of the objective function 

by the geometric parameters a and b and the y-intercept of the KE fit.  

𝑂𝐹 = 𝑓(𝑎𝑔𝑒𝑜𝑚, 𝑏𝑔𝑒𝑜𝑚, 𝑏𝐾𝐸 𝑦−𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) 

 Therefore, by constraining the additional y-intercept parameter, one can uniquely 

define a relationship between the shaped charge geometry and the kinetic energy profile 

of the resulting jet. Unfortunately, this parameter cannot be established before to the 

shaped charge’s detonation. There is no way to know the magnitude of the jet kinetic 

energy a priori. Since the only way to measure this value is after the detonation, this is a 

natural setup for a multiple objective function optimization problem. However, since this 

study focuses solely on single objective problems, this next step is left as future work. 

 

 

5.2 REGRESSION ANALYSIS 

 A secondary group of studies was conducted using the linear regression metric to 

gauge to the parameter space. The procedure for this study is like the first however no 

gradient schemes are employed.  

The results from a multidimensional parameter study are shown below. 
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Figure 20: Surface plots of a, b versus linear regression OF at different c values. The OF 

axis has been changed to properly compare the solution surface. Original plots are shown 

in the appendix. 

 

 These results are interesting because they strongly resemble the surfaces produced 

by the normalized angle criterion.  This suggests that the behavior of the objective 

function is governed by the physics of the CTH simulation and not the mathematical 

processes of the post-processing. 

 Additionally, one can run a Soga optimization across them domain. This result is 

displayed below. 



 50 

 

 

Figure 21: A scatterplot illustrating the trial points chosen by the Soga algorithm. The 

color scale displays the value of the linear regression objective function 

 

 

These results are also comparable to the Normalized Angle Soga run. Once again, 

it appears that the c parameter does not influence the overall functionality of the system. 

This is best illustrated in the Soga scatter plot by the column of data points that are 

chosen.  

All together, these results either suggest that the linear regression objective 

function is much more related to the normalized angle objective function or that the 

physics in the CTH simulation dominates the functionality of these objective functions.  

This point is reinforced by the two-variable parameter study shown below. 
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Figure 22: The two-variable surface calculated from the linear regression objective 

function. 

 

 

Once again, this surface strongly resembles the two-variable surface that was 

generated by the Normalized Angle criterion. 
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6 CONCLUSION AND FUTURE WORK 

 

 

In conclusion, the way that the shaped charge liner was parameterized and the 

methodology used to architect the objective functions has produced a relationship 

between parameters defining liner geometry. This relationship outlines how different 

geometries can produce similar shaped charge jets.  

 This result was surprising as the objective function minima was not unique to the 

reference geometry used originally used to create it. However, by looking at the kinetic 

energy profiles generated by the family of solutions, one can conclude that the missing 

parameter producing the degeneracy is related to the maximum kinetic energy in the jet. 

This sets up a multiple objective optimization problem where both the slope and the y-

intercept of the KE profile are optimized. 

 While the result hypothesized by this work was not reached, an optimization 

methodology has been established that can be wieldy applied to the design of future 

energetic material systems. Ideally, one could choose an objective function (such as 

maximum kinetic energy) and the optimization would produce the ideal design. To this 

end, future work can be done to improve the methodologies that were used. 

One can always introduce techniques that improve computational efficiency. With 

regards to the CTH simulations, resolving the computational mesh with AMR would give 

the user the ability to increase resolution around areas in question without sacrificing 

computational time. Additionally, the ability to run individual CTH simulations in 

parallel would greatly impact computational efficiency. 

 However, most improvements primarily regard the parameterization and post-

processing techniques used to create an objective function. Future work should increase 
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the number of parameters that control the shaped charge’s liner. This could be as simple 

as increasing the order of the polynomial that defines the liner however this approach will 

always impose a constrained family of shapes on the liner. Alternatively, one can define 

the liner with several points but leave the x and y locations variable. This approach would 

yield a wider range of solutions. 

Work can be done to develop more sophisticated objective functions. One can 

always choose to optimize a metric when designing a liner however, it would be 

interesting to exploit different optimization techniques that explore multiple objective 

functions. An easy next step could be to exert control over both thickness and length of 

the jet.  

