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ABSTRACT

COMPUTATIONAL CHARACTERIZATION OF

CELLULAR CONTRIBUTIONS TO

ELECTROENCEPHALOGRAPHY

Shane Hesprich

Marquette University, 2018

Electroencephalography (EEG) is a non-invasive technique used to measure
brain activity. Despite its near ubiquitous presence in neuroscience, very little
research has gone into connecting the electrical potentials it measures on the
scalp to the underlying network activity which generates those signals. This
results in most EEG analyses being more macroscopically focused (e.g.
coherence and correlation analyses). Despite the many uses of macroscopically
focuses analyses, limiting research to only these analyses neglects the insights
which can be gained from studying network and microcircuit architecture. The
ability to study these things through non-invasive techniques like EEG depends
upon the ability to understand how the activity of individual neurons affect the
electrical potentials recorded by EEG electrodes on the scalp. The research
presented here is designed to take the first steps towards providing that link.

Current dipole moments generated by multiple multi-compartment,
morphologically accurate, three dimensional neuron models were characterized
into a single time series called a dipole response function (DRF). We found that
when the soma of a neuron is directly stimulated to threshold, the resulting
action potential caused an excess of current which backpropagated up the
dendritic tree activating voltage gated ion channels along the way. This
backpropigation created a dipole which had a magnitude an duration greater
than the current dipoles created by neurons that were synaptically activated to
near threshold.

Additionally, we presented a novel technique, where, through the
combination of the DRFs with point source network activity via convolution,
dipoles generated by populations of neurons can be simulated. We validated this
technique at multiple spatial scales using data from both animal models and
human subjects. Our results show that this technique can provide a reasonable
representation of the extracellular fields and EEG signals generated in their



physiological counterparts. Finally, analysis of a simulated evoked potential
generated via the convolutional methodology proposed showed that ∼ 98% of the
variability of simulated signal could be accounted for by the dipoles originating
from DRFs of spiking pyramidal cells.
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1 Introduction and Specific Aims

1.1 Introduction to Electroencephalography

Electroencephalography (EEG) is a commonly used technique to measure

electrical activity of the brain. It is used clinically to diagnose conditions such as

epilepsy, encephalitis, encephalopathy, memory problems, strokes, sleep disorders

and dementia. In research, EEG has permeated almost every area of

neuroscience, from mechanistic research into motor control and sensory

perception, to gross brain functions like cognition or Alzheimer’s Disease.

Though the first human EEG was recorded in 1924 by German Psychiatrist

Hans Berger (Haas, 2003), modern understanding of the origins of EEG signals

did not begin until 1947 when Rafeal Lorente de No published his famous paper

‘Analysis of Distributions of the Action Currents of Nerve in Volume

Conductors’ (Lorente de No, 1947). The paper provided an in-depth discussion

and mathematical analysis of the fields generated by individual neurons as well

as layers of neurons. The subsequent characterization of ionic channels by Drs.

Alan Hodgkin and Andrew Huxley (Hodgkin and Huxley, 1952), formed the

foundation for understanding how neurons create the extracellular currents that

contribute to the electric fields characterized by Lorente de No. In spite of

research efforts to characterize the exact origins of EEG signals (Contreas and

Steriade, 1995; Murakami et al., 2002), there has yet to be a definitive

exploration of how the extracellular currents of individual neurons contribute to

the gross electrical potentials detected on the scalp. A widely accepted view is

that EEG signals result from the post synaptic potentials in synchronously firing

pyramidal cells on the cortex of the brain (Lopes da Silva, 2010; Olejniczak,

2006). This interpretation of the physiologic origins of EEG is justified, in part,
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by the argument that the short duration of action potentials (1-2 ms) does not

lend itself the the summative effect needed to produce a recordable signal at the

scalp. Post synaptic potentials persist for a much longer period of time ( 20-40

ms) (Lopes da Silva, 2010; Olejniczak, 2006). However, these commonly held

assumptions are based on the voltage changes recorded from the soma of neuron.

This can be misleading since the potentials recorded on the scalp come form the

extracellular currents generated by the cells, which may not relate directly to the

voltage changes in soma. The extracellular currents which are generated by

neuronal activity, can be characterized as a current dipole moment. These dipole

moments can be significantly different than the voltage traces themselves

(Murakami and Okada, 2006).

The objective of the research reported here is to investigate the assumption

that EEG signals originate from the post synaptic potentials incident in

synchronously firing pyramidal cells on the cortex of the brain. We will use

computational techniques to quantify the contributions of the spiking and post

synaptic activity of both pyramidal cells and inhibitory interneurons to

determine how they influence the current dipoles generated by populations of

neurons in the brain.

1.2 Specific Aims

In order to conduct a computational investigation like the one suggested

above we must determine how populations of neurons generate current dipole

moments, commonly considered the source of EEG signals. To determine the

contributions of cell types and cellular events to the current dipoles generated in

the brain, the research addressed the following aims.
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Aim 1: Characterize the extracellular currents generated by

multiple neuron types under a variety of states using a

morphologically constrained dipole model. In order to investigate the

neural generators of EEG signals we must characterize how neurons generate

dipoles. Using the NEURON computational framework (Carnevale and Hines,

2006), the detailed electrophysiological properties of three dimensional neurons

can be simulated (Mainen and Sejnowski, 1996). Using techniques developed by

Shingo Murakami (Murakami and Okada, 2006) simulations of three dimensional

neuron morphology and activity can be used to calculate the current dipole

generated by the neuron. This technique allows for all the electrophysiological

and morphological complexity to be reduced to a single time series, which we

refer to as a dipole response function (DRF). Dipole response functions will be

generated for multiple neuron types and multiple cellular eventsin order to

determine how each event on different neurons contribute to the total dipole.

Aim 2: Develop a dipole model of extracellular currents

generated by populations of dynamically interacting neurons that

accounts for different neuron types and cellular events. While using

morphologically accurate neurons to simulate the electrophysiology of a single

neuron is feasible, creating a network of such neurons is computationally

intensive. In order to ease the computational load, point source neurons can be

used to create a realistic network model. The network activity generated by the

point source network can then be combined with the DRFs from aim 1 to

generate a population level dipole. To validate the approach we used an

established thalamocrotical model developed by Bazenhov et al. (2002). This

model was simulates a patch of somatosensory patch cortex during active and

slow wave sleep states. This model was chosen for two reasons. First, it is

relatively simple with only four neural populations and a simple connection
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topology. Second, the network was built using intercellular recordings from a cat

(Contreas and Steriade, 1995). Data from Contreas and Steriade (1995) can be

used to validate that the dipole activity generated by this population of neurons

is truly reflective of physiologically plausible underlying network activity.

Aim 3: Use a dynamic transient network, in the form of an

evoked response, to determine how the different cell types and cellular

events contribute to the population dipole. In this aim we use the same

thalamocortical network as in aim 2, but modify it to generate an evoked

potential. After verifying the accuracy of the simulated signal against a recorded

evoked potential, the simulated signal can be broken down into its constitutive

signals. Finally, we can determine the contributions of cell type and cellular

events to the population dipole by comparing each constitutive signal to the

summed total. Additionally, this shows that the technique has predictive

capabilities (i.e. it was built to mimic SWS activity, but with minimal

modification and no a priori knowledge of network dynamics can mimic other

states).

2 Background and Significance

Electroencephalography is a passive physiological recording of electrical

potentials on the scalp. Electrodes are placed on the scalp to record potential

differences between locations on the scalp. These measured potentials are the

result of electrical currents generated in the brain and propagate to the scalp. To

interpret the brain activity associated with the potentials recorded by EEG

electrodes, it is important to first understand how these currents are generated.

This section examines the state of knowledge regarding how individual
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neurons generate current dipoles, how those individual neurons organize into

populations which create larger dipoles, and how dipole currents propagate

through the brain to be detected by the electrodes on the scalp. Each subsection

is geared towards a specific element of this process, to develop a cohesive

physiological and mathematical understanding of EEG signals from neuron to

scalp.

2.1 Extracellular Currents

Electric fields in the brain originate primarily from currents generated by

electrically active cells known as neurons. Neurons consist of three major

components; the soma, the dendrites, and the axon. The cell body of a neuron,

also known as the soma, which contains the cell’s nucleus, but also plays a

crucial role in integrating and processing signals from other neurons. The

dendrites are small branched protrusions from the cell body whose primary role

is to receive signals from other neurons via synapses. The axon is a single

projection from the soma used to send electrical signals to other neurons.

Neurons generate currents by either the transportation or diffusion of

charged ions across the cell membrane. It is the current flowing outside of the

cell (extracellular currents) which results in a detectable electric current. There

are two main sources of extracellular currents; ionic currents (sometimes referred

to as intrinsic currents), and synaptic currents.

2.1.1 Ionic Currents

One of the first mathematical characterizations of the transport process

came from Drs. Alan Hodgkin and Andrew Huxley’s analysis of the axon of a
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Figure 2.1: Circuit representation for the Hodgkin Huxley model of ion transport
across a cell membrane. Electromotive forces for each ion species is modelled as
the voltage sources. Conductances are modelled as resistor elements, and the lipid
bilayer is modelled as the membrane capacitance. Two items of importance to note
are the arrows through GNa and GK denoting they have variable conductances.
Also note that ENa is facing in the opposite directions as EK and EL. This
is because the Nernst potential (voltage source) of sodium is positive while the
Nernst potentials for potassium and leakage currents are negative

giant squid (Hodgkin and Huxley, 1952; Lopes da Silva, 2010; Olejniczak, 2006).

By using a voltage patch clamp and varying the extracellular concentrations of

potassium and sodium, they were able to mathematically characterize several

important elecrophysiological attributes of the cell including how neurons control

the flow of ions across the cell membrane. These findings were organized into a

working mathematical model of a cell known as the Hodgkin-Huxley (HH)

model, which forms the foundation for understanding the electrophysiology of

excitable membranes. Through the HH model, Hodgkin and Huxley predicted

the existence of several protein structures that had not yet been discovered,

including their physical attributes. Most notably the HH model predicted that

sodium channels were dual gated, while potassium channels were controlled by a

single gate.
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The model breaks down the electrical characteristics of the neuron’s cell

membrane into several constituent components which can be modelled as

electrical elements (see figure 2.1). The cellular membrane can be modelled as a

capacitor with the extracellular and intercellular surfaces of the membrane acting

as the faces of the capacitor and the lipid bilayer acting as the dialectic insulator.

Mathematically, the current flow across the membrane can be modelled as

follows:

Ic = Cm
dVm
dt

(2.1)

Where Ic is the capacitive current flow, Cm is the membrane capacitance and

dVm
dt

is the derivative of the voltage across the membrane with respect to time.

The electromotive force (or Nernst potential) for each ion species is

represented schematically as a constant voltage source. The Nernst potentials of

sodium, ENa, and potassium, EK , are explicitly represented. Other ion species

all lumped into a leakage potential, EL.

A Nernst potential develops when an electrolytic solution is placed in a

bath separated by a semipermeable membrane (i.e. a membrane which is

permeable only to specific ions). This results in two opposing forces. The first

force is osmotic pressure, which is driven by the concentration gradient. If the

two sides of the bath have unequal concentrations of ions, the ions will naturally

diffuse across the membrane in order to achieve isotonic equilibrium. The second

driving force is an electromotive force. Ions, by definition, are charged. Thus,

when separated by a semipermeable membrane, if they develop a concentration

gradient, they also develop a potential difference. The electrical potential

developed across the semipermeable membrane at which these two forces reach

equilibrium for a given ion species is called a Nernst potential, E.
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Mathematically it can be represented as:

E =
RT

zF
ln

(
[S]out
[S]in

)
(2.2)

where R is the ideal gas constant, T is the temperature in kelvins, F is Faraday’s

constant in Coulombs per mole and z is the sign and elementary charge of the

ion. Finally, [S]out and [S]in are the outer and inner concentrations of ion species

S respectively.

Despite these driving forces, ions cannot pass directly through the lipid

bilayer which separates the extracellular medium from the intercellular medium.

They must pass through special transmembrane proteins known as ion channels,

which provide a path for ions to pass from one side of the membrane to the

other. Passive channels constantly remain open and allow for the free flow of

ions. The concentrations of these channels on the surface as well as the ease with

which ions can flow through them are modelled in the HH model as the leakage

conductance, or GL. Active channels, on the other hand, open and close

dynamically based on a variety of circumstances. The most common of these

respond to the voltage difference across the cell membrane, and are referred to as

voltage-gated ion channels. The giant squid axon represented by the HH model

had two voltage-gated channels; a sodium channel and a potassium channel. The

permittivity of each ion species is mathematically represented as a conductance

and is described by the following equations:

GNa = ḡNam
3h (2.3)

GK = ḡKn
4 (2.4)

where, GNa and GK are the conductances of sodium and potassium channels
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respectively. The variables ḡNa and ḡK denote the maximum conductance when

all channels are open. The variables m, n, and h are voltage dependant gating

variables, whose rates of change are characterized by first order differential

equations defined with respect to the membrane voltage (Vm).

dn

dt
= αn(Vm)(1− n)− βn(Vm)n (2.5)

dm

dt
= αm(Vm)(1−m)− βm(Vm)m (2.6)

dh

dt
= αh(Vm)(1− h)− βh(Vm)h (2.7)

(2.8)

where α and β are voltage dependant rate constants given by

αn(Vm) =
0.01(Vm + 10)

exp
(
Vm+10

10

)
− 1

(2.9a)

βn(V m) = 0.125 exp

(
Vm
80

)
(2.9b)

αm(Vm) =
0.1(Vm + 25)

exp
(
Vm+25

10

)
− 1

(2.9c)

βm(V m) = 4 exp

(
Vm
18

)
(2.9d)

αh(Vm) = 0.07 exp

(
Vm
20

)
(2.9e)

βh(V m) =
1

exp
(
Vm+30

10

)
+ 1

(2.9f)

for the giant squid axon. From Ohm’s Law the flow of ions across the membrane

can be modelled as a current.

INa = ḡNam
3h(Vm − ENa) (2.10)

IK = ḡKn
4(Vm − Ek) (2.11)

Combining equations 2.1, 2.10, and 2.11 to solve for the net current across the
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cell membrane, the change in membrane voltage is given by

dVm
dt

=
1

Cm
(ḡKn

4(Vm − EK) + ḡNam
3h(Vm − ENa) + gl(Vm − EL)− I) (2.12)

where I is either an externally applied current or a synaptic current.

This model provides a quantitative description of how neurons control the

flow of ions across the cell membrane to generate an action potential. It is these

extracellular currents which form the basis of the electric fields which can be

detected by EEG electrodes. The base HH model only describes voltage-gated

sodium and potassium currents, but different cells types can have other ionic

currents that contribute to the membrane voltage. Most can be characterized in

the HH framework by a maximum conductance, ḡ, scaled by one or more gating

variables, whose rate of change is governed by a first order differential equation,

which is in turn dependent on two rate constants α and β. These rate constants

can be dependant on a number of factors such as voltage or concentration of

specific chemical species. Regardless of the number of different ionic currents

that contribute to a cell’s membrane voltage, the sum of these currents define the

total extracellular current which contribute to the current dipoles generated by

the neuron.

