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SUMMARY

An iterative solution of the inverse gravity problem is deseribed in the case where
the gravity field is due to the undulation of the interface between two layers with diffe-
rent densities. The method proposed here consists of setting up a starter model computing
the gravity field due to the model and modifying the model in an iterative manner until a
good approximation between measured and computed gravity fields is obtained. The
method resembles to the procedure described by Cordell and Henderson (1968) but the
computation of the gravity field is simplified and the corrections to be applied in due
course of the iterations are determined more efficiently. As a result the number of itera-
tions, necessary to achieve a given accuracy, are significantly decreased as well as the
computer time required by the process.

The accuracy of the approximations used in the computation of the gravity field
due to the model are investigated in Part I. and Part 11. The iterative process and examples
of its applications are deseribed in Part 111.

Introduction

The purpose of this paper is to describe an economical algorithm
for solving the inverse gravity problem in the simplified but practically
useful case when the gravity anomalies are due to a single density con-
trast. Most methods known form the literature (Cordell and Hen -
derson 1968, M. Al-Chalabi 1971 etc.) set up a geological
model, specify some of its parameters and then determine the other
parameters by using some sort of iterative or optimization algorithm.
The objective is to compute or modify in each step the free or adjustable
parameters in such a way that the gravity anomaly, produced by the
structural model possessing these parameters be close to the measured
gravity anomalies. The fit between the computed and measured data
may be considered complete if the differences do not exceed the measure-
ment errors. Some other criterion may also be used to express the good-
ness of fit between the two sets of data. No author claimed that a unique
solution can be reached. An appropriate selection of the adjustable para-
meters (in most cases the density contrast and the depth of the lower or
upper surface of the anomalous bodies), however, could yield geologically
feasible solutions. This solution, even if the required goodness of fit has
been arrived, still may be incorrect because some additional assumptions
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have to be valid e.g. there should be no more than a single density con-
trast and its maximum depth should be given to a good approximation,
regional background and random errors must not exceed an upper limit
ete. Feasible models, however, do help the interpretation even if they
have obvious limitations and contribute to a better understanding of the
prospected area. Therefore it is hoped that the solution of the inverse
gravity problem as proposed in the present paper may be of interest.

The iterative solution, described in detail in Part 3. is a modification
of the method by Cordell and Henderson (1968). Modifica-
tions became necessary because the original version needs too large an
amount of computer time. 20 iterations for 20X 20 data array run 9,0
minutes on an IBM 360/65 computer (Cordell — Henderson
1968 p. 598). Solutions, obtained by different approaches require also too
large computer times.

We have to work on larger data array and the computers available
to us are slower than those mentioned in the cited publication. The com-
putation of the gravity field due to the model had to be simplified and
the convergence of the iterative process had to be made faster.

Gravity fields due to irregularly shaped bodies are usually obtained
by dividing the bodies into rectangular prisms and adding up the effects
of these elements (e.g. N a ¢y 1966). Some authors (e.g. Botezatu
et al 1971) suggest the use of cubes. The gravity field of rectangular prisms
can be given analytically. Various expressions are known from the litera-
ture (N a g v 1966, Goodacre 1973 ete.) none of these is easy to handle.
Long and tedious computations are involved the repeated use of which in
each iterative step for all observation points requires so much computer
time that practically prohibits the use of the exact formula. In its stead
we approximate the fields of rectangular prisms by fields of mass points.
The masses are equal to the mass of the corresponding prisms and all
points lie in a horizontal plane parallel to the reference plane through the
center of mass of the whole irregularly shaped body. The accuracy of this
approximation has been investigated and results are summarized in
Part 1. of this paper. In practical applications we assume that the
gravity anomaly is due to the undulations of the depth of an interface
between homogeneous layers with different densities such as e.g. the
interface between the upper and lower Pannonian sediments or more
often the interface of the sediments and the cristallyne basement. It also
involves that there are no other inhomogeneities either horizontally or
vertically (such as lateral variations in density or other interfaces corres-
ponding to density changes). We also assume that the regional back-
ground has been properly removed, random variations have been smo-
othed.

The deepest point of the interface determines the depth of the hori-
zontal reference plane. This will be considered the lower boundary of the
causative body, while the upper boundary is defined by the interface.
The gravity effect of horizontal and constant density layers is an additive
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constant therefore the whole anomalv is due to the irregular ,,body”
defined above.