 Finally, one could study the impact of different EOS and strength models has on 

the geometry of a shaped charge. This would combine many different parametric inputs, 

controlling EOS models and liner geometry, with a set of outputs measuring jet kinetic 

energy or shape as well as thermodynamic states of the jet. 
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8 APPENDIX 

 

 

Original Plots  

 Below are the original parameter study plots generated with the normalized angle 

objective function. 
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Figure 1-A: The original, non-scaled surface plots of the normalized angle objective 

function 
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Below are the original parameter study plots generated with the linear regression 

objective function. 
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Figure 2-A: The original, non-scaled surface plots of the linear regression objective 

function 
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Conservation of Mass 

 The following derivation will prove that due to the way the shaped charge liner is 

parameterized, mass will always be conserved for variable a, b and c and constant Δℎ. 

Displayed below is the parabolic geometry that defines the shaped charge liner. 

 

 

 

Figure 3-A: A plot of the parabolic shaped charge liner 

 

 

Since the material remains constant then the density thought the liner is constant 

as well. Therefore, when one discusses conservation of mass, one discusses conservation 

of “volume” or area contained between the two curves. 
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To calculate the area contained between both curves one can set up an integral as 

following: 

𝐴 =  ∫ 𝑦1 𝑑𝑥 − ∫ 𝑦2 𝑑𝑥 

 

Inserting known values, this becomes: 

 

𝐴 =  ∫ (𝑎𝑥2 + 𝑏𝑥 + 𝑐)
3

0

 𝑑𝑥 −  ∫ (𝑎𝑥2 + 𝑏𝑥 + 𝑐 − Δℎ)
3

0

 𝑑𝑥 

 

By inspection, the identical terms cancel and this simplifies down to: 

 

A =  3 ∗ Δℎ 

 

Therefore, one can concluded that the area has no dependence on variables a, b 

and c. This result may seem very counter-intuitive at first however it can be explained 

simply. If one imagines a rectangle whose length is separated into infinitesimal strips, 

one can offset these strips and create any “double profile” if it is separated by a constant 

value. This is exactly the case presented by the double parabola problem. In fact, the area 

derived from the two parabolas is identical to the area of a rectangle.  

 

 

Input Scripts 

 The entire optimization study is launched with a PBS launch script. This script is 

responsible for submitting the optimization job to the PBS queue and for establishing the 
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environment for the shell scripts to run in. This includes setting a path for Dakota, CTH 

and loading the appropriate python modules. 

 This script is displayed below. 

 
  1 #!/bin/bash 
  2 #PBS -l select=10:ncpus=36:mpiprocs=5 
  3 #PBS -l walltime=18:00:00 
  4 #PBS -q standard 
  5 #PBS -A ERDCS97270PET 
 
  6 #PBS -N R_Squared 
  7 #PBS -j oe 
  8 # 
  9 source ${MODULESHOME}/init/bash 
 10 cd $PBS_O_WORKDIR 
 11  
 12 module load dakota/6.6_parallel 
 13 module load cth/12.0 
 14  
 15 module swap compiler compiler/gcc 
 16 module load costinit 
 17 module load python3/gnu/3.6.7 
 18 module load numpy/gnu/1.14.2 
 19 module load scipy/gnu/1.1.0 
 20  
 21 export CTHPATH="/p/home/apps/cth/CTHV12.0" 
 22 export CTHBINPATH="/p/home/apps/cth/CTHV12.0/bin" 
 23 export CTHMPIBINPATH="/p/home/apps/cth/CTHV12.0/bin" 
 24 export CTHDATA="/p/home/apps/cth/CTHV12.0/data" 
 25 export MPIRUN="mpiexec_mpt -np" 
 26 export ncpus=$BC_MPI_TASKS_ALLOC 
 27 export input=dakota_cth_SC.in 
 28 export output=output.out 
 29  
 30 $MPIRUN $ncpus dakota -i $input -o $output 
 

 

 Lines 2 through 7 set PBS variables. These include the wall time, the priority and 

name of the job. In addition, one must specify the number of nodes and the number of 

parallel processes allowed on each node. Multiplying these two numbers together one can 

figure out the total number of CTH jobs that can be run at once. As previously defined in 
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the body of this work, this is the concurrency of the optimization. Therefore, it cannot 

exceed the concurrency limit set by the optimization scheme. 