The Action Potential

Action potentials are the means by which neurons communicate. They are

generated by positive feedback of the sodium current. An influx of sodium ions

causes the cell membrane to depolarize. The depolarizing of the cell membrane

opens the voltage gated sodium channels allowing more sodium to flow into the

cell. As long as the influx of sodium ions results in a current which is less than

the leakage current, the cell will return to its resting potential. However, if the
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cell depolarizes to a level where the sodium current is greater than the leakage

current, then the sodium current causes a positive feedback loop. The voltage at

which this occurs is called the threshold potential. Once the threshold potential

is reached the positive feedback of sodium current continues until the membrane

potential gets high enough that the secondary sodium gate closes, halting the

influx of sodium ions. At around the same time the secondary sodium gates close

the potassium gates open. This causes potassium ions to flow out of the cell,

repolarizing the cell membrane, and once it reaches resting levels the gates reset.

The cycle of positive feedback and return to resting potential results in an action

potential and is sometimes referred to as a spike, since a voltage trace of the

membrane potential resembles a spike. The importance of the action potential is

that once the soma of the cell reaches the threshold potential from dendritic

inputs, the cell not only spikes, but the sodium currents from the positive

feedback diffuse into the axon of the neuron. This causes the portion of the axon

closest to the soma to depolarize beyond threshold potential and spike as well.

Sodium currents from this spike cause nearby portions of the axon to spike such

that the spike travels down the length of the axon where it terminates at a

synapse on the dendrites of one or more other neurons.

2.1.2 Synaptic Currents

The primary method by which neurons in the cortex communicate with

each other is through synapses. A synapse consists of three main components.

The presynaptic terminal, the synaptic cleft, and the postsynaptic dendrite. An

illustration of a synapse is shown in figure 2.2. When an action potential reaches

the terminal point of an axon, or presynaptic terminal, special voltage-gated

calcium channels allow for the flow of calcium ions into the cell. The influx of
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Figure 2.2: Schematic drawing of a synapse with presynaptic vesicles, voltage gated
calcium channels, and postsynaptic receptors. Following membrane depolarization
due to an action potential, voltage gated calcium channels activate and allow
calcium into the cell. Calcium then binds to proteins inside the synapse which
facilitate the release of the neurotransmitter glutamate (glu) into the synaptic
cleft, which activated AMPA and NMDA ligand gated ion channel receptors on
the post synaptic dendrite. Figure reproduced from (De Schutter, 2010).

calcium causes vesicles containing neurotransmitters to fuse with the cell

membrane. This process releases neurotransmitters out of the cell into the

synaptic cleft. The neurotransmitters then diffuse across the cleft and bind with

ligand-gated ion channels on the postsynaptic neuron’s dendrites. The binding of

the neurotransmitters to the ligand-gated ion channels (sometimes called a

receptor protein or neuroreceptor) allows for the flow of charged ions to pass into

or out of the postsynaptic cell. The depolarization or hyperpolarization of the

post synaptic cell in response to the flow of ions is referred to as a post synaptic

potential. Each type of ligand-gated channel is permeable to a different ion

species resulting in different changes in the membrane voltage of the

postsynaptic neuron. An excitatory synapse is a synapse whose ligand-gated ion

channel have a reversal potential above the threshold potential. AMPA receptors

have an excitatory effect due to their equal permeability to sodium and
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potassium, which results in a reversal potential around 0 mV. An inhibitory

synapse has channels with a reversal potentials below threshold, and often times

below the membrane’s resting potential. GABAA receptors have an inhibitory

effect due to their selective permeability to chloride which results in a reversal

potential of around -70 mV.

Synapses can be modelled in one of two ways. The first is to approximate

the synapse as a synaptic current. The synapse is reduced to a simple post

synaptic current which is modelled as a decaying exponential (Weber et al.,

2003).

I(t) = (t− t0)nexp
(
−t− t0
τPSC

)
(2.13)

Where I(t) is the post synaptic current, τPSC is the time constant related to the

decay of the post synaptic current, n is an integer relating to the order of the

decaying exponential, and t0 is the time of the presynaptic spike.

A more physiologically accurate way to model a synapse is to use a

conductance based model (De Schutter, 2010). This approach does not assume a

decaying exponential current, but a decaying exponential conductance.

Mathematically, this can be represented by

I(t) = g(t)syn(Vm − Esyn) (2.14)

where g(t)syn is the time varying synaptic conductance and Esyn is the synaptic

reversal potential. The function g(t)syn can take several different forms

depending on the desired complexity of the model. The most basic model is a

first order exponential decay of the conductance.

g(t)syn = ḡsynexp
−(t−t0)/τ (2.15)
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where ḡsyn is the maximum conductance of the synapse and τ is the exponential

time constant. The problem with a first order approximation is that the rise

time is instantaneous. While this is a good approximation for certain fast acting

receptors like an AMPA receptor, it may not accurately characterize other types

of receptors. For a more generalizable model, an alpha function can be used,

g(t)syn = ḡsyn
t

τ
exp1−(t−t0)/τ (2.16)

The advantage of the alpha function is that it has a finite rise time. The

drawback is that the rise time and decay time are coupled. In order to decouple

rise and decay times a difference of exponentials can be used,

g(t)syn = ḡsyn ∗ f ∗ (exp−(t−t0)/τdecay − exp−(t−t0)/τrise) (2.17)

where τdecay and τrise are the decay and rise time constants respectively, and f is

a normalization factor which ensures that the peak amplitude of g(t)syn is ḡsyn at

the peak rise time. In this case

τpeak =
τdeacyτrise
τdecay − τrise

ln

(
τdecay
τrise

)
(2.18)

and

f =
1

−exp−tpeak/τrise + exp−tpeak/τdeacy
(2.19)

Additional models of the synaptic conductance include, G-protein mediated

receptors (De Schutter, 2010), and receptors that model short-term depression or

excitation (Bazenhov et al., 2002). However, in general, the more complex the

model, the more computational time it takes to simulate. Thus a trade is

typically be made between physiological realism and reasonable computational

times within the context of the scope, scale, and objectives of a study.
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2.2 Cellular Morphology and Electric Fields

In addition to the ionic currents generated through a patch of neuronal

membrane or a single synapse, electric field potentials are also impacted by the

physical shape of neurons, also referred to as cellular morphology. Each

individual cell type has its own morphology. Some neurons, like spiny stellate

cells contain small tufts of dendrites which resemble a tumble weed. Other

neurons, like the layer IV pyramidal cell, have basil dendrites that extend down

towards the deeper layers of the brain, and apical dendrites which extend up

towards layer I of the cortex. Purkinje cells have a dendritic structure which

spreads out in a like fan coral. Figure 2.3 shows a diagram of the different

dendritic morphologies. The electric fields generated by individual neuron types

are as varied as the morphologies of the neurons themselves.

Many qualitative assessments of how morphology relates to the generation

electric fields have been done. Most notably in 1947 by Lorente de No

(Lorente de No, 1947), and again in 1974 by Llinas (Llinas and Nicholson, 1974).

Llinas specifically states that “neurons having dendrites which ramify radially

from the soma ... tend to generate currents which flow radially in all directions

and thus would tend to cancel.” Cells such as these are often referred to as

having “closed field” morphologies or as “closed field” neurons (Nunez and

Srinivasan, 2006; Lopes da Silva, 2010; Llinas and Nicholson, 1974). Pyramidal

cells and Purkinje cells, on the other hand have dendrites that are parallel to

each other, which leads to additive parallel currents (Llinas and Nicholson,

1974). These cells are often referred to as having an “open field” morphology or

as “open field” neurons (Nunez and Srinivasan, 2006; Lopes da Silva, 2010;

Llinas and Nicholson, 1974). It is noteworthy that many open field neurons have

electric fields which tend to originate from the soma and extend out towards the
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Figure 2.3: Morphologies of different neuron types. A) Purkinje Cell B) Pyramidal
cell C) Stellate Cell. Figure modified from (Johns, 2014).

dendrites. This type of field can be modelled as a current dipole, with a current

source located at the soma and a current sink located somewhere in the apical

dendrites (Lopes da Silva, 2010). The importance of this dipole representation of

a neuron will be discussed in the next section.

Quantitative characterization of the electric fields generated by neurons

require a mathematical description of the propagation of electrical currents in

both space and time. This was first done in the late 1940s and early 1950s in the

form of Cable Theory. This theory gets its origins from the transatlantic

telegraph. In 1854 Lord Kelvin published a mathematical model of the proposed

transatlantic telegraph cable where he broke the cable down into discrete

elements (Rall, 1959). Each element was represented as an equivalent electrical

circuit, where currents from telegraph signals travelled from compartment to

compartment down the length of the wire, while a certain amount of current

leaked from the insulated housing (William, 1854). The concept was adapted to

neurons, first by Alan Hodgkin (Hodgkin and Rushton, 1946), and later refined

by Rafael Lorente de No (Lorente de No, 1947). Excitatory synapses cause
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Figure 2.4: Cable Theory diagram showing the dendritic membrane modelled
as simple RC circuits connected in parallel by internal and external longitudinal
resistances. Figure reproduced from (Jaeger, 2005).

current to flow into the cell, where the current flows down the length of a

conductive core (intercellular fluid) surrounded by an insulated housing (cellular

membrane). By approximating each segment of a dendrite as an equivalent

cylinder, or segment of cable, each cylinder becomes its own mathematical

compartment. In order for current to leave or enter a compartment it must

either pass through the walls of the compartment (which represent the cell

membrane), or flow to another compartment (representative of current flowing to

other segments of dendrite). In keeping with the original cable model developed

for telegraphs, the passive diffusion of current down the dendrite is limited to a

capacitance and resistance. See figure 2.4 for a visual representation of this

concept. In more complex models the membrane can be assigned

Hodgkin-Huxley like characteristics (Johnston and Wu, 1999; Hines and

Carnevale, 1997). This includes a variety of voltage-gated ion channels in

addition to the passive components. The intercellular and extracellular fluid is

typically represented as a simple resistance.

The limit of an infinite number of membrane circuits placed infinitely close

together results in the general equation for the cabel model; a partial differential

equation of membrane voltage as a function of time and distance.
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The classic mathematical representation of cable theory known as the cable

equation is as follows,

1

ri

d2Vm
dx2

= cm
dVm
dt

+
Vm
rm

(2.20)

where ri is the axial resistance of dendrite in Ω/cm, Vm is the membrane voltage,

x is the distance along the cable, cm is the specific membrane capacitance in

F/cm and rm is the specific membrane resistance in Ω− cm.

Under passive membrane conditions, the cable equation is linear and can be

solved analytically, but HH neurons and HH-like neurons have nonlinear ionic

membrane currents. By approximating the cell morphology as a series of discrete

membrane circuits a fixed distance apart, the modified cable equation can be

solved numerically (Hines and Carnevale, 1997). By making the assumptions

that axial current is defined by the voltage drop between the centres of

neighbouring compartments divided by the axial resistance, and that spatially

varying membrane current can be approximated by its value at the center of each

compartment, the cable equation can be discretely approximated as:

cmj
dVmj
dt

+ iionicj =
∑
k

Vmk − Vmj
rijk

(2.21)

where Vmj and Vmk are the membrane voltages in the jth and kth compartments

respectively, cmj is the membrane capacitance of the jth compartment, and rijk

is the axial resistance which separates compartment j from compartment k

(Hines and Carnevale, 1997). Note that this equation does not make assumptions

as to how many neighbours each compartment can have. Compartments located

in the middle of a dendritic segment may have two neighbours, a proximal

neighbour and a distal neighbour. However, a dendritic segment located at a

branch point may have three or more neighbours. One proximal neighbour and

two or more distal neighbours relating to each of the daughter branches.
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Additionally, by replacing iionic with any number of active currents, such the

sodium and potassium currents in the HH model, current flow can be modelled

through complex dendritic morphologies with active membrane dynamics. Using

this approach the cable equation can be used to examine how neurons integrate

synaptic inputs, and quantitatively examine how neurons generate complex three

dimensional electric fields.

2.3 Current Dipole Moments and the Forward Projection

The previous two sections described how neurons generate electric currents.

This section examines how electric currents result in scalp potentials detectable

by EEG electrodes. When mathematically characterizing electric fields in the

brain, neuronal sources are often modelled as a current dipole moment

(sometimes shortened to ”current dipole” or simply ”dipole”). Current dipoles

can be conceptualized as being similar to a magnet. Most ordinary magnets have

a north and a south pole. Magnetic field lines originate from the north pole and

return to the magnet through the south pole. Current dipoles behave in much

the same way. Each dipole has a source and a sink. Current flows from the

source and into the sink. In a Pyramidal cell, excitatory synapses cause current

to flow from the extracellular space into the cell, thus appearing as a current sink

when viewed from the extracellular space. Inhibitory synapses cause current to

flow from the cell to the extracellular space, thus acting as a source (Lopes da

Silva, 2010). On a pyramidal cell, excitatory synapses can located anywhere on

the dendrites, whereas inhibitory synapses are localized to the soma and basal

dendrites (Spruston, 2008). As a result current flows from an inhibitory synapse

on the basal dendrites and along the primary axis of the neuron before being

pulled back into the cell through an excitatory synapse on the apical dendrites.
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Figure 2.5: A pyramidal cell receiving two synaptic inputs. When viewing the
cell from the extracellular space excitatory synapses on the apical dendrites cause
current to flow into the cell and thus acts as a current sink. The inhibitory synapses
on the soma causes current to flow out of the cell thus acting as a current source.
Together the synapses show how a pyramidal cell can be visualized as a current
dipole. Reproduced from (Lopes da Silva, 2010).

In this way a pyramidal cell can then be modelled as a single dipole (figure 2.5),

where the soma and basal dendrites are modelled as the current source and the

apical dendrites are modelled as the current sink (Lopes da Silva, 2010; Llinas

and Nicholson, 1974). The mathematics behind how a current dipole results in a

scalp potential is referred to as the forward problem. Dipoles generated by

individual cells in the cortex are too small to be detected by EEG electrodes.

Cells must create dipoles in unison with other cells to create a dipole powerful

enough to pass through the skull and be measurable at the scalp. Additionally,

the cellular dipoles must have the same or similar orientation so they spatially

sum (figure 2.6).

At a macroscopic scale, a dipole can be converted to a scalp potential using

a lead field model, to map p electrical dipoles to N electrical potentials on the
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Figure 2.6: A schematic representation of how equivalent electrical dipoles, repre-
sented here as arrows in the neocortex, are located relative to the cerebral spinal
fluid,the skull, the scalp, and EEG electrodes. On the left dipoles in the gyri
have uniform orientations allowing for signals to add. In the sulci dipoles point
in opposite directions potentially causing signals to cancel each other out. The
far right of the figure shows how dipoles with random orientations can cause even
signals in the gyri to be significantly weaker than when orientations are uniform.
Reproduced from (Nunez and Srinivasan, 2006).

scalp. Mathematically this is represented:


V1
...

VN

 =


g(~r1, ~rdip1 , ~ed1) ... g(~r1, ~rdipp , ~edp)

...
. . .

...

g(~rN , ~rdip1 , ~ed1) ... g(~rN , ~rdipp , ~edp)



d1
...

dp

 (2.22)

or in vector form

V = GD + n (2.23)

Where, V is an Nx1 vector, D is a px1 vector of dipoles, G is the lead field

matrix with dimensions Nxp, and n is a noise matrix with dimensions Nx1.

