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SUM M ARY

Methods generallyused to transform a gravity map into another one (smoothing, second and 
higher derivatives, analytic continuations upwards and downwards etc.) m ean hncar tran s­
mission. From  the point o f view o f inform ation theory these m ethods are not quite consequentia), 
having unnecessary digressions and not utihzing a!! the advantages of linear transmission. There­
fore we attem p t to develop a  new general method of transform ation using throughout the con­
cepts and relations of information theory.

Since our data are only samples taken a t discrete points from a continuous function describ­
ing the original gravity field, a practical analysis involves digital rather than analog com puta­
tion. In  any case the formulas (1) and (2) are to be applied and their coefficients can only be 
changed, to obtain an optimum transmission. In this introductory paper, some details of formula 
(1) and (2) will be investigated.

Introduction

Tiie purpose of prospection by gravity methods is to discover geologicai 
structures. I t  is necessary in this work to clear away aii effects which 
have no hearing upon the image of the structure in question. To do so, the 
gravity map representing the measured values must he transformed into a 
different kind of map. During the iast 20 years or so, numerous methods have 
been developed for the performing of this transformation. According to their 
theoretical approach, these could be classified into several groups: smoothing, 
calculation of first and second derivatives, of analytic continuations and 
others. The exact analytic form of the gravity field is unknown; the values of 
the function /(a , y) are known only at the discrete points of measurement. 
As a result, formulae of approximation have to be employed throughout, 
in which the measured values figure explicitly. Two types of approximative 
formula are usually employed. The one is
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where .r and y are the coordinates of the p, -.t of reference
PC';.) 's the average over the cireie of radius r,. drawn around the point 

oi reierence, *
u,, is the coefficient attributed to this average,
?n is the number of circtcs considered.

1 he otiier tvpe is

(2 )

where -r+ r̂ .; .y + y, are tiie coordinates of tile moving point fiyurinc ¡„ tiie 
cakuiations, "

C;, is tiie coefficient attributed to the moving point,
?? the number of points considered, and finaiiv,
y*(.r.y) is the transformed value in both cases.

i'ormuia (1) may be empioyed also in the case of an irregular network of 
measurements wiiiie tiie other is used in the ease of reguiar, mostiv square 
gilds. .? a <

liie large number of proposais concerning tiie derivation of the coeffi­
cients a, and cy is wei) known. For the approximation of tiie second derivative 
alone, more than 50 differentsets of coefficients have been proposed. Numerous 
pubhcations deai with the comparison of various sets of coefficients.

ibis state of iacts, however, is not a sign of definite success. It is common 
knowledge that even tiie sets of coefficients designed to meet one and the same 
reepnrement -  e g. tiie caicuiation of tiie second derviative -  vieid markediv 
ddierent transformed maps (see iiergerdt. 1057, Crosse, 1957)! In the course 
o) experiments performed on artificiaiiy composed maps it frequency turns 
out that every shape of the assumed disturbing body is best approximated bv 
a (infèrent set of coefficients, i'inafiy — and this is most important for practicai 
work -  each area of prospection requires a different set of coefficients in order 
to assure optimum transformation.

i-rom the above-said, some highiy important conclusions emerge:
1. As the iniai resuit of the operation depends partialiy on factors othcr 

tiian tiie coefficient set, it is misleatiing to periorm the comparison of tiie 
sets iv applying them to maps, and a method of comparison independent of 
maps iias to be devised.

2. It is a purpose doomed to defeat to begin witii to find a "best" series 
of coefficients which can he used to the best advantage ever hereafter, as 
then; is no such set oi coefficients. Ihcrc have to be developed appropriate 
p u n ch es which permit to design or to calculate the most appropriate set for 
any given region, in tile knowledge of the geological and geophysical features 
oi that region.