In this example, the number of nodes is 10 and the number of parallel processes 

allowed on each node is 5. In total, this supports 50 concurrent simulations. The ncpus 

value represents the number of cores per node. For Topaz, this is set constant at 36. 

Lines 12 through 19 load the modules necessary for the optimization. These include 

Dakota, CTH and the various python modules. Lines 21 through 24 set the paths for 

CTH. Finally, the rest of the sets the global variables and Dakota input script. 

Once the optimization study finally starts running, Dakota is initiated via the input 

script. The following script is a broad representation of the various controls used to 

initiate the Dakota optimization. 

 
  1 environment 
  2  tabular_data 
  3     tabular_data_file = 'cth_dakota_simulations.dat' 
  4      
  5 method, 
  6      multidim_parameter_study 
  7          partitions = 9 9 9 
  8           
  9      conmin_frcg 
 10          convergence_tolerance = 1e-8 
 11          max_iterations = 100 
 12           
 13      soga 
 14          max_iterations = 1000 
 15          population_size = 50 
 16           
 17 variables, 
 18         continuous_design = 3 
 19         cdv_initial_point    .5    1.00  3.5     
 20         lower_bounds         0.1   0.2  3.00 
 21         upper_bounds         1.0   1.50  7.0 
 22         descriptor           'A'   'B'   'C' 
 23          
 24 interface, 
 25  
 26         fork, 
 27             parameters_file = 'params.in' 
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 28             results_file    = 'results.out' 
 29             work_directory   
 30               named = 'workdir' 
 31               directory_tag 
 32               directory_save 
 33             file_save #Comment out later 
 34             analysis_driver = 'cth_simulator.sh' 
 35              
 36 responses,   
 37         num_objective_functions = 1 
 38         no_gradients 
 39    numerical_gradients                   
 40      method_source dakota 
 41      interval_type central 
 42         no_hessians 

 

 

 Since this is a broad representation of what was used lines must be commented 

out according to the type of optimization being conducted. Lines 6-15 control the type of 

optimization scheme. One must comment out everything except lines outlining the 

methodology one desires.  

The next section controlling the type of variables being optimized generally stays 

the same from optimization to optimization. However, the command specifying an initial 

point at line 19 must be commented out when not using a gradient scheme. 

The “environment” and “interface” sections control the directory structures of an 

optimization and how data gets written to files. Therefore, this remains unchanged 

throughout all optimization studies.  

Finally, the last section controls settings regarding the objective function. As was 

outlined in previous sections, line 37 will always stay the same as this study focuses on 

optimizing one objective function. Depending on whether one is conducting a gradient 

study, lines 39-41 alternate getting commented out with line 38. Hessian analysis was not 

performed in this work.  
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 As one sees in line 34, what Dakota will be interacting with is a program called 

cth_simulator.sh. This shell script is meant to act as the CTH “black box.” Dakota will 

pass its iterative parameters to it through a file called params.in and it will receive the 

objective function from results.out (lines 27 and 28). This shell script is shown below. 

 
  1 #!/bin/bash 
  2  
  3 ############ 
  4 #Geometry and CTH step 
  5 cp ../cth.template.in ../Geometry.template ../CurveFit 

../cth.processor.sh ./ 
  6 dprepro params.in Geometry.template Geometry 
  7 ./Geometry 1 
  8 ./cth.processor.sh 
  9 ############# 
 10 #PATCHING STEP 
 11 #if maximum.out does not exist cth failed. Rerun with noise 

params 
 12 FILE=maximum.out 
 13 if test -f "$FILE"; then 
 14     echo "$FILE does exist" 
 15     max=$(cat maximum.out) 
 16     echo 'THIS IS THE MAXIMUM' 
 17     echo $max 
 18     #Formats results.out 
 19     echo $max"     f" >> results.out 
 20      
 21 else 
 22     echo "$FILE does not exist" 
 23     rm rscth 
 24     rm spcth 
 25     rm *.jpg 
 26     rm shape.in 
 27     rm hscth 
 28     rm octh 
 29     rm cthout. 
 30     rm *.dat 
 31     ./Geometry 2 
 32     ./cth.processor.sh 
 33      
 34     if test -f "$FILE"; then 
 35        max=$(cat maximum.out) 
 36        echo 'THIS IS THE MAXIMUM ON SECOND TRY' 
 37        echo $max 
 38        echo $max"     f" >> results.out 
 39         
 40     else 
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 41        echo "$FILE STILL DOES NOT EXIST" 
 42        rm rscth 
 43        rm spcth 
 44        rm *.jpg 
 45        rm shape.in 
 46        rm hscth 
 47        rm octh 
 48        rm cthout. 
 49        rm *.dat 
 50        ./Geometry 3 
 51        ./cth.processor.sh 
 52        max=$(cat maximum.out) 
 53        echo 'THIS IS THE MAXIMUM ON THIRD TRY' 
 54        echo $max 
 55        echo $max"     f" >> results.out 
 56     fi 
 57 fi 

