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Introduetion

When R. A. Fisher laid the foundations of discriminant analy-
sis (Fisher 1936,1938), he probably rather strove to solve a question
of theory (optimum differentiation of multivariate populations of norm-
al distribution) than to contribute a new method to taxonomy. Still,
one could almost consider symbolic that he demonstrated the new proce-
dure on the distinction between the populations of two Iris species (1.
setosa and 1. versicolor), since DA also lends itself — among others — to
solve one of the most difficult problems of taxonomy: that of differentiat-
ing between closely related taxons.

Although the use of DA gained ground in several domains of biology
(e.g. in anthropology or zoosystematics) within relatively short time and
meanwhile also the method itself was improved, plant taxonomy “disco-
vered” its capabilities only twenty vears later (Clifford — Binet
1954). After that also the instances of applying the method in plant taxo-
nomy increased (Morishima — Oka 1960, Gardiner —
Jeffers 1962, Jeffers — Black 1964, Jeffers 1966, etc.).
By now DA is one of the members of the “arsenal” of plant taxonomy es-
teemed all the world over.

With some delay, DA also found application in the domain of quanti-
tative plant ecology (Norris — Barkham 1970).

In Hungary it was I. Précsényi who first called attention to
DA (Précsényi 1960). His initiation found several followers (H o-
ranszky 1960, Simon 1964, Borhidi — Isépy 1966,
Svab 1969 and Hordanszky — Szdcs 1973).
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The methods described in these works differ in many respects. How-
ever, they have two common features:

1. each of them is founded on the original R. A. Fisher’s model:

2. none of them is suitable for an adequate characterization of the
“discriminating power” of the variables (or rather, in the authors’ opinion:
the methods offered for this are unsatisfactory).

The authors publish the present paper in the conviction that the
version of DA evolved by J. Fischer, on the first application in plant
taxonomy of which they report here, resembles the other versions of DA
regarding the feature mentioned first, still in respect of the second feature
it is more effectual than those. The version to be discussed here affords an
opportunity to a manysided and reliable characterization of the “discrimi-
nating power” of the variables. Founded on this it becomes possible —
among others — to determine an optimum group of variables by confront-
ing the “expenses” (time, work, costs, etc.) with diseriminating informa-
tion to be obtained by them.

In this way — as compared with the versions of DA used thus far —
the theoretical and practical efficiency of the examination can be increas-
ed to a significant degree which — in view of the fact that quantitative

taxonomic examinations consume much work and time — is not a negli-
gible advantage.

In the authors” opinion the method suggested here is therefore — yet
also on account of its other properties — lending itself particularly well
for a biosystematical application. Just for this reason they set forth here
(maybe in greater detail than usual) the description of the method and
program, as well as the way of their use (especially that of the interpreta-
tion) with the intention of making the taxonomical application of the
method as easy as possible.

To be sure, the advantages and drawbacks of a method can be pro-
perly valued in the first place relving upon the experience gained in the
course of its application. Therefore the authors would be thankful if
those who try the method notified them about the experience gained and
the opinion formed in this regard.

Although — as it also appears from what has been said so far — the
present paper is basically of methodical character, still, the example serv-
ing the purpose of demonstration is more than a mere illustration.

The authors have applied DA for differentiating Festuca populations
several times (Hordnszky 1960, Hordanszky—Szdes 1973),
consequently the present paper is at the same time an organic continua-
tion of the studies on Festuca published up to the present. In both quoted
instances different variants of DA were used (other than the present one)
but the conditions of the examination and the considered variables were
similar. In the second instance (just as in the present examination) the
numerical part of the analysis was already conducted by means of a
computer.
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The whole of this work has been complied from the following contributions.

Fisecher: biometric modelling, mathematical theory and modifications, parts of pro-
gramming and interpretation. writing the algorithm description, and the “Method
and Results™,

Horanszky: ideas and productory of data material, parts of interpretation, writing
the “Materials”,

K iss: basie program, parts of running and modifying, explaining the program structure
and use,

Sz 0 es: ideas, parts of running, writing the “Introduction™ and “Conclusions™.

Materials

In the reserve “Prohibited Forest” near Ujszentmargita (Great Hun-
garian Plain) there were intensive production-biological examinations
in course within the IBP through several years, on which a comprehensive
work by Zé6lyomi—Mathé—Préesényi—Szd6es (1972) and
the publications quoted in same have rendered account.

According to the traditional professional opinion, the dominating
grass-forming species of the alkali steppe meadow (Artemisio-Festucetum
pseudovinae) and the neighbouring pasture of sheep (Achilleo-Festucetum
pseudovinae) is the same species: Festuca pseudovina Hack. ap.
Wies . Still, — in the first place regarding the habit — the specimens
in the meadow differ so much from those in the pasture that the question
turns up automatically whether the species is the same in both sites.

For deciding the question the authors adopted, besides other kinds
of examination, the new version of diseriminant analysis as expounded
in the present paper.

The authors collected 100 plants each from the two sites, vet these were
not all suitable for a complete series of measurings. So the primary ma-
terial of the examination was composed, eventually, by 80 specimens from
pasture and 84 ones from meadows (populations “A” resp. “B”).

Relving upon experience previously gained by them, the authors li-
mited the examination to the morphological pr ()])Cl‘tl(,‘b of the inflorescen-
ce. They took 12 properties into consideration, of which the first 3 referred
to the panicle, the others to the second spike of those on the apex of the
panicle, as counted from above (“localized sampling” — Hordnszky
1970).

The examined properties (called “variables” in the next Chapter)
were the following:
the length of the panicle (em.),
the length of the longest side-branch on the lowest node of the
panicle (em.),
the length of the first internodium of the panicle (em.),
the length of the outer glume (gluma inferior) (mm.),
the length of the inner glume (gluma superior) (mm.),
the length of the first flower of the spikelet (spicula) counted
from below, that is: the length of the awn (palea inferior) (mm.),
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7. the length of the second flower of the spikelet (spicula) counted
from below, that is: the length of the awn (palea inferior) (mm.),
8. the length of the third flower of the spikelet (spicula) counted from
below, that is: the length of the awn (palea inferior) (mm.),
9. the length of the arista belonging to the first awn (mm.),
10. the length of the arista belonging to the second awn (mm.).
11. the length of the arista belonging to the third awn (mm.).
12. the number of flowers in the spikelet.