The thickness of the body is usually no more than some hundred
meters, and the average depth is not less than 1 km. It can be seen that
in order to avoid side-effects the thickness have to be very small around
the boundary of the investigated area or some additional procedure is
necessary to overcome the disturbances of the side effects. We shall
assume in the followings that the thickness and the average depth satisfy
this requirements and call attention to that limitations the algorithm.
All the assumptions should be checked in practical applications.

The undulations of the density contrast surface acts as a peculiar
sheet-like body i.e. it is thin and large horizontally.

The gravity field due to a prism is approximated in turn by a mass
point concentrated in the neighbourhood of its center.

Gravity anomalies due to various bodies are shown in Part 2. The
accuracy of the double approximation is also dealt with in that part of
the paper.

PART 1.

Approximation of the gravitational attraction due to a rectangular prism
by that of a mass point in its center

The vertical component of the gravitational attraction of a rectan -
gular prism is given by the integral

X=Us Yy—V3 2—

x,9,2,) =GA4¢g —_ dudvdw, 1.1
o, 9,2) = // f f[w+r2+u]3,, (L.1)

X—Uy Y=V 2—W;

where g(x,y,z) denotes the vertical component of the field at the point
x,Y,2

(¢ is the gravitational constant
(6.67.10~8 cgs unit)

o is the density of the prism and
(2y,00,%,), (U0 W), - . . (UgyVayWy).

are the coordinates of the corners of the prism and z is positive
downwards.

The notations used in (1.1) are shown in Fig. 1.1. Various expres-
sions were published for the integrated results (Kello g 1929, Bote-
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Fig. 1.1 Notations used in the derivation of the gravitational attraction of a rectangular
prism

zatuet. al 1971, Nagy, 1966 etc.) As Goodacre (1973) pointed

out a convenient from for g (x,7,2) is
X—Us Yy—Va2—Wa -
(| uv) | '
g(x,y,2) = G Ao | || wIn(v+7r)+viIn(u+r)—w atan [*J ‘ , (1.2)
1 wr

X—Uy Y=V 2—Wy
where r = (u?+v*+u?)l?

Iquation (1.2) is an abbreviation for an expression consisiting of
8 terms. Before writing down the explicite version of the full expression
let us introduce some notations. In practical applications z = 0 and the
two other coordinates are integer multiples of the grid spacing: the latter
be denoted by s, i. e.

T = ks (&

y=1Is(l = -m —m+1,...0, m—1, m).

-n, —n+1,...0, ...n—1, n)and
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The detailed expression for the z components of the gravity field in
the point (ks, ls, 0) is than

8
g(z,y,2) =G 3 &; (1.3)
i=1

= (ks —uy) In[ls —v,) + 7|+ (Is —w,) In[ (ks —uy) +7 ]+
(ks —uy)(ls —v,)

+w, atan 2 =, (1.4a)
=Wty
t, = — [(ks —ay) In[(Is —v,) + 7, ] + (Is — v,) In[(ks — w,) + 7] +
+w, atan (ke =) (e —1,) (1.4b)
— Wy Ty
ty = (ks —uy) In[(Is —v,) + 73]+ (Is —v,) In[(ks — up) + 73] +
+w, atan (ks — up)(ls — 1) ’ (1.4¢)
=y Ty
ty= = [(lcs —a,) In[(Is—v,) + 7]+ (Is—2)) In[(ks — ;) +74] +
+w, atan (er—w (05— 0;) ] (1.4d)
—w, 7, :
ty = (ks—wuy) In[(Is —vy) +7r5] + (Is —v,) In[ (ks —u,) +7r5] +
+w, atan ety : (1.4¢)
—w, 75
= — [(l.ns- — ) In[(ls —vy) + 7]+ (Is — vy) In[ (ks —ay) + 7] +
+w, atan (ks — ug)(ls — ) ] ; (1.4f)
—wyrg
t; = (ks —uy) In[(Is —v,) +7r;] + (s —v,) In[(kr — ;) +7;] +
+w, atan (o )ie—2,) ; (1.49)
— Wy Ty
ty = — [(ks — ) In[(Is —v,) +rg] + (Is — vy) In[(ks — w,) +rg] +