 

 

The cth_simulator.sh script is divided in two main parts. Lines 4-8 set up a 

regular Dakota iteration. When Dakota launches a new iteration by running this script, it 

creates a new work directory to run the individual simulation. Therefore, line 5 goes back 

into the original directory and copies the necessary files. 

Line 6 exploits the dprepro program that is built into Dakota. This program passes 

the parameters that Dakota outputs into the Geomoetry.template file creating the 

Geometry executable. Once executed, a set of files containing the coordinate defining the 

liner and corresponding explosive shape are created. 

The cth.processor.sh script is executed. This script is responsible for the actual 

CTH simulation and post-processing. It will be shown later. 

The second portion of cth_simulator.sh concerns the existence of a maximum.out 

file. As was explained in the body of the work, the existence of this file indicates if CTH 

simulation ran to completion or if it was terminated due to a time step issue. Therefore, 

lines 12 and 13 test the validity of the simulation. If there are no problems, the objective 

function is printed to screen and a results.out file is created for Dakota to iterate on. The 
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“f” that is inserted after the OF communicates that what is displayed is a floating-point 

number. The simulation continues smoothly. 

However, if the conditional at line 13 fails, the CTH simulation will be rerun with 

new values generated by the Geometry executable. Before this happens, an error message 

is printed to screen and the CTH output files are removed so that new files can be created. 

The Geometry and cth.processor.sh scripts are executed as usual with the exception that 

the flag “2” is used when generating the liner points. This indicates it is the second time 

CTH is being run and the corresponding adjusted values should be used.  

This test is repeated a second time. A maximum of three CTH simulations can be 

run before the program “gives up” and the optimization fails. 

Displayed below is the Geometry.template python script. 

 
  1 #!/usr/bin/env python3 
  2  
  3 import sys 
  4 import numpy as np 
  5 ########################### 
  6 #Conditional For Patch 
  7 ########################## 
  8 runtype = sys.argv[1] 
  9 if runtype == 1: 
 10 ##################### 
 11 #VARIABLES 
 12 #################### 
 13 #Parabolic curve  
 14  a = {A} 
 15  b = {B} 
 16  c = {C} 
 17 elif runtype == 2: 
 18  a = {A}+np.random.uniform()/10000 
 19  b = {B}+np.random.uniform()/10000 
 20  c = {C}+np.random.uniform()/10000 
 21  
 22 else: 
 23  a = {A}+np.random.uniform()/10000 
 24  b = {B}+np.random.uniform()/10000 
 25  c = {C}+np.random.uniform()/10000 
 26  
 27 t = .2 
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 28 w = c-t 
 29  
 30 #################### 
 31 #UPPER LINE Liner 
 32 with open('Xval', 'w') as f: 
 33     for item in xupper: 
 34         f.write("%s\\n" % item) 
 35  
 36 yupper = a*xupper**2+b*xupper+c 
 37  
 38 with open('Yval', 'w') as f: 
 39     for item in yupper: 
 40         f.write("%s\\n" % item) 
 41      
 42 ##################### 
 43 #LOWER LINE Liner 
 44 xlower = xupper[::-1] 
 45  
 46 with open('Xval', 'a') as f: 
 47     for item in xlower: 
 48         f.write("%s\\n" % item) 
 49      
 50 ylower = a*xlower**2+b*xlower+w 
 51 with open('Yval', 'a') as f: 
 52     for item in ylower: 
 53         f.write("%s\\n" % item) 
 54  
 55 ########################## 
 56 #Creates Coordinate file 
 57  
 58 with open('Coordinates', 'w') as file3: 
 59         with open('Xval', 'r') as file1: 
 60                 with open('Yval', 'r') as file2: 
 61                         for line1, line2 in zip(file1, file2): 
 62                                 print( line1.strip(), 