The examined specimens were collected in the state of waxen ripeness,
when the spikes were not yet disintegrated but the change in size of the
parts of the inflorescence was already quite small.

Measurings were conducted under a Zeiss SM XX stereomicroscope,
on panicles and/or spikes laid on millimetre paper, with properties 1— 3
to an accuracy of 1 mm., with properties 4—11 to one of 0.1 mm. (cf.
Csanyi—Hordanszky 1973).

Method and inference of calculation*

The determining power of the traits differentiating the plant groups
exposed to the two different complexes of circumstances was examined as
follows.

As a basic mathematical method for attaining a possibly good sepa-
ration of populations the authors applied diseriminant analysis. The fami-
ly of computer programs to be described is actually much wider and apt
for solving even more sophisticated problems, vet it is sufficient here to
confine to its linear version. The reason for this is that linear discriminant
analysis (LDA) has proved to fit well enough i.e., weighted combinations
of the original characteristics give an adequate chance for optimum
grouping.

In the sequel, not merely the production of the “optimally separat-
ing linear combination of properties” (OLC) known from the literature
(e.g., C.Smith: Biomathematics, 1967) will be meant by performing LDA.
Beyond the above LDA will be considered as containing several additional
methods of evaluating goodness of discrimination. These latter aim at
vielding statistical measures and tests to judge the success of discrimina-
tion in general and also for certain traits. Part of such calculation proce-
dures applied here or to be used later, as well as their comprehension
into a common program and the complex inference attached are the au-
thors’” own results.

The running of programs took place in two phases. In the first the
OLC of all the 12 properties was established. The related statistical me-
thods of the above character led to the design of several narrower groups of
traits for the combinations of which the necessary LDA-s were performed

* A concise joint discussion of mathematical and computing aspects of the subject
has been necessary, since new and unknown methods are also being dealt with in this paper.
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within one program. It is worth mentioning that this family of programs
is extended also to contain an optional principal component analysis.
This latter version is to further the selection of property groups possibly
coherent as regards the particular problem. In the present instance the
results of the first program were unambiguons enough to omit that op-

tion.

The numbers standing for the examined traits correspond to the

code given above.

Thus the first program performed the LDA of properties

1—12, the second one those of

Table I.

1, 2, 8 6, T 11, 12
B2 g 6, 7 11
 £5 3 6, 7
I, 25 3
1, 3

6, 7 1y 12

6, 7 11

6, 7

4, 5 8, 9, 10

in the sequence of the rows.

Both programs evaluated here yield the following output items.

1.
2.

10.

I1.

5%

Trait averages

Analysis of variance by traits (ANOVA; between the two
groups)

Frequency distributions of traits (with quarter-standard-deviation
class width)

Discriminant coefficients (weight of the traits in OLC)
Frequency distribution of Z-values (individual OLC values
multiplied to the order of magnitude of a thousand)

Multiplied Z-values in increasing order and their group averages
Prediction chances, discriminant threshold, percentages of hit
and failure, significance of deviation from overlapping (between
the two groups)

Analysis of variance for Z-values (between the two groups, with
the value of the corresponding F test statistic)

Percentual decrease of D? (between-group distance measure)
when omitting single traits

Decomposition of the D? generalized distance into effects of
variables (in the context of single variables versus variable
pairs)

Contributions of the variables to the D? generalized distance
(by halving the above pair effects between the respective two
variables)

Correlation matrix of group mean dlffel ences (from the correla-
tion coefficients among average group distances)
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Explanatory comments on the above aim at elucidating the princip-
les and methods of evaluation. That primarily for this particular applica-
tion and supposing the reader’s simultaneous look at the Annex.

1. For both groups (A = pasture, B = meadow) the mean values
of the traits figuring in that particular LDA are presented (and denoted
by their original code numbers). (TABLE I11., 1.) The differences of
these means give a rough preliminary idea about the presumable discrimi-
natory powers of the properties. A limit is given to the weights to be gain-
ed in the OLC as if the two group means are very near then the role of
the trait in question cannot be important.

2. Variances (mean squares) between and within the groups together
with the F-values being the ratios of the former are presented for each
trait. Formulas:

(1a) 5= _"ATB (G _ %)
Nat+hp
2 (x—2)2+ 3 (2 —a)?
(10) . ;\"—’;
(1c) F=2
S

where ¥ denotes the respective group averages and N =n , +n, the number
of all individuals (objects). (TABLE 111., 2.). These results can be under-
stood as diseriminant analyses for single variables (traits). — From the
order of magnitude of the F-values above one can uniquely infer the
separating rank order of traits but deficiently as it is also influenced by
their types of distribution and interrelationship.

3. Frequency distributions of the variables are printed. Intervals
of width defined by the quarter of the standard deviation from all respect -
ive data are considered around the property means i.e.,

(2) xtk 2
4

give the limits of the frequency classes (closed at the right). (TABLE 1V,
3.). This is the basic version which makes possible an approximate assess-
ment of the overlaps from the printing by groups. If necessary. the distri-
butions over the two groups can be established and plotted in different
ways of uniting adjacent classes (options for which see 2/b in the de-
seription of parameter cards). All the above can serve for deciding whether
and how some of the variables should he substituted by their aptly speci-
fied functions i.e., what transformations bid prospects for refining the
diserimination. A

4. Looking for an OLC and performing a connected LDA is built
into the programs in two basic versions. The “homoscedastic” version
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means that the standard deviations and correlation coefficients of the
variables or in other words the within-group covariances

% (a; =) (x;—2))

(3a) eovy () = ——-— =
n’/\—l
and
2 (& —%) (2;—7))
(3b) covg (i, j) = B S =

are considered as estimates of the same theoretical value for all ¢, j in the
two groups. Written in matrix form this means that the covariance matric-
es as two-dimensional schemes representing the whole of the statistical
estimates in (3a) and (3b), respectively, i.e.,

covy (1,1) ...covy(1,0])

(4a) A= : :

covy (MM, 1) ... covs (M, M)
and

covg(1,1) ...covg (1, M)
(4D) B= . .