+w, atan (ks — uslls —vy) ] ) (1.44)
wyr
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where
1 = (ks —uy)* + (Is — v,)? + w} (1.5a)
r3 = (ks—u,)?+(Is—v,)* + w3 (1.50)
7= (ks — w4 (Is— 0+ 3 (1.50)
r; = (ks—wu)>+(ls—v,))* +u? (1.5d)
r2 = (ks—u)?+(Is—vy)* +w} (1.5¢)
12 = (ks—up)? + (Is—v,)2 + u? (1:5¢t)
r: = (ks—u)?>+(Is—v,)* + w3 (1.59)
ri = (ks—uy)®+ (Is—v,)> +u? (1.5%)

Let us consider now the special case when the center of the
prism is in the point (0,0,H) and therefore, the corners are given by

Uy = —— g
YT g’ T 3
s s
v, = ——. gy = — 1.6
1 5 Ys 5 (1.6)
/ /
iy e B = wy = H 4~
2 2 J
which involves that the cross section of the prism is a grid square.
If we introduce the following abbreviations
1
B 1»-—3-18 A2=Q~+-]s |
2 2
B l . B I+ : (1.7)
=[l——|s g = —s
: 2" : 2
’ ]I
Oy = H’+h s = ; (L
2 2 )

where H’ and 7’ are the depths of the mass center and the height of the
prism, respectively, both measured in units of the grid spacing, the
expressions (1.4a)— (1.4h) become

1

ty = A, In(B,+r)+ B, In(4, +r,)—C, atan A/:)‘ ,Bh’ (1.8a)
174

% :

172

- [A2 In(B, +ry)+ B, In(A4,+7r,)—C, atan AAgﬁl—] , (1.80)
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4,B,
ty = A;In(By+1r3)+ By In(4, +75) — Cyatan — - (1.8¢)
273
Y A2 B2
t, = — | A, In(By+-7y)+ B, ln(A.2+r4)—(,<.3atan~CT . (1.8d)
274
J v A2 Bl
ty = A,In(B,+r5)+ B, In(4,+r;)— C, atan = (1.8¢)
27§
Al Bl
g = — [Al In(A4, +rg) + B, In(4, + ry) — C, atan - | (1.8f)
27g
v 142 B2
t, = A, In(B,y+r;)+ ByIn(4,+r,)—C; atan — rriy (1.8¢9)
173
A, B,
t, = —| 4, In(By+7r,)+ ByIn(4, +7,)—C, atan —7_] (1.8%)
178
where
r} = A3+ B3+ C3, (1.9a)
v} = A+ B3+ 0%, (1.90)
r3 = A}+ B}+C3, (1.9¢)
r; = A2+ B}+C3, (1.94)
r: = A3+ B3+ C3, (1.9¢)
rg = A3+ B} +C3, (1.9f)
r3 = A3+ B3+C3, (1.99)
rz = A%+ B%+Cj. (1.9%)

The computation of the z components of the gravity field of the
rectangular prism having the corners (1.6) in a regular grid with spacing
s can be performed according to the following scheme

a) determine the variables 4,, 4,,..

b) computate the r; values by equations (1.9)
c) evaluate formulas (1.8) i.e. calculate the ¢; values
d) multiply the sum of the ¢;,—s by GpA. These steps are repeated

for each (k, I) pairs.

The mass of the prism is

m = Ao s*h

. Oy by equations (1.7)
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Fig. 2.2 Comparison between the z-components of the gravitational attraction due to
cubes with edges of 0.2 km (empty circles) and that of mass points in their centers
(continuous curves)
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and because the center of mass lies in (0, O, H) the z component of the
gravity field due to that mass, concentrated in the center becomes

s*h H

g*(ks, s, 0) = G Ao
[(ks)*>+ (Is)> + H2]? /2

2 Bl W, (1.10)
[k? +l.’.+([1’)2]3l2

Agimgal)

0,05

x(km )

Fig. 1.3 Comparison between the z-components of the gravitational attraction due to
cubes with edges of 0.5 km (empty circles) and that of mass points in their centers
(continuous curves)

The goodness of fit between the exact field and its approximation
(1.10) can be evaluated by direct comparison of the effects due to prisms
with realistic parameters.
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In those applications which are our main concern in Parts 2. and
3., H varies between 1 km and 2 kms while % is somewhere between
0 and 500 meters. '

Figures 1.2 and 1.3 show the g(ks, 0,0) values as empty circles for
cubes with edges of 200 and 500 meters, respectively, in each case for
two depths (1 km and 2 kms). The approximations obtained from the
fields of mass points are drawn by continuous lines.

