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SUMMARY

Methods generally used to transform a gravity map into another one (smoothing, second and
higher derivatives, analytic continuations upwards and downwards etc.) mean linear trans-
mission. From the point of view of information theory these methods are not quite consequential,
having unnecessary digressions and not utilizing all the advantages of linear transmission. There-
fore we attempt to develop a new general method of transformation using throughout the con-
cepts and relations of information theory.

Since our data are only samples taken at discrete points from a continuous function describ-
ing the original gravity field,a practical analysis involves digital rather than analog computa-
tion. In any case the formulas (1) and (2) are to be applied and their coefficients can only be
changed, to obtain an optimum transmission. In this introductory paper. some details of formula
(1) and (2) will be investigated.

Introduetion

The purpose of prospection by gravity methods is to discover geological
structures. It is necessary in this work to clear away all effects which
have no bearing upon the image of the structure in question. To do so, the
gravity map representing the measured values must be transformed into a
different kind of map. During the last 20 years or so, numerous methods have
been developed for the performing of this transformation. According to their
theoretical approach, these could be classified into several groups:smoothing,
caleulation of first and second derivatives, of analytic continuations and
others. The exact analytic form of the gravity field is unknown; the values of
the function f(x, y) are known only at the discrete points of measurement.
As a result, formulae of approximation have to be employed throughout,
in which the measured values figure explicitly. Two types of approximative
formula are usually employved. The one is

m
g*(x,y) = X a,g(ry), (1y
k=0
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where 2 and y are the coordinates of the ps -t of reference,

g(ry) is the average over the circle of radius 7, drawn around the point
of reference,

a, is the coefficient attributed to this average,

m is the number of circles considered.
The other type is

n
g* (@, y) = > @+, y+y,). (2)
k=1

where ¥+, ; y+y, are the coordinates of the moving point figuring in the
calculations,

c is the coefficient attributed to the moving point,

n the number of points considered, and finally,

g*(x,y) is the transformed value in both cases.

Formula (1) may be employed also in the case of an irregular network of
measurements while the other is used in the case of regular, mostly square,
orids.

The large number of proposals concerning the derivation of the coeffi-
cients @ and ¢; is well known. For the approximation of the second derivative
alone, more than 50 different sets of coefficients have been proposed. Numerous
publications deal with the comparison of various sets of coefficients.

This state of facts, however, is not a sign of definite success. It is common
knowledge that even the sets of coefficients designed to meet one and the same
requirement — e.g. the calculation of the second derviative — yield markedly
different transformed maps (see Hergerdt, 1957, Grosse, 1957). In the course
of experiments performed on artificially composed maps it frequently turns
out that every shape of the assumed disturbing body is best approximated by
a different set of coefficients. Finally — and this is most important for practical
work — each area of prospection requires a different set of coefficients in order
to assure optimum transformation.

From the above-said, some highly important conelusions emerge :

1. As the final result of the operation depends partially on factors other
than the coefficient set, it is misleading to perform the comparison of the
sets by applying them to maps, and a method of comparison independent of
maps has to be devised.

2. It is a purpose doomed to defeat to begin with to find a “best” series
of coefficients which can be used to the best advantage ever hereafter, as
there is no such set of coefficients. There have to be developed appropriate
principles which permit to design or to calculate the most appropriate set for
any given region, in the knowledge of the geological and geophysical features
of that region.

3. As a corollary of the above idea, it is superfluous to attempt the best
possible approximation of a given theoretical, mathematical transformation.
(For instance, to try to approximate as closely as possible the second deriva-
tive.) An excellent approximation of the theoretical operation may yield
quite a false or at least an unfavorable result in practice. If the average over
the circles is calculated from a sufficiently large number of points and i¢ formula
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(1) is applied, the Henderson “ietz formulae represent an excellent approxi-
mation of the second derivative, and the Elkins — Peters set of coefficients a
fairly poor one (Meskd, 1965): nevertheless, the application of the second
approximation to the measured field is found to furnish better results. This
is explained by the fact that the second derivatives as well as the analytical
continuations downward enhance unduly the abrupt changes of the field
(Swartz 1954, Dean 1958). However, errors of measurement or an inappropriate
grid spacing (too great distances between points measured) tend to cause
the most important distortion just in the case of abrupt changes. There arises
consequently the danger of introducing the largest amount of , noise” just into
the most accentuated parts of the picture.

