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SUMMARY

Some formulas proposed for smoothing and computation of the regional component of the
original gravity field are discussed. It has been derived from the investigation of the transfer
functions that the exponential smoothing formula possesses the best filtering properties. This
formula has been generalized to form one- and two-dimensional sets of low-pass filters for perform-
ing the operations of smoothing and of the computation of regionals.

Introduction

In a previous paper, the author has begun a systematic investigation of
linear transformations of gravity maps, using the concepts and relations of in-
formation theory (M esk 6, 1966). He has given formulas for the computation
of transfer functions, described some consequences of digital computation
(aliasing etc.) and determined the frequency range to be investigated. The
possibilities to represent the transfer functions have been treated, as well as
examples concerning the details of averaging on circles and of grid methods.

The operation
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and J, is the zero-order Bessel function of the first kind.

The operation

n
fe,y) = X e fle+a, y+y,) (3)
k=1

has the transfer function

n
S(e’, p’) = > e &'kt ""); (4)
k=1
where Eis =1y
and MeS = Y-

The frequency range to be investigated is
0 = |o’| = 180°; 0=yp’| = 180°. (5)

Making use of the formulas listed above, we shall deal in the present paper
with the .smoothmg_, and computdtlon of regionals.

The most abrupt ¢ nges in the gr.wnty field have often no connection
at all with the geologic .. structures to be investigated. They originate from
small disturbing bodies which lie near thc surface, or, on the other hand, from
errors of measurement (or reduction). To remove or decrease these effects is ob-
viously useful. The operation perfor med with this end in view is called smoothing.

The regional part of the field is attributed to effects whose sources are t00
deep or too large to be of interest. If we knew the shape, depth and density
contrast of the dxsturl)mg bodies causing the regional part of the field, we could
compute an exact expression for regionals. In (rcneml however, we have only
a rough estimate of these parameters; consequently, the regionals have to be
derived from the data system itself.

Smoothing and computation of regionals both represent cases of low-pass
filtering: only the removed frequency ranges differ. Smoothing has to remove
the highest frequency components while it has to preserve the others in a form
as free as possible of distortions. The computation of regionals, on the other
hand, has to preserve the lowest frequency components only.

In the next two paragraphs, the filtering performed by some commonly
used formulas will be investigated.

Smoothing

Smoothing of data sets derived from uniformly spaced grids of measure-
ments will be treated. In the one-dimensional case the formula (4) may be
simplified as follows:
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Now let
n=2m+1, §, =k—-m—1

and €k = Comia—k = Co Amiy—po

where ¢, is a constant factor.
On substituting these terms into (6) the transfer function becomes

S(@’) = ¢ [dy+2 > d,cos lo’ ] (7

The formulas described by K. Jung (1961) have been investigated. Table I.
contains the coefficient sets of the so called “simple formulas”, as well as of
binomial and exponential smoothing. '

The general form of binomial smoothing reads

Fonlte) = — 3 [ 2§ (120 + ) + I(zo— #8) e (8)
sm\*to _22",(2;‘0 n—-k’ Lo 0 L)

1
where Ep=—) & T E=...=¢g=
5 2

The exponential formula has the general form

=

LI
Fon@o) = —— 3 &7 [+ k8) + (o — E3)]. )
nm k=1

A further procedure sometimes employed is smoothing with the fourth
differences, as defined by

fsm(x()) = f(on) =G /l(")(wo)’ (10)

where A@(a), the fourth difference is evaluated from
AD (o) = 6f(wy) — 4 (2o + )+ [(@o — 8)] + f(y + 28) + f(xy — 25),

and ¢, = 3/35 orc, = 1/12.

The transfer functions of the “simple formulas” and of smoothing with
the fourth differences are plotted in Figs. 1 and 2, respectively. The transfer
functions of exponential and binomial formulas are shown in Figs. 3 —6. In-
creasing n means an increasing degree of smoothing, i.e. more and more high-
frequency components will be eliminated. At the same time, the differences
between both the coefficients and the transfer functions of the exponential
and binomial formulas decrease.