('m.'.,). 191 £ (,'m,‘;, (A, M)

are supposed to be empirically established approximations for the same
theoretical covariance matrix. The “heteroscedastic” version is, in turn,
based on the assumption that standard deviations and correlations are
different in the two theoretical background populations. In the programs
the headline code of the two versions is /1" for the former and /2" for the
latter. A prior choice between the two hypotheses being rather uncertain,
the authors thought necessary to create an optional possibility of corres-
ponding parallel LDA procedures. This was done by a simultaneous ela-
horation of the mathematical basis to “[2”. At present, however, the au-
thors deem sufficient to restrict themselves to the type “/17 and to present
the details only of that one. Thus the criterion of OLC is that from the
linear combinations of trait values in question i.e, from the set

(5) 2 €%

1

it should select an optimum one. More explicitly this means that from
the possible M -tuples of constant multipliers ¢; a particular M-tuple has
to be selected so that the “new variable” produced by (5) be of the maxi-
mum F-value in sense 2.)

This requirement of the between-group variance possibly many
times surpassing the within-group one can be visualized as a demand of a
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relatively highest stretching apart of the two groups. The desired goal
can be reac hed by calculating the so-called inverse covariance sum matrix

(6) C = (4+B)~-
Denoting the elements of (6) by Cijs the numbers

(7) A = ; [ej (T a;—2y))]

will figure as OLC coefficients for the traits coded with the respective i
These j-values are called discriminant coefficients. (TABLE 1IV., 4.)
The J-s by themselves give merely a reckoning rule to the OLC zmd are
practically irrelevant when discriminatory power is concerned as the
scaling and spread of traits can be markedly different.

5. Z-values are defined as individual values of the discriminant
scores

(8) Z; = 2 )i
i

with 2; described in 4.). Hence, Z-denotes the OLC quantities for each
object and in the case of a good separation Z-values have to be in a close
connection with their quality of belonging to group 4 or B. The principle
of printing the frequency distribution is similar to that sketched in 3. ), vet
the Z-values are presented in the form of integers (TABLE 1IV., 5.) the
multipliers (divisors) necessary to which are given in the heading of
program table 6. This integer form has been considered practical as the
bulk of Z- values are positive with three valid decimals; so both accuracy
and simplicity of reckoning with them are ensured. Apart from the (prac-
tically ineffective) roundings off the integer representation is completely
]ustlflul which can be seen if one takes into account that constant times
OLC is OLC itself as all averages and standard deviations are multiplied
by the same constant.

6. The output is a presentation of several Z-values written in the in-
teger form of 5.). Before the Z-values their respective identifiers may option-
ally figure (in our case actually stem numberings). For objects of A the
left, for those of B the right Z-column is used and so are printed all the
individual values in increasing sequence. Below the group means Z , and
Z ave given. (TABLE V.). It should be mentioned here that with the in-
verse application of the coefficient in the heading which means reckoning
with the original magnitudes of Z , and Z, one can get

7 7 9
(9) Zp—2y=1D?
where D? “Mahalonobis’ generalized distance” is a measure of discrimin-
ability proportional to the highest possible between/within group vari-
ance ratio, see (15). The original definition is

2 — - = >t
(10) D? = 3 5 (XTpi—Tp) Cij (T pj—Tg;) -
j

—
i
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The equivalence to (9) can be easily derived from (7) and (8). From the
table not only the depth of overlappings in the OLC-categorization for
the two groups and the position of objects displaced in “erroneous” di-
rections can be read off but if necessary also the illegally behaving indi-
vidual values can be identified. This permits to draw conclusions by con-
fronting with the description of the material as to how far “mathematics
could be right” and perhaps to get ideas for a correction of the categoriz-
ing function. 7

7. (TABLE V1., 7.) Prediction chances are presented in the form of
percentual frequencies corresponding to the “optimum separation”. Their
values are printed in the order of

100n (A —~A4)  100n (A B)

(11a)
U oA
(116) 100n (B—~A) = 100n (B—~B)
Ug: ' ng

The symbol » ( ) denoting the respective number of individual cases and
— the fact of having been grouped from the (original) group before
into that (mathematical) after the symbol. These chances of categorizing
are determined on the basis of whether an individual value does or does
not surpass the discriminant threshold; the relative frequencies of types
of such cases have been formulated in (11). In the table the value of this
threshold has an integer representation as explained in 5.). The choice
of the discriminant threshold is determined by the requirement that the
hit percentage

100n (4~ A) " 100n (B -~ B)

(12) B = == - — P (hit) %

should be maximum i. e., the failure percentage 100-P, taking on its
minimum value. From P, the expression

(13) p = exp[— npng (26, — 100)2]

5000N

can be calculated which (in consequence of theorems by Kolmogorov
and Smirnov, see e.g. Rényi 1962) means the following probability. Sup-
pose that the OLC is equally distributed in the groups 4 and B;how
probable is then the event that in spite of that the separation of the two
groups takes place with at least the hit percentage actually found. This
is called the significance (level) of deviation from overlapping. Its value
may be expected to be unusually small for a significance level as an opti-
mum separation even if insufficient generally represents a situation very
far from the total coincidence. In the authors’ practice, good discrimi-
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~1
w

nations used to give p-values below 10713, very good ones below 10-15
and excellent ones under 1018,

8. (TABLE VI, 8.). The ANOVA of Z-values is done from the origin-
al (not rounded) Z numbers. A not completely regular analysis of varian-
ce is in question here. The quantities