It follows from the above-said that the accuracy of the approximation
of a theoretical concept cannot possibly be a criterion of goodness suited to
serve as a basis of choice among sets of coefficients. It is best to consider it
irrelevant and to leave it completely aside, by adhering closely to the aims
set and the possibilities given in every step from the formulation of the problem
onward.

The problem — restated so as to emphasize the essential points — is as
follows.

We are confronted with a set of values of which a map of contours repre-
senting some parameter or other can be constructed. This set is not sufficiently

easy to handle and to interpret. We may transform it by means of formula
" (1) or (2) depending on whether the grid of measurements in question is regular
or not. Our purpose shall be to derive by an appropriate transformation of our
set of values a map that represents as clearly as possible the object prospected.
In what manner are we to choose the values of @, and ¢, figuring in the for-
mulae ?

We are in the fortunate position of finding the concepts and methods
appropriate to our task among the apparatus of information theory. It
these that are to be employed to the solution of the geophysical problem.
In the present paper the author wishes to commence the development of a
self-consistent method based on information theory. To this end, he first
analyzes the formulae (1) and (2). It is appropriate, however, to review as an
introduction the most important concepts of information theory to be applied
below.

Basic concepts and formulae of information theory

According to information theory, our Universe and the phenomena taking
place therein may be described by one- or multi-dimensional signals. These
signals are in a gen(,ral way functions of the three space coordinates and of the
time coordinate. It is obviously sufficient to consider exclusively the coordina-
tes along which the signal is not constant, as it is only these that carry real
information. If the coordinates do not include time, we speak of a configuration.
In this order of ideas, the gravity field as considered in its projection upon a
horizontal plane of reference is a two-variable configuration of the form
f(z, y).

2 ANNALES — Sectio Geologics — Tomus IX.
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The field in its physical reality is a continuous, analog signal. The mea-
surement results represent samples of this continuous function. The set of
measurements is a digital representation of the continuous function. As the
measured area is a finite domain of space, it possesses a finite content of infor-
mation that can be fully and unequivocally represented by a finite number of
samples. (It is consequently unnecessary to increase the number of measu-
rements above a given point.) The minimum number of points needed to cha-
racterize the domain depends on the spectral composition of the continuous
function to be sampled.

By the Fourier transform. we may attribute to f(z, y) a function, likewise
of two wvariables, the so-called complex spectrum:

+ 0 —+

Flo, p) = | f/(u o~ iox+)dady, (3)

where the coordinates @ and y represent space frequencies. Their dimension
is em~1 To revert from F(w, ) to the original function we have to employ
the inverse Fourier transform:

oo foo

e, y) = Ydody (4)

If in the complex spectrum the values of the function different from zero
are restricted to the arguments less than o, along the 2 axis and less than 3,
along the y axis, respectively, we obtain for the spacing of the sampling points,
s, and s,:

Sy = = 8, = (5)

o, and p, are termed upper frequency limits. If (5) fails to be satisfied, the
spectrum of the digital set of data does not agree with that of the original
continuous function (aliasing). Distortion first sets in the high-frequency
part of the spectrum.

If the point spacing is s, = s, = s everywhere, we have a regular square
grid and the connection hetween the analog and digital description becomes

sin % (x—Fks)  sin . (y—1s)
s

m n o
fey) =3 3 fiksls) — (6)
bl 2 (x—ks) T (y—1s)
s s
Let us note — although this does not form an organic part of our line of

thought — that as (6) furnishes the description of the field in analytical form,
one can derive from it very simply and — if the number of coefficients to be
utilized is also fixed, unequivocally — the coefficient set best adapted to
certain theoretical purposes (Tomoda, Aki 1955; Tsuboi, Tomoda 1958).
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The application of formulae (1) and (2) is essentially a linear transmission.
., Transmission” is understood here in a very general sense, as the assigning of
given output signals to certain input signals. In gravity interpretation the
input signal is the untransformed map, the output signal the map subsequent
to transformation. The transmission is essentially the performing of the opera-
tions of transformation. Transmission is linear if the transformation engen-
dered by the operations in question is given for the sum of two signals as
follows:

T{/l +/2} = T{/l}+T{/2}'

For a linear transmission, the complex spectra of the input and output
signal are related as follows:

F¥(w, p) = G(o, p) F(o. p).

where F(o, p) is the complex spectrum of the input signal,
F*, p)is the same for the output signal, and
G, p) is the transfer function of the system.