2 ANNALES — Sectio Geologica — Tomus X.
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Table I.

Coefficients (according to K. Jung)

Formulas | ‘
[ dy dy ds i dg dy ds dg
“simple formula” 1 .... | 1/2 2 1
“simple formula” 2 1/25 5 4 3 2 1
“simple formula” 3 .... | 1/125 25 24 21 7 3 -2 -3
binomial (n=1) ....... 1 0,5 0,250
binomial (n=2) ....... 1 0,375 0,250 0,062
binomial (n=3) ....... 1 0,312 0,234 0,094 0,016
binomial (n=4) ....... 1 0,273 0,219 0,109 0,031 | 0,004
exponential (n=1) ..... 1 0,564 0,208 0,010
exponential (n = 2) 1 0,399 0,242 0,054 0,004
exponential (n=3) ..... 1 0,326 0,233 0,086 0,016 | 0,002
exponential (n=4) ....- 1 0,282 0,220 0,104 0,030 0,005
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Fig. 1. Transfer functions of the “‘simple formulas”.
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Fig.
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2. Smoothing with the fourth differences. Transfer functions plotted for parameters
¢y = 3/35 (graph 1),
and ¢, = 1/12 (graph 2).
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Fig. 3. Transfer functions of the binomial (1) and exponential (2) smoothing formula

(n=1).
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Fig. 4. Transfer functions of the binomial (1) and exponential (2) smoothing formula
(n=2)
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Fig. 5. Transfer functions of the binomial (1) and exponential (2) smoothing formula (7 =3).
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n=4
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Fig. 6. Transfer functions of the binomial (1) and exponential (2) smoothing formula (7 =4).

A continuous function, f(z) can be smoothed by the formula

T ;
fom(®) = V— ff(u)e‘“’““’ du. (11)
./
Applying the symbol of convolution, equation (11) can be written as
. * /’T —kx? D
fsm(@) = () e (12)

the weighting function then yields directly

s(x) = VL ek,
T

Thus the transfer function (the Fourier transform of the weighting function)
becomes

S(w) = F{}/Ie—kxz} =g (13)

T

Computation of regionals

There are several groups of methods for computation of regionals: various
procedures of averaging, analytical continuations upward, statistical methods
ete. We shall now treat some examples from the first and second groups.

One of the simplest methods is to consider the average of values observed
on the circumference of a circle as the regional, i.e.
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2n
1
frel@or ) = o [ 1, 9) g (14)
-47'[
0
This integral expression may be approximated by the sum
1 N
Free@or Y0) = — 3 (L) (15)
N =

(P, is a point on the circumference of a circle of radius r.) It has been shown in a
previous publication (Meské, 1966) that the transfer function of the operation
(14) has the form

S(o;7) = Joler), (16)
or, using a relative (dimensionless) frequency variable
S(o"s w) = Jolo'n), (17)
where r = us

The transfer functions of operation (15) have been computed for several
values of N in the special case of points regularly distributed on the circum-
ference of a circle. The degree of approximation has also been considered.
Therefore we now present the transfer functions (17) for a few values of the para-
meter ponly (Fig. 7).
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Fig. 7. Transfer functions of the averaging on the circumference of a circle for some values of
the parameter p=r7/s. . Lo e
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The transfer functions have relatively high values .at high frequencies.
Operation (14) does not sufficiently decrease the amplitudes of the high-fre-
quency components.

It is more expedient to use the average of the observed values on the sur-
face of a circular disk:

R 2n
freg@or 90) = — f f g(r, p)r do dr. (18)
k * r=0 ¢=0

Introducing in the frequency plane polar coordinates by the definitions
®w = pcosa; P = psine,
we have by equation (18)

S(ox) = — r J re'l"“’s(“ ? dpdr =
r 20 om0
1 5 2 27 (oR)
= .92 rd (o) dr = —| — = .l; 19
e nf o) Rz[ T (or >] == (19)

where J, is the first-order Bessel function.
Using a relative (dimensionless) frequency variable and introducing the
parameter u = R[s, equation (19) yields