(14a) Patp (Z\ =5 Z,,)2 = ZAly: 5
N N
and B B
(14b) 2(Z-2y2+3(Z-2p2 =D
A B

are between-and within-group sums of squares in the usual ANOVA
sense indeed yet the degrees of freedom are not proper ones. The reason
for this is that “mean squares” obtained when dividing (14a) and (14h)
by M respectively N — M — 1 produce a ratio which is F-distributed with
these degrees of freedom. It is, however, necessary to notice that such
F-values reflect a correct reliability order in the maximum between/
within-group variance ratio sense theoretically only if the joint distribu-
tion of the initial traits and so the distribution of Z-values is Gaussian
normal. This is, in fact, a prerequisite also for the complete exactitude
of the whole LDA. Thus one may state that D2 and the connected F-
value

(15) P TaiBp (=M= 1) 1o
MN

predict the potential intensity of separation basing on the whole of hoth
distributions but with a lower reliability as far as overlapping tails are
concerned. If this critical remark is taken into account then the rank ord-
er of discriminatory powers may usefully be evaluated on the basis of
significance levels read off from the M and N — W —1 degree of freedom
critical values in the F-table. It did not seam necessary to actually cal-
culate those levels in the program as the reader will see this in the part
on inference. — Confronting the p-value defined in (13) with the above,
that one represents an order of significances which is not sensitive with
respect to the type of distribution as a whole. This originates from p
being based on the mere fact of registering how high a deviation of group
distribution functions can be attained. The value of p is shaped most
immediately by the overlapping part of the two distributions proper but
how those are is more subject to chance because of the smaller number of
cases. From all what has been told and in accordance with the authors’
experience the following assertion is logical: as in the phases of research
and data collection one can have practically no idea regarding validity
and consequences of applying the above confronted viewpoints, one is
doing his best with a combined evaluation of the tests represented by (13)
and (15). For this aspect, the reader is referred to the text commenting
on (21) and (22).
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9. The values of D* are calculated for the whole series of cases in
which one of the variables is excluded from OLC determination. The mo-
dified D?* quantities corresponding to the OLC of the M — 1 remaining
traits of choice are all less than the original M-variate D> As a matter of
fact, by ommitting the Z-th variable of the M

(16a) D} = D¥——%

is gained, ¢,,, denoting the respective diagonal element of the inverse co-
variance sum matrix C'. The quantities
0073
(16b) e = A0 %
Cik

are called the percentual decreases of D? and printed after the original
code numbers of the traits denoted with 2 = 1.....M in the actual con-
figuration. (TABLE V1., 9.). The increasing order of §D2-%, points to a
growing importance of variables. This in the sense how informative it is
to introduce the respective trait into separation in addition to the others.
Under the assumptions of LDA the above mentioned increasing order
does exactly coincide with that of discrimination information gain as
0D3%, is a monotonous function of the latter (defined in Kullback 1962).
This very property exempts 60;%, as most usefully contributing to the
complex LDA evaluation. It does not import immediate information
about groups of variables still in the qualification it gives to single traits
the connections with the others are regarded. For this reason the authors
have introduced it.

10. Different scaling and dispersion of discriminant coefficients
(which have been mentioned in 4.) can be taken into account and balanc-
ed for. This is done by modified values of which the formula is

() B =13 @0t 3
A B

These are the so called standard discriminant coefficients (or: standard
regression coefficients). The following identity holding for them,

(18) D2 = 3 3 (B, B,r;)
i 5

with the within-group correlation coefficients taken as r;; are used in the
table under the title “Decomposition of the D? generalized distance into
contributions of variables”. The decomposition is performed here in the
sense of

(19) D? = 3> B+ > 2B; B;r;;

i j>i

and the components are printed in a corresponding practical sequence.
(TABLE VIL.). The quantities B;> may be interpreted as effects of single
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variables with 2B, B;r,; variable-pair effects as their contrasts. The depth
of decomposition i.e., that pairs are still concerned but more complicated
sets are not is simple enough and gives an insight into inner connections
already. This partition may produce negative components, too which
contributes to the inference as to which variables can hinder each other
in the discrimination. Small items suggest week contributions, large numb-
ers point to stronger ones. Thus, following the decreasing order of com-
ponents, a good implementation of information gained from the results
in 9.) is established. This can be done either from the “absolute” values
mentioned above or from the “relative” (to D?) ones. At the end of these
two columns figure the sums D? and 1, respectively.

11. The effects of variables by themselves and of pairs of them as
treated in 10.) can be contracted to components of D? with the interpre-
tation “total trait effect” for each variable. Let
(20) B+ > B, B;r;;

J#1

= “direct” + “indirect” effect be the characteristic for the 7-th pro-
perty. This is equivalent to summing up the i-th single-variable effect
of 10.) as “direct” and all the halves of pair effects with x, as one
variable in the pair under the name “indirect” effect. For the whole
system this means that the paired effects in 10.) are equally distri-
buted between the two variables of that pair. It is obvious that in
this decomposition the total sum is also D? and that negative compo-
nents may occur. In the table, total effects are presented in the form of
sums of the respective direct and indirect effects and all three kinds of
values are expressed as percentages of the D? (TABLE VIIL., 11.). In
comparison to 10.) the table contains new aspects by making possible to
draw one or more circles or at least relations of traits according to which
those have more or less positive or negative effect on the discriminatory
power of each other.

12. It has been mentioned under 4.) that the basis of LDA is an
adapt combination of traitwise mean differences  ,;—Z; of a kind that
a possibly high combined average group difference is produced in the
form of the OLC-generated quantity D? = Z,—Z,. In accordance with
this when the interdependence of the between-group differences z,;, — @,
is being characterized then this actually means the detection of their po-
tentially interactive roles in attaining the actual D2. The correlation co-
efficients of the mean differences which are to describe this very connection
can be estimated even on the basis of one observation series just as the stan-
dard errors of means. In our case called homoscedastic in4.)these coefficients
are equal to the r; treated in 10.) (TABLE VIII., 12.). The heading of the
Table refers to the heteroscedastic case where the way of computation is
different and to the inference based on relations from the discriminatory
point of view. The absolute value of the correlation coefficients (ranging as
such from -1 to 1) is a measure of the pairwise connections they have to
describe. The word measure is meant here in the sense of narrowness of
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discriminatory connection; the sign of the coefficients corresponds to
whether the roles of variables are parallel or antiparallel. It is natural
that the reality of the above in details and as a whole depends on how far
the assumptions contained in 8.) are fulfilled. Anyway, there can develop
groups (sets) of variables within which correlations are high as referred to
those connecting the variables of that set with variables not included in
it. Trait groups shaped that way can be considered discriminating fac-
tors. The Table already given shows and makes use of this fact for our
particular example. It is worth mentioning that this correlation matrix
can serve for the design of less within-set correlated variables as repre-
sentatives for the factors further in less trivial situations to optimally
generate uncorrelated linear combinations of traits with the method of
principal component analysis.