The transfer function consists in general of complex values. But if phase shift
is zero, the imaginary part becomes zero as well. In such cases the transmission
may be described by a single two-variable function, the amplitude distortion
of the operation.

To (7) there corresponds in the spatial domain

Fa,y) = g(@, y) * (@, y).
where g(x,y) is the weighting function of the system, and
. indicates a convolution operation.

The transfer functions of the transformations employed in gravity inter-
pretation have been calculated for certain special cases by several authors
(Swartz, 1954, Dean, 1958, Byerly, 1965, Meskd, 1965). The transfer function
of (2) is

n
GZ(Q)- 'P) oz :\ c'l.:ei(“xk rr.‘_V[;)‘ (9)
k=1

The transfer function of (1) depends also on the number of points utilized
in forming the average over the circles. If the number of the points tends
towards infinity, we have
m - =
Gilo,p) = N apJ (Vo> + p* - 1) (10)
k=0

where J, is the zero-order Bessel function of the first kind.

It is obviously impossible to utilize an infinity of points, but (10) furnishes
a fairly good approximation if a sufficient number of points is taken into con-
sideration. One of the tasks to be solved hereunder is to give a more accurate
description of the term ,sufficient number”.

RES
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\ description independent of the maps is consequently feasible. In the
general case, two separate two-variable functions are required as we must form
both the real and the imaginary part of the transfer function. In the absence
of a phase shift it is sufficient to form a single two-variable function. Let the
upper frequency limit equal Q along both the @ and y axis. Let us suppose
that the grid spacing was sufficiently close and that consequently the set of
measured values contains indeed all the information included in the measured
field. (Let us leave aside for the time being the influence of amplitude quantiza-
tion.) We then obtain from (5)

that is

(I

_
0, = —
S
(For a regular grid, s is the grid interval; for irregular networks, we shall sup-
pose that (11) is valid for the average grid point interval, too.)

We have assumed that the input signal contains no components having
a frequency higher than z/s in any of the directions. (7) then reveals that the
output signal will not contain any such components, either, and that this
circumstance is entirely independent of the transfer function. It is then
sufficient to define the transfer function for arguments less than z/s; that is,
the value of G(w, ) has to be calculated for the arguments falling into the
quadrangle

et 90 z
o] = = |p| ==
~ S

Let us introduce the relative frequencies @’ and 3’ by the equations

(')/ = wSs; ’/"’ = Ps. (13)
Relative frequency is a dimensionless number. It is to be determined — inde -
pendetly of grid spacing — always in the range

<z |p'=m= (13)

Investigation of the process of averaging on a cireis
¢

In this section the transfer functions of various averaging procedures will
be computed and compared. It is important in practice to know how many
points must be considered to receive a suitable transmission under given con-
ditions. Namely — as it will be seen — the variation in the transfer functions
grows more and more insignificant with increase of the number of values used
in computation. This means that increasing that number beyond a point is
unnecessary. The transfer function of the average computed from an infinite
number of values (average by integration) is given by (10). The transfer func-
tions of averages computed from some numbers of values (4.6, 8or 16) (average
by summation) can be obtained from (9).
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For simplicity it will be assumed that the points are symmetrically distri
buted on the circle. Then. for n = 4:

Gy (0. p) = —l)— cos (@r+ cos pr), (14)
for n = 6: ~
G (@, p) = l; [cos mr+ 2 cos (@r cos 60%) cos (prsin 60°) ], (15)
for n = 8:
Ge (0. p) = —i [cos @r + cos pr+ 2 cos (or cos 45%) cos (prsin 45°) |. (16)

and lastly for n = 16:
, 1 v 5 450
6@, p) = —[cos @i+ cos pr+ 2 cos (wr cos 45%) cos (prsin 45°) +
S
+ 2 cos (@r cos 22.5%) cos (pr sin 22.5%) + 2 cos (wr sin 22.5°%) cos (pr cos 22,5%) ].
(17)
Introducing a new. dimensionless parameter p by the definition
r = us,

we can substitute po’ and py’ for re and ry respectively, where o’ and y’
are the relative space frequencies.