line2.strip(), file = file3 ) 
 63  
 64 ############################# 
 65 #Explosive 
 66 ############################# 
 67 exlower = xupper 
 68  
 69 with open('xexplosive', 'w') as f: 
 70     for item in exlower: 
 71         f.write("%s\\n" % item) 
 72  
 73 eylower = a*exlower**2+b*exlower+w 
 74 with open('yexplosive', 'w') as f: 
 75     for item in eylower: 
 76         f.write("%s\\n" % item) 
 77  
 78 with open('Explosive', 'w') as file3: 
 79         with open('xexplosive', 'r') as file1: 
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 80                 with open('yexplosive', 'r') as file2: 
 81                         for line1, line2 in zip(file1, file2): 
 82                                 print( line1.strip(), 

line2.strip(), file = file3 ) 
 

 

Lines 3 and 4 import the necessary modules for the script to run. Lines 8 and 9 

identify what type of simulation is being run and point to the appropriate parameters that 

are used to generate the shaped charges geometry. These parameters are defined at lines 

14 through 25. One can see that for the second and third CTH runs, the original variables 

are perturbed by a small random value.  

Dakota’s dprepro searches for variables in brackets and substitutes its values 

accordingly. An idiosyncrasy of dprepro is that it also eliminates the first occurrence of 

the forward slash. For this reason, on lines 34, 40, 48, 53, 71 and 76 a second forward 

slash is inserted.  

The upper and lower liner geometries are defined by parabolas on lines 36 and 50. 

Naturally, the order that these points are listed in is important therefore, the x values on 

the lower parabola are reversed on line 44. Lines 56 through 62 create a file named 

Coordinates with all of the generated points. 

Similarly, lines 67 through 76 yield the points needed to define the upper surface 

of the explosive and lines 78 through 82 create a file named Explosive with these points. 

Now one must open the Coordinates and Explosive file and insert the points in the 

cth.template.in file. This is done in the first steps of the cth.processor.sh script displayed 

below. 

 
  1 #!/bin/bash 
  2  
  3 ############## 
  4 #Add the word "point" to Coordinates then creates POINTS 
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  5 for number in {1..30} 
  6 do 
  7 line=$(sed -n "$number p" Coordinates) 
  8 point="point $line" 
  9 echo "$point" >> POINTS 
 10 done 
 11  
 12 for number in {1..15} 
 13 do 
 14 line=$(sed -n "$number p" Explosive) 
 15 point="point $line" 
 16 echo "$point" >> EXPLOSIVE 
 17 done 
 18 ################################# 
 19 #Adds POINTS to cth.template.in 
 20 li=$(awk '/\*insertliner/{ print NR; exit }' cth.template.in) 
 21 awk 'NR>'$li'{while((getline a < "POINTS") > 0){print a}}1' 

cth.template.in>> liner 
 22  
 23 li=$(awk '/\insertexplosive/{ print NR; exit }' liner) 
 24 awk 'NR>'$li'{while((getline a < "EXPLOSIVE") > 0){print a}}1' 

liner>> shape.in 
 25  
 26 rm Coordinates  Xval Yval liner POINTS xexplosive yexplosive 

Explosive EXPLOSIVE 
 27 ##############   
 28 #Executes 
 29 echo cth shape.in 
 30 $CTHBINPATH/cth shape.in >& cthout.$num 
 31 ###############  
 32 #Clean up excess data dump files 
 33 for file in $(ls *.dat); do if [[ ! -s $file ]]; then rm $file; 

fi; done 
 34  
 35  
 36 #FOR DATA DUMP 
 37 #Sorts files and combines processor files into 1 timestep file 
 38 files=$(ls DataDump*) 
 39 fileindex=$(echo "${files}" |cut -c 9-14) 
 40 index=$(echo "$fileindex" | xargs -n1 | sort -u | xargs) 
 41  
 42 for i in $index; do 
 43     list=$(echo "DataDump$i") 
 44     cat $list* >> File.$i 
 45      
 46    if [ $i -eq 0 ]; then 
 47       rm File.$i  
 48    else 
 49       sed -i '1d' File.$i 
 50 #     awk '{ print $1 }' File.$i >> XLOC.File.$i 
 51       awk '{ print $2 }' File.$i >> YLOC.File.$i 
 52 #     awk '{ print $3 }' File.$i >> DX.File.$i 
 53 #     awk '{ print $4 }' File.$i >> DY.File.$i 
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 54       awk '{ print $5 }' File.$i >> KEFile.$i 
 55 ######### 
 56 #Optimization STEP 
 57       ./CurveFit KEFile.$i YLOC.File.$i >> maximum.out 
 58 ########### 
 59       rm *File.$i 
 60    fi 
 61 done 
 
