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SUMMARY

Some formuias proposed for smoothing and com putation of the regional com ponent o f the 
originat g rav ity  fieid are discussed. I t  has been derived from the investigation of the transfer 
functions th a t the exponential smoothing form ula possesses the best filtering properties. This 
form ula has been generalized to form one- and two-dimensional sets o f low-pass filters for perform ­
ing the operations of sm oothing and of the com putation of regionals.

Introduction

In a previous paper, the author has begun a systematic investigation of 
linear transformations of gravity maps, using the concepts and relations of in­
formation theory (M eskó, 1966). He has given formulas for the computation 
of transfer functions, described some consequences of digital computation 
(aliasing etc.) and determined the frequency range to be investigated. The 
possibilities to represent the transfer functions have been treated, as well as 
examples concerning the details of averaging on circles and of grid methods.

The operation

( 1)

(2)

has the transfer function

where
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and ./,i is the zero-order Hesse) function of the first kind. 
The operation

has the transfer function

where
and

The frequency range to he investigated is

Making use of the formulas listed above, we shah deal in the present paper 
with the smoothing and computation of rcgionals.

The most abrupt eh ages in the gravity field have often no connection 
at all with the geologic structures to be investigated. They originate from 
small disturbing bodies which lie near the surface, or, on the other hand, from 
errors of measurement (or reduction). To remove or decrease these effects is ob­
viously useful. The operation performed with this end in view is called smoothing.

The regional part of the field is attributed to effects whose sources are too 
dee]) or too large to be of interest. If we knew the shape, depth and density 
contrast of the disturbing bodies causing the regional part of the field, we could 
compute an exact expression for regionals. In genera!, however, we have only 
a rough estimate of these parameters; consequently, the regionals have to be 
derived from the data system itself.

Smoothing and computation of regionals both represent cases of low-pass 
filtering: only the removed frequency ranges differ. Smoothing has to remove 
the highest frequency components while it has to preserve the others in a form 
as free as possible of distortions. The computation of regionals, on the other 
hand, has to preserve the lowest frequency components only.

In the next two paragraphs, the filtering performed by some commonly 
used formulas will be investigated.

Smoothing
Smoothing of data sets derived from uniformly spaced grids of measure­

ments will be treated. In the one-dimensional case the formula (4) may be 
simplified as follows:

(3)

(4)

(3)

(6)
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Now let

and

where c„ is a constant factor.
On substituting these terms into (6) the transfer function becomes

(? )

The formulas described by K. Jung (1961) have been investigated. Table 1. 
contains the coefficient sets of the so called "simple formulas", as well as of 
binomial and exponential smoothing.

The general form of binomial smoothing reads

(3)

(9)

where

The exponential formula has the general form

A further procedure sometimes employed is smoothing with the fourth 
differences, as defined by

where the fourth difference is evaluated from

and ^  - 3/35 orCg = 1/12.

ihe  transfer functions of the "simple formulas" and of smoothing with 
the fourth differences are plotted in Figs. 1 and 2 , respectively. The transfer 
functions of exponential and binomial formulas are shown in Figs. 3 —6. in ­
creasing 77 means an increasing degree of smoothing, i.e. more and more high- 
frequency components will be eliminated. At the same time, the differences 
between both the coefficients and the transfer functions of the exponential 
and binomial formulas decrease.

2 A N N A L E S  — S e c tio  G e o ló g ica  — T o m u s  X.

( 10)
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Table 1.

Fig. 1. Transfer functions of the "sim ple form ulas".
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Fig. 2. Smoothing with the fourth  differences. Transfer functions piotted for param eters
c, = 3/35 (graph I ), 

and Cg = ! /!2  (graph 2).

Fig. 3. Transfer functions of the hinomiat (i ) and exponentiat (2) sm oothing form uia 

2*
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Fig. 4. Transfer functions of the binomial (1) and exponential (2) sm oothing formuta
in = 2)

Fig. S. Transfer functions of thebinom ia) (1) and exponentia) (2) sm oothing formuia (n = 3).



(11)

( 12)

(13)
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Fig. 6. Transfer functions of the binom ial (1) and exponential (2) sm oothing form ula (?; = 4 ).

A continuous function, /(2 ) can be smoothed by the formuia

Applying the symbol of convolution, equation (1 1 ) can be written as

the weighting function then yields directly

Thus the transfer function (the Fourier transform of the weighting function) 
becomes

Computation oi regionals

There are several groups of methods for computation of regionals: various 
procedures of averaging, analytical continuations upward, statistical methods 
etc. We shall now treat some examples from the first and second groups.