We have to investigate the goodness of approximation in the following
equations:

T ) 1 ’ ’
Jo(Vo*+p?-pn) = = [cos pw” + cos ug’|, (18)
] ’ ’ . C ’ > . C
ry [(cos pw’ + 2 cos (ue” cos 60°) cos (up” sin 60°) . (19)
1 ’ ’ ’ o 7 IREC, i
=~ — | CCS u® CcOS uy Z oS @ COS 4 COS (uy Sin 49 . < U
5 [cos o’ +co8 up” +2 cos (u 45°) cos (uy” sin 45%)| (20)

1 ;
= — [cos pw’ + cos up’ + 2 cos (uw” cos 45°) cos (up’ sin 45°) +
8

+2 cos (uw’ cos 22,5°) cos (uy” sin 22,5) +
+ 2 cos (u’ sin 22,5%) cos (up’ cos 22,5) | (21)

The G(w', y') frequency responses can be illustrated by surfaces over the
w’, " plane. Because of their symmetry properties, it is sufficient to represent
the surfaces for the following intervals of their independent variables:

0<w <a; 0<y <=

which i one quarter of the range given by (13).
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The functions on the (common) left sides of (18)—(21) give a surface of
rotation. The transmission corresponding to the integral average is nondirectio-
nal.

The other surfaces given by the functions on the right sides of (18)—(21)
differ more or less from this surface of rotation. The deviation depends:

’

¥

on the ratio M= — (direction);
(0]
. )‘ . - ol . . . .
on the ratio M= —; (radius of circle vs. distance to sampling station);
8
and — obviously — on the number of values used in averaging (n).

Let us consider a straight line through the origin of the ', " plane. Its slope
fixes a direction. \ plane containing this line and perpendicular to the ’, 3’
plane intersects the surfaces in certain curves which represent the frequency
responses in the considered directions.

To estimate the deviation of a surface corresponding to a given number »
of points from the surface of rotation, it is sufficient to examine only two suit-
able directions. The first one is always (i.e. for every n) m = 0; while the second
one depends on 7 as follows:

m = tg 45° if w= 4
m = tg 30° if n= 6
m = tg 22,5° if W=t §
m = tg 11,25° if n= 16

Let us consider now a fixed n. It would be easy to show that any curve
defined by any arbitrary direction lies between the curves defined by the above-
mentioned pair of directions. (m = 0, m = tg 45° for n = 4, ete.) If these
two curves are both close to the curve representing the nondirectional integral
average, the whole surface gives a good approximation of the surface of rotation.

Introducing the directions in question into the formulas on the right sides
of (18)—(21) we obtain the following functions to be investigated:

n=4, m=90

1
Glo') = = [cos uew’ +1], (23)
n =4, m = tg 45
G(@') = cos ue'. (24)
n==6 m=20
1 .
G(o') = 5 [cos ue’ + 2 cos (ue” cos 60%)], (25)

n =26 m=tg30

1 . . 5
G(a') = - [cos uw” + 2 cos (ue’ cos 60°) cos (uw” sin 60° tg 30%)]. (26)
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n

n

n =

n

1 5
G(o') = = [cos pw’ + 1+ 2 cos (ue” cos 45%) .