Summarizing the consequences drawn from all what has been
outlined in the above 12 paragraphs and applied to the present
example. the following can be stated. The evaluation by the program of
sets of traits specified on the basis of the results yielded by the first pro-
gram gave a practically unambiguous valuation of all the traits con-
cerned. This situation prevailed already on the basis of statistical test
quantities (P, and F) with a simultaneous consideration of the number
of properties to be measured (M ) and taking their registration costs near
to each other.

In the table following below the values P, and F pertaining to the
OLC-s of several trait sets examined are presented. As an information
for the reader, let be mentioned that

(21) Fx = (F-1)VM

is a good approximate comparative statistic of F-values in a sense that
an F for which F* is much greater than for the F of another trait group
may be considered a better value. These values as well as some measures
of information are computed and printed in more sophisticated versions
of our programs. Most harmonizing with our present way of inference
among those is

I(B)+1I [(I) [g VN-M— 1]]
22 b ol
(32) 2V M

I denoting Shannon’s information and @ the standard normal distribution
function. Quantities of a similar type help to decide in more complicated
examples than ours which traits are worth to be included in future re-
petitions of that particular discrimination trial.

The Table, relying on which in our case consequences of such charact-
er can be drawn is the following:
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No. ‘ Trait group M Py i F

| |
| = | e
L[| 1234567891011 12 | 12 96,0 | 30,2
2. I 9 3 6 7 o122 7 93,7 52,9
3; ‘ 1 3 6 7 11 \ 5 | 951 | 663
4. | 1 3 6 7 ‘ 4 95,7 82,3
s | 1 2 3 3 92,1 ’ 99,7
o 3 ) 92.1 146,1
7 6 7 1112 4 759 | 187
S. ‘ 6 7 11 | 3 73,5 16.9
9. 6 7 2 72,6 23.7
10 ’ 4 5 S 9 10 \ 5 | 682 6.1

The comparison of the first and the last line shows that properties
4, 5, 8, 9, 10 are superfluous for answering our question. A survey of the
lines 2. to 4. “sifts out™ the traits 2, 11, 12 if one makes use of (21) and
also takes the results of lines 5— 6. into consideration. All these confront-
ed with the forelast line prove that there is too little information contain-
ed in the trait pair of traits 6, 7. Thus, measuring the variables 1 and 3
is economical and sufficient for the problem treated here.

The meaning of this last statement is nothing else than an exemption
of the two traits for the present isolated problem. Comparative studies of
other differences in situations are planned, too. Those will be liable to
underline the roles of variables different from 1 and 3. Thus a complex
analysis may suggest the necessity of a larger set of properties in the futu-
re. However, this latter fact does not alter the momentaneous value of
the present evaluation.

For the reader more interested in the details of program construction,
a skeletal description of a form with rather general options is to follow
here. The bulk is written in ALGOL but FORTRAN subroutines for the
addition, muliiplication and inversion of matrices are used, too.

Preceding the input of the data to be analysed a number of para-
meter cards is read to pick out from the optional versions the particular
one needed to the actual task.

The parameter cards are:

1. Cards containing integer type data:

MM the (initial) number of traits

N number of all data (from both groups)

N1 size of the first group

LL = 1: the version treated here does not contain program parts

which would ask for functional transformations without
any separate “function card” (see later)
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1 asks for an LDA based on homoscedasticity i.e., on the
equality of standard deviations and correlation coefficients
between groups

2 asks for the LDA-s according to both 1 and 3, in this sequ-
ence

3 heteroscedastic LDA, equalities of 1 are not assumed

0 there is no identifier at the end of data cards

1 ends of data cards bear identifiers which will be printed to
Z-values (individual values of OLC)

0: our version does not imply automatical omission of variah-
les for sparing computing time

number of LDA-s for the same data set within one “second type”
program

. Cards

Y[J]

ST[J]

FN[J]

FV

PV

containing one-dimensional arrays.

0 if the program has to consider the ./-th trait continuous
to count frequencies belonging to intervals

1 if the frequencies of the J-trait are attached to discrete
values

is a step multiplicity array the elements of which are integer
multipliers of a basic step to vield the desired step width. The
basic step is a quarter of the pooled standard deviation for
Y[J] = 0 and unity for Y[.J] = 1. Thus, eg. ST[J] = Z
means intervals of s/2 for continuous and jumps of 2 for discre-
te frequency counting.

contains a number of frequently occurring functional trans-
formation possibilities which can be separately applied for
the respective .J-th variables. FN is a real array consisting
for all ./ of a part of integer numbers FV[.J] and a vector of
constants CV[.J]. In fact, the first digit of FN is FV, the
code of the transform type while the rest is C'V, a free con-
stant to it. The transforms automatically contained (beside
two others of possible actual choice) in the real procedure are
the following:

then ovV. X

then V. K>

then GV VX
then CV.log X
then CV|X

then CV.exp(—X)

then 2 arcsin Y X+CV
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where X stands for the original trait value. For example if
FV [3] was — 34.125 then the transformation coded by 2 i.e.,
CV.X?was applied to the data of trait 3 withCV = —4.125.
Remarks: zero must not be given for C'V; if traits have to he
used in original then their codes should be 11.

d) CO[.J] is the real array which consists of the “costs” of inserting the
respective ./-th traits. On the basis of these costs are the in-
formation quantities (22), (23) and the like computed for an
economically efficient choice of variables to be recorded. If
one does not want to differentiate one can take all CO-values
as unity.

