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SU M M A R Y

An i te ra tiv e  so lu tio n  o f  th e  inverse  g ra v ity  p ro b lem  is d escribed  in  th e  case  w here  
th e  g ra v ity  field is d u e  to  th e  u n d u la tio n  o f  th e  in te rface  b e tw een  tw o  la y e rs  w ith  d iffe ­
re n t  den sitie s . T h e  m eth o d  p roposed  here  consists o f  s e t t  ing  u p  a  s ta r te r  m odel co m p u tin g  
th e  g ra v ity  field d u e  to  th e  m odel anti m o d ify in g  th e  m odel in a n  i te ra t iv e  m a n n e r  u n til  a  
good a p p ro x im a tio n  be tw een  m easu red  a n d  co m p u ted  g ra v ity  fie ld s  is o b ta in e d . T h e  
m eth o d  resem bles to  th e  p ro ced u re  described  b y  C ordell a n d  H en d erso n  (1958) b u t  th e  
c o m p u ta tio n  o f  th e  g ra v ity  field  is sim plified  a n d  th e  c o rrec tio n s  to  be  ap p lied  in  d u e  
course  o f  th e  i te ra tio n s  a re  d e te rm in e d  m ore e ffic ien tly . As a re su lt th e  n u m b e r  o f  i te r a ­
tio n s , n ecessa ry  to  ach iev e  a g iv en  a ccu racy , a re  s ig n ific a n tly  decreased  a s  well a s  th e  
c o m p u te r  tim e  req u ired  b y  th e  p rocess.

T h e  a cc u rac y  o f  th e  a p p ro x im a tio n s  used in th e  c o m p u ta tio n  o f  th e  g ra v ity  field  
d u e  to  th e  m odel a re  in v es tig a te d  in l 'a r t  1. a n d  P a r t  11. T h e  i te ra t iv e  p rocess a n d  ex am p les 
o f  i ts  a p p lic a tio n s  a re  desc rib ed  in P a r t  111.

Introduction

The purpose o f th is paper is to  describe an economicat algorithm  
for solving the  inverse grav ity  problem in the  simplified bu t practically 
useful case when the  g rav ity  anomalies are due to  a single density  con­
tra s t. Most m ethods known form the literature  (С о r d  e 1 1 and H e n ­
d e r s o n  1968, M. A l - C h a l a b i  1971 etc.) set up a geological 
model, specify some of its param eters and then determ ine th e  o ther 
param eters by using some sort of iterative or optim ization algorithm . 
The objective is to  com pute or modify in each step the  free or ad justab le  
param eters in such a way th a t the  gravity  anom aly, produced by  the  
structu ra l model possessing these param eters be close to  th e  m easured 
g ravity  anomalies. The fit between the com puted and m easured d a ta  
may be considered complete if the  differences do not exceed th e  m easure­
m ent errors. Some o ther criterion may also be used to express the  good­
ness of fit between the  two sets of da ta . No au tho r claimed th a t  a unique 
solution can be reached. An appropriate selection o f the ad justab le  pa ra ­
m eters (in most cases the density  contrast and the  dep th  of the  lower or 
upper surface of the anomalous bodies), however, could yield geologically 
feasible solut ions. This solution, even if the required goodness of fit has 
been arrived, still may be incorrect because some additional assum ptions
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have to  be valid e.g. there  should be no more than  a  single density con­
tra s t and its m aximum  depth  should be given to  a good approxim ation, 
regiona) background and random  errors m ust not exceed an upper iimit 
etc. Feasibie models, however, do help the in terp reta tion  even if thev 
have obvious lim itations and contribute to  a better understanding of the 
prospected area. Therefore it is hoped th a t  the solution of the inverse 
gravity  problem as proposed in the  present paper may be of interest.

The iterative solution, described in detail in P art 3. is a modification 
of the  m ethod by C o r d e l l  and H e n d e r s o n  (1968). Modifica­
tions became necessary because the original version needs too large an 
am ount o f com puter tim e. 20 iterations for 20X20 da ta  array  run 0,0 
m inutes on an IBM  360/65 com puter ( C o r d e l l  — H e n d e r s o n  
1968 p. 598). Solutions, obtained by different approaches require also too 
large com puter times.

We have to  work on larger d a ta  array  and the com puters available 
to  us are slower th an  those m entioned in the cited publication. The com­
putation  of the grav ity  field due to  the model had to  be simplified and 
th e  convergence of the iterative process had to be made faster.