Each element of the lead field matrix is a function which calculates the ith

dipole’s effect on the jth scalp potential. The lead field is a function of the vector

location of the scalp potential being measured ~r, dipole location ~rdip, and dipole

orientation ~ed (Hallez et al., 2007). The actual form of the lead field changes
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Figure 2.7: An example Boundary element model. Left: 3D reconstructed bound-
ary between the brain and the skull. Middle: The boundary between the skull
and the scalp. Right: The boundary between the scalp and the air. Reproduced
from (Hallez et al., 2007).

based on the method used to solve the forward problem. The simplest approach,

called the three-sphere model, approximates the brain, skull, and scalp as three

concentric spheres of increasing diameter. Each sphere is assigned its own

properties such as tissue permittivity. The boundary element method (BEM) for

solving the forward problem incorporates patient specific geometries acquired via

magnetic resonance imaging (MRI) to determine the size and shape of the brain,

skull, and scalp (figure 2.7). This method also assumes that tissue permittivity

within each volume is constant and only changes at the boundary (Hallez et al.,

2007).

In subsections 2.1 and 2.2 we looked at how to mathematically characterize

dipoles from membrane to whole cell. Using NEURON simulation software

(Carnevale and Hines, 2006), Murakami and Okada simulated four different three

dimensional neurons in a situation where a direct injection of current into their

somas led to the generation of an action potential. They then characterized the

current dipoles generated by the spiking neurons. Their results showed that

50,000 neurons generating the dipoles characterized in their simulations could

produce signals detectable on the scalp. However, they did not test two specific

things. First they did not look at the dipole moments generated by synaptic
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activity on the cells. Second, they did not actually simulate the signals that

could be generated by networks of the three dimensional neurons. Aim 1

specifically looks to characterize the current dipole moments for both action

potentials as well as post synaptic potentials. Additionally, it looks to more fully

characterize how action potentials contribute to population dipoles. Aim 2

examines how networks of neurons generate population dipoles large enough to

be detectable at the scalp. Aim 3 identifies the primary contributing factors to

the population dipoles.

2.4 Network Dynamics

2.4.1 Single Compartment Neuron Models

Knowing how a single neuron can generate an electric field that extends to

the scalp is important, but the field generated by a single neuron is undetectable

by EEG electrodes (Nunez and Srinivasan, 2006; Lopes da Silva, 2010;

Olejniczak, 2006). In order to understand what signals are detected by EEG

electrodes it is also necessary to understand how they arise within dynamics of a

populations of interacting neurons. This is where the Hodgkin-Huxley model has

one of its most important corollaries. If we assume that the patch of membrane

being simulated by the HH equations forms a bounded sphere, we can use the HH

model as a representation of an entire neuron, or more specifically of a neuronal

soma. If we assume the current I, in the HH equation (eqn. 2.12) to be input to

the soma from dendritic (synaptic) sources, then the entirety of a neuron can be

simulated as a single set of differential equations. This type of neuron is known

as a point source or single compartment neuron (Dayan and Abbot, 2001).

In order to investigate the how biological factors can impact network
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dynamics HH or HH-like neurons must be used. HH-like neurons are single or

dual compartment neurons which have dynamics similar to an HH neuron, but

with additional ion channels (Hodgkin and Huxley, 1952; Dayan and Abbot,

2001; Eliasmith and Anderson, 2003). The channels can be voltage-gated,

governed by concentrations of specific ions, or even g-protein coupled channels.

Some of these neurons are single compartment neurons, while other, more

complicated, neurons have a dendritic compartment and an axio-somatic

compartment. The separate compartments can have distinct ionic currents which

can help determine how specific neurons integrate synaptic inputs. Additionally,

the ratio of the surface areas of the dendritic and axio-somatic compartments

can effect the firing characteristics of the neuron. The drawback being that the

increased realism in the model comes at the cost of increased computational load.

2.4.2 Networks of Point Source Neurons

Point source neuron models are most useful when organized into

populations. The neurons in the populations are then connected via model

synapses to other neurons to represent specific neural networks (Herzfeld, 2011;

Eliasmith and Anderson, 2003; Bazenhov et al., 2002). These synaptic

connections can either be to other neurons within the same population, known as

recurrent connections, or to neurons in other populations, known as feedforward

or feedback connections (Dayan and Abbot, 2001). The strength of a synaptic

connection, or its ability to depolarize the somatic membrane, is determined by

several factors. As discussed in section 2.2, the farther away from the soma a

synapse is, the more the signal decays before reaching the soma. Additionally,

factors such as receptor density at the synaptic site and neurotransmitter

concentration in the synaptic cleft, also contribute to the magnitude of the
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depolarization of the soma. All of these complexities can be wrapped up into a

scaling factor known as a synaptic weight, which scales the post synaptic

response of a neuron. Generically, weighting can be described as:

Is(t) = wKs(t) (2.24)

where Is(t) is the weighted post synaptic current, w is the synaptic weight, and

Ks(t) is the synaptic kernel, which is a generic placeholder for any number of

synaptic models (see section 2.1.2). For a neuron receiving multiple synaptic

inputs from N neurons, the synaptic weights can be organized into a single

weight vector w, where wb, is the bth input neuron’s synaptic weight then the

total synaptic current Is at time t can be represented as

Is =
N∑
b=1

wb

∫ t

−∞
dτKs(t− τ)ρb(τ) (2.25)

where τ is the timing of an synaptic potential, and the expression ρb is the neural

response function described by the equation

ρb =
∑
i

δ(τ − ti) (2.26)

Here, ti is the timing on a sequence of presynaptic spikes from the input neuron b

and δ is the delta function. This can be used to determine the membrane voltage

of a given neuron in a simulation, and can be repeated for every neuron in a

population and every population in a simulation to determine the membrane

voltages and spiking dynamics of the network.
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3 Characterizing Cellular Dipoles

Although there are many techniques for analysing EEG signals, none

directly elucidate the underlying network activity. At the electrode level,

time-frequency analysis associates increases and decreases in power of certain

frequency bands over time with behavioural measures. Coherence analysis looks

at the functional connectivity of one region of the brain with another. Source

localization attempts to reconstruct the magnitudes of the current dipoles

associated with the generation of EEG signals. These dipoles can then be

analysed in much the same way as the EEG signals, using time-frequency

analysis and coherence measures. However, it remains unclear how the electrical

activity in specific populations of neurons relates to EEG activity measured at

the scalp. The primary reason for this is that the a direct relationship between

neural activity and a current dipole moments has not been fully explored.

Here we develop a series of computational simulations to investigate the

relationship between individual neural activity, the equivalent population level

current dipole, and the measured EEG signal. The first set of simulations will

use detailed three dimensional simulations of neurons to investigate how neurons

generate dipoles in response to different types of activity (spiking or synaptic).

3.1 Cell Models

Simulations of individual neurons were conducted using the NEURON

simulation environment (Carnevale and Hines, 2006). Two neuron models,

developed by Drs. Zachary Mainen and Terrence Sejnowski (Mainen and

Sejnowski, 1996), were selected from the NEURON database (McDougal et al.,

2017) (obtained from ModelDB accession number 2488), an excitatory Pyramidal



27

cell and an inhibitory spiny stellate cell. The model pyramidal cell was a digital

reconstruction of a layer V pyramidal cell located in the cortex of a cat (figure

3.1a). The generic interneuron used was a digital reconstruction of a layer IV

spiny stellate cell from the somatosensory cortex of a rat (figure 3.1b).

Pyramidal Cell

The pyramidal cell consists of 479 cylindrical compartments of varying

diameter. To ensure numerical accuracy of the simulations, compartment length

was limited to a maximum of 50µm. All compartments contained a passive

membrane resistance and a passive membrane capacitance. The dendritic

compartments contained ion channels for four ionic currents: a fast activating

sodium current, a slow non-inactivating potassium current, a calcium current,

and a calcium dependent potassium current. In addition to the four ionic

currents found in the dendrites, the soma included a delayed rectifying

potassium current. The hilloc of the pyramidal cell contained only the

traditional Hodgkin-Huxley currents; a fast activating potassium and a delayed

rectifying potassium current, whose maximum conductances were approximately

four orders of magnitude greater than those in the soma and dendrites.

Equations and parameter values used for each of the ionic currents are provided

in appendix A.1. The particular pyramidal cell used was a spiny cell, meaning

that the dendrites are covered in microscopic spines. Computationally it

becomes too difficult to simulate each spine as its own compartment, which

would add thousands of compartments to each neuron in the simulation. To

model the spines without increasing computational load, the membrane surface

properties were scaled by the following factor:

Fk = (Lk ∗ SAspine ∗Dspine + Ak)/Ak (3.1)
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Figure 3.1: Three dimensional NEURON models used. (a) A representation of the
layer V pyramidal cell used for dipole moment calculations. The tuft of dendrites
at the bottom are the basal dendrites, with the axon protruding to the right. The
dendrites stretching out above the basal dendrites are the apical dendrites. (b)
A representation of the layer IV spiny stellate cell used for the dipole moment
calculations. The cell consists of a tuft of dendrites with the axon protruding
out to the left. The original models were downloaded from ModelDB (McDougal
et al., 2017) (accession number 2488).

where Lk is the length of the kth compartment within a dendritic branch,

SAspine is the surface area of a single spine, Dspine is the density of spines per

µm, and Ak is the area of a given dendritic branch.

Regularly Spiking Pyramidal Cell

The dynamics of the ionic currents in combination with the dendritic

morphology of the original pyramidal cell model caused the cell to fire in a

chattering pattern (neurons which fire in clusters of action potentials). However,

not all pyramidal cells exhibit bursting behaviour; known as chattering (Mainen

and Sejnowski, 1996; Izhikevich, 2003). In order to explore the dipoles created by

both chattering pyramidal cells and regularly spiking pyramidal cells, the calcium

and calcium dependent potassium currents were removed from all segments of

the neuron to create regularly spiking activity (single action potentials).

Interneuron

The brain contains several hundred different types of neurons (Guyton and

Hall, 1996). As a first step toward characterizing the contributions of inhibitory
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interneurons we chose a single neuron model to be representative of all

interneuron activity. The spiny stellate cell was chosen because it is one of the

most common interneurons in the brain (Riera et al., 2012). The NEURON

model consists of 199 compartments; each restricted to be no greater than 50 µm

in length. Ionic currents were assigned to the spiny stellate cell in the same

manner as the pyramidal cell. Dendritic compartments contained a fast

activating sodium current, a slow non-inactivating potassium current, a calcium

current, and a calcium dependent potassium current. The soma included the

above currents with the addition of a delayed rectifying potassium current. The

hilloc contained only the traditional Hodgkin-Huxley currents with maximum

conductances of approximately 4 orders of magnitude greater than those in the

soma and dendrites. Like the pyramidal cell model, spines were added to each of

the dendritic compartments by scaling of the membrane capacitance and

maximum conductances.

3.1.1 Calculation of Current Dipole Moment

The methodology for calculating the current dipoles is a modified version of

method found in Murakami and Okada (2006). For each simulation, the current

dipole was estimated using one of the three dimensional NEURON models

discussed above. Each compartment was considered to have its own current

dipole ~Qk, denoting the vector quantity of the current dipole ~Q and its

orientation in the x, y, and z, axes, in the kth compartment. ~Qk is calculated by

the following formula;

~Qk = ILkd~r (3.2)

Where Ik is the longitudinal current in the compartment, Lk is the length of the

compartment and d~r is the compartments unit direction vector. The longitudinal
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current I can be computed as follows;

Ik =
−π ∗ a2k
ρL

∂v

∂x
(3.3)

where ak is the radius of the compartment, ρL is the longitudinal resistivity, and

∂v

∂x
is the partial derivative of voltage with respect to length along the dendrite.

The partial derivative of voltage was numerically approximated using the finite

voltage difference, ∂v, calculated between the voltage at the beginning, v0, and

end, v1, of each compartment. The finite position difference, ∂x, was equal to the

length of the compartment. Thus the partial derivative of voltage with respect to

time,
dv

dt
, became

v1 − v0
L

. The current dipole of the entire cell was calculated by

taking a vector sum of dipoles across all of compartments. Finally, since EEG

electrodes are located on the scalp only dipole contributions pointed in the

direction of the electrodes were considered. Therefore, the dot product was taken

between the cellular current dipole vector, ~Q, and the unit vector perpendicular

to the pial surface, d~r. For pyramidal cells the unit vector perpendicular to the

pial surface is defined as being approximately parallel to the apical dendrite.

Using this approach the complex geometry and electrophysiology as reduced to a

single time series. We refer to this time series as a Dipole Response Function

(DRF).

Spiking Dipole Response Functions

To calculate the current dipole moment associated with neural spiking

activity, a current was injected directly into the soma of the cell via the

NEURON IClamp function. For both chattering and regularly spiking pyramidal

cell models a current of 0.12nA was injected for 400ms. For the spiny stellate cell

model a current of 0.07nA was injected into the soma for a duration of 400ms.

The current amplitude were selected to be large enough to induce a spike yet
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small enough to allow for the current dipole to be cleanly epoched on either side

of the spike. This second portion is important as the method of convolution used

in aim 3 creates a temporal artefact if all the input DRFs are not of the same

length.

This artefact comes from the fact that the convolution is an integral is used

to multiply two functions and is normally solved analytically from −∞ to ∞.

However, when using the matlab conv function the convolution is calculated

using two discrete arrays of finite length, arrays A and B. The length of the

output array, C, is length(A)+length(B)-1. Thus if the DRFs, (e.g. array A) are

different lengths they will produce output arrays, C, which are different lengths.

Additionally, since we want the output array, C, to be the same length as the

input spike train, say length(B), the ‘same’ option was used. This gives the

central max(length(A),length(B)) points from array C as the output. Since only

the right side of the input arrays are padded, taking the central points for arrays

of different lengths shifts the apparent location of events in the shorter arrays

left, relative to the longer arrays.

Dipole Response Functions from Post Synaptic Potentials

Creating a separate DRF for every synapse location on a neuron become

computationally infeasible for networks with thousands of neurons and tens of

thousands of synapses. To create a more scalable method of simulating synaptic

DRFs a generic spatial average was created. For each cell model a DRF was

created for a generic excitatory post synaptic potential (EPSP) and a generic

inhibitory post synaptic potential (IPSP). To simulate synapses, the NEURON

function exp2syn was used, which uses the difference of exponential model to

calculate the conductance change in the membrane. The time constant for the

rising exponential was set to 1 ms, and the time constant for the decaying
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exponential was set to 6 ms(Gerstner et al., 2014; Destexhe and Par, 1999). The

maximum conductance for the synapse was set to 6.5µΩ for excitatory synapses

and -6.5µΩ for inhibitory synapses. The spatial average DRF was created by

running a simulation where a single synapse was placed on a single dendritic

compartment and the resulting DRF was calculated. The synapse was then

moved to another dendritic compartment and the process was repeated for every

dendrite in a specific subset of the dendritic tree which varied for each synaptic

type. The DRFs from each individual simulation were averaged. This allowed for

the creation of a generic response from a synapse occurring anywhere within

specific subset.

For pyramidal cells in the cortex inhibitory synapses are spatially localized

to the basal dendrites. Therefore, the spatial average DRF for an IPSP on a

pyramidal cell was obtained by averaging across the basal dendritic

compartments. According to the open field theory, the apical dendrites of a

pyramidal cell are responsible for creating the current sink. Therefore when

calculating the spatial average DRF for an EPSP on a pyramidal cell, the

locations of the synapses were restricted to the apical dendrites. Finally, since

spiny stellate cells have no documented synaptic organization, the entire

dendritic tree was used to create the spatial average DRF for the EPSP. There

were no inhibitory synapses on the interneurons in aims 2 and 3 so no IPSP was

generated for the spiny stellate cell.