3. The integer matrix array OMIT [Z, .J]

On the first parameter card it was fixed by the value of DS how many
LDA computations were desired on the same data set. Now, the
two-dimensional array OMIT consists of DS subsequent card images
and is realised by cards telling for the /-th LDA which .J-coded traits
should figure in the analysis and which not.

OMIT [/, .J] = 0 if from the /-th LDA the .J-th variable is to be
omitted;

OMIT [Z,.J] = 1 ifin the /-th LDA the .J-th variable is to be consi-
dered.

After the input of parameter cards the data cards themselves of the
groups to be separated are read in. First the first and than immediately
the second group gets into the memory. The end of the second one is marked
by a number 333333. After this endmark of the task a card deck either of
a new task on the same data or of a completely new task can follow from
the first parameter card up to another marker with 333333 on it. A card
with

99: 1T 1L 1 1.1
signifies the end of the whole LDA series.

The program can be found ready for compilation and running on a
disk. Its authors readily give all information needed for effective use.
The running of the material presented here was performed on a CDC
3300 type computer in the Institute for Computer Science and Automa-
tion of the Hungarian Academy of Sciences.

Finally, to inform the reader about the computing time demand of
our LDA programs: the following experience has been gained on a great
many of group pairs with hundred-order sizes. The running of complete
programs usually takes about one thousandth of a minute per date. Ac-
cordingly, the evaluation of the 12 traits of our 164 units by the first
program lasted about 2 minutes while the analysis in the second program

of altogether 35 variables run approximately 5.7 minutes.
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Table I11.
1—2. Diseriminant analysis from 12 variables

1. Trait averages 2. Analysis of variance by traits

4 B aration Tol1 |~ Batwecs sroupns Within Srsung ¥
| |
1. 44,723 28,394 1. MQ | 10 925,4073 38.2856 285,37
2. 17,443 13,394 2. MQ \ (71,8061 6.8340 98,30
3. 11,490 6,781 3. MQ | 08,7084 | 4,0429 | 224,76
4. 2,860 2,631 4. MQ 2,1463 0,1121 | 19,14
3. 1,964 1,884 5. MQ 0,2617 0,0718 | 3.64
6. 3,548 3,234 6. MQ 4.0206 0,0994 | 40,45
7. 3,497 3,200 7. MQ 3.6150 0,1133 31,89
8: 3,226 3,009 8. MQ 1,9262 0,0965 19.96
9. 0,693 0,651 9. MQ 0,0730 0,0664 1,10
10. 1,258 1.203 10. MQ 0,1249 0,1046 | 1,19
11. 1,568 1,397 11. MQ 1.2063 0,0919 13,13
12. 3,881 | 4,112 12. MQ 2,1969 0,7210 3,05
; ‘ FG | 163 1 | 162 |
Table IV,
3. Frequency distribution of trait 1
A B A D
11,81 -— 0 1 36,56 — 3 3
13,35 — 0 0 38,11 — 5 0
14,90 — ] 1 39,65 — s 0
16,45 — 0 1 41,20 — v 2
18.00 — 0 2 42,75 — S 1
19.54 — 0 0 44,29 — 7 0
21,09 — 0 3 45,84 — S 0
22.64 — 0 6 47,39 — 4 0
24,18 — 0 S 48.93 — 6 0
25,73 — 0 13 50,48 — 7 0
27,28 — 0 10 52,03 — 2 0
28,82 — 0 10 83,57 — 3 0
30,37 — 0 6 55,12 — 2 0
31,92 — 2 6 56,67 — 3 0
33.46 — 53 4 58,21 — 0 0
35.01 — 6 3 59,76 — 1 0
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4. Diseriminant coefficients 5. Frequeney distribution of multiplied Z-values
(lambda values) A B
) B8 0002566 83— 91 (1] 1
2. —0.002453 92 — 100 0 4
3. 0,003464 101 - 109 (] 2
4. —0,006347 1HO—117 0 9
3. 0,001460 118 - 126 0 13
6. 0.008970 127 — 135 0 15
T 0,015043 136 — 144 0 20
S, 0,005259 145 — 152 1 9
9. —0,001721 153 —161 6 6
10, 0.000447 162 —170 9 0
EL. 0.010932 171 =179 10 1
12. —0.006356 180 — 187 14 0
1858 — 196 11 0
197 — 205 1~ 0
206 —214 b, 0
215 —222 4 0
223 -231 5 0
232 — 240 2 0
241 —-249 0 0
250 — 257 1 0

Table 1.
6. Multiplicd Z-values in inereasing order (multiplier = 1000)