G ravity  fields due to irregularly shaped bodies are usually obtained 
by dividing the  bodies into rectangular prisms and adding up the effects 
o f these elem ents (e.g. X a g v 1966). Some authors (e.g. B o t e z a t u 
et al 1971) suggest the useo f cubes. The gravity  field of rectangular prisms 
can be given analytically. Various expressions are known from the litera­
tu re  (N a g y  1966. G o o d a c r e 1973 etc.) none of these is easy to handle. 
Long and tedious com putations are involved the repeated use of which in 
each iterative step for all observation points requires so much com puter 
tim e th a t practically prohibits the use o f the exact formula. In its stead 
we approxim ate the  fields of rectangular prisms by fields o f mass points. 
The masses are equal to  the  mass of the corresponding prisms and all 
points lie in a horizontal plane parallel to  the  reference plane through the 
center of mass of the whole irregularly shaped body. The accuracy of tins 
approxim ation has been investigated and results are summ arized in 
P a r t 1. o f th is paper. In practical applications we assume th a t  the 
grav ity  anom aly is due to  the undulations of the  depth  of an interface 
between homogeneous layers w ith different densities such as e.g. the 
interface between the  upper and lower Pannonian sedim ents or more 
often the interface o f the  sedim ents and the cristallyne basement. It also 
involves th a t there are no other inhomogeneities either horizontally or 
vertically (such as lateral variations in density  or o ther interfaces corres­
ponding to  density  changes). We also assume th a t  the regional back­
ground has been properly removed, random  variations have been sm o­
othed.

The deepest point of the  interface determ ines the  dep th  of the  hori­
zontal reference plane. This will be considered the lower boundary of the 
causative body, while the upper boundary is defined by the  interface. 
The gravity  effect of horizontal and constant density  layers is an additive
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constan t therefore the  whote anom aly is due to  the  irregular ,,body" 
defined above.

The thickness of the  body is usually no more th an  some hundred 
m eters, and the  average depth  is not less th an  1 km. I t  can be seen th a t  
in order to  avoid side-effects the  thickness have to  be very small around 
the  boundary of th e  investigated area or some additional procedure is 
necessary to  overcome the  disturbances of the  side effects. We shall 
assume in the  followings th a t  the  thickness and the  average dep th  satisfy 
th is requirem ents and call a tten tion  to  th a t  lim itations the  algorithm . 
All the  assum ptions should be checked in practical applications.

The undulations of the density  contrast surface acts as a peculiar 
sheet-like body i.e. it is th in  and large horizontally.

The g ravity  field due to  a prism is approxim ated in tu rn  by a mass 
point concentrated in the  neighbourhood of its center.

G ravity  anomalies due to  various bodies are shown in P art 2. The 
accuracy of the double approxim ation is also dealt w ith in th a t p a rt of 
the  paper.

P A R T  t .

Approximation of the gravitational attraction due to a rectangular prism 
by that of a mass point in its center

The vertical component of the  gravitational a ttrac tion  o f a rectan - 
gular prism  is given by the  integral

A N  IT E R A T IV E  S O L U T IO N  g g

where <y(a:,y,z) denotes the  vertical component of the  field a t the  p o in t 
a*,y.3

(2 is the  gravitational constant

( 6 . 6 7 . 1 0 * 3  (.gg m O t )

Jp  is the  density of the  prism and

?Cg),. . . (ag,t'g,a'g)

are the  coordinates o f the  corners o f the  prism  and 2  is positive 
downwards.

The notations used in (1.1) are shown in Fiy. 1.1. Various expres­
sions were published for the  in tegrated  results (K e 11 o g 1929, H o t  e-

( 1.1)
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7'i'y. 7.7 X u ta tio n s  used  in th e  d e r iv a tio n  o f  th e  g ra v ita t io n a i  a tt r a c t io n  o f a  re c ta n g n ta r
tiristn

Etjuatioti (1.2) is an abbreviation for an expression consisting  of 
8 term s. Before writing down the  expiicite version of the fu!) expression 
tet us introduce some notations, in practicai applications s =  0 and the 
two other coordinates are integer m ultiples o f the  grid spacing: the  la tte r 
be denoted bv .s. i. e.

z a t u  et. al 1971. N a g y ,  1966 etc.) As G o o d  a c r e  (1973) pointed 
out a convenient from fo ro  (a'.v.s) is

( 1.2 )
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The detailed expression for the  2  com ponents 0 1  the grav ity  tiek in i 
the  point (6 3 ,/.? ,( ')  is th an

(1-3)

(1-4")

(146)