Aglpgall

x(km!

Fig. 1.4 Comparison between the z-components of the gravitational attraction due to
rectangular prisms with 0,230,2 km? base and various height and that of mass points
in their centers (continuous curves) when the depths of the mass centers are 1 km

Further exaples are shown in Figs. 1.4 and 1.5, where rectangular
prisms have square cross sections with edges of 200 ms and heights of
200, 400 and 600 ms. The depths of the centers of masses are 1 km in
Fig. 1.4 and 2 kms in Fig. 1.5, respectively.

In all cases, shown as Figs. 1.2 to 1.5, the two-dimensional functions
g(x.y.0) and g*(x,y,0) are investigated along the z direction, only. This
approach is justified if the field possesses circular symmetry. The field
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due to a point source is indeed direction independent but the fields due to
rectangular prisms are not. The largest deviations from gravity values
along the direction of the x coordinate axis can be expected along the
direction of the diagonali.e. along the line = = y. The deviation from
circular symmetry in the gravitational attraction of the prism can best
be estimated by comparing the curves

g(x,y = 0,0) and {/(Vé-.r, Y2y, 0).

The directivity diminishes as the dimensions of the body decrease
and the center of mass gets deeper therefore the worst situation which

agipgal)
0.4 -Jr "
2km
1 02 km
h=600m
0,3+
400m
0.2 d\\\\
200m
0,14 \
\ M
T T T T T T T T
1 2 3 4 .x{km )

Fig. 1.5 Comparison between the z-components of the gravitational attraction due to
rectangular prisms with 0,230,2 km? base and various heights and that of mass points
in their centers (continuous curves) when the depths of the mass centers are 2 kms
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has to be dealt with is that of the prism with 0,5} 0,5 km? base and with
center of mass at 1 km. Deviations for some situation are shown in
Fig. 1.7. Numerical values were computed for various heights of the
prisms along the directions y = 0 and y = 2. The deviations, as it can
be seen in Fig. 1.7, are very small. No values were found above 2 ugal
which proves that the one-dimensional approach is justified. As a sum-
mary it may be said that the gravity field of an irregularly shaped body
can be approximated by a sum of gravity fields due to point masses
about the same accuracy as by a sum of gravity fields due to rectangular
prism when the prisms are not larger than 500X 500X 500 m? and the
centers of masses lie in 1 km or deeper.

i

| H=1 km

’ 895 89,5 PGl h

s T — %5
2 101 S

‘ \

|

;

ih-

105

% -

1 2 3 Rikm

Fig. 1.6 Deviations between the z-components of the gravitational attraction measured
along two profiles with directions 0° and 45° The gravity fields are due to rectangular
prisms with mass centers at 1 km and have a 0.5 X 0.5 km? square base and various
thicknesses (denoted by #)

The economical advantage of the first approach is obvious because
the computation of the gravity field due to a mass point is at least
a hundred times faster. As a matter of fact the building up of the gravity
field due to larger geological bodies or complicated surfaces from the
field of rectangular prisms is really out of question when considering the
limitations of our computational facilities.
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Part 2.

Computation of the gravity field due to
geological structures

Let us assume that the gravity anomaly field is solely due to the
undulations of the interface between two homogeneous layers with
different formation densities o, and 0,. The deepe.st point of ‘the inter-
face in the whole area defines the reference plane, the depth of which is
denoted by H. (Notations are shown in Fig. 2.1). The mean depth of
the interface will be denoted by H, the density contrast o,— o, by 4o.

hy hy

Ah

5
IV

Fig. 2.1 To the computation of the gravity field due to a density interface

It is clear that the gravity anomaly caused by the undulations can
be computed as the gravity effect of an irregular body bordered from
below by the horizontal reference plane and otherwise by the interface
and possesses a density /g. It is supposed that the interface reaches or
comes close to the reference plane around the boundary of the area.
We also assume that the mean depth is 1 km or more and the undulati-
ons around the mean depth do not exceed 0.3 km.

When the two litter assumptions are valid the body can be approxi-
mated by a bundle of rectangular prisms.