One of the simplest methods is to consider the average of values observed 
on the circumference of a circle as the regional, i.e.
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This integral expression may be approximated by the sum

is a point on the circumference of a circle oi radius r.) i t  has been shown m a 
previous publication (Mesko, 1966) that the transfer function of the operation 
1141 has the form

or, using a relative (dimensionless) frequency variable

where
The transfer functions of operation (15) have been computed for several 

values of N in the special case of points regularly distributed on the circum­
ference of a circle. The degree of approximation has also been considered. 
Therefore we now present the transfer functions (17) for a few values of the para­
meter a only (Fig. 7).

Fig. 7. Transfer functions of the averaging on the eircumierence o f a  circle to r some values ot
th e  param eter = r/s.

(14)

(15)

(16)

(17)
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The transfer functions have relatively high values at high frequencies. 
Operation (14) does not sufficiently decrease the amplitudes of the high-fre­
quency components.

It is more expedient to use the average of the observed values on the sur­
face of a circular disk:

Introducing in the frequency plane polar coordinates bv the definitions

we have by equation (18)

where .7, is the first-order Bessel function.
Using a relative (dimensionless) frequency variable and introducing the 

parameter a = i?/s, equation (19) yields

The transfer functions are shown in Fig. 8 for a few values of the parameter p. 
The "behaviour" of the functions is better, but further improvements are 
desirable.

!'ig. S. tran sfe r functions of the averaging on the surface of a circular disc for some values of
the param eter // = K/s.

(18)

(19)

( 20)



(21)

( 22)

An estimate of regionals can be obtained by analytical continuation 
upwards (e.g. K. Jung, 1961). The transfer function of the theoretical operation 
is of the form

MesKo, A.

where A means the height of the continuation (see e.g. Dean, 19o8). 
Introducing dimensionless % = A/s and o', we have

The transfer functions are shown in Fig. 9. It is seen that the operation has, 
indeed, the character of a low-pass filter.

The transfer functions of any linear method for determination of regionals 
can be similarly computed and illustrated. But instead of increasing the number 
of examples, let us inquire into the best possible way of smoothing and computa­
tion of regionals.

In the introduction, the aim of these operations has already been bneiiy 
outlined. It is essentially to remove the high-frequency components and preserve 
the others without distortion. The limit of the frequency band to be removed 
is, however, determined by the nature of the given problems to be solved by 
the survey. Therefore it would be improper to use any fixed formula (i.e. any 
fixed filter). We have to construct a set of filters. We can then choose from this 
set the particular filter (filters) appropriate to any situation that may arise.

Fie. 0. Transfer functions of analytical continuation upw ards for some values o f the param eter

One possibility is to design low-pass filters of the iorm

(23)
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However, the corresponding weighting functions converge siowiy to zero; 
hence, a. long set of coefficients wouid be necessary. I t is more convenient to 
use a generalization of the exponential formula, (13).

(24)

Sets of low-pass filters

Let us define a (relative) transmission frequency, by the property

The transfer functions

have, by the equations

the transmission frequencies

the  set oi titters defined by equation (24) approximately preserve (i.e. 
transmit) the relative frequency band under 10°, 20°, . . .  90° (Fig. 10).

Equation (24) yields the theoretical transfer functions. Because of digital 
realization, the actual functions deviate from the theoretical ones. The devia- 
^on^increases with increasing x', but even for x' = 9 it remains negligibly

The sets of coefficients corresponding to the weighting functions may be 
obtained by means of the inverse, Fourier tmtisform

lhc actual transfer functions have also been computed, using the coefficient 
sets (26) and formula (7). The deviations between the theoretical (intended) 
and actual functions are so small that a separate representation of the latter has 
not been necessary: Fig. 10 may be taken to show the actual transfer functions 
as well.

In the two-dimensional case we may use a suitable generalization of the 
transfer function (24).

or

(26)

(25)
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Fig- !0. Sets of tow-pass fitters (theoretieat and actuat), designed to  perform the operations of 
sm oothing and com putation  o f regionats.

Whenever the transfer function and weighting function possess circular 
symmetry, their reiation may be expressed as a zero-order Hankel transform

(27)

(28)

(Dean. 1958.)
Now, the required generalization of the transfer function (24) becomes

(29)

and the weighting functions may be obtained by means oi the tnverse Hankel 
transform

(30)

.(For evaluation of the integral see e.g. Uradstem, liusik, I'.m.i).
Introducin'^ the relative frequency variable o' and the parameter x'.

(31)
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equation (29) becomes

(32)

The coefficient set corresponding to the weighting function yieids, after 
substitution of x from eq. (31)

where p = r/s and r is the distance from the point of reference.

(33)
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