 

 Lines 4 through 24 accomplish this task. Due to CTH input deck format, the first 

section (4-17) adds the word “point” to each line in the Coordinates and Explosive files. 

Then, lines 20 through 24 search the CTH input deck for the insertliner and 

insertexplosive flags and insert the geometries respectively. This process changes 

cth.template.in to the final input deck: shape.in. 

 After cleaning up excess files, the CTH simulation is launched on line 30 with the 

appropriate input deck.  

 The CTH simulation will produce a data dump files that divide the computational 

domain at the beginning and at the end of the simulation. Lines 32 through 40 sort 

through these files, and combine them into one complete file. Lines 46 through 54 break 

the complete dat file into the required data sets for the optimization. In this case, the y 

location and respective kinetic energy is used. If one creates a more involved objective 

function one could uncomment lines 50, 52 and 53 to post process the full data set. 

 Finally, on line 57 the CurveFit python script is launched post-processing the data 

into the desired objective function. This result is written on the maximum.out file. The 

CurveFit script is shown below. 

  
  1 #!/usr/bin/env python3 
  2  
  3 import sys 
  4 import numpy as np 
  5 from scipy.optimize import curve_fit 



 72 

  6 from scipy import stats 
  7  
  8 xdata = np.loadtxt(sys.argv[2]) 
  9 ydata = np.loadtxt(sys.argv[1]) 
 10  
 11 ynorm = ydata/203862000000.0 #Obtained from Reference Run 
 12 xnorm = xdata/23.2 #Obtained from Reference Run 
 13  
 14 def func(x, a, b): 
 15         return a*x+b 
 16  
 17 ################################ 
 18 #Normalized Angle 
 19 refangle = 0.43657940317644234 #Obtained from Reference Run 
 20 popt, pcov = curve_fit(func, xnorm, ynorm) 
 21 theta = np.arctan(popt[0])*2/np.pi 
 22 print((refangle-theta)**2) 
 23  
 24 #################### 
 25 #R_SQUARED 
 26 A = 0.81826164 #Obtained from Reference Run 
 27 B = -0.78969017 #Obtained from Reference Run 
 28 yref = func(xnorm, A, B) 
 29  
 30 slope, intercept, r_value, p_value, std_err = 

stats.linregress(ynorm, yref) 
 31  
 32 print(1-r_value**2) 
 33  
 34 #For Scaled Version 
 35 OB = (1-r_value**2)**.5 
 36 print(OB) 
 

 

 Lines 3 through 6 load the necessary modules and lines 8 and 9 load the data fed 

in by the cth.processor.sh script. Subsequently, this data is normalized as previously 

described. Depending on what objective function the study demands, the second and third 

sections are commented out accordingly. At the end of the routine, the objective function 

is printed and this result ends up written on the maximum.out file. 

Altogether, the full schematic of how all shell scripts and input decks interact is 

illustrated below. 
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Figure 4-A: A full schematic of the optimization study 

 

 

Finally, and perhaps most importantly, the cth.template.in script is displayed 

below. 