It is convenient to use the same rectangular grid system in the
reference plane as the one determined by the observation points on the
surface. The prisms therefore possess square bases. Observations are
usually made at regular 0.5 km intervals in recent measurements, thus
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the square basis are also of dimensions 0.5 0.5 km?. In Fig. 2.2 one of
the prisms is shown (s stands for the grid interval). The heights of the
prisms are estimated by
hy+hy+hy+ 0
A by = H— f1_+,,-,if{f;*_ (2.1)
4

Where %; denotes the depth of the interface in a grid point. (A, h,. &, and
h, are depths in the corners of a grid square). The mass of the prism is
approximately

my=824hdp. (2.2)

The mass is then “concentrated” into a point with coordinates (x;, y,., H’)
where (2;,7,) is the center of the base and

H =5J;”. (2.3)

surface
)
> il Yl i
— S Z .
= \_/ H
fy

Fig. 2.2 Notations used in formulas (2.1) and (2.3)

The gravity effect of the prism is substituted by the effect of a mass
point in (x;, ¥,, H’) with mass determined by (2.2) i.e. the z-component
of the gravity field in the point (u, ») is approximated by

G Ao Ahs* H'
(=) (0= g+ (PP 2

g(u, v) = (2.4)

If the distances are given in kilometer units, ‘o in c.g.s units and ¢, (u, v)
in mgals G = 6.67 .
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The gravity field due to the whole body is the sum of the individual
fields each given by (2.4). When (u,») is a point in a square grid u = ms;
v = ns and the coordinates x; and y, are also measured in units of the
grid spacing the contributions from the prisms sums up to give

g(m,n) = 6,67 5> Ao by H (2.5)
Lk [(m—a))2+ (n— )2+ (H”)2 P2
Where
H
HU — =y
s
x,’ — —1'—'.7
S
, Y.
Y = Y y
s
Formula (2.5) can be thought of as a convolution between /1 hy, and
HH
S('rl" ylx) — (2-6)

G2 + (902 + (H 22

| 7
x;=1+f2~ G=-n, —-n+l,..., n-1);

y,f,=k+?lz- k=-n, —n+1,..., n-1).

surface
g (mal)
7%
e source
{perpendicular to profile)

e T T e —r T —

-1 -6 -5 -4 -3 -2 -1 1 2 3

»d
B
@
~

Fig. 2.3 Theoretical values of the gravity field of an infinite horizontal line source as
measured along a profile perpendicular to the line (continuous curve) and its approxima-
tion obtained by (2.5) y = 0 (broken curve)

7 ANNALES — Sectio Geologica — Tomus XVIIIL.
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The accuracy of the proposed procedure has been checked by comparing
gravity fields of simple bodies whose fields could have been expressed
analytically to the gravity fields computed by (2.5). Some of the results
are given in Fig. 2.3—-2.7. Fig. 2.3 shows the field of an infinite hori-
zontal line source, buried at a depth of 1 km, along a line perpendicular
to the body (continuous curve).

14 13 12 11 .D 9 8 7 6 5 4 3 2 values in mgal
-1
-2
-3
jjj 1
/ A
‘: é :‘i dr km

Fig. 2.4 The z-component of the gravity field due to a rectangular prism with dimensions

4%10% 0,5 km? with mass center at the depth of 1 km (exact formula) .lp = 1 gem=3

The theoretical values come from the well known formula:

H
y l{/(?) —] 2{,' /‘ 7[,1, " == (27)
24 32

Where 7 denotes the line density
and H is the depth.



AN ITERATIVE SOLUTION 99

The one dimensional modification of (2.5) gave the values connected
by the broken curve in Fig. 2.3. The sampling distance was 0.5 km and
41 points were used to compute the convolution.

Fig. 2.4 shows the gravity field due to a rectangular prism whith
dimension 4x10X0.5 km?®, and with mass center at 1 km depth, as
computed by the exact formulas (1.6)—(1.9).

00505 005-1-050 O1 vaives in pgal

1
+ - + i
less
than
0.l ugal F2

-0.5

/) U\ =

T T T T
1 2 3 4 km

Fig. 2.5 Error field i.e. deviations between the theoretical gravity field shown in Fig. 2.4
and its approximation obtained by (2.5)

The convolution (2.5) gave a field so close to the theoretical one
that the map, drawn from the approximate values is apparently iden-
tical to the “theoretical map” in Fig. 2.4. Therefore the difference field
or “error field” has also been computed. Contours of the error field are
shown in Fig. 2.5. We call the attention to the fact that the errors are
given in 1ugal units and the isolines are 0,5u gals apart. The deviations
as indicated by the map can not be detected by the present measuring
techniques.