(14c)

(l-4d)

(14c)

(1-4/)

(l-4y)

(1 .4 6 )
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where

Let us consider now the  special case when the  center of the 
prism  is in the  point (0,0.H) and therefore, the  corners are given by

which involves th a t the  cross section of the  prism  is a grid square. 
I f  we introduce the  following abbreviations

(l.H)

(1.7)

(1.8a)

( 1. 86)

where I / '  and 6' are the depths of the mass center and the  height of the 
prism, respectively, both measured in units of the  grid spacing, the 
expressions (1.4al —(1.4h) become

(1.5a)

(1.56)

(1.5c)

fl.5d)

(!.5c)

(1 .5 /;

(!-5y)
(1.56)
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where

The com putation of the  2  components of the  grav ity  fieid of the 
rectanguiar prism having the  corners (1.6) in a regular grid with spacing 
A- can he performed according to  the  following scheme

a )̂ determ ine the  variables vl ^ . . .  Cg by equations (1.7)
com pútate the  r? values by equations (1.9) 

ĉ ) evaluate form ulas (1-8) i.e. calculate the  values 
d j  m ultiply the  sum of the  — s by f?p.d These steps are repeated 

for each (%, /) pairs.

The mass of the  prism  is

(1.8c)

(1.8d)

(1.8c)

( 1- 8/ )

(L8y)

(1.8 A)

(1.9a)

(1.9H

(1.9c)

(1.9d)

(1.9c)

(1-9/)

(l-9y)
(1.9A)
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/ 'iy . 2.2 C om parison  be tw een  th e  ^ -co m p o n en ts o f  th e  g ra v ita tio n a l a tt ra c t io n  d u e  to  
c u b es  w ith  edges o f  0.2 k m  (e m p ty  circles) an d  th a t  o f  m ass p o in ts  in th e ir  c en te rs

(co n titm o u s curves)
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and  because the  center o f mass ties in (0. 6), / /)  the  x component o f the  
g rav ity  field due to  th a t mass, concentrated in th e  center becomes

( 1. 10)

/''i'y. 7..3 C om parison  be tw een  th e  z -co m p o n en ts  o f  th e  g ra v ita t io n a l  a tt ra c t io n  d u e  to  
cubes w ith  edges o f  0.3 km  (e m p ty  circles) a n d  th a t  o f m ass p o in ts  in th e ir  c en te rs

(co n tin u o u s curves)

The goodness of fit bet ween the exact field and its approxim ation 
(1.10) can be evaluated by direct comparison of the  effects due to  prisms 
with realistic param eters.
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In  those applications which are our main concern in P a rts  2. and 
3., / /  varies between 1 km and 2 kms while ¿ is somewhere between 
0 and 500 meters.

FiyMrfs /.2 and 7.-3 show the  y(7.s-, 0,0) values as em pty circles for 
cubes with edges of 200 and 500 meters, respectively, in each case for 
two depths (1 km and 2 kms). The approxim ations obtained from the 
fields of mass points are draw n by continuous lines.

.Fiy. / .1  C om parison  b e tw een  th e  .--com ponents o f  th e  g ra v ita t io n a l  a ttra c t io n  d u e  to  
re c ta n g u la r  p rism s w ith  0,2 X 9-2 k m - base  a n d  v a rio u s  h e ig h t an d  th a t  o f  m ass p o in ts  

in th e ir  c en te rs  (co n tin u o u s  curves) w hen th e  d e p th s  o f  th e  m ass cen te rs  a re  1 km

F u rth e r exaples are shown in 7'1'y.s. 7.4 and 7.5, where rectangular 
prisms have square cross sections with edges of 200 ms and heights of 
200, 400 and 600 ms. The depths of the  centers of masses are 1 km in 
7'c/. 7.4 and 2 kms in 7'1'y. 7.5, respectively.

Jn all cases, shown as Fiy.s. 7.2 to  7.5, the  two-dimensional functions 
y(a*.y,0) and y*(tr,y,0) are investigated along the a  direction, only. This 
approach is justified if the field possesses circular sym m etry. The field
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due to  a  point source is indeed direction independent bu t the  fields due to 
rectangular prisms are not. The largest deviations from  grav ity  values 
along the  direction o f t l ie x  coordinate axis can he expected along the 
direction o f the  diagonal i.e. along th e  line x =  y. The deviation from 
circular sym m etry in the  gravitational a ttrac tion  o f the  prism can best 
be estim ated by com paring the  curves