2J (po’
S(Ql, ‘u) ais 1(:“9 ) (20)
o’
The transfer functions are shown in Fig. 8 for a few values of the parameter u.
The ‘“behaviour” of the functions is better, but further improvements are

desirable.
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Fig. 8. Transfer functions of the averaging on the surface of a circular disc for some values of
the parameter u = R/s.
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An estimate of regionals can be obtained by analytical continuation
apwards (e.g. K. Jung, 1961). The transfer function of the theoretical operation
is of the form

S(o;h) = e~"e, (21)
where » means the height of the continuation (see e.g. Dean, 1958).
Introducing dimensionless z = h[s and o', we have
S5 1) = e . (22)

The transfer functions are shown in Fig. 9. It is seen that the operation has,
indeed, the character of a low-pass filter.

The transfer functions of any linear method for determination of regionals
can be similarly computed and illustrated. But instead of increasing the number
of examples, let us inquire into the best possible way of smoothing and computa-
tion of regionals.

In the introduction, the aim of these operations has already been briefly
outlined. It is essentially to remove the high-frequency components and preserve
the others without distortion. The limit of the frequency band to be removed
is, however, determined by the nature of the given problems to be solved by
the survey. Therefore it would be improper to use any fixed formula (i. e. any
fixed filter). We have to construct a set of filters. We can then choose from this
set the particular filter (filters) appropriate to any situation that may arise.
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Fig. 9. Transfer functions of analytical continuation upwards for some values of the parameter
y=h/s.
One possibility is to design low-pass filters of the form

S(o) = 1, for |o|=0,
=0, for |o|= go- (23)
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However, the corresponding weighting functions converge slowly to zero;
hence, a long set of coefficients would be necessary. It is more convenient to
use a generalization of the exponential formula, (13).

Sets of low-pass filters

Let us define a (relative) transmission frequency, w, by the property

S(w;) = S(0)/e.

The transfer functions

18 o'\ 2
S((D’) =e ( »'n ) 2 (24)
*=12,...,9)
have, by the equations
18w;
®'m ;
the transmission frequencies
T
o =% —; ot el D o 2 O):
- ( »9)
or & =2 ~10% *=12...,9). (25)

The set of filters defined by equation (24) approximately preserve (i.e.
transmit) the relative frequency band under 10°, 20°, ... 90° (Fig. 10).

Equation (24) yields the theoretical transfer functions. Because of digital
realization, the actual functions deviate from the theoretical ones. The devia-
tion increases with increasing »’, but even for »* = 9 it remains negligibly
small.

The sets of coefficients corresponding to the weighting functions may be
obtained by means of the inverse Fourier transform

’ 12022
";Ge BT (26)
36

S(l; »') = F{S(o'; #)} =

The actual transfer functions have also been computed, using the coefficient
sets (26) and formula (7). The deviations between the theoretical (intended)
and actual functions are so small that a separate representation of the latter has
not been necessary : Fig. 10 may be taken to show the actual transfer functions
as well.

In the two-dimensional case we may use a suitable generalization of the
transfer function (24).
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Fig: 10. Sets of low-pass filters (theoretical and actual), designed to perform the operations of
smoothing and computation of regionals.

Whenever the transfer function and weighting function possess circular
symmetry, their relation may be expressed as a zero-order Hankel transform

oo

S(o) = 2n I rs(r) Jo(or) dr, (27)
0
S0) = — | 08(e) ofer) do- (28)
2T

0

(Dean, 1958.)
Now, the required generalization of the transfer function (24) becomes

S(o; ») = e, (29)

and the weighting functions may be obtained by means of the inverse Hankel
transform
1 “F 4 1 -z
#(r; w)=— ] ee™ Jolor)de=—7—:¢ (30)

P “ Al

0

(For evaluation of the integral see e.g. Gradstein, Rusik, 1963).
Introducing the relative frequency variable ¢’ and the parameter ",

( 18s
7'

2

v (31)
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equation (29) becomes
180!
S(e'i#) =e *. (32)

The coefficient set corresponding to the weighting function yields, after

substitution of » from eq. (31)

«" 2";2”2

7 \2 =
s(y;x')=n(ﬁ.) -e  36%

36

where y = 7[s and 7 is the distance from the point of reference.
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