= 8, m = tg 22,5°

1
G(o') = 2 [cos uw’ + cos (ue’ tg 22,5%) +

+ 2 cos (uw’ cos 45°) cos (ue’ sin 45° tg 22,5%),

16, m = 0

1 .
') = = [cos uw’ + 1 + 2 cos (uw’ cos 45°) + 2 cos (uw” cos 22,5°) +

+ 2 cos (ue’ sin 22,5°),

=16, m = tg 11,25

5°) 4

1
(o) = 3 [cos pe’ + cos (pe’ tg 11,25%) +

+ 2 cos (uw’ cos 45°) cos (pw’ sin 45° tg 11,25%) +
+2 cos (uw” cos 22,5°) cos (ue’ sin 22.5°tg 11,25°) +

+ 2 cos (ue’ sin 22,5°) cos (ua’ cos 22,57 tg 11,25%)]

Figures 1—4. show the curves computed from (23)—(30).
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<t

If it is necessary to compute averages on different circles during the
transformation of a given map, the first thing to do is to determine the effective
upper frequency limit o, of the radial frequency variable ¢. To do so, we
find on the map the direction in which the most rapid changes occur and
then compute the upper frequency limit from the profile corresponding to
this direction. The limit may be considerably lower than the folding frequency.
We then compute the range of relative frequency in which the graphs are to

g 125°

o\

LA

" ~
n=ic [N
-’

11256 — mQ]

Jirections onthe W, ¢’ plone

transfer functions

=3 - . - -

0 1 2 3 4 5 €6 7 8 9 W0 # 2 B 4 5 6 7 8
u=2 - w' . T

0 3 6 9 2 15 8 relative frequency in j5-k .
usl 4 w'

be compared. To facilitate this procedure. a simple parallel chart is given as
Fig. 5. representing the connection between the true and relative frequencies
for different station distances s as parameter. The given r and an average
station distance (to be set in any case higher rather than lower) yields the value
of parameter u. Using the graphs in Figs. 1 —4. there can be found the least
number of points necessary to make the deviation from the curve of the non-
directional frequency response negligible in the appropriate range of
wo'(or um’).
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Some details of grid methods

In this section the transfer functions of some point arrangements used
in grid computations will be computed. Figure 6. shows the simplest and most
frequently employed arrangements. The transfer function for u =1, n = 4
(6/a) given by (14) was already investigated. A simple computation yields

for u= 2,7 =4 (see Fig. 6/b)
and pu=y5 n = 8 (see Fig. 6/c)
the following transfer functions:
Gy u=V7 (0, p")=cos () 2 ) cos (} 51,)’), (31)

and

Gy u=V5 (0, ') = — [cos(: 2)/5 &) cos (V3 p’)+cos(2)5yp’)cos (V507)]  (32)

lvlh—‘

10 o U

194 7 panr arrar:gemen{
5

curves representing fronsfer functions

circles on the w, ¢’ plane

K=3T

A T
o direction in g k

Fig. 8.
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In the preceding section the surfaces representing the transfer functions
were investigated along some fixed directions. Let us consider now a fixed
circle on the o', " plane:

o2+ pP=K;, ori o'=K(=VK,)
A cylindrie . surface jacket containing this circle and perpendicular to the o', 3’
plane intersects the surfaces in certain cheteraraistic curves (see Fig. 7.). The
perpendicular distances of the points P on this curve from the ', y' plane PP,
depend on the direction « indicated by the point P’ and on the radius K.
Let us regard « as the argument and K as the parameter. Figs. 8. and 9. show

T
the functions for the values of the parameter K = o -k (where k=0,1, ... 6).

The curves represent the averages over 4, 6, 8 and 16 points, respectively.
as well as the average by integration (dotted lines) on the circles r = J2 s and
r=Jss.

—a
o \155 °
u -5 2
w ° P
S 101 4 ;
S X,y plane
S 91 point arrangement
A
= 84 1"’
s
g.
g 74 K-é! E\: N
S 6 =R
2 # rk\\‘\\
5 AW«
g
g circles on the w' @' pione
s
= ——sK=T

K=§7
i/ 2 3 4 5 & 7 8\ ¢ :xdirecn'onin,%u

‘=2
K-ST

-1.04

Fig. 9.
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Using the equations (9) and (10) the transfer functions (frequency respon-
ses) of any given set of coefficients can be similarly computed and illustrated.
These functions unambiguously characterize the transformations and permit
to predict their effect on a map without any experimental computation.
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