The d irectiv ity  diminishes as the dimensions o f the body decrease 
and the  center o f mass gets deeper therefore the worst situation  which

7''tf/. 7.3 C om parison  be t a w n  th e  ^-com ponen ts o f  th e  g ra v ita t io n s ]  a tt r a c t io n  fine to  
re c ta n g u ia r  p rism s w ith  0.2 X 0,2 km - base  ant) v a rio u s  h e ig h ts  am t t h a t  o f  m ass p o in ts  

in  th e ir  c en te rs  (co n tin u o u s cu rves) w hen th e  d e p th s  o f  th e  m ass cen te rs  a re  2 km s
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has to  be dealt with is th a t  of the  prism with 0 .5X 0,5 km'- base and with 
center of mass a t 1 km. Deviations for some situation are shown in 
/'by. /.7 . Numerical values were com puted for various heights of the 
prism s along the  directions y =  0 and y =  a:. The deviations, as it can 
be seen in /'by. /.7 , are very small. No values were found above 2 ygal 
which proves th a t the  one-dimensional approach is justified. As a sum ­
m ary it may be said th a t the  grav ity  field of an irregularly shaped body 
can be approxim ated by a sum of grav ity  fields due to  point masses 
about the  same accuracy as by a sum of gravity  fields due to  rectangular 
prism when the  prisms are not larger than  500X 500X 500 m'' and the 
centers of masses lie in 1 km or deeper.

The economical advantage of the first approach is obvious because 
th e  com putation of the grav ity  field due to  a mass point is a t least 
a hundred tim es faster. As a m atter of fact the  building up of the gravity  
field due to  larger geological bodies or complicated surfaces from the  
field of rectangular prisms is really out of question when considering the 
lim itations of our com putational facilities.

D ev iatio n s b e tw een  th e  c -co m p o n en ts  o f  th e  g ra v ita t io n a l  a ttra c t io n  m easured  
a long  tw o  pro files w ith  d irec tio n s  0° an d  43°. T h e  g ra v ity  fields a re  d u e  to  re c tan g u la r  

p rism s w ith  m ass c en te rs  at 1 k m  and  h av e  a  0.5 X 0.5 km - sq u a re  base  and  va rio u s
th ick n esses (d eno ted  by  A)
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P a r t  2.

Computation of the gravity fieid due to 
geoiogieal structures

Let us assume th a t  the  gravity  anom aiy fieid is soieiy due to  th e  
unduiations of the  interface between two homogeneous layers w ith 
different form ation densities ^  and p̂ . The deepest point of th e  in ter­
face in the  whoie area defines the reference ptane, the  depth  o f which is 
denoted by / / .  (Notations are shown in 7h'y. 2.7). Tiie mean depth  of 
ttie interface wit) be denoted by //,  the density  contrast p ,— Pi by /ip.

?!'<?. 2.7 T o th e  c o m p u ta tio n  o f  th e  g ra v ity  fieitt <tu<< to  a  d e n s ity  in te rfac e

I t  is ciear th a t  tiie gravity  anomaiy caused by the  unduiations can 
be com puted as the  gravity  effect of an irregutar body bordered from 
beiow by tiie horizontal reference piane and otherwise by tiie interface 
and possesses a density  ip. I t  is supposed tiia t the interface reaches or 
comes ciose to  the  reference piane around the  boundary o f the  area. 
We also assume tiia t the  mean depth  is 1 km or more and the  und u ia ti­
ons around the  mean depth  do not exceed 0.3 km.

When the  two h itter assum ptions are vaiid the  body can be approx i­
m ated by a bundie of rectangular prisms.

I t  is convenient to  use the  same rectangular grid system  in tiie 
reference piane as tiie one determ ined by the observation points on tiie 
surface. Tiie prisms therefore possess square bases. Observations are 
usualiy made a t regular 0.5 km intervals in recent m easurem ents, thus
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the  square basis are atso of dimensions 0 .5 X 0.5 km'-. In Ftg. 2.2 one of 
the  prisms is shown (s stands for the  grid interval). The heights of the 
nrisms are estim ated bv

(2 . 1)

(2 .2)

(2.3)

(2.4)

Where A, denotes the depth  of the interface in a grid point. (A,. h^. A., and 
A,, are depths in the  corners of a grid square). The mass of the prism is 
approxim ately

The mass is then  "concentrated" into a point with coordinates (.r.. / / ')
wtiere (a*,. ?/,.) is the  center of the base and