3. As a coroiiary of the above idea, it is superfluous to attempt tiie best 
possibie approximation of a given theoretical, niathcmatica! transformation, 
(i-or instance, to try to approximate as cioseiy as possibie tiie second deriva­
tive.) An cxceitent approximation of the theoreticai operation may yicid 
quite a iaisc or at icast an unfavorable resuit in practice. If tiie average over 
flic circies is caicuiatcd from a sufficiently large number of points and ifiormuia



(1) is applied, the Henderson (ietz formulae represent un excédent approxi­
mation of the second derivative, and the Eikins —Peters set of coefficients a 
fairly poor one (Mesko, 1965): nevertheless, the application of the second 
approximation to the measured field is found to furnish better results. This 
is explained by the fact that the second derivatives as well as the analytical 
continuations downward enhance unduly the abrupt changes of the field 
(Swartz 1954, Dean 1958). However, errors of measurement or an inappropriate 
grid spacing (too great distances between points measured) tend to cause 
the most important distortion just in the case of abrupt changes. There arises 
consequently the danger of introducing the largest amount of ,.noise" just into 
the most accentuated parts of the picture.

It follows from the above-said that the accuracy of the approximation 
of a theoretical concept cannot possibly be a criterion of goodness suited to 
serve as a basis of choice among sets of coefficients. It is best to consider it 
irrelevant and to leave it completely aside, by adhering closely to the aims 
set and the possibilities given in every step from the formulation of the problem 
onward.

The problem — restated so as to emphasize the essential points — is as 
follows.

We are confronted with a set of values of which a map of contours repre­
senting some parameter or other can be constructed. This set is not sufficiently 
easy to handle and to interpret. We may transform it by means of formula 
(1 ) or (2) depending on whether the grid of measurements in question is regulat­
or not. Our purpose shall be to derive by an appropriate transformation of out­
set of values a map that represents a? clearly as possible the object prospected. 
In what manner are we to choose the values of u,. and e,. figuring in the for­
mulae ?

We are in the fortunate position of finding the concepts and methods 
appropriate to our task among the apparatus of information theory. It is 
these that are to be employed to the solution of the geophysical problem. 
In the present paper the author wishes to commence the development of a 
self-consistent method based on information theory. To this end, he first 
analyzes the formulae (1) and (2). It is appropriate, however, to review as an 
introduction the most important concepts of information theory to be applied 
below.

basic concepts and formulae of information theory

According to information theory, our Universe and the phenomena taking 
place therein may be described by one- or multi dimensional signals. These 
signals are in a general way functions of the three space coordinates and of the 
time coordinate. It is obviously sufficient to consider exclusively the coordina­
tes along which the signal is not constant, as it is only these that carry real 
information. If the coordinates do not include time, we speak of a configuration. 
In this order of ideas, the gravity field as considered in its projection upon a 
horizontal plane of reference is a  two-variable configuration of the form 
/(R, y)-
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The field in its physical reality is a continuous, analog signal. The mea­
surement results represent samples of this continuous function. The set of 
measurements is a digital representation of the continuous function. As the 
measured area is a finite domain of space, it possesses a finite content of infor­
mation th at can be fully and unequivocally represented by a finite number of 
samples. (It is consequently unnecessary to increase the number of measu­
rements above a given point.) The minimum number of points needed to cha­
racterize the domain depends on the spectral composition of the continuous 
function to be sampled.

By the Fourier transform, we may attribute to /(.r. y) a function, likewise 
of two variables, the so-called complex spectrum :
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where the coordinates cj and y represent space frequencies. 1 heir dimension 
is cm **. To revert from F (o , y) to the original function we have to employ 
the inverse Fourier transform :

(3 )

(4 )

If  in the complex spectrum the values of the function different from zero 
are restricted to the arguments less than cq along the axis and less than yq 
along the y axis, respectively, we obtain for the spacing of the sampling points, 

and

(5 )

cii and % are termed upper frequency limits. If (5) fails to be satisfied, the 
spectrum of the digital set of data does not agree with that of the original 
continuous function (aliasing). Distortion first sets in the high-frequency 
part of the spectrum.