 
  1 **************************************************************** 
  2 *eor* cthin 
  3 **************************************************************** 
  4 * 
  5 * CTH template script 
  6 * 
  7 **************************************************************** 
  8 * 
  9 control 
 10   tstop=80.e-6 
 11   mmp 
 12 endcontrol 
 13 * 
 14 **************************************************************** 
 15 * 
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 16 mesh 
 17   block  geometry 2dc  type e 
 18     x0=0.0 
 19       x1  dxf 0.03  dxl 0.03  w 3.5 
 20       x2  dxf 0.05  dxl 0.35  w 1.5 
 21    endx 
 22     y0=0.0 
 23       y1  dyf 0.25  dyl 0.05  w 3.0 
 24       y2  dyf 0.03  dyl 0.03  w 10.0 
 25       y4  dyf 0.1  dyl 0.1  w 50.0 
 26     endy 
 27     xact=0.0,1.0 
 28     yact=0.0,5.0 
 29   endblock 
 30 endmesh 
 31 * 
 32 **************************************************************** 
 33 * 
 34 spy 
 35  Save("M,VOLM,VX,VY,P,KE"); 
 36  SaveTime(0, 80e-6); 
 37  PlotTime(0, 80e-6); 
 38  
 39  ImageFormat(1024,768); 
 40  
 41  define main() 
 42  { 
 43    pprintf(" PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME); 
 44    XBMirror(ON); 
 45    XLimits(-5,5); 
 46    YLimits(0,20); 
 47  
 48    Image("shap-Pressure"); 
 49     Window(0,0,0.75,1); 
 50     MatColors(DIM_GRAY,LIGHT_GRAY); 
 51     Plot2DMats(0.0001); 
 52     ColorMapRange(2e6,1e9,LOG_MAP); 
 53     ColorMapClipping(ON,OFF); 
 54     Label(sprintf("Pressure Time=%0.2f |c03BC|cs",TIME*1.E6)); 
 55     Plot2D("P"); 
 56     Draw2DTracers(3); 
 57     Draw2DMatContour; 
 58     DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9); 
 59    EndImage; 
 60  
 61    XLimits(-20,20); 
 62    YLimits(0,74); 
 63  
 64    Image("shap-Mats"); 
 65     Window(0,0,0.75,1); 
 66     MatColors(PERU,YELLOW); 
 67     Label(sprintf("Materials Time=%0.2f |c03BC|cs",TIME*1.E6)); 
 68     Plot2DMats; 
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 69     MatNames("Copper","PBX-9404"); 
 70     DrawMatLegend("",0.75,0.2,0.99,0.9); 
 71    EndImage; 
 72  
 73    Image("shap-Density"); 
 74     Window(0,0,0.75,1); 
 75     ColorMapRange(1,9); 
 76     ColorMapClipping(ON,OFF); 
 77     Label(sprintf("Density Time=%0.2f |c03BC|cs",TIME*1.E6)); 
 78     Plot2D("DENS"); 
 79     DrawColorMap("(dyn/cm^2^)",0.75,0.4,0.9,0.9); 
 80    EndImage; 
 81  
 82    Image("shap-1d-YV"); 
 83     Fix1D(0,0,0,74); 
 84     Label(sprintf("Y-Velocity Time=%0.2f |c03BC|cs",TIME*1.E6)); 
 85     Plot1D("VY",ON,AUTOSCALE); 
 86    EndImage; 
 87  
 88    Image("shap-1d-dens"); 
 89     Fix1D(0,0,0,74); 
 90     Label(sprintf("Density Time=%0.2f |c03BC|cs",TIME*1.E6)); 
 91     Plot1D("DENS",ON,AUTOSCALE); 
 92    EndImage; 
 93  
 94    XLimits(0,0.05); 
 95  
 96   DataOut("DataDump","KE"); 
 97   DataOutFilter("VY",3e5,1e99); 
 98  } 
 99  
100  SaveHis("GLOBAL,VX,VY,P,DENS"); 
101  SaveTracer(ALL); 
102  HisTime(0,1.e-8); 
103  
104  define spyhis_main() 
105  { 
106    HisLoad(1,"hscth",OFF); 
107    HisImageName("shap_history"); 
108    Label("Y velocity at tracer 1"); 
109    TPlot("VY.1",1,ON); 
110  } 
111 endspy 
112 * 
113 **************************************************************** 
114 * 
115 diatoms 
116 * 
117   package 'CU LINER - 1' 
118     material 1 
119     pressure 1.0e6 
120     insert uds 
121 *insertliner 
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122     endinsert 
123   endpackage 
124 * 
125   package 'COMP A3 CHARGE - 1' 
126     material 2 
127     pressure 1.0e6 
128     insert uds 
129       point 0.0      0.0 
130 *insertexplosive 
131       point 3.00  5.40233 
132       point 1.59385  0.0 
133     endinsert 
134   endpackage 
135 * 
136 enddiatoms 
137 * 
138 **************************************************************** 
139 * 
140 eos 
141   mat1 mgrun COPPER 
142   mat2 jwl PBX-9404-3 
143 endeos 
144 * 
145 **************************************************************** 
146 * 
147 heburn 
148   material 2  d 8.8e5  pre 1.0e12 
149     dp  0.0 0.01  ti 0.0  radius 20.0 
150 endheburn 
151 * 
152 **************************************************************** 
153 * 
154 *tracer 
155 *  add  0.0 5.19003 
156 *endtracer 
157 * 
158 **************************************************************** 
159 * 
160 convct 
161   interface=high 
162 endc 
163 * 
164 **************************************************************** 
165 * 
166 discard 
167   material 1  denl=20 dens=1e99 volf=1e-6 
168   material 1 denl=15 dens=1e99 volf=1e-6 templ=1e3 
169   material -1 dens=1e-4 densl=0.0 templ=1e4 
170 endd 
171 * 
172 **************************************************************** 
173 * 
174 edit 
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175   shortt 
176     tim=0.  dt=5e-6 
177   ends 
178   longt 
179     tim=0.  dt=10000. 
180   endl 
181   restt 
182     time=0.  dtfreq=30e-6 
183   endr 
184 endedit 
185 * 
186 **************************************************************** 
187 * 
188 mindt 
189   time=0.  dtmin=1.0e-11 
190   time=20.0e-6  dtmin=1.0e-10 
191 endm 
192 * 
193 **************************************************************** 
194 * 
195 epdata 
196   matep 1  eppvm user yield 3.5e9  poisson 0.33 
197   mix 3 
198 endep 
199 * 
200 **************************************************************** 
201 * 
202 fracts 
203   stress 
204   pfrac1=-15.0E9 
205   pfrac2=-1.0E9 
206   pfmix =-5.0E20 
207   pfvoid=-5.0E20 
208 endf 
209 * 
210 **************************************************************** 
211 * 
212 boundary 
213   bhydro 
214     block=1 
215       bxbot 0 
216       bxtop 2 
217       bybot 2 
218       bytop 2 
219     endb 
220   endh 
221 endb 
222 * 
223 **************************************************************** 
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 The input deck is largely inspired by the example CTH shaped charge file. 