T%
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Figs. 2.6 and 2.7 show similar quantities. Fig. 2.6 is a field due to
a 4X4Xx0.5 km?® rectangular prism at 1 km depth as computed according
to the exact formulas while Fig. 2.7 is the ,.error field” i.e. the difference
of the theory and its approximation. The match of the convolution to
the exact formula is excellent again. Numerous other models have been
computed but the maximum of the deviations never exceeded 0.1 mgal
for plausible geological models and s = 0.5 km sampling interval.

12 11 10 98765 4 3 2 1 values in mgals
ﬁJ -'
-2
-3
. km
. ; . ; : ; : 2 km

Fig. 2.6 The z-component of the gravity field due to rectangular prism with dimensions
4 X4 0,5 km®* with mass center at the depth of 1 km (exact formula)

The application of equation (2.5) is further illustrated by Fig. 2.8
and 2.9 where the gravity fields of a cone and a cylinder are shown
respectively. On the upper parts of the figures the two dimensicnal
fields are depicted by isolines on the lower part cross sections through
the center of the models resp. the gravity fields are shown. The base
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circle of the cone resp. the cylinder are drawn by broken lines. No com-
parison with theoretical values is possible because the gravity fields
due to these bodies can not be expressed analitically.

values in pgal

-1.0, E: § 01
-0.5 E §
i -1
0.5
— 2
-05
— D-0.1 -0.5
—~ 3
-..u-uuu&;.u.n-..n-‘
less than
0.l pgal -4
km
‘: ; :I! } km

Fig. 2.7 Error field i.e. deviations between the theoretical gravity field shown in Fig. 2.6
and its approximation (the latter obtained by (2.5)).

The computation is rather fast and it does not need elaborate pre-
parations as e.g. the method of Talwani (1968) or storing and se-
arching for the fields of appropriate cubes as the method proposed by
Botezatuetal (1973). It may therefore be of interest in itself. The
simplified algorithm was developed in order to be ableto solve the inverse
problem by an iterative procedure in course of which the computation
of the gravity fields due to geological models becomes necessary very
often. Therefore our main concern had to be the speed and though some
improvement of the algorithm can obviously be made (e.g. producing
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denser spacing by interpolation, accurate positioning the center of mass
for each prism ete.) but only at the cost 6f computer time. The approxi-
mation being satisfactory as it is now, we shall not deal with the impro-
vement of the accuracy of the direct problem in this paper.

Ag (mgal)
0.5

04
0.3
0.2
0.1

surface

200
400
600
800-

1000 4441/,,r””\\‘\~\\\‘47

1200

1 km
——t
h{m)

Fig. 2.8 The z-component of the gravity field due to a cone. Two-dimensional representati-
on (upper part) and a profile through the center (lower part)
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0.3
0.2
0.1

surface

200
400
600
800

1000 - | | I

1200

1 km

h(m)

Fig. 2.9 The z-component of the gravity field due to a cylinder. Two-dimensional rep-
resentation (upper part) and a profile through the center (lower part)

PART 3.
The iterative solution of the inverse problem

The inputs of the iteration are the measured gravity anomaly digiti-
zed in a square grid, the depth of the reference plane and the density cont-
rast 1o. As it has been mentioned in the previous sections it is assumed that
the regional and random noise have been removed (or attenuated as
much as possible) and therefore the anomaly is supposed to be due to the
undulations of the density contrast surface alone.
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The lower boundary of the causative body is the reference plane the
upper boundary is the undulating interface.

The causative body is approximated by vertical prisms each having
a cross section of one grid square and a thickness given by the average of
the four vertical distances between the interface and refer ence plane in the
corners of the grid square.

The density of the prisms is equal to the density difference between
the two layers i.e. 4o = 0,— 0.