Number VA 72 Number Zi 72 Number ZI1 72 Number VAl 72
111 NS 04 134 17 161 al 191
164 95 113 134 26 161 20 191
146 a7 125 135 69 162 28 193
123 95 103 136 40 165 35 193
133 98 128 136 38 165 43 195
142 101 143 136 45 166 68 196
1035 106 153 136 62 166 61 196
120 109 115 136 72 166 73 197
159 112 137 137 34 167 31 197
157 112 134 137 29 168 S0 105
117 114 SO 137 54 168 9 198
197 115 96 135 23 170 15 198
147 115 156 139 109 4 49 198
149 116 136 139 67 173 79 200
148 117 150 141 39 173 78 200
106 117 118 142 23 174 N4 202
145 115 100 142 T4 175 57 202
127 119 138 142 12 175 16 202
155 119 a0 142 6 176 21 203
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Number Z1 z2 Number Z1 z2 Number  Z1 z2 Number Z1 72
152 121 110 142 50 177 64 203
163 121 104 143 35 178 32 203
119 121 151 143 33 178 10 204
S8 123 S6 144 14 180 11 205
122 123 112 146 81 180 83 206
161 125 108 147 46 181 48 209
129 125 160 147 1 181 2 212
135 125 124 147 47 181 30 216
162 125 7 147 19 182 71 217
98 126 140 148 70 182 41 217
102 127 155 149 36 182 44 218
116 127 99 150 60 182 4+ 223
141 128 107 151 37 183 76 225
91 128 42 156 66 184 27 226
93 128 131 156 58 184 63 229
114 130 92 158 52 185 5 230
126 131 121 159 59 185 65 234
85 131 95 159 18 188 3 236
154 131 77 159 56 188 13 250
144 131 8 160 75 188
101 132 22 160 82 188
130 133 139 160 24 189 Group 21 22
132 134 87 160 25 190 means 190 131
Table VI.
7. Maximum separation statisties
Prediction chances Discriminant Hit and failure Significance of
threshold per cent deviation from
overlapping
24 97,6 96,3 3.8 159 96,9 3,1 4,359-10-3%
8. Analysis of variance for Z-values 9. Percentual decrease of D?
when omitting single traits
Source of variation SQ FG MQ rF 8 23,83
2. 5,06
Total 163 3. 4,35
Between groups 0,14102 12 0,0117521 30,25 4. 0,62
Within groups 0,05867 151 0,0003885 5. 0,03
6. 1,20
7 3,38
8. 0,38
9. 0,03
10. 0,00
11. 1,67
12. 6,03

6 ANNALES — Sectio Biologica — Tomus 16
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Table VII.

10. Decomposition of the D? generalized distance into effeets of variables

Component Coefficient of determination Component Coefficient of determination
abs. rel. abs. rel.

B 1 square 0,0408 0,696 2B 4 B5R45 —0,0002 — 0,003
B 2 square 0,0067 0,114 2B4B6RA4G6 — 00,0006 —0.010
B 3 square 0,0079 0,134 2B 4B T7TR47 —0,0011 — 0,018
B 4 square 0,0007 0,012 2B4 BS R4S —0,0004 —0.006
B 5 square 0,0000 0,000 2B4B9R 49 0,0000 0.002
B 6 square 0.0013 0,022 2B 4 B10 R 410 0,0000 0,000
B 7 square 0.0042 0,071 2B 4 Bll R 411 —0,0007 - 0,012
B S square 0,0004 0,007 2B 4 Bl12 R 412 0,0011 0.01s
B 9 square 0,0000 0,000 2B 5 B6RSG6 0,0000 0,002
B10 square 0,0000 0,000 2B 5B TR ST 0,0001 0.002
Bl11 square 0,0018 0,030 2B 5 BSR58 0,0000 0.000
B12 square 0,0047 0,080 2B 5 BIO9RSY 0,0000 0,000
2B 1 B2R12 —-0,0218 -0,372 2B 5 B10 R 510 0,0000 0,000
2B 1 B3 R1S3 0,0279 0,475 2B 5 Bll R 511 0,0001 0,002
2B 1 B4R14 —0,0025 —0,043 2B 5 Bl12 R 3512 —0,0002 —0.003
2B'1-B:5 R 135 0,0002 0,003 2B 6 BT7TRG67 0,0025 0,042
2B 1 B6 R1G6 0,0005 0,009 2B 6 BS R 6 S 0.0007 0.013
2B 1 B:-7 R1 % —0,0006  —0,011 2B 6 B9RG6GY 0,0000 0,000
2B 1 BSRIS 0,0004 0,007 2B 6 B10 R 610 0,0000 0.000
2B1B9R1Y9 0,0000 0,000 2B 6 B11 R 611 0,000 0.014
2B 1 B10 R 110 0,0000 0,000 2B 6 B12 R 612 —0,0008  —0,014
2B 1. B1ll: R 111 0,0000 0,000 2B 7T BS R 7S 0,0016 0,028
2B 1 B12 R 112 —0,0020 —0,033 2B 7TB9RT9 0,0000 0,000
2B 2B 3R 23 —0,0099 —0,169 2B 7 B10 R 710 0.,0000 0,000
2B 2 B4R 24 0,0009 0,015 2B 7 Bll R 711 0,0008 0,014
2B2B35R235 —0,0001  —0,002 2B 7 B12 R 712 —0,0019  —0.032
2B 2 B6R 26 —0,0009  —0,015 2B S B9R SS9 0.0000 0.000
2B 2B 7TR27 —0,0014 —0,023 2B S B10 R 810 0,0000 0,000
2B2BS8SR2S —0,0007 —0,012 2B S Bll R 811 0.0004 0,006
2B2B9R 29 0,0000 0,000 2B 8 B12 R 812 —-0,0011 —0.018
2B 2 B10 R 210 0.0000 0,000 2B 9 B10 R 910 00,0000 0.000
2B 2 B11 R 211 —0,0003  --0,005 2B 9 Bl11 R 911 —0,0002  —0.004
2B 2 BI12 R 212 0,0012 0,020 2B 9 B12 R 912 —0,0000  —0,001
2B 3 B4R 34 —0,0009  —0,016 2B10 B11 R1011 0,0000 0,002
2B3B5R 35 0,0000 0,000 2B10 B12 R1012 0.0000 0,000
2B3 B 6 R 36 0,0007 0,011 2B11 B12 R1112 —0,0008 —0,014
2B 3B TR 37 0.0006 0,010

2B-3 B8 R 38 0,0003 0,006

2B3B9R3Y 0,0000 0,000 Total 0.0587 1.000
2B 3 B10 R 310 0,0000 0,000

2B 3. Bll R 311 0,0000 0,000

2B 3 B12 R 312 —0,0018 —0,031
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11. Contributions of the variables to the D? generalized distance

Percentage

B2/D2+SUM(BIXBJ xRILJ) = H

1,812
— 28,286
14.410
- 3,724
0,157
2,581
0,534
1,209
- 0,178
0,036
0.166
- 5,534