However, some small modifications were made.  

First, the resolution was increased. Now there are almost seven computational 

cells spanning the length of the shaped charge in its non-detonated position. While this is 

an improvement, the standard for this type of study is to have ten computational cells 

within the material. The reason for this is that when CTH does strength modeling, it takes 

information from its nearest neighbors to develop a good value. However, if there aren’t 

enough cells defining the material, one effectively gets a hydrodynamic solution.  

Additionally, a low-resolution simulation will not properly distinguish the varying 

geometries. Therefore, when optimizing the charge, it is possible that many different 

curves produce the same objective function.  

However, while the resolution used for this study is less than optimal, these 

problems are overlooked. If indeed the resolution was so low that many curves formed 

the same objective function, the data would seem much more stepwise. Therefore, even if 

the observed data suggests that there are multiple solutions, it is unlikely to be caused by 

a problem with low resolution. 

Insofar as the accuracy of the strength model is concerned, the resolution still is 

not alarming. If this was an optimization study with the ultimate scope of designing a 

proper shape charge then accurate strength models would be of importance. However, 

seeing as this work could be considered as a proof of concept, any inaccuracies in the 

strength models can be “swept under the rug” and considered part of the “CTH black 

box.” This is not to say that a higher accuracy result would not improve the optimization 

by reducing noise. However, for the purposes of this study, it is considered unessential. 
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The materials that were simulated were PBX-9404 and copper. The PBX relied on 

a JWL model and the copper used a Mie-Gruneisen equation of state. The total 

simulation time was 80 microseconds and the Spyplot section was changed to include a 

command to output data dumps with the kinetic energy along the centerline. Here an 

additional discriminator was used that prevented centerline cells with material traveling 

slower than 3e5 cm/s to be written. 

In addition, flags were added to the diatom section. These flags were used to 

specify where the cth.processor.sh script would output the trial geometries. Finally, the 

discard section was updated to include a broader spectrum of bad values. These primarily 

concern the copper’s temperature, density and volume fraction.  
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