The iterative process consits of setting a starter model for the thick-
nesses /i;,, computing the gravity field due to the model by the method
described in Part 2. and modify the thicknesses in a way which diminis-
hes the differences between the measured data (i.e. the input) and the
c()mputed data. Let us denote the thicknesses in tllej th itemtive step by

$} and the measured and calculated gravity data by ¢ J,k > and f/,,,, respecti-
velv The caculated data are functions of the thicknesses

gk = fLRR]. (3.1)

The explicit form of the connection is described by (2.5). We have to

find the best fit between gi” and ¢{7). The goodness of fit can be expressed
by various measures e.g. by the mean square deviation or by the sum of
the absolute values of the deviations or by the largest error etc. None of
them yields a feasible algorithm for the computation of the unknown
parameters. Theoretically (3.1) can be rewritten in the form of simulta-
neous equations and this would unambigously determine all the 4,

values, but the solution of simultaneous equations with some hun(hed
unknows is such a tremendous task that this way obviously should be
abandoned.

Some heuristic approach is needed, which allows the fast determina-
tion of the /;,-s and is able to improve the values in successive approxima-
tions. The chosen measure of the goodness of fit is then used only to
check whether the new approximation is better than the previous and
when a cer tain limit is reached it may be used to terminate the process.
When ¢ is greater than ¢{i” it obviously means that the thicknesses
in and around the grid point P, should be diminished. Though the ¢
is a sum of various contributions from all prisms the greatest contribu-
tion comes from the prism vertically beneath that grid point. Therefore
we modify the thickness of that prism by

K(g® —giR) = A0 (3.2)

where K is a constant multiplier the choice of whose numerical value will
be dealt with later. The starter model may also be constructed by using
this consideration. If the gravity field at the grid point P, would be
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solely due to the prism vertically beneath and this is concentrated to a
mass point lying in the mean depth H’, g, would be

Gy =~ 2R (3.3)

values in mgal

Fig. 3.1 The z-component of the gravity field due to a thin rectangular prism with base of
5 x5 km? and height 0,1 km. Density contrast is 0.1 cgs unit. Values of the field over an
area of 21 21 km?* were used as input to the iterative process

From that equation follows

¢ 72 .
i = I (H)F _ 9w gy (3.4)
fae s 0,667

when g, is measured in mgals and % in kilometers. This choice is diffe-
rent from that suggested in the literature e.g. by Bott (1960) or by
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Cordell and Henderson (1968). They used the Bouguer slab
formula i.e.

R = Ml 35
Wk 22 G Ao (2:8)

It can be shown, however, that the starter models (3.4) and (3.5) are
very similar, both giving thicknesses proportional to the gravity data.
The starter model is used to compute the first set of ¢{f) data and equation
(3.2; gives the first set of corrections to the starter model i.e. in this and
in all the following steps

RGO = D+ A D (3.6)

D (milligals)

1 2 3 4 5 & 7 8 3 10
number of iterations

Fig. 3.2 Deviations between exact and computed values, represented by the first absolute
moments (formula 3.7) plotted against the number of iterations for three values of the
parameter

The gravity field due to the model with the ,.improved thicknesses”
is computed by the approximations described in Part 2. The computed
94 values are input to equation (3.2) yielding new corrections to be
applied again in equation (3.6).

The sum of the absolute values of the differences are also computed
in each step. The process terminates when

D= 3 !/EZ”—!/S? = 0,001 N (mgals) (3.7)
i, k
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d(m)

» T
D

2 = 0 1.2 ; x(km)

Fig. 3.3 Variation of the calculated cross sections of the structure obtained in iterative
steps

A g (mgat)

o
-
FS

iy
~4 =3 =2 = x(km)

Fig. 3.4 Variation of the calculated gravity field along a profile in the iterative steps
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where N is the number of grid points. Equation (3.7) involves that the
measured and calculated fields are considered identical when the average
difference is less than 0.001 mgal. It is not proved that the iterative
process converges but in all cases investigated so far rather fast conver-
gence have been found.

4200

=2 -2 o 0
77 =

km

1 T i T 1 T T |
1 2 3 4 5 5 7 8 km

Fig. 3.5 The map of the deviations between the model structure and its last Approxi-
mation

A method described by Cordell and Henderson (1968. p.
597) uses the following defining relationships between thicknesses in
two consecutive iterative steps

(m)
U+ _ ik D) 3.8
Uik = b ( )
(c)
ik
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(Instead of the denotations of the cited publication we used those defined
in this paper for a better comparison.) The convergence of Cordell
and Hendersons procedure is slower that the convergence obtai-
ned by (3.4) and (3.6) by a factor about 2 depending on the properties of
the geological test model.