If the point spacing is 3,. =  3,, =  3 everywhere, we have a regular square 
grid and the connection between the analog and digital description becomes

(6)

Let us note — although this does not form an organic part of our line of 
thought — that as (6) furnishes the description of the field in analytical form, 
one can derive from it very simply and — if the number of coefficients to be 
utilized is also fixed, unequivocally — the coefficient set best adapted to 
certain theoretical purposes (Tomoda, Aki 1955; Tsuboi, Tomoda 1958).
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The application of formulae (1) and (2) is essentially a linear transmission. 
..Transmission" is understood here in a very general sense, as the assigning of 
given output signals to certain input signals. In gravity interpretation the 
input signal is the untransformed map, the output signal the map subsequent 
to transformation. The transmission is essentially the performing of the opera­
tions of transibrniation. Transmission is linear if the transformation engen­
dered bv the operations in question is given for the sum of two signals as 
follows:

For a linear transmission, the complex spectra of the input and output 
signal are related as follows:

where V(d, y) is the complex spectrum oi the mput signal,
F**(w, y) is the same for the output signal, and 
(r(o, y) is the transfer function of the system.

The transfer function consists in general of complex values. But if phase shift 
is zero, the imaginary part becomes zero as well. In such cases the transmission 
may be described by a single two-variable function, the amplitude distortion 
of the operation.

To (7) there corresponds in the spatial domain

where <y(a', y) is the weighting function of the system, and 
* indicates a convolution operation.

The transfer functions of the transformations employed in gravity inter­
pretation have been calculated for certain special cases by several authors 
(Swartz, 1954. Dean, 1958, Bverlv, 1965, Meskb, 1965). The transfer function 
of (2) is

(9)

The transfer function of (1) depends also on the number of points utilized 
in forming the average over the circles. If the number of the points tends 

towards infinity, we have

( 10)

where is the zero-order Bessel function of the first kind.
It is obviously impossible to utilize an infinity of points, but (10) furnishes 

a fairly good approximation if a sufficient number of points is taken into con­
sideration. One of the tasks to be solved hereunder is to give a more accurate 
description of the term ,.sufficient number".
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A description independent of the maps is consequently feasible. In the 
general case, two separate two-variable functions are required as we must form 
both the real and the imaginary part of the transfer function. Tn the absence 
of a phase shift it is sufficient to form a single two-variabie function. Let the 
upper frequency limit equal L? along both the .r and .y axis. Let us supposc 
that the grid spacing was sufficiently close and that consequently the set of 
measured values contains indeed all the information included in the measured 
field. (Let us leave aside for the time being the influence of amplitude quantiza­
tion.) We then obtain front (5)

that is

( 1 !)

(For a regular grid, s is the grid interval; for irregular networks, we shall sup­
pose that (11) is valid for the average grid point interval, too.)

We have assumed that the input signal contains no components having 
a frequency higher than v s in any of the directions. (7) then reveals that the 
output signal will not contain any such components, either, and that this 
circumstance is entirely independent of the transfer function. It is then 
sufficient to define the transfer function for arguments less than rrcs; that is. 
the value of (2(0 , y) has to be calculated for the arguments falling into the 
quadranglc

Let us introduce the relative frequencies o ' and y* by the equations

( 12)

Relative frequency is a dimensionless number. It is to be determined — inde- 
pendetly of grid spacing — always in the range

(!3 )

luvesfigaficn of flu* process of averaging on a rirch

In this section the transfer functions of various averaging procedures will 
be computed and compared. It is important in practice to know how many 
points must be considered to receive a suitable transmission under given con­
ditions. Namely — as it will be seen — the variation in the transfer functions 
grows more and more insignificant with increase of the number of values used 
in computation. This means that increasing that number beyond a point is 
unnecessary. The transfer function of the average computed from an infinite 
number of values (average by integration) is given by (10). The transfer func­
tions of averages computed from some numbers of values (4. 6, 8 or 16) (average 
bv summation) can be obtained from (9).
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Far simplicity it wit! be assumed that the points are symmetrically distri 
buted on the circ!e. 1'hen. for ?; = 4 :

(14)

(13)

(!<;)

(17)

we can substitute pc/ and pyf for cm and ry respectively, where w' and y/ 
are the relative space frequencies.