3.2 Dipole Response Functions

We used three separate neuron models. Two of the models (chattering

pyramidal cell and spiny stellate cell) were used taken directly from Mainen and

Sejnowski (1996). Firing characteristics for these unaltered cell models match
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Figure 3.2: Dipole Response Functions. Top row shows DRFs in response to an
action potentials generated through direct injection of current to the soma of the
cell. (Top left) Shows DRF for chattering pyramidal cell. Note that the width
of the spikes are much wider (8-10 ms) than what would be seen for a voltage
trace of an action potential (1-2 ms). (Top middle) Shows DRF for Regularly
spiking Pyramidal cell. Also note the duration of the spike is ∼3 ms. (Top right)
Shows spiking spiny stellate cell. Has an amplitude similar to that of the regularly
spiking pyramidal cell, however, the duration is much shorter <1 ms. The bottom
row shows DRFs from post synaptic potentials. Note the change in scale on the y
axis from the top row to the bottom row. (Bottom left) DRF for an EPSP on a
pyramidal cell. This DRF represents an average of dipoles recorded from multiple
locations on the apical dendrites (see sec 3.1.1 for more details). (Bottom middle)
IPSP on a pyramidal cell. This DRF represents an average of dipoles recorded
from multiple locations on the basal dendrites. (Bottom right) DRF for an EPSP
on a spiny stellate cell. This DRF represents an average of dipoles recorded from
multiple locations on the dendritic tree.
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those reported in Mainen and Sejnowski (1996). The dipoles were also similar to

those found in Murakami and Okada (2006). The third model (the regularly

spiking pyramidal cell) was made by altering the chattering pyramidal cell

model. Graphs of all DRFs can be found in figure 3.2.

For the chattering pyramidal cell each individual action potential created a

corresponding spike in the DRF, but also had an envelope of activity. The spikes

had an amplitude of approximately 0.32 pA-m. While the amplitude of the

envelope was -0.41 pA-m. The duration of each spike was approximately 8-10

ms, which is considerably longer than the action potential (∼1-2 ms). The

duration of the envelope was approximately 50 ms (determined as the time from

the onset of the first spike to the time the envelope decays to 5% of its peak

value). For the regularly spiking pyramidal cell, the magnitude of the spike was

approximately 0.325 pA-m, and the afterhyperpolarization had a magnitude of

0.1 pA-m. For the spiny stellate cell the initial spike had an amplitude of 0.27

pA-m and an afterhyperpolarization of 0.14 pA-m. The duration of the initial

spike was 0.8 ms for the spiny stellate cell while for the pyramidal cell it was 3

ms. The afterhyperpolarization on the spiny stellate had a duration of 5.6 ms

while in the pyramidal cell it lasted approximately 18 ms.

For the DRFs related to post synaptic potentials, the magnitude of the

EPSP on the pyramidal cell was 0.0217 pA-m, while the magnitude of the IPSP

on the pyramidal cell was 0.0290 pA-m. The duration of the EPSP was

approximately 36 ms long (determined as the time from onset until the PSP

decays to 5% of its peak value), while the duration of the IPSP was

approximately 42 ms long. For the EPSP on a spiny stellate cell the magnitude

was -0.0017 pA-m. The duration of the PSP is relatively short, 5 ms, however, it

has an afterhyperpolarization which is has an amplitude of 0.0003 pA-m but a
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Figure 3.3: Time-lapse of membrane voltage for a regularly spiking pyramidal cell
during an action potential. The top and bottom rows shows the spatial distribu-
tion of membrane voltage across the cell’s dendritic tree. Changes in membrane
potential are coloured relative to resting potential. Black segments are at resting
potential (∼-65 mV) and yellow segments are at peak voltage (∼60 mV). The
middle plot shows the DRF for the regularly spiking pyramidal cell shown seen in
fig. 3.2. The vertical lines indicate where the individual frames of the time-lapse
are taken from. The color of each bar relates to the color of the axon during the
given frame for easier reference. Time stamps on the bottom of each frame are
referenced from the initiation of the action potential.
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Figure 3.4: Time-lapse of membrane voltage for a spiny stellate cell during an
action potential. The top and bottom rows shows the spatial distribution of mem-
brane voltage across the cell’s dendritic tree. Changes in membrane potential are
colored relative to resting potential. Black segments are at resting potential (∼-75
mV) and yellow segments are at peak voltage (∼60 mV). The middle plot shows
the DRF for the regularly spiking pyramidal cell shown seen in fig. 3.2. The ver-
tical lines indicate where the individual frames of the time-lapse are taken from.
The color of each bar relates to the color of the mid point of the axon during the
given frame for easier reference. Time stamps on the bottom of each frame are
referenced from the initiation of the action potential.
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Figure 3.5: Time-lapse of membrane voltage for a chattering pyramidal cell during
an action potential. The smaller plots of the pyramidal cells show the spatial distri-
bution of membrane voltage across the cell’s dendritic tree. Changes in membrane
potential are colored relative to resting potential. Black segments are at resting
potential (∼-80 mV) and yellow segments are at peak voltage (∼60 mV). The bot-
tom center plot shows the DRF for the chattering pyramidal cell as seen in fig. 3.2.
Vertical lines indicate where the individual frames are located on the DRF. The
color of each bar relates to the color of the axon during the given frame for easier
reference. Times are referenced to the initiation of the initial action potential.
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duration of 35 ms.

Though the regular spiking pyramidal cell and the spiny stellate cell have

similarly shaped DRFs, the main difference is that Pyramidal cells response is

longer. This is because the spike related DRFs are not generated directly by the

action potential itself (defined as propagation of current along the axon due to

positive feedback of sodium currents), but rather to back propagation of currents

up the dendritic tree due to an excess of current generated at the axonal hilloc

during an action potential. Since the pyramidal cell has a larger and more

complex dendritic tree, it takes longer for the current to propagate along the

dendrites causing the DRF to have a longer response. The backpropagation effect

is best illustrated in figures 3.3, 3.4 and 3.5. Figure 3.3 shows the membrane

voltages of each dendtritic compartment for a regularly spiking pyramidal cell in

snapshots across time. The action potential can be seen forming in the axon at

the 0 ms snapshot. Over the next few snapshots the action potential can be seen

propagating the length of the axon until it dissipates around 1 ms after its

generation. At the same time you can see current propagate from the soma and

axonal hilloc into the dendritic tree. The current dipole moment reaches peak

magnitude after approximately 1.25 ms, as illustrated by the current dipole trace

in the center of the figure. The current dipole generated by the back propagating

current still has a measurable effect until at least 2.5 ms after the initial

generation of the action potential, and doesn’t cross zero until after 3 ms. This

figure illustrates why the spike in the DRF lasts longer than the action potential.

This is contrasted by figure 3.4 which shows the backpropagation of current in a

spiny stellate cell. The figure illustrates how the action potential lasts longer

than the initial spike in the DRF. The dendrites on spiny stellate are much

shorter and it does not take as long for the current to back propagate.
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Figure 3.6: Compartmental look at neuronal variables for chattering pyramidal
cell. This figure shows how variables vary within individual compartments of a
chattering pyramidal cell. (Upper left) Shows the chattering pyramidal cell sans
axon. The color of each dendrite corresponds with the color of each trace in the
corresponding plots. This allows for each trace to be related to its location on the
cell. (Upper middle) Shows voltages in each compartment. Proximal dendrites
have traces which have individual spikes without an envelope. Distal dendrites
show an envelope without individual spikes. (Upper right) Shows sodium current.
These plots show a distinct spike all the way up the dendritic tree for the initial
spike, however, subsequent action potentials only yield a noticeable sodium current
in the proximal dendrites (Bottom left) Shows calcium current. In the proximal
dendrites there are distinct spikes with no envelope. In the distal dendrites there
is a distinct envelope with no spikes. (Bottom Middle) Shows potassium current.
In the proximal dendrites there are small spikes on a low amplitude envelope.
Distal dendrites have a large amplitude envelope and low amplitude or missing
spikes.(Bottom Left) Shows the summation of individual dipoles from the most
proximal dendrites to the most distal dendrites. For this plot each line shows
the summation of the that dendritic compartment with every compartment which
is more proximal to the soma. The most proximal compartments show distinct
spikes in their dipoles. Moving distally along the dendrites tends to create and
deepen the envelope to the dipole.
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The impact of backpropagating currents on the DRF is even more

pronounced for a chattering pyramidal cell (figure 3.5). After the generation of

the initial action potential at 0 ms the current propagates up the dendritic tree.

Additional action potentials occurred at 11.5, 21.5, and 35 ms, which is reflected

by corresponding spikes in the DRF. The figure also illustrates the source of the

envelope in the spike related DRF. After the backpropagation of current from

the initial action potential faded, there was a persistent depolarization in the

apical dendrites (see timepoint 4.5 ms), which lasted for the length of the DRF

(see timepoints 4.5 ms through 52.5 ms)

The contributions to the persistent depolarization are shown in figure 3.6.

The upper left hand plot shows a schematic of the pyramidal cell without the

axonal compartments. The color of each dendrite corresponds with the color of

each trace in the subsequent plots. The upper middle plot shows the voltage

traces in each compartment. Membrane voltages in the dendrites proximal to the

soma (blue traces) clearly show each spike in the chattering response, whereas in

the distal apical dendrites there was a persistent depolarization, with no spikes.

This persistent depolarization can be explained by the interactions between

dendritic radius, sodium currents, calcium currents, and calcium dependent

potassium currents. First, the sodium current (seen in the upper right of figure

3.6) shows a distinct spike all the way up the dendritic tree for the initial spike

that decays as until it progresses half way up the apical dendrites. After that,

the sodium current grows as it reaches the most distal dendrites. This is most

likely due to the decrease in dendritic radius with distance from the soma. The

decreased compartment radius results in decreased surface area and decreased

volume. For each cylindrical compartment the volume decreased with the square

of the radius, while the surface area decreased proportional to the radius. This
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Number of synapses Conductance (µS) Min. Dipole (pA-m)
2 45 -0.1882
3 38 -0.2177
4 23 -0.1975
5 20 -0.2208
6 14 -0.2316
7 12 -0.2149
8 10 -0.1793
9 9 -0.1960
10 7.8 -0.2303

Table 3.1: Synaptic conductances and corresponding dipoles for excitatory post
synaptic potentials.

increased the surface area to volume ratio increased activation of sodium

channels.

3.2.1 Comparing spiking and synaptic contributions

Characterizing the relative contributions of PSPs to spike related dipoles

can be challenging, due to the generic weighting used to generate the PSP

related dipoles. In aims 2 and 3 we attempt to address this issue by normalizing

the DRFs from PSPs to the weighting used in the network activity. This allows

for a comparison of relative contributions of PSP to spike related dipole activity

in specific networks during specific events, but it does not address the issue of

generically comparing relative dipole activities of PSPs to spike related activity.

To this end we conducted an additional series of simulations on the chattering

pyramidal cell model to determine the dipole generated by excitatory post

synaptic potentials that will result in a somatic membrane voltage just shy of

threshold. We conducted 9 simulations with varying numbers of synapses located

on the apical dendrites. The number of synapses ranged from 2 to 10. The

synaptic conductances used for each simulation are shown in table 3.1. Synapses
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Figure 3.7: Current dipoles generated for varying numbers of synapses located
on the apical dendrites at near threshold levels. The bar graph shows the peak
amplitude dipole for each simulation.

were located on the most apical reaches of the dendritic tree to ensure the largest

dipole possible.

The simulations show a remarkably consistent dipole magnitude with a

mean of 0.2085± 0.0188pA−m. Traces of the dipole responses are shown in

figure 3.7. Individual maximums are shown in table 3.1. The mean value

obtained from these simulations was half the magnitude of the envelope for the

spike related dipole of the chattering pyramidal cell (0.41 pA-m). Additionally,

the regularly spiking pyramidal cell had a spiking amplitude of 0.32 pA-m which

was ∼53% larger than the average dipole generated by synaptic potentials.
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3.3 Discussion

Post synaptic potentials are considered to be the leading contributor to

EEG signals because they last considerably longer than action potentials

(Lopes da Silva, 2010; Olejniczak, 2006); 10-30 ms vs 1-2 ms respectively.

However, our simulations show that the duration of the spike related dipole can

last considerably longer. The spike related dipole of an individual action

potential for a chattering pyramidal cell lasted closer to 8 ms while the envelope

lasted over 50 ms. The duration of the envelope is longer than that of the typical

post synaptic potential providing the opportunity for spike related dipole

activity to sum.

For regularly spiking pyramidal cells, spike related current dipoles lasted

over 3 ms. The larger duration, relative to the action potential was driven by the

backpropagation of current from the axonal hillock into the dendrites. Because

dendrites are unmyelinated, the current takes longer to propagate resulting in a

longer lasting current dipole . The 3 ms dipole duration of a regular pyramidal

cell is considerably smaller than what is seen for a chattering cell. However, as

few as 7 regularly spiking neurons firing asynchronously at 50 Hz for one second

would still yield s 50 ms interval where two or more dipoles overlap. Murakami

and Okada (2006) suggest that it would take approximately 50,000 neurons to

generate a detectable signal. If that number of neurons were firing at 50 Hz,

there would necessarily be a significant amount of overlap.

Additionally, a studies by Marsalek et al. shows that cortical networks can

achieve and maintain a high degree (∼1 ms) of synchronicity (Marsalek et al.,

1997; Abeles, 1982, 1991). These studies also showed that output jitter (i.e. the

temporal variability in neuronal responses) decreases as information is passed
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from one neuronal population to another. This is due to the fact that the output

jitter is almost always smaller than the input jitter (i.e. timing of

PSPs)(Marsalek et al., 1997). This phenomenon has been observed in the visual

cortex (Marsalek et al., 1997; Abeles, 1982). Marsalek et al. (1997) investigated

this property mathematically. They derived an equation for the variance in

output jitter as a function of the input jitter.

σout = σin2
√

3

√
(nth + 1)(n+ 1− nth)

(n+ 2)2(n+ 3)
(3.4)

where σout and σin are the input and output jitter respectively (measured by the

standard deviation), nth is the number of synapses needed to reach threshold and

n is the total number of synapses. For a sparsely connected network we can

assume n� nth � 1. We can then make the approximations that

n+ 3 ≈ n+ 2 ≈ n+ 1− nth ≈ n. Substituting these approximations equation 3.4

reduces to,

σout = σin2

√
3

n

√
nth (3.5)

In this reduced form we can see that the output jitter, σout is directly

proportional to the input jitter, σin. However, since σout is also inversely

proportional to the number of synaptic inputs n, as long as n is greater than

2
√

3nth, output jitter will always be smaller than input jitter. Thus with each set

of synaptic interactions the output jitter will continue to shrink and the neurons

will become more synchronous. Marsalek et al. repeated their results using both

an LIF neuron and the NEURON pyramidal cell model developed by Drs.

Mainen and Sejnowski.

Additionally, a study by Stuart et al. showed that dendritic calcium

currents activated by backpropigation of current due to an action potential
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(Stuart et al., 2008). It has also been shown that these calcium currents are

detectable on the cortical surface (Suzuki and Larkum, 2017). This is consistent

with our findings (Section 3.2), that backpropagating currents from an action

potential can activate voltage dependant calcium channels, causing a persistent

depolarization in the dendrites. This persistent depolarization contribution to

the dipole has a magnitude and duration sufficient to generate detectable EEG

signals.
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4 Simulation of EEG Using DRFs

4.1 Calculation of the Population Dipole

4.1.1 Thalamocortical Network Model

Aim 1 primarily focused on how individual neurons generate dipoles. This

section primarily deals with aim 2 and how populations of dynamically

interacting neurons generate dipoles which are detectable at the level of EEG.