A further disadvantage of equation (3.8) is that it can not be modified
when necessary while equation (3.4) contains a parameter K which may
also be used to influence the speed of convergence.

Fig. 3.1. through 3.4 illustrate both the application of the present
procedure and the role of the parameter K.

D (milligals)

numher of iterations

N -
o -
o
o
o

Fig. 3.6 The variation of the D (first absolute moment) if the depth of the reference
plane has a 109 error (continuous line) the variation of D for the exact depth is also
shown for a comparison (broken line)

The test structure is a thin rectangular prism with a square horizontal
cross section. The edges of the prism are 5 km, 5 km and 0.1 km. The
depth of the reference plane is 1 km, the density contrast 4o = 0.1 cgs
unit. The gravity field produced by the test model is shown in Fig. 3.1
over an area of 21 X 21 km?. The field was digitized and input to the itera-
tive procedure. It would be cumbersome and superfluous as well to show
all intermediate results for various K values and in each iterative steps.
Fig. 3.2 illustrates rather clearly the role of K by showing the D (defined
by the left hand side of (3.7) ) plotted against the number of iterations. If
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d(m)

W? = XW vl

Fig. 3.7 Calculated cross sections of the structure obtained in the iterative steps if the
depth of the reference plane has a 109 error

Bg (moekt

—T

— =y T
3w =]

x{kmi

Fig. 3.8 Calculated gravity fields along a profile in the iterative steps if the depth of
the reference plane has a 109, error
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K = 0.1 convergence is slow. With K = 0.2 the process become faster
but some improvement is desirable. K = 0.3 proved to be the proper
choice. In order to give an idea of the variations of the computed struc-
ture and its calculated gravity field in the consecutive iterations vertical
cross sections are shown in Fig. 3.3. and 3.4 respectively. The section
goes through the center of the structure (and therefore through the center
of the gravity field). It is worth to mention that while the computed

Ag (xy) (mgal

Fig. 3.9 Gravity field due to a realistic geological structure. The place of a profile is
indicated by straight line A — A’

gravity field becomes appearently identical with the measured field the
computed structure deviates from the model. The errors i.e. the devia-
tions between the model and the computed structures are shown by isoli-
nes in Fig. 3.5. Similar map for the deviations between ,,measured” and
computed gravity fields is not worth to construct because deviations are
smaller than 0.005 milligal everywhere. The errors in the computed struc-
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ture are not due to the computational method but may be considered as
due to the limited “resolving power” of gravity field measurements.
Undulations of order of some meters at about the depth of 1 km can not
be detected at the surface.

It may be of interest that a slight change in the depth of the reference
plane gives a solution whose field is also very close to the field of the
model and the convergence of the iterations remains rather fast. The
speed of convergence is illustrated by a plot of D values against the num-
ber of iterations shown in Fig. 3.6. The similar quantities obtained by the
use of the exact depth are also shown for a comparison. It would be diffi-
cult to say from the speed of convergence which is the correct depth.
Cross sections illustrating the change in the calculated structure and the
corresponding gravity fields in the iterative steps are shown in Fig. 3.7.
and 3.8, respectively. As it might be expected the structure seems to
be thicker than it is in reality because more anomalous mass is necessary
to produce the same gravity effect if the depth becomes greater.

dg

T T T T T

T T T T T y T Y v
- -0 -9 8 -7 -6 -5 -4 -3 -2 -1 i 2 3 4 5 6 7 8 89 W N km

Fig. 3.10 Calculated cross sections of the structure obtained in iterative steps

The gravity field of a realistic structure is shown in Fig. 3.9. Results
of the iterations are illustrated by data along a profile through the peak
of the structure. Some of the calculated cross sections and the calculated
gravity values are shown in Fig. 3.10. and 3.11. The exact values are So
close to the last iteration that separate lines could not be drawn. The
illustrations show that the iterative process converges very rapidly and
the obtained values are very close to the model structure.
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T T T 1 T T T T T T T 1 Ll T T T T 1
-9 -8 -7 =6 -5 -4 -3 =2 - 1 2 3 4 5 6 7 8 9 km
Fig. 3.11 Caleulated gravity values along the profile in the iterative steps (4 g values
should be multiplid by 2)
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