We have to investigate the goodness of approximation in the following

( I S )

( ! ! ' )

(20)

(2 1 )

The 0(cj'. y') frequency responses can be illustrated by surfaces over the 
a /, y* plane. Because of their symmetry properties, it is sufficient to represent 
the surfaces for the followin'' intervals of their indeoendent variables:

which is one quarter of the range given by (13).

for /; =  0:

for ?; =  M:

and lastly for ?; =  10:

' ' ]6 r(M, y ) = — [ cos au- + cos yir + 2 cos (fv/* cos 45 ) cos ( yr sin 45°) +

+  2 cos (cjrcos 22.5°) cos (tpr sin 22.5") +  2 cos (fer sin 22.5°) cos (yr cos 22,5°) 1.

Introducing a new. dimensionless parameter p hv the definition
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The functions on the (common) left sides of (18) —(¿1) give a. surface of 
rotation. The transmission corresponding to the integral average is nondirectio- 
nal.

The other surfaces given hv the functions on the right sides of (18) —(21) 
differ more or less from this surface of rotation. The deviation depends:

(direction) ;

(radius of circle vs. distance to sampling station);

and — obviously — on the number oi values used in averaging (n).
Let us consider a straight line through the origin of the oh plane. Its slope

fixes a direction. A plane containing this lino and perpendicular to the o ', 
plane intersects the surfaces in certain curves which represent the frequency 
responses in the considered directions.

To estimate the deviation of a surface corresponding to a given number /; 
of points from the surface of rotation, it is sufficient to examine only two suit­
able directions. The first one is always (i.e. for every ;?) ?n =  0 ; while ttie second 
one depends on ?; as follows:

Let us consider now a fixed ??. It would be easy to show that any curve 
defined by any arbitrary direction lies between the curves defined by the above- 
mentioned pair of directions. (??; -  0, w — tg 45- for /; =  4, etc.) If these 
two curves are both close to the curve representing the nondirectional integral 
average, the w hole surface gives a good approximation of the surface of rotation.

Introducing the directions in question into the formulas on the right sides 
of (18) —(21) we obtain the following functions to be investigated:

(23)

(24)

(25)

(2 5 )
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(27)

(28)

(29)

(30)
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If it is necessary to compute averages on different circtes (taring the 
transformation of a given map. the first thing to do is to determine the effective 
upper frequency iimit p, of the radial frequency variable p. To do so, we 
find on the map the direction in which tin- most rapid changes occur and 
then compute the upper frequency iimit from the profite corresponding to 
this direction. The timit may be considerabty lower than the folding frequency. 
We then compute the range of rotative frequency in which the graphs are to

be compared. To facititate this procedure, a simple parade) chart is given as 
Fig. 5. representing the connection between the true and retative frequencies 
for different station distances s as parameter. The given r and an average 
station distance (to be set in any case higher rather than tower) yields the value 
of parameter Using the graphs in Figs. 1 - 4 .  there can be found the least 
number of points necessary to make the deviation from the curve of the non- 
directiona! frequency response negligible in the appropriate range of 
pp'for pM*).
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Some details of grid methods

In this section the transfer functions of some point arrangements used 
in grid computations will be computed. Figure 6. shows the simplest and most 
frequently employed arrangements. The transfer function for /; = 1. ?; =  4 
((i'a) given by (14) was already investigated. A simple computation yields

(31)

(32)

the following transfer functions:

and
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In the preceding section the surlaces representing the transfer fnnctic 
were investigated along some fixed directions. Let us consider now a fix 
circle on the cT. o' nlane:

A cylindric surlacc jacket containing this circle and perpendicular to the a /, y' 
])lane intersects the surfaces in certain ehcteraraistic curves (see Fig. 7.). The 
perpendicular distances ofthe points F o n  this curve from the o ', y' plane /V  . 
depend o)i the rlirection ct indicated by the point F  and on the radius A . 
Let us regard at as the argument and A as the parameter. Figs. H. and 9. show

the iunctions for the values of the parameter A* =  ""-A* (where A* = (). 1, . . .  6).
6

the curves represent the averages over 4. 6, 8 and 16 points, respectively, 
as well as the average bv integration (dotted lines) on the circles r -  g and 
r - j .5 s.
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Using the equations (9) and (10) the transfer functions (frequency respon­
ses) of any given set of coefficients can he similarly computed and illustrated. 
These functions unambiguously characterize the transformations and permit 
to predict their effect on a map without any experimental computation.
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