However, constructing a network of the morphologically accurate neurons used in

aim 1 would not only lead an extremely high computational load, but the

NEURON simulation software is not designed for large scale network

simulations, and it would be difficult to accurately represent a large network of

dynamically interacting neurons. Additionally, we need to be able to verify that

the simulations are reasonably representing biologically plausible signals at

multiple levels, including the underlying network activity, the dipoles being

generated at the population level, and the EEG signals which result. To this end

we chose to use a thalamocortical network based on the model published by

Bazenhov et al. (2002). The model consisted of single and two compartment

point source neurons which have a significantly lower computational load per

neuron than the NEURON models and can be used to represent large networks

of dynamically interacting neurons. The network is also based on data from

Contreas and Steriade (1995), which contains simultaneous recordings of

intercellular membrane voltages, depth EEG, and surface EEG from the

somatosensory cortex and thalamus of a cat in chemically induced slow wave

sleep. With this data we qualitatively and quantitatively assessed how well the

model approximated the recorded data to verify that the EEG signals simulated
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Pre Post Fan Type Max. Conductance (µS)

PY PY ±5
AMPA 0.15
NMDA 0.01

PY IN ±1
AMPA 0.05
NMDA 0.008

PY TC ±5 AMPA 0.025
PY RE ±5 AMPA 0.005
IN PY ±5 GABAA 0.008
TC PY ±10 AMPA 0.1
TC IN ±2 AMPA 0.1
TC RE ±5 AMPA 0.4

RE TC ±5
GABAA 0.2
GABAB 0.04

RE RE ±5 GABAA 0.2

Table 4.1: Network topology for thalamocortical network. First column denotes
the presynaptic neuron and the second column denotes the post synaptic neuron.
Synaptic fan outs (number of neighbouring postsynaptic neurons the presynaptic
neuron is connected to) are in the third column. Synaptic type and maximum
conductances (in µS) are detailed in the fourth and fifth columns respectively. A
detailed description of the synaptic models can be found in Appendix B

are reflective of realistic network activity.

The network consisted of four neural populations, two in the cortical layer

and two in the thalamic layer. The cortical layer consisted of a pyramidal (PY)

population of 100 neurons and an inhibitory (IN) population of 25 neurons. The

thalamic layer consisted of a thalamocortical (TC) population and a reticular

(RE) population each containing 50 neurons. Populations were arranged in

arrays and connected recurrently to adjacent neurons in the same population as

well as neighbouring neurons in other populations. Details of the connection

topology are shown in 4.1. The inputs to the network were spontaneous

miniature EPSPs and IPSPs. These mini PSPs occurred at all AMPA mediated

synapses in the cortical layer and followed the same dynamics as the synapses

they originated from. The only difference was that the maximum conductance for

the miniPSP was adjusted such that the magnitude of of the PSP was ∼ 0.75mV.
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Figure 4.1: Diagram of thalamocortical network.

In contrast a single synaptic input from in a PY-PY connection necessary to

achieve the seired network dynamics resulted in a depolarization just shy of

threshold for an action potetial. The frequency of occurrence of mini PSPs was

determined by a Poisson process with a time dependent mean rate governed by,

µ(t) =

(
2

1 + exp−
t−to
τ

− 1

)
/100 (4.1)

where τ was set to 400 to produce a mean maximum rate of 10 Hz. The

time-dependant mean rate changed based on the time since the last synaptic

input, to, with mini PSPs becoming more frequent as the time from the last spike

increased.
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4.1.2 Population Dipole

Population Dipoles were created by convolving the activity specific DRFs

(EPSP, IPSP, spike related dipoles, etc.) with the thalamocortical network

activity. Voltage traces of each neuron from the thalamocortical simulations were

reduced to spike trains through a two step process. At each time point the

voltage trace was checked to see if the membrane voltage exceeded a threshold

voltage, indicating the occurrence of a spike. The threshold voltage was unique

for each neuron type based on the specific resting and peak voltages, and set to

-50 mV, -40 mV, -50 mV, and -60 mV for the PY, IN, TC, and RE neurons

respectively. When the voltage exceeded threshold, the preceding time point was

checked to determine if it was below the threshold voltage to limit event

detection to the rising edge of the spike. If both conditions were true a 1 was

entered at that time point in the spike train array. For all other time points a

zero was entered. The population dipole was formed subsequently by convolving

each DRF generated in Section 3 with the binary spike train for the neuron

which generated it. For the spiking contributions spike trains for the PY cells

were convolved with the spiking DRF for a chattering PY cell, and spike trains

for the IN cells were convolved with the spiking DRF for a spiny stellate cell.

Next the synaptic contributions were calculated. However, since each DRFs

for the PSPs used a generic weight for their generation, they needed to be scaled

to represent their actual impact on the population dipole. Scaling for the PSPs

were done by normalizing the generic PSP from the NEURON model, to its

related synapse in the thalamocortical network in order to account for the

differences in conductance. Since both the synapses were conductance based and

current scales linearly with conductance, we assume that the current dipole

moment (which scales linearly with current as seen in equation 3.2) scales
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linearly with conductance. Thus a generic DRF for a PSP can be converted to a

DRF for a specific synapse via by scaling the DRF by the ratio of the synaptic

conductances as seen in the following equation:

DRFspecific = DRFgeneric
Gspecific

Ggeneric

(4.2)

where DRFspecific is the DRF for the specific synapse, DRFgeneric is the generic

DRF for a PSP, Gspecific is the conductance of the specific synapse, and Ggeneric

is the conductance of the generic synapse. The specific DRF can then be

convolved with the spike train for the presynaptic neuron generating the specific

DRF (i.e. the neuron whose action potential will generate a postsynaptic

potential on the postsynaptic neuron). The resulting dipole is then multiplied by

the number of neurons the presynaptic is connected to. For example if a neuron

is synaptically connected to 10 other neurons a single action potential by that

neuron will generate 10 PSPs (one on each neuron it is connected to).

For PY-PY connections the generic DRF for an EPSP on a pyramidal cell

was scaled according to the method above and using the AMPA mediated

conductance listed in table 4.1 as Gspecific in equation 4.1.2. It was then

convolved with the spike trains from PY cells and multiplied by 10 to account for

the fact that each PY cell synapses onto its five nearest neighbours on either side.

Similarly for PY-IN connections the generic DRF for an EPSP for a spiny stellate

cell was scaled the AMPA mediated conductance listed in table 4.1 as Gspecific.

It was then convolved with the spike trains from PY cells and multiplied by 2 to

account for the fact that each PY cell synapses onto the nearest IN cell on either

side. For IN-PY connections the generic DRF for an IPSP on a pyramidal cell

was scaled the GABAA mediated conductance listed in table 4.1 as Gspecific. It

was then convolved with the spike trains from IN cells and multiplied by 10 to
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account for the fact that each IN cell synapses onto the five nearest PY cells on

either side. Finally, synaptic contributions from TC-PY connections were

calculated using the same methodology, but substituting the AMPA mediated

conductance in table 4.1 as Gspecific, the spike trains from TC cells and scaling by

a factor of 20 to account for the number of PY cells each TC cell synapses with.

4.2 Simulation of EEG Signal

4.2.1 Patient Data

To verify the accuracy of the network simulations, the simulated population

dipole was compared to recorded data of the same type. Electroencephalographic

data was obtained through PhysioNet (Goldberger et al., 2000; Kemp et al.,

2000), and downloaded from

https://www.physionet.org/physiobank/database/sleep-edf/. The database

contained eight polysomnograms (PSGs) from two separate studies (Kemp et al.,

2000; Mourtazaev et al., 1995). PSGs are a multi-parametric data sets measured

during sleep studies in which EEG, electrocardiography (ECG),

electrooculography (EOG), and electromyography (EMG) data are collected

simultaneously. Polysomnograms also include a hypnogram, which records the

sleep phase data, used to isolate the portions of the data corresponding to

slow-wave sleep.

For comparison with the simulated EEG activity, polysomnogram data from

subject sc4002e0 (a healthy 33 year old female), was used. The data included 24

hours of continuous EEG recordings from a pair of differential electrodes (FpzCz

and PzOz). EEG recordings were sampled at 1000 Hz and band pass filtered

from 0.5 Hz to 100 Hz. Recordings were then loaded into the polysomnogram
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reader Polyman (https://physionet.org/pn4/sleep-edfx/Polyman/), and sections

of time where the hypnogram denoted slow wave seep (SWS) activity were

marked for comparison with the simulated network activity. The data was then

read into Matlab using the edfread function

(https://www.mathworks.com/matlabcentral/fileexchange/31900-edfread). A 30

second portion of data was epoched out from one of the SWS time periods noted

above for analysis.

4.2.2 Forward Projection of Simulated Activity

In order to compare the simulated population dipole with the patient EEG

data the population dipole were forward projected to the scalp to estimate the

corresponding EEG signals. Forward projection of the population dipole was

performed with Brainstorm (Tadel et al., 2011), which is documented and freely

available for download online under the GNU general public license

(http://neuroimage.usc.edu/brainstorm). Since no patient specific anatomy was

available, a boundary element model (BEM) of the standard conlin27 brain was

created using Brainstorm’s OpenMEEG BEM toolbox (Gramfort et al., 2010;

Kybic et al., 2005). Since the thalamocortical network chosen was specifically

designed from a somatosensory network, population dipoles from SWS

simulations were placed on a scout in the right somatosensory cortex. Pink noise

(noise with power spectra = 1/f) was used to simulate background physiologic

activity in the brain (Musha and Yamamoto, 1997; Zhou et al., 2012). To

simulate this, scouts, of identical size to the scout containing the population

dipole, were added to every lobe in the brain, besides the right parietal lobe.

These scouts were then used to add a pink noise signal which was power matched

to the population dipole. The scouts were then used in a forward projection to



53

obtain simulated EEG signals. The simulated EEG signals were then resampled

at 1000 Hz and band pass filtered from 0.5 Hz to 100 Hz in order to match the

sampling and filtering characteristics of the polysomnogram data. Finally, the

simulated signal from electrode Cz was subtracted from FPz to create a

simulated FPzCz signal. Additionally, electrode Oz was subtracted from Pz to

create a simulated PzOz signal to compare simulated signals to recorded signals.

4.3 Comparison of Simulations to Physiologic Data

4.3.1 Network Activity and the Population Dipole

The thalamocortical network detailed by Bazenhov et al. (2002) and

adapted here, was based on electrophysiological results reported by Contreas and

Steriade (1995), which provides a point of comparison for the results of the

population DRF. Fig. 4.2 shows example voltage traces corresponding to the

membrane voltage from a sample pyramidal cell in the thalamocortical

simulation (top) and the intracellular recording of a pyramidal cell from a cat in

chemically induced slow wave sleep taken from Contreas and Steriade (1995)

(bottom). Both sets of data show periods of vigorous bursting (up states)

followed by periods of rest or inhibition (down states). The data reported in

Contreas and Steriade (1995) transitioned between the up and down states at

approximately 0.7 Hz. Contreas and Steriade reportsed that this value falls

within the range of previously reported values of 0.6 Hz to 0.9 Hz. The simulated

pyramidal neuron activity transitioned between the up and down states at

approximately 0.6 Hz which is also within the reported range. Additionally, the

two sets of data have similar duty cycles (t(14) = 0.8221, p = 0.42) with the

simulations having an average duty cycle of 0.59± 0.13 and the experimental
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Figure 4.2: Comparison between simulated and recorded intracellular membrane
voltage traces from sample pyramidal cells. (Top) Activity from a simulated pyra-
midal cell in a thalamocortical network during slow wave sleep. (Bottom) Activity
from a pyramidal cell from a cat in chemically induced slow wave sleep; adapted
from (Contreas and Steriade, 1995)

data having an average duty cycle of 0.55± 0.12.

Figure 4.3 shows a comparison of the simulated population dipole and the

depth EEG obtained experimentally by Contreas and Steriade (1995). The depth

EEG encapsulates what is currently considered the local field potential (LFP)

and multi-unit activity (MUA) signals. Since the original experimental data

could not be obtained, quantitative statistical comparisons could not be made.

Qualitative comparisons showed that the simulated data had a lower

fundamental frequency (0.66 Hz vs 0.74 Hz), however, both still fell within the

reported range of 0.6 Hz to 0.9 Hz (Steriade et al., 1993). The data sets also had

some additional features in common. First, both the signals had sharp negative

peaks at the onset or slightly after (< 0.2s) of pyramidal cell activity. Second,
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Figure 4.3: Comparison between simulated and recorded intracellular membrane
voltage traces from pyramidal cells as well as population dipoles and depth EEGs.
(A-Top) Population dipole for the thalamocortical network simulation shown to-
gether with the membrane voltage (A-Bottom) from the sample pyramidal cell
shown in fig 4.2. (B-top) Depth EEG recorded from the somatosensory cortex of a
cat in chemically induced slow wave sleep together with the intracellular recordings
of a simultaneously measured pyramidal cell (B-Bottom); adapted from (Contreas
and Steriade, 1995)

the relative sharpness of each negative peak appears to be related to the strength

and duration of the pyramidal spiking activity, with large peaks occurring with

large bursts of pyramidal cell activity and small almost non-existent peaks

occurring where there is very little pyramidal cell activity.

4.3.2 EEG Activity

EEG activity associated with the simulated population was estimated by

forward projection of the population current dipole onto the colin27 brain and
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Figure 4.4: Comparison between simulated and recorded surface EEG signals for
individuals in slow wave sleep. (Top) Simulated EEG signal. Signal was obtained
by forward projecting the population dipole and then subtracting the Oz electrode
data from Pz to obtain a signal similar to the polysomnographic data. (Bottom)
A 25 second snippet of EEG signals from the polysomnogram obtained from phy-
sionet. Patient was a 33 year old healthy female and data shown is the PzOz
signal.

Figure 4.5: Comparison between simulated and recorded periodograms for indi-
viduals in slow wave sleep. (Top) Periodogram for the simulated EEG signals.
(Bottom) Periodogram for the 25 second segment of surface EEG measured from
a human subject; shown in fig. 4.4



57

compared to recorded EEG signals from a 33 year old healthy female during slow

wave sleep. Figure 4.4 shows example time series of both the simulated and

experimental EEG data. Comparisons between the frequency spectra (figure 4.5)

show that ∼ 25% of the power (27% for simulated and 23% for subject data)

occurred under 1 Hz, with peaks at 0.6104 Hz and 0.4883 Hz for simulated and

recorded signals respectively. Additionally, two bands in the frequency power can

be seen in the recorded signal. A larger band from 0.22 Hz to 0.78 Hz and a

smaller band from 0.87 Hz to 1.22 Hz. Similar bands in the power of the

simulated population dipole were observed with the lower frequency band ranging

from 0.21 Hz to 0.79 Hz, and the secondary band from 0.85 Hz to 1.22 Hz.