The g ravity  effect of the prism is substitu ted  by the effect of a mass 
point in (a;,, 7/') with mass determ ined by (2.2) i.e. the z-component
of the gravitv  fieid in the point (ft, ?') is approxim ated by

I f  the  d istan tes are given in kiiom eter units, in in c.y.s units and g,(ft, f) 
in mgals (7 =  6.67 .
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Where

Hie gravity  fieid due to  the  whoic body is the sum  of the  individual 
fieids each given by (2.4). When (M,v) is a point in a  square grid M =  wig; 
v =  M.s and the  coordinates .r,- and ŷ . are a!so m easured in units o f the 
grid spacing the  contributions from the prism s sums up to  give

(2.5)

(2.6)

/''à/- -  '3 T h eo re tica l v a lu es o f  th e  g ra v ity  field  o f  a n  in ]itiite  h o rizo n ta l line  sou rce  as 
m easurefl a long  a p ro file  p e rp en d icu la r  to  th e  line  (co n tin u o u s cu rve) a n d  its  a p p ro x im a ­

tio n  o b ta in e d  b y  (2.5) y -  t) (b ro k en  curve)

7  A X X A L E S  —  Setdo Geologira — Tanats X V I I I .

Form uta (2.5) can be thought of as a convoiution between J /; ,, and
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The accuracy o f the  proposed procedure has been checked by comparing 
grav ity  fields of simple bodies whose fields could have been expressed 
analytically  to the  grav ity  fields com puted by (2.5). Some of the  results 
are given in tFly. 2.-3 — 2.7. Fty. 2.3 shows the  field o f an infinite hori­
zontal line source, buried at a depth  of ! km. along a line perpendicular 
to  th e  body (continuous curve).

FVy. 2.-? T h e  z-com poncn t o f  th e  g ra v ity  field d u e  to  a  re c ta n g u la r  p rism  w ith  d im ensions 
4X 10 X0 ,5  k m - w ith  m ass c e n te r  a t  th e  d e p th  o f  1 k m  (ex ac t fo rm ula) J o  =  1 gcm *3

The theoretical values come from the  well known formula:

W here A denotes the  line density 
and H is the  depth.

(2.7)
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The one dimensional m odification o f (2.5) gave th e  values connected 
by the  broken curve in Fiy. 2.3. The sam pling distance was 0.5 km  and 
41 points were used to  com pute the  convolution.

Fhy. 2.4 shows the  grav ity  field due to  a rectangular prism  w hith 
dimension 4X 10X 0.5  knF, and with mass center a t 1 km depth , as 
com puted by the  exact form ulas (1.6) —(1.9).

2.-5 K rro r field i.e. d e v ia tio n s  b e tw een  th e  th eo re tic a l g ra v ity  field  show n in F ig . 2.4 
ant! i ts  a p p ro x im a tio n  o b ta in ed  b y  (2.5)

The convolution (2.5) gave a field so close to  the  theoretical one 
th a t the  map, draw n from the  approxim ate values is apparently  iden­
tical to  the  "theoretical m ap" in Fiy. 2.4. Therefore the  difference field 
or "error field" has also been com puted. Contours of the  error field are 
shown in Fiy. 2.5. We call the  a tten tion  to  th e  fact th a t  the  errors are 
given in l.agal units and the  isolines are 0,5,a gals apart. The deviations 
as indicated by the m ap can not be detected by the  present measuring 
techniques.

7*
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Fiyg. 2.6* and 2.7 show sim itar quantities. Fay. 2.6' is a fietd due to 
a  4 X 4X 0 .5  km'' rectangutar prism at 1 km dep th  as com puted according 
to  t he exact form ulas white 2.7 is the  ,.error fietd' i.e. the  difference 
o f the  theory  and its approxim ation. The m atch o f the  convolution to 
the  exact form uta is excettent again. Num erous other modets have been 
com puted but the  maximum of the deviations never exceeded 0.1 mgat 
for plausibte geotogicat modets and 3 =  0.5 km sam phng interval.

/' if/- 2.C th e  z -co m p o n cu t ot th e  g ra v ity  fietd d tte  to  re c ta n g td a r  p rism  w ith  d im ensions 
4 X 4 X h.5  km " w ith  m ass c e n te r  a t  th e  d e p th  o f  ] km  (e x ac t fornm ia)

Ttie a{)])tication of equation (2.5) is further ittustrated by Fty. 2aS 
and 2.6 where the grav ity  fietds of a cone and a cylinder are shown 
respectively. On the upper parts of the figures the two dimensional 
fietds are depicted by isotines on the tower part cross sections through 
the  center o f the  modets resp. the  gravity  fields are shown. The base
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c.rcle o f the cone resp. the  cylinder are drawn by broken lines. No com­
parison with theoretical values is possible because the  grav ity  fields 
due to these bodies can not be expressed analitically.

values ¡n ngal

2.7 Ht-ror field i.e. d e v ia tio n s  tx-tweon th e  th eo re tica l g ra v ity  fieid show n  in F ig . 2.t; 
an d  its  a p p ro x im a tio n  ( th e  la t te r  o b ta in e d  b y  (2.5)).