71,420
— 16,931
27,304
— 2,476
0,199
4,790
7.616
1,955
— 0.124
0.042
3,197
2,509

12, Correlation matrix of group mean differences

Trait
1. 69,608
2. 11.356
3% 13,394
4. 1,248
5. 0,042
6. 2,209
7. 7,083
8. 0,746
9. 0,054
10. 0,006
11. 3,031
12. 3,042
1,000 0,662 0,778 0,229 0,096 0,035
0,662 1,000 0,686 0,203 0,150 0,151
0,778 0.686 1,000 0,198 0,054 0.102
0,229 0,203 0,198 1,000 0.5392 (.309
0,096 0,180 0,054 0,592 1.000 0.278
0,035 0,151 0,102 0,309 0,278 1,000
—-0,024 0,130 0,054 0,307 0.216 0,531
0.051 0,213 0,091 0,334 0,270 0,495
— 0,009 —0,027 — 0,045 0,322 0,216 — 0,062
0,008 0,042 — 0,003 0.363 0.269 0,209
0,002 0,044 0,008 0,320 0,295 0,277
0,071 0,103 0,151 0,286 0,236 0,170

— 0,024 0,051 —0,009 0,008
0,130 0.213 —0,027 0,042
0.054 0,091 —0,045—0,003
0,307 0,334 0,322 0,363
0,216 0,270  0.216 0,269
0,531 0,495 —0,062 0,209
1,000 0,607  0.054 — 0,030
0,607 1,000 0,036 0,164
0,054 0,036  1.000 0,541

- 0,030 0,164 0,541 1,000
0,146 0,207 0,488 0,601
0,214 0,367 — 0,090 0,135

Conelusions

1. Relying upon the results it can be

Table VIII.

0,002 0,071
0,044 0,103
0,008 0,151
0,320 0,286
0,295 0,236
0,277 0,170
0,146 0,214
0,207 0,367
0,488 — 0,090
0,601 0.135
1,000 0,147
0,147 1,000

stated that the two Festuca

pseudovina populations examined (“A” and “B”) are very well separable
by the method of the authors. Misclassifications are highly infrequent

(only 5 among 164 cases).

2. The groups of variables (1—2—3, 4—5, 6—7—8, 9—10—-11, 12)
determined by the analysis of the correlation matrix of the differences of
the averages (see Appendix) exactly correspond to the grouping to be ex-
pected. It also appears (e.g. from the comparison of lines 7 and 10 of
Table II11. 1. with line 1) that the variables of the “localized sampling”
(properties 4 —12) together could contribute to the separation to a much
lesser degree than did the group of the first three variables.

6%
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3. It is properties 1, 2 and 3 the measurements of length of the in-
florescence that have a deciding part in the discrimination. Compared
with them properties 6 and 7 contribute but to a quite slicht measure to
separation. The part of the other 7 properties is insignificant.

4. Finer analysis showed further that also from this group only two
properties are really significant: the 1st land the 3rd ones (the length of
the panicle and that of its first internodium). These two jointly call forth
a discrimination of the same measure as do the first three jointly, and
this is hardly less intense than the discrimination founded on all proper-
ties. It should be noted that property 3 can be partly substituted by pro-
perty 2: 1 and 2 yield hardly weaker result than 1 and 3.

5. Therefore, in examinations of similar character (in case of Festuca
pseudovina) instead of the 12 properties examined by the authors it is
sufficient to consider two (1 and 3, or possibly 1 and 2).

6. Essentially, properties 1 and 3 depend on the length of the in-
florescence. It is easy to understand that it is just these which are the most
important ones as regards discrimination, since the differences of site
come to be expressed in the stature of the whole plant and through this
also in the length of the inflorescence. The site of population “B” is much
more favourable (thicker surface soil, less alkalinization, better supply
with water, there is neither mowing nor pasturing there) than that of
population “A” (alkaline, lowly yielding pasture of sheep).

7. In case of Festuca pseudovina the length measurements signifi-
cant as to discrimination have no taxonomic value:; on the other hand the
“taxonomically significant” properties proved insignificant as to discri-
minance. Therefore, founded on the present examination and presuming
that the properties taken into account in the taxonomic key are in truth
of high taxonomic value, the authors consider the two populations as be-
longing to one species also in the future.

8. In comparison with other related species possibly just the traits
will markedly discriminate which now have but slightly separated the
two populations, or have had no discriminating effect at all. On the
basis of the present examinations no further particulars can be given in
this respect now.

9. In serial tasks of discriminating — which are, however, of similar
character — one may attain significant saving in “costs” by means of pre-
liminary examinations. On the other hand, without preliminary exami-
nations one might leave out of consideration some important variables
helping discrimination or unnecessarily examine certain redundant vari-
ables.

10. With the applied discrimination procedure the authors strove
to develop an efficient and economical strategy. The essence of this is to
try to find the optimum balance between the surplus information gained
by introducing further variables and the “costs™ expended to the intro-
duction of these (see Formula 22).

11. It should be noted that in Formula 22 the examination of all
variables has been taken into consideration at equal “costs”. If the pro-
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portion of the “costs™ expended to the single variables can be given — if
only estimation-like — (in the form of “weights”) then, modifying Formula
22 accordingly (see Formula 23), the optimization procedure will be
more efficient:

I[P (prop.)]+1 [tp [—? VIN—-M—-1 ”
2V S W,

(where W, stands for the “costs™ of the single properties).

(23)

Summary

The separation of Festuca pseudovina populations from neighbour-
ing but ecologically differing sites, of populations dissimilar also as re-
gards their habit was examined founded on 12 morphological properties
of the inflorescence. The authors’ new method of discriminant analysis
proved most suitable for this purpose.

The procedure affords an effective and economical strategy for a
manysided analysis of the discriminating information residing in the vari-
ables which is ensured by the complex way of evaluation described in
points 9 to 12 of the methodological part. By successive analyses perform-
ed in this way also the group of variables to be considered the optimum
one can be selected on the basis of confronting the expenses (“costs™) and
gain in information.

As it appears from the theoretical considerations and from the ex-
perience collected in the course of the application of the method (from in-
formation which has been in part also published in the present paper) the
adopted procedure seems promising for the solution of the eritical pro-
blems of taxonomy.
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