4.4 Discussion

This section presents a novel technique for simulating EEG signals by

convolving simulated network activity with the characteristic current dipoles

generated by morphologically complex neurons (DRFs) then forward projecting

the resulting population dipole onto the scalp. This technique was then validated

at multiple spatial scales to ensure that the final EEG signals generated were

reflective of underlying network spiking. Comparison of the simulated and

recorded signals of a thalamocortical network at the neuronal level showed that

the spiking of pyramidal neurons in the point source network had a spiking

profile similar to the spiking profile of pyramidal neurons recorded in a cat. Most

notably that frequency at which they transitioned between up and down states

(0.6 Hz vs 0.7 Hz for simulated and recorded respectively), as well as the duty

cycle of that transition (0.59± 0.13 vs 0.55± 0.12) were both within previously

reported norms, or not statistically different (t(14) = 0.8221, p = 0.42). When

the population dipoles were compared to depth EEG recordings our finding
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showed that the population dipole and depth EEG recordings shared a similar

fundamental frequency (0.66 Hz vs 0.74 Hz respectively). Our results also

showed that the two signals modulate the sharpness of each downward peak

relative to the activity of the pyramidal cells in a similar fashion (e.g. large

peaks corresponded with large bursts of pyramidal cell activity and small almost

non-existent peaks corresponded where there is very little pyramidal cell

activity). Finally, the population dipole was forward projected onto the scalp to

validate that the results from the neuronal and population level analyses

translated to the surface EEG. Our results demonstrated that the frequency

spectra of simulated and experimental EEG were similar. Most significantly the

frequency bands at which the signals contain a significant portion of their power

below 1 Hz. Additionally the spectra shared two distinct bands of high power

from 0.22 Hz to 0.78 Hz and from 0.87 Hz to 1.22 Hz in the experimental EEG

spectra, and from 0.21 Hz to 0.79 Hz and from 0.85 Hz to 1.22 Hz in the

simulated spectra.

These findings suggest that the technique for simulating EEG signals

presented in this section can relate EEG signals detectable at the scalp to

neuronal level spiking activity. This can provide an important tool for studying

brain dynamics, by allowing researchers to potentially relate non-invasive

measures of brain activity, namely EEG signals, to cellular generators of those

signals.
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5 Evoked Potentials

5.1 Thalmocortical Evoked Response

In section 4, comparison of the simulated and recorded signals of a

thalamocortical network in slow wave sleep showed a number of similarities

between the two signals. In particular figure 4.3 shows that not only does the

pyramidal cell activity of the two networks bare remarkable similarities, but

population level dipoles also modulate the sharpness of each downward peak

relative to the activity of the pyramidal cells. Figure 4.5 shows there are some

fairly distinct similarities between the periodograms of the simulated and patient

data. Most significantly the frequency bands at which the signals contain a

significant portion of their power below 1 Hz. This suggests that the techniques

described in sections 3.1.1 and 4.1.2 can provide a reasonable representation of

dipole signals generated by a thalamocortical network in slow wave sleep.

To facilitate quantitative analyses the thalamocortical network was

modified to produce an evoked potential for comparison with experimental

measures of evoked activity. This was done not only to show that the technique

can model multiple types of signals, but estim data records data from all

electrodes and thus could be more quantitatively compared to the simulated

signals. With all electrodes a source localization could be done on the

experimental data. Instead of adding noise to our signal and forward projecting

it, we could use source localization only focus on signals generated from a

specific region, making it easier to compare the two signals.

The thalmocortical slow wave sleep network was modified to model the

neuronal dynamics associated with an evoked response in the active network
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state by removing the sodium leakage currents in TC and PY cells (making them

more excitable), while simultaneously reducing the maximum conductance of

PY-PY AMPA mediated synapses by 40% (Bazenhov et al., 2002). In the SWS

state, the network tended to oscillate at its own intrinsic frequency regardless of

input. However, in the active state the network became highly responsive to

outside input, primarily from the thalamus.

In order to generate a somatosensory evoked response, electrical

stimulation of a peripheral sensory nerve was simulated by stimulating the

middle half of the neurons in the TC population with an external spiketrain

generating PSPs on AMPA receptors on the TC cells. Stimulation occurred for

50 ms at random intervals with a mean rate of 2 Hz (Misulis and Head, 2003).

To replicate averaging done across trials in an experimental setting 35

simulations with a duration of 15 seconds each were conducted. Initial

membrane voltages for all neurons were randomly assigned at the start of each

simulation to ensure variability between simulations.

5.1.1 Population Dipole

Population dipoles for each of the 35 simulations were obtained from the

network using the approach described in Section 4.1.2. The normalization of

synaptic dipoles was adjusted to reflect the 40% decrease in AMPA mediated

PY-PY connections. The dipoles were then parsed into 1 second epochs with 0.5

seconds on either side of the stimulation event to match the epoching done on

the experimental data. The epochs were then averaged and low pass filtered at

50 Hz.
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5.1.2 Patient Data

De-identified somatosensory evoked response data was analysed from a

single subject during electrical stimulation (e-stim) of the common peroneal

nerve where it crosses the head of the fibula. Stimulation was applied using a

D67A, Digitimer Ltd. electrical stimulator. The stimulator used a bar electrode

with two 1 cm diameter contacts with 2.5 cm between the electrodes. The nerve

was stimulated at 90% motor threshold at 2 Hz for 2.5 seconds per trial. Motor

threshold was identified by visual observation of twitch contraction prior to

beginning of the trial. The specific purpose of the e-stim was to produce a robust

evoked response in order to measure the cortical response to an ascending

sensory signal. EEG data was obtained using a Brain Products 65 electrode

actiCAP sampled at 2000 Hz.

5.1.3 Source Localization

EEG data was preprocessed using the EEGLAB toolbox in MatLab

(Delorme and Makeig, 2004). EEG recordings were first re-referenced to the

average potential at each timepoint with the inclusion of the original reference

electrode FCz. Signals were then low-pass filtered with a fourth order

Butterworth filter at 100 Hz and parsed into 1 second epochs with 0.5 seconds on

either side of the stimulation event. Epochs were then passed into the AMICA

algorithm (https://sccn.ucsd.edu/ jason/amica web.html) for independent

component analysis (ICA) and the resulting components were passed to the

ADJUST algorithm for automatic rejection of artifact related components.

Epochs were then averaged and the electrode data was passed into Brainstorm

for source localization. A BEM was created for the colin27 brain using the



62

OpenMEEG BEM toolbox. Brainstorm’s wMNE algorithm was used to perform

the source localization. The somatosensory cortex was labelled as a region of

interest (ROI) and the mean activity from the vertices within the ROI were used

to estimate the time course of the somatosensory dipole activity.

5.2 Analysis

5.2.1 Bootstrap Analysis

The relationship between the source localized EP and the simulated

population dipole EP was characterized quantitatively using a bootstrap analysis

of phase randomized EP timeseries. The correlation between the simulated and

experimental timecourses was calculated between ±150 ms of stimulus onset was

calculated. Then the FFT of the source localized signal was taken to obtain the

magnitude and phase spectra. The phase data was then randomized using

Matlab’s randperm function and the omplex FFT vector was reconstructed from

the magnitude and randomized phase. The inverse FFT was then calculated

using the Matlab ifft function to obtain a randomized time series with match

magnitude spectra. The correlation between the phase randomized signal and

the simulated population dipole was calculated, and the procedure was repeated

10,000 times to obtain a probability density function (PDF) of correlations. This

allowed us to quantify the likelihood that the simulated population dipole would

correlate with a random signal of identical power as a recorded EP.

5.2.2 Correlation of Decomposed Simulated Signal

The dipole contributions to the simulated signals for both the SWS and EP

simulations were broken down into three components, pyramidal spiking,
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interneuron spiking, and post synaptic potentials. The pyramidal spiking signal

corresponded to the portion of the population dipole obtained by convolving PY

cell activity with the spike related DRF for a regularly spiking PY cell. The

interneuron spiking signal reflected the contributions of the spike related DRF

for an IN cell, and finally the post synaptic potential signal corresponded to the

portion of the population dipole obtained by from all PSPs, both excitatory and

inhibitory, on both PY and IN cells. Each of these components were

subsequently correlated with the total population dipole to determine which

components accounted for the most variance in the simulated signals.

5.3 Evoked Potential

Figure 5.1 shows a comparison between the simulated population dipole

and the source localized subject data. The correlation between the the two

signals was 0.43 (p=0.0036).

The simulated current dipole was decomposed into its constitutive elements

(pyramidal spiking, interneuron spiking, and post synaptic potentials) to

determine which elements contributed the most to the total dipole. Figure 5.2

shows the decomposed population dipole. The correlations of each

sub-population dipole to the total population dipole 0.9884 for spike related

dipoles from regularly spiking pyramidal cells, 0.1090 for spike related dipoles

from inhibitory interneurons, and -0.1001 for dipoles resulting from synaptic

activity on both pyramidal cells and interneurons.
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Figure 5.1: Time course of the current dipole sources for an evoked potential.
Orange trace shows the source localized signal obtained from recorded EEG data.
Blue trace shows the simulated population dipole.
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Figure 5.2: Total population dipole (blue) superimposed on the individual com-
ponents, PY spiking (orange), IN spiking (yellow), and PSPs (purple) relative to
stimulus onset.
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5.4 Discussion

Evoked potentials were chosen because they are a physiologically realistic,

clinically relevant, easily simulated waveform that could be incorporated into the

thalamocortical network model. The results make several interesting points. The

first, to provide a quantitative look at how well the method of constructing

DRFs and convolving them with network activity may be used to represent

signals in the brain. The correlation between the simulated and measured dipole

activity was r = 0.43 (p = 0.0036). The second, best visualized in figure 5.2,

shows the relative contributions of each type of cellular event (PY spike related

dipoles, IN spike related dipoles, and PSPs) to the total signal. Examination of

the magnitude of the signals reveals that the pyramidal cell spike related dipoles

are over twice as large as the contributions from all other synaptic sources,

accounting for 98.8% of the variability in the total population dipole.

Due to the challenges of obtaining intercellular recordings simultaneously

with EEG in hman subjects, few studies have examined the cellular

contributions to EEG. Murakami et al. (2002) examined the relative

contributions of directly stimulated (spiking) pyramidal cells versus those that

are synaptically stimulated as a result of spiking activity. They found that the

directly stimulated neurons had an almost equal contribution to the current

dipole as neurons stimulated via synaptic activity.

Finally, the evoked potential is an extremely fast waveform, consisting of a

P37 and N45, followed by another positivity at around 60 ms and a final

negativity at approximately 75 ms. Each peak is approximately 10 to 15 ms

apart. With post synaptic potentials being 20 to 30 ms long it would be difficult

for them to sum in manner which could create a waveform with a higher
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frequency content. One such way would be if pyramidal cells were located on

opposite sides of a sulcal wall. The resulting PSPs would then have opposite

signs. However, this would require a very specific orientation of cells which fired

with a timing precise enough to cause destructive interference. Despite the fact

that evoked potentials could be due to either spiking activity or opposing PSPs,

the more parsimonious reason would be the first one, especially considering that

the sulcal walls on the cortex produce dipoles parallel to the scalp.
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6 Discussion

The most common assumption made with regard to the physiological

origins of EEG signals is that they arise from post synaptic potentials on

synchronously firing pyramidal cells in the cortex of the brain. However, recent

studies and literature reviews suggest that the physiological origins of EEG may

not as certain as once thought (Cohen, 2017; Riera et al., 2012; Buzsàki et al.,

2012; Anastassiou et al., 2015; Herreras, 2016; Reimann et al., 2013). In

particular, Reimann et al. (2013) assert that spiking activity is detectable in

LFPs for frequencies low as 50 Hz while Anastassiou et al. (2015) indicate that

action potentials could significantly impact the LFP at a frequency as low as 20

Hz. Although there is not a one-to-one correlation between LFPs and EEG

signals, they are both considered reflect the sum of extracellular currents

generated primarily by synaptic activity (Lopes da Silva, 2010; Olejniczak, 2006;

Herreras, 2016; Hagen et al., 2016). Thus uncertainty in the origin of LFPs also

raises questions about the about the origin of EEG signals.

This is reinforced by the results in Section 3.2 which showed that dendritic

calcium currents activated by backpropigation of currents due to an action

potential generate dipoles which have a magnitude and duration sufficient to

generate detectable EEG signals. Findings which are consistent with the

literature (Stuart et al., 2008; Suzuki and Larkum, 2017). Additionally, a study

by Buzsàki et al. (1988) showed that, in rats, afterhyperpolarizations in layer V

pyramidal cells can contribute to the extracellular field, and that they are the

most likely source of delta waves recorded during their experimentation. This is

consistent with our own findings in Section 3.2 which showed that

afterhyperpolarizations are reflected in the current dipole moment generated by

a regularly spiking pyramidal cell and have a duration (18 ms) which could lend
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itself to temporal summation.

Aside from questions about the current understanding of the cellular

origins of EEG, other concerns have been raised about the current state of EEG

research. A review by Cohen (2017) asserted that while the standard model of

EEG (defined as the ’integration of postsynaptic potentials across neural

populations’) explains the existence of EEG signals, it does nothing to elucidate

its content or meaning. The simulation results reported in Sections 4.3 and 5.3

take a first step toward linking activity of individual neurons to EEG data thus

elucidating the content of the EEG signal. Cohen goes on to state that because

the standard model is primarily used as a justification that EEG signals exist

instead of as a tool for analysing EEG, the current state of the art EEG analysis

tend to be macroscopically focused. They rely on correlation analyses without

being able to determine whether the signals are epiphenomenal or actually

reflective of underlying computations. Cohen asserts that best way to address

the issue of determining whether EEG signals are epiphenomenal or reflective of

neural computations is to engage in research which focuses more on the recording

and analyses of multiscale datasets (simultaneous recordings of individual

neurons, LFPs, and EEG data). The research presented here addresses this by

simulating a multiscale dataset which can be used to explore how underlying

network activity reflects EEG activity. Specifically the results in Sections 4 and 5

suggest that EEG signals are not epiphenomenal, and can be reasonably

predicted from the underlying network activity when combined with detailed

knowledge of the electrophysiology and morphology of the neurons within the

network.

Cohen also stressed the importance of understanding the microcircuit

architecture is important to understanding specific neural processes like
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cognition. He noted that though source localization can be important for fields

like retinotopic mapping and localizing ictal regions for surgical intervention.

However, in fields like cognition, the microcircuit responsible for computation is

more important. The simulation results provide important insights toward

understanding microcircuitry contributions to EEG signals. As Cohen notes the

literature surrounding microcircuitry has been steadily growing over the years

(Cohen, 2017; Gordon Shepherd and Sten Grillner, 2010). With the large

numbers of anatomically detailed neurons in the ModelDB database (McDougal

et al., 2017) it is possible to combine the techniques developed here with

anatomically detailed NEURON models and microcircuitry literature within

brain regions (Gordon Shepherd and Sten Grillner, 2010) to investigate which

microarchitectures generate dipoles that best match source localized EEG signals.

This type of analysis would give greater insight into how the brain processes

information, and how EEG measures relate to the underlying microcircuits.

The point of this thesis is twofold. The first is the most obvious; to

examine how individual neurons generate DRFs, and how those DRFs contribute

to population dipoles which can be detectable by EEG electrodes on the scalp.

More specifically, to computationally investigate the assumption that it is post

synaptic potentials on synchronously firing pyramidal cells of the cortex that are

the primary progenitors of elecroencephalographic signals. However, there is a

secondary, less explored, motive to this thesis. That is to provide researchers

with a way to break down EEG signals in a way which elucidates specifics about

the network, and network activity, which gives rise to specific EEG signals.
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7 Conclusion

In 1947 Lorente de No published his seminal paper on EEG theory. The

mathematics heavily involved an analysis of how current from action potentials

travelling down axons disseminate through neural tissue. Seventy years later,

action potentials are considered to not be involved in contributing to EEG

signals at all, and it is, ironically, Lopes da Silva’s work which is cited when

making this assertion. Using computational methods we investigated the

common assumption that EEG signals originate from post synaptic potentials on

synchronously firing pyramidal cells on the cortex of the brain by examining how

different cells and different cellular events contribute to population level dipoles.

We then validated our results by comparing our population dipoles to recorded

depth EEG signals as well as source localized EEG data. We showed that

characterizing the morphological and electrophysiological properties of a neuron

in terms of a dipole response function, and convolving the dipole response

function with the corresponding neural network provided an accurate

representation of biologically recorded signals. Additionally, this thesis examined

the factors that most influenced the population dipole. Using a simulation of a

somatosensory evoked potential, we show that the spike related dipoles from

regularly spiking pyramidal cells were the primary driver of the signal. It is our

hope that this technique will lead to a deeper understanding of how EEG signals

are generated, and more importantly of the types of network dynamics that

underlay specific EEG signals.
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7.1 Future Directions

Future efforts to expand on this research should be focused on three areas.

First, expanding the size of the neural networks. Preliminary pilot data suggests

that the weighting of post synaptic potentials in the thalamocortical network is

not inversely proportional to network size. That is, if the network size doubles,

the weighting of individual synapses does not reduce by half. Since, the

population dipoles for the PSPs are normalized by the weights in the network,

this means that the ratio of spiking DRFs to PSP DRFs at the population level

will change. However, to what extent this affects the population dipole,

especially for much larger networks, is unknown.

The second focus should be expanding the approach by adding DRFs from

additional neuron models. Additionally, it has been suggested by Riera et al.

(2012) that monopoles may also play a role in generating EEG signals. Though

the paper suggests that monopoles are involved, they do not postulate a method

by which neurons generate monopoles. It could be worthwhile to investigate how

neurons might generate monopoles and if these monopoles could be modelled and

included in the method (i.e. adding a monopole response function to the model).

Finally, the DRF approach could be applied to other networks. Evoked

potentials and slow wave sleep networks were used here as a proof of concept,

however, a wide variety of networks have been studied using EEG. As stated in

section 3, an objective of the research was to allow for a more in-depth analysis

of EEG signals. More specifically, to use EEG signals to elucidate the dynamics

inside brain networks or microcircuits of interest for a given research task. This

is possibly the most interesting and useful of the three possible future directions.

While understanding the origins of EEG activity is important, it is only useful
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insofar as it informs us of the functions of the human brain.
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A Appendix: Cellular Currents

A.1 NEURON Models

For both the pyramidal cell and the spiny stellate cell, the dendrites

contain the sodium current, slowly activating potassium current, calcium

dependent potassium current, and calcium current. The soma includes all of the

above currents in addition to a fast activating potassium current. The axonal

hillock contains only sodium and fast activating potassium currents. Myelin

sheath and node segments contain only sodium currents. In addition to the

active currents listed, all compartments have both capacitive and passive

currents. For the regularly spiking pyramidal cell the calcium and calcium

dependant potassium currents are removed.

Note that most of these equations were derived experimentally at room

temperature ( 23 C◦). However, the body is much warmer ( 37 C◦). Therefore

the rates must be adjusted. This is done through the variable tadj. Finally, these

equations are transcribed from the *.mod files found in the Mainen models used

in this thesis (Mainen and Sejnowski, 1996).

Sodium Current

Constants:

ḡK = 1000 ( pS
µm

) temp = 23 (C◦) q10 = 2.3 (unitless)

Celsius = 37 (C◦) tadj = q10(celsius−temp)/10

Governing Equations:
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iNa = 0.0001 ∗ gna(Vm − ENa) gNa = tadj ∗ ḡNam3h

dm

dt
=
m∞ −m
mτ

mτ =
1

tadj(αm + βm)

m∞ =
αm

αm + βm
αm = 1.638 ∗ efun(

−35− Vm
9

)

βm = 1.116 ∗ efun(
Vm + 35

9
)

dh

dt
=
m∞ −m
mτ

hτ =
1

tadj(αh + βh)
h∞ =

1

1 + exp(Vm+65
6.2

)

αh = 0.12 ∗ efun(
−(50 + Vm)

5
) βh = 0.0455 ∗ efun(

−(75 + Vm)

5
) + 1

Where efun is a modified exponential function defined as follows:

efun(z) =

 1− z
2

ifabs(z) < 0.0001

z
exp(z)−1 ifabs(z) > 0.0001

Fast Activating Potassium Current

Constants:

ḡKv = 5 ( pS
µm

) temp = 23 (C◦) celsius = 37 (C◦)

q10 = 2.3 (unitless) tadj = q10(celsius−temp)/10

Governing Equations:

iKv = 0.0001 ∗ gKv ∗ (Vm − EK) gKv = tadj ∗ ḡKv ∗ n
dn

dt
=
n∞ − n
nτ

nτ =
1

tadj(αn + βn)

n∞ =
αn

αn + βn
αn = 0.18 ∗ efun(

−(Vm − 25)

9
)

βn = 0.018 ∗ efun(
(Vm − 25

9
)

Where efun is the same modified exponential function defined for the sodium

current.

Slow Activating Sodium Current

Constants:
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ḡKm = 10 (pS/um2) temp = 23 (C◦)

celsius = 37 (C◦) q10 = 2.3 (unitless)

tadj = q10(celsius−temp)/10

Governing Equations:

iKm = 0.0001 ∗ gKm ∗ (Vm − EKm) gKm = tadj ∗ ḡKm ∗ n
dn

dt
=
n∞ − n
nτ

nτ =
1

tadj ∗ (αn + βn)

n∞ =
αn

αn + βn
αn = 0.009 ∗ efun(

−(Vm + 30)

9
)

βn = 0.009 ∗ efun(
Vm + 30

9
)

Where efun is the same modified exponential function defined for the sodium

current.

Calcium Dependant Potassium Current

Constants:

ḡKCa = 10 (pS/um2) Caix = 1 (unitless)

temp = 23 (C◦) celsius = 37 (C◦)

q10 = 2.3 (unitless) tadj = q10(celsius−temp)/10

Governing Equations:

iKCa = 0.0001 ∗ gKCa ∗ (Vm − EKCa) gKCa = tadj ∗ ḡKCa ∗ n
dn

dt
=
n∞ − n
nτ

nτ =
1

tadj(αn + βn)

n∞ =
αn

αn + βn)
αn = 0.001 ∗ [Ca]Caixin

βn = 0.02

Note that [Ca]in is the concentration of calcium inside the cell. It is driven by

the calcium current.

Calcium Current
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Constants:

ḡNa = 0.1 (pS/um2) temp = 23 (C◦)

q10 = 2.3 (unitless) celsius = 37 (C◦)

tadj = q10
celsius−temp

10 ECa = 140 (mV)

Governing Equations:

iCa = 0.0001 ∗ gCa ∗ (Vm − ECa) gCa = tadj ∗ ḡCam2h

dm

dt
=
m∞ −m
mτ

mτ =
1

tadj(αm + βm)

m∞ =
αm

αm + βm
αm = 0.209 ∗ efun(

−(27 + Vm)

3.8
)

βm = 0.94 ∗ exp(−(75 + Vm)

17
)

dh

dt
=
m∞ −m
mτ

hτ =
1

tadj(αh + hβ)
h∞ =

αh
αh + βh

αh = 0.000457 ∗ exp(−(13 + Vm)

50
) βh =

0.0065

exp(−(15+Vm)
28

) + 1

Where efun is the same modified exponential function defined for the sodium

current.

Calcium Concentration

Constants:

depth = .1 (um) τr = 200 (ms)

Ca∞ = 100e-6 (mM)

Governing Equations:

d[Ca]in
dt

= drive+
Ca∞ − [Ca]in

τr

drive =


−10000∗iCa
2∗F∗depth ifdrive > 0

0 ifdrive ≤ 0

Where F is Faraday’s Constant.
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A.2 Point Source Models

Note that most of these equations were derived experimentally at room

temperature ( 24 C◦). However, the body is much warmer ( 36 C◦). Therefore

the rates must be adjusted. This is done through the variable denoted as Φx or

Tadj.

Additionally, some of these currents are derived from a paper written by

Dr. Robert Traub. He uses resting potential as Vm = 0, however, the neuron

models use the absolute difference between the inner and outer potentials. To

correct for this the variable Vtr is used. Also note that Vtr is only used for

equations relating to the gating variables and not the ionic current. This is

because the ionic current is driven by the absolute difference between the inner

and outer potentials and therefore needed to be adjusted for in the Traub

models, but does not need to be adjusted here.

Finally, these equations have been transcribed from the neur271.c code used

in thalamocortical network model used in this thesis (Bazenhov et al., 2002).

Fast Sodium Current (Cortical Cells)

Constants:

Cels = 36 Φ = 2.3(Cels−23)/10

Governing Equations:
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iNa = gNa ∗ (Vm − ENa) gNa = Φ ∗ ḡNam3 ∗ h
dm

dt
=
−(m−m∞)

τm
τm =

1

(αm + βm) ∗ Φ

m∞ =
αm

αm + βm
αm = 0.182 ∗ Vm + 35

1− exp(−(Vm+35
9

)

β = 0.124 ∗ −(Vm + 35

1− exp(−(V m+35)
9

)

dh

dt
=
−(h− h∞)

τh

τh =
1

(αh + βh) ∗ Φ
h∞ =

1

1 + exp(Vm+65
6.2

)

αh = 0.024 ∗ Vm + 50

1− exp(−(Vm+50
5

)
βh = 0.0091 ∗ −(Vm + 75)

1− exp(Vm+75
5

)

Fast Potassium Current (Cortical Cells)

Constants:

Cels = 36 Tadj = 9(Cels−23)/10

Governing Equations:

iKv = gKv ∗ (Vm − EKv) gKv = Tadj ∗ ḡKv ∗m
dm

dt
=
−(m−m∞)

τm
τm =

1

(αm + βm) ∗ Tadj
m∞ =

αm
αm + βm

αm = 0.02 ∗ Vm − 25

1− exp(−(Vm−25
9

)

βm = −0.002 ∗ Vm − 25

1− exp(Vm−25
9

)

Persistent Sodium Current (Cortical Cells)

Constants:

Cels = 36 Φ = 2.7(Cels−23)/10

Governing Equations:

iNap = gNap ∗ (Vm − ENa) gNap = ḡNap ∗m
dm

dt
=
−(m−m∞)

τm
τm =

0.8

Φ

m∞ =
0.02

1 + exp(−(Vm+42)
5

)
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Potassium M Current (Cortical Cells)

Constants:

Cels = 36 Tadj = 2.3(Cels−23)/10

Governing Equations:

iKm = Tadj ∗ ḡKm ∗m ∗ (Vm − EKm)
dm

dt
=
−(m−m∞)

τm

τm =
1

(α + β) ∗ Tadj
m∞ =

αm
αm + βm

α = 0.001 ∗ Vm + 30

1− exp(−(Vm+30)
9

)
β = −0.001 ∗ v + 30

1− exp(v+30
9

)

Ca Dependent Potassium Current (Cortical Cells)

Constants:

Cels = 36 Tadj = 2.3(Cels−23)/10

Governing Equations:

iKCa = Tadj ∗ ḡKCa ∗m ∗ (Vm − EKCa)
dm

dt
=
−(m−m∞)

τm

τm =
1

(αm + βm) ∗ Tadj
m∞ =

αm
αm + βm

αm = 0.01 ∗ [Ca]in βm = 0.02

High-Threshold Ca Current (Cortical Cells)

Constants:

Cels = 36 Φ = 2.3(Cels−23)/10

Governing Equations:
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iHV A = Φ ∗ ḡHV A ∗m2 ∗ h ∗ (Vm − ECa)
dm

dt
=
−(m−m∞)

τm
τm =

1

(αm + βm) ∗ Φ

m∞ =
αm

αm + βm
αm = 0.055 ∗ −27− Vm

exp(−27−Vm
3.8

− 1)

βm = 0.94 ∗ exp(−75− Vm
17

)
dh

dt
=
−(h− h∞)

τh

τh =
1

(αh + βh) ∗ Φ
h∞ =

αh
αh + βh

αh = 0.000457 ∗ exp(−13− Vm
50

) βh =
0.0065

exp(−Vm−15
28

) + 1

Low-Threshold Ca Current (Reticular Neuron)

Constants

Φm = 5(Cels−24)/10) Φh = 3(Cels−24)/10)

ECa0 = 1000 ∗ 8.31441
273.15 + Cels

2 ∗ 96489
[Ca]out = 2

Cels = 36 ratio = [Ca]out
[Ca]in

ECa = ECa0 ∗ log(ratio)

Governing Equations:

iT = ḡCa ∗m2 ∗ h ∗ (Vm − ECa)
dm

dt
=
−(m−m∞)

τm

m∞ =
1

1 + exp(−(Vm+52)
7.4

)

τm = 3 +
1

exp(Vm+27
10

) + exp(−(Vm+102
15

) ∗ Φm

dh

dt
=
−(h− h∞)

τh
h∞ =

1

1 + exp(Vm+80
5

)

tauh = 85 +
1

(exp(Vm+48
4

+ exp(−(Vm+407)
50

) ∗ Φh

Fast Sodium Current (Reticular and Thalamocortical Cells)

Constants:

Vtr = -50 V2 = Vm − Vtr

Cels = 36 Φ = 3(Cels−36)/10

Governing Equations:
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iNa = ḡNam
3 ∗ h ∗ (Vm − ENa)

dm

dt
=
−(m−m∞)

τm

τm =
1

(αm + βm) ∗ Φ
minf =

αm
αm + βm

αm = 0.32 ∗ 13− V 2

exp(13−V 2
4

)− 1
βm = 0.28 ∗ v2− 40

exp(V 2−40
5

)− 1
dh

dt
=
−(h− hinf)

τh
τh =

1

(αh + βh) ∗ Φ

hinf =
αh

αh + βh
αh = 0.128 ∗ exp(17− V 2

18
)

βh =
4

exp(40−V 2
5

) + 1

Fast Potassium Current (Reticular and Thalamocortical Cells)

Constants:

VtrK = -50 V2 = Vm − VtrK

Cels = 36 Φ = 3(Cels−36)/10

Governing Equations:

iK = ḡK ∗ n4(Vm − EK)
dn

dt
=
−(n− n∞)

τn

τn =
1

(αn + βn) ∗ Φn

n∞ =
αn

αn + βn

αn = 0.032 ∗ 15− V 2

exp(15−V 2
5

)− 1
βn = 0.5 ∗ exp(10− V 2

40
)

H Current (Thalamocortical Cell)

Constants:

ḡh = 0.02 ginc = 1.5 Cac = 0.0015

pc = 0.01 k4 = 0.001 Eh = -40

p10 =
1

1 + Cac
[Ca]

nCa
in

o10 =
1

1 + β
α

+ p10
pc

o20 = p10
0.001
∗ o10

Governing Equations:
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ih = ḡh ∗ (o1 + ginc ∗ o2) ∗ (Vm − Eh) h∞ =
1

1 + exp(v+75
5.5

)

τs = 20 +
1000

exp(v+71.5
14.2

) + exp(−(v+89)
1.6

)
α =

h∞
τs

β =
1− h∞
taus

k1 = 0.0004 ∗ [Ca]in
0.0015

4

k3p = 0.001 ∗ p1

0.01

do1

dt
= α ∗ (1− o1− o2)− β ∗ o1

dp1

dt
= k1 ∗ (1− p1)− 0.0004 ∗ p1 do2

dt
= k3p ∗ o1− 0.0004 ∗ o2

Potassium A-Current (Thalamocortical Cell)

Constants:

Cels = 36 Tadj = 3(Cels−23.5)/10

Governing Equations:

iA = ḡA ∗m4 ∗ h ∗ (Vm − EK)

τm =
1.0

exp(v+35.82
19.69

) + exp(−(v+79.69)
12.7

) + 0.37) ∗ Tadj
m∞ =

1

1 + exp(−(v+60)
8.5

)

τh =
1

(exp(v+46.05
5

) + exp(−(v+238.4)
37.45

) ∗ Tadj
if(Vm < −63) τh =

19.0

Tadj
if(Vm ≥ −63)

h∞ =
1

1 + exp(v+78
6

)

dm

dt
=
−(m−m∞)

τm
dh

dt
=
−(h− h∞)

τh

Low-Threshold Ca Current (Thalamocortical Cell)

Constants:

Cels = 36 Φm = 3.55(Cels−24)/10

Φh = 3(Cels−24)/10 ECa0 = 1000 ∗ 8.31441 ∗ 273.15+Cels
2∗96489

ratio = Ca0
[Ca]in

ECa = ECa0 ∗ log(ratio)

Governing Equations:
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iT = ḡCa ∗m2 ∗ h ∗ (Vm − ECa)
dm

dt
=
−(m−m∞)

τm

m∞ =
1

1 + exp(−(v+59)
6.2

)

τh =
30.8 + (211.4 + exp( (Vm+115.2)

5
))

(1 + exp(Vm+86
3.2

) ∗ Φh

dh

dt
=
−(h− h∞)

τh

h∞ =
1

1 + exp(Vm+83
4

)

τm =
1

(exp(−(Vm+131.6)
16.7

) + exp(Vm+16.8
18.2

) + 0.612) ∗ Φm

Calcium Dynamics (All Cells)

Constants:

Ca∞ = 0.00024 KT = 0.0001 Kd = 0.0001

drive0 =
10

2 ∗ 96489

Governing Equations:

drive =

 −drive0 ∗
iT
D

ifdrive > 0

drive = 0 ifdrive ≤ 0

d[Ca]in
dt

= drive+
Ca∞ − [Ca]in

τr

A.2.1 Pyramidal Cell

The two cortical cells (PY and IN) are two compartment models. They

have a dendritic compartment and an axosomatic compartment. These neurons

will therefore be divided into three sections: axosomatic, dendritic, and coupling

equations.

Dendritic

Constants:
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ḡNa = 0.8 ENa = 50 ḡKm = 0.01 EKm = −90

ḡKCa = 0.3 EKCa = −90 ḡHV A = 0.01 ECa = 140

ḡL = 0.0333 EL = −68 ḡKL = 0.0025 EK = −95

ḡNAP = 3.5 D = 1 τr = 165

Governing Equations:

idend = −ḡL ∗ (Vdend−EL)− iHV A− iKCa− iKm− iNa− iNaP − ḡKL ∗ (Vdend−KK)

Axosomatic

Constants:

ḡNa = 3000 ENa = 50 ḡKv = 200 EKv = −90

ḡNaP = 15

Governing Equations:

g1soma = ḡNa + ḡKv + ḡNaP

g2soma = ḡNa ∗ ENa + ḡKv ∗ EKv + ḡNaP ∗ ENa + 6.74172

isoma = −iNa − iKv − iNaP

Coupling Equations

Constants:

κ = 10000 C = 0.75 ρ = 165 Ssoma = 0.00006

Sdend = Ssoma ∗ ρ

Governing Equations:

Vsoma =
Vdend + κ ∗ Ssoma ∗ g2soma

1 + κ ∗ Ssp,a ∗ g1soam
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dVdend
dt

=
1

C
∗ (idend +

Vsoma ∗ V dend
κ ∗ Sdend

)

A.2.2 Interneuron

Dendritic

Constants:

ḡNa = 0.8 ENa = 50 ḡKm = 0.01 EKm = −90

ḡKCa = 0.3 EKCa = −90 ḡHV A = 0.01 ECa = 140

ḡL = 0.0333 EL = −70 ḡKL = 0 EK = −95

ḡNAP = 3.5 D = 1 τr = 165

Governing Equations:

idend = −ḡL ∗ (Vdend−EL)− iHV A− iKCa− iKm− iNa− iNaP − ḡKL ∗ (Vdend−KK)

Axosomatic

Constants:

ḡNa = 2500 ENa = 50 ḡKv = 200 EKv = −90

ḡNaP = 0

Governing Equations:

g1soma = ḡNa + ḡKv + ḡNaP

g2soma = ḡNa ∗ ENa + ḡKv ∗ EKv + ḡNaP ∗ ENa + 6.74172

isoma = −iNa − iKv − iNaP

Coupling Equations
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Constants:

κ = 10000 C = 0.75 ρ = 50 Ssoma = 0.00006

Sdend = Ssoma ∗ ρ

Governing Equations:

Vsoma =
Vdend + κ ∗ Ssoma ∗ g2soma

1 + κ ∗ Ssp,a ∗ g1soam

dVdend
dt

=
1

C
∗ (idend +

Vsoma ∗ V dend
κ ∗ Sdend

)

A.2.3 Reticular Neuron

Constants:

ḡNa = 100 ENa = 50 ḡK = 10 EK = −95

ḡCa = 2.3 ECa calcuated in iT EL = −77 ḡL = 0.05

ḡKL = 0.005 Vtr = −50 VtrK = −50 D = 1

Governing Equation:

Vm
dt

= −ḡl(Vm − El)− iT − iNa − iK − ḡKl(Vm − EK)

A.2.4 Thalmocortical Cell

Constants:
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ḡNa = 90 ENa = 50 ḡK = 12 EK = −95

ḡCa = 2.3 ECa calcuated in iT ḡA = 0 D = 2

pc = 0.007 k4 = 0.001 ginc = 2 ḡh = 0.0017

ḡL = 0.01 EL = −70 ḡKL = 0.03 Vtr = −40

VtrK = −25

Governing Equation:

Vm
dt

= −ḡl(Vm − El)− iT − ih − iNa − iK − iA − ḡKl(Vm − EK)

B Synaptic Models

B.1 Point Source Models

B.1.1 GABA Type A

Constants:

EGABA = -70 R = 0 C = 0

Cmax = 0.5 Cdur = 0.3 Deadtime = 1

R0 = 0 R1 = 0 α = 10.5

β = 0.166 lastrelease = -100 R∞ =
Cmax ∗ α

Cmax ∗ α + β

Rτ =
1

α ∗ Cmax + β
Prethresh = 0

Governing Equations:

q = (t− lastrelease)− Cdur

if(q > Deadtime)

if(Vpre > Prethresh)

C = Cmax
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R0 = R

lastrelease = t

elseif(C == Cmax)

R1 = R

C = 0

if(C > 0)

R = Rinfty + (R0 −Rinfty) ∗ exptable(−(t− lastrelease)/Rτ )

else

R = R1 ∗ exptable(−β ∗ (t− (lastrelease+ Cdur)))

I = gGABAA ∗R ∗ (Vpost − EGABA)

Where exptable is a modified exponential function defined as follows:

exptable(z) =

 exp(z) if − 10 < z < 10

0 if − 10 > z < 10

B.1.2 GABA Type B

Constants and Initial Conditions:

Cdur = 0.3 K1 = 0.52 K2 = 0.0013 K3 = 0.098

K4 = 0.033 lastrelease = -10000000 C = 0 r0 = 0

g0 = 0 EGABA = -95 Cmax = 0.5 Deadtime = 1

Prethresh = 0 Kd = 100 n = 4

Governing Equations:

Gn = gn

Gn1 =
Gn

Gn +Kd

q = (t− lastrelease)− Cdur
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if(q > Deadtime)

if(Vpre > Prethresh)

C = Cmax

lastrelease = t

elseif(C == Cmax)

C = 0

dr

dt
= K1 ∗ C ∗ (1− r)− r ∗K2

dg

dt
= K3 ∗ r −K4 ∗ g

I = gGABAB ∗Gn1 ∗ (Vpost − EGABA

B.1.3 AMPA

Constants and Initial Conditions:

R = 0 C = 0 R0 = 0 R1 = 0

lastrelease = -100 lastspike = -100 s = 1 EAMPA = 0

Cdur = 0.3 Cmax = 0.5 Deadtime = 1 Cdel = 0

Prethresh = 0 α = 0.94 β = 0.18

R∞ =
Cmax ∗ α

Cmax ∗ α + β

Rτ =
1

α ∗ Cmax + β

Governing Equations:

q = (t− lastrelease)− Cdur

if(q > Deadtime)

if(Vpre > Prethresh)

if(t− lastspike) > (Cdel + Cdur)

lastspike = t

s = 1
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if(s == 1) ∧ (t− lastspike) > Cdel

s = 0

C = Cmax

R0 = R

lastrelease = t

elseif(C == Cmax)

R1 = R

C = 0

if(C > 0)

R = Rinfty + (R0 −Rinfty) ∗ exptable(−(t− lastrelease)/Rτ )

else

R = R1 ∗ exptable(−β ∗ (t− (lastrelease+ Cdur)))

I = gAMPA ∗R ∗ (Vpost − EAMPA)

B.1.4 AMPA Type D2

Constants and Initial Conditions:

R = 0 C = 0 R0 = 0 R1 = 0

lastrelease = -10000 lastrelease1 = -10000 E = 1 s = 1

g1 = 0.00006 newrelease = 0 Use = 0.07 Tr = 700

τ = 50 factor = 1 EAMPA = 0 Cdur = 0.3

Cmax = 0.5 Deadtime = 1 Cdel = 0 Prethresh = 0

α = 0.94 β = 0.18 Period = 8000

R∞ =
Cmax ∗ α

Cmax ∗ α + β

Rτ =
1

α ∗ Cmax + β

Governing Equations:
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q = (t− lastrelease)− Cdur

q1 = (t− lastrelease1)− Cdur

if(q > Deadtime)

if(Vpre > Prethresh)

g1 = gAMPA

factor = 1

Use = 0.073

C = Cmax

R0 = R

E = 1− (1− E ∗ (1− Use)) ∗ exptable(−q1/Tr)

lastrelease = t

lastrelease1 = t

elseif((t− lastrelease1) > 70.0) ∧ ((t− lastrelease) > newrelease)

SS = log((t− lastrelease1 + τ)/τ)/400

S = rand()/(RANDMAX + 1.0)

if(S < 0.000001)

S = 0.000001

newrelease = −(log(S))/SS

g1 = gAMPAmin

factor = 2

Use = 0

C = Cmax

R0 = R

E = 1− (1− E ∗ (1− Use)) ∗ exptable(−q1/Tr)

lastrelease = t

elseif(C == Cmax)

R1 = R
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C = 0

if(C > 0)

R = Rinfty + (R0 −Rinfty) ∗ exptable(−(t− lastrelease)/Rτ )

else

R = R1 ∗ exptable(−β ∗ (x− (lastrelease+ Cdur)))

I = g1 ∗R ∗ E ∗ (Vpost − EAMPA

B.1.5 NMDA Type D1

Constants and Initial Conditions:

R = 0 C = 0 R0 = 0 R1 = 0

lastrelease = -100 lastspike = -100 s = 1 E = 1

Use = 0.0 Tr = 750 ENMDA = 0 Cdur = 0.3

Cmax = 0.5 Deadtime = 1 Cdel = 0 Prethresh = 0

α = 1 β = 0.0067

R∞ =
Cmax ∗ α

Cmax ∗ α + β

Rτ =
1

α ∗ Cmax + β

Governing Equations:

q = (t− lastrelease)− Cdur

if(q > Deadtime)

if(Vpre > Prethresh)

if(t− lastspike) > (Cdel + Cdur)

lastspike = t

s = 1

if((s == 1) ∧ ((t− lastspike) > Cdel))

s = 0



94

C = Cmax

R0 = R

E = 1− (1− E ∗ (1− Use)) ∗ exptable(−q/Tr)

lastrelease = t

elseif(C == Cmax)

R1 = R

C = 0

if(C > 0)

R = Rinfty + (R0 −Rinfty) ∗ exptable(−(t− lastrelease)/Rτ )

else

R = R1 ∗ exptable(−β ∗ (x− (lastrelease+ Cdur)))

fn =
1

1 + exp(−(Vpost + 25))/12.5)

I = gNMDA ∗R ∗ fn ∗ E ∗ (Vpost − ENMDA)

B.1.6 GABA Type A D2

Constants and Initial Conditions:

EGABA = −70 R = 0 C = 0 R0 = 0

R1 = 0 lastrelease = -10000 lastrelease1 = -10000 E = 1

newrelease = 0 Use = 0 Tr = 700 Period = 8000

τ = 50 factor = 1 Cdur = 0.3 Cmax = 0.5

Deadtime = 1 Prethresh = 0 α = 10 β = 0.25

R∞ =
Cmax ∗ α

Cmax ∗ α + β

Rτ =
1

α ∗ Cmax + β

Governing Equations:

q = (t− lastrelease)− Cdur
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q1 = (t− lastrelease1)− Cdur

if(q > Deadtime)

if(Vpre > Prethresh)

factor = 1

Use = 0.07

C = Cmax

R0 = R

E = 1− (1− E ∗ (1− Use)) ∗ exptable(−q1/Tr)

lastrelease = t

lastrelease1 = t

elseif((t− lastrelease1) > 70.0) ∧ (t− lastrelease) > newrelease)

SS = log((t− lastrelease1 + τ)/τ)/400

S = rand()/(RANDMAX + 1.0)

if(S < 0.000001)

S = 0.000001

newrelease = −(log(S))/SS

factor = 10

Use = 0

C = Cmax

R0 = R

E = 1− (1− E ∗ (1− Use)) ∗ exptable(−q1/Tr)

lastrelease = t

elseif(C == Cmax)

R1 = R

C = 0

if(C > 0)

R = Rinfty + (R0 −Rinfty) ∗ exptable(−(t− lastrelease)/Rτ )



96

else

R = R1 ∗ exptable(−β ∗ (t− (lastrelease+ Cdur)))

I = (gGABAA/factor) ∗ E ∗R ∗ (Vpost − EGABA)

B.1.7 Externally stimulated AMPA

Constants and Initial Conditions:

α = 0.94 β = 0.18 R = 0 C = 0

R0 = 0 R1 = 0 lastrelease = -100 TR = 1000

w = 0.01 wom = 0 Cdur = 0.3 Cmax = 0.5

Deadtime = 1 Prethresh = 0

R∞ =
Cmax ∗ α

Cmax ∗ α + β

Rτ =
1

α ∗ Cmax + β

Governing Equations:

q = (t− lastrelease)− Cdur

if(q > Deadtime)

if((t− lastrelease) > TR) C = Cmax

R0 = R

lastrelease = t

elseif(C == Cmax)

R1 = R

C = 0

if(C > 0)

R = Rinfty + (R0 −Rinfty) ∗ exptable(−(t− lastrelease)/Rτ )

else

R = R1 ∗ exptable(−β ∗ (t− (lastrelease+ Cdur)))
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g = gAMPAextern ∗R
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