The com putation is ra ther fast and it does not need elaborate p re­
parations as e.g. the  m ethod of T a  1 w a n i (1968) or storing and se­
arching for the  fields o f appropriate cubes as the  m ethod proposed bv 
H o t e x a t  u et al (1973). It may therefore be o f in terest in itself. The 
simplified algorithm  was developed in order to be able to  solve the inverse 
problem by an iterative procedure in course of which the  com putation 
o f the  grav ity  fields due to  geological models becomes necessary verv 
often. Therefore our main concern had to be the  speed and though some 
im provem ent of the algorithm  can obviously be made (e g. producing
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denser spacing by interpoiation, accurate positioning the  center of mass 
for each prism etc.) bu t on!y a t the  cost o f com puter tim e. The approxi­
m ation being satisfactory as it is now, we shah not dea! with the im pro­
vem ent of the accuracy of the  direct problem in th is paper.

/'¡'y. T h e  2-com ponen t o f  th e  g ra v ity  fielft d u e  to  a cone. T w o-d im ensional re p re se n ta t i­
on  (u p p e r p a r t)  a n d  a p ro file  th ro u g h  th e  c e n te r  (low er p a rt)



A N  IT E R A T IV E  S O L U T IO N !f)3

F*ty. ;?.№ [ tic z -com poncn t o f  th e  g ra v ity  field  (iue to  a  cy lin d er. *l'wo-<)itnensional r e p ­
re sen ta tio n  (u p p e r p a r t)  a n d  a  p ro fitc  th ro u g h  th e  c e n te r  (low er p a r t)

P A H T  3.

The iterative soiution of the inverse prohiem

The inputs of tiie iteration are the measured grav ity  anom aiv dig iti­
zed in a square grid, th ed ep th  of the  reference piane a n d th e  density  con t­
rast /)p. As it has been m entioned in the  previous sections it is assumed th a t 
the regionai and random  noise have been rem oved (or a ttenuated  as 
much as possibie) amt therefore the anomaiv is supposed to  be due to  the  
unduiations of tiie density contrast surface aione.
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The lower boundary o f the causative body is the reference plane the 
upper boundary is the undulating interface.

The causative body is approxim ated by vertica) prisms eacti having 
a cross section o f one grid square anti a thickness given by the  average of 
the  four vertica! distances between the interface and reference ptane in the 
corners o f the  grid stpiare.

Ttie density of the  prisms is etpia) to  the density difference between 
the two tayers i.e. /It? =  Og — p,.

The iterative process consitsof setting  a s ta rte r  mode) for the th ick­
nesses /q,., com puting the  gravity  fietd due to  the  mode! by the method 
described in P art 2. and modify the  thicknesses in a way which dim inis­
hes the  differences between the  measured d a ta  (i.e. the  input) and the 
com puted data . Let us denote the thicknesses in the j- th  iterative step by 
//,{,*and the  measured and ca!cu!ated gravity  data  by </%'* and </*)?, respccti- 
ve!y. The caculated d a ta  are functions o f the thicknesses

The expheit form o f the  connection is described by (2.5). We have to 
find the best fit between and yi^. The goodness of fit can be expressed 
by various measures e.g. by the  mean square deviation or by the sum of 
the absotutc values of the deviations or by the  targest error etc. None of 
them  yie!ds a feasible algorithm  for the  com putation of the unknown 
param eters. Theoretically (3.1) can be rew ritten in the form of sim ulta- 
neous equations and th is woutd unambigouslv determ ine a!! the /q, 
va!ues, but the  sohition of sim ultaneous equations with some hundred 
unknows is such a trem endous task th a t th is way obvioustv should be 
abandoned.

Some heuristic approach is needed, which a!!ows the fast determ ina­
tion of the /q .̂-s and is ab)e to  improve the vatues in successive approxim a­
tions. The chosen measure of the goodness of fit is then used on!v to 
check whether the new approxim ation is b e tte r than  the previous and 
when a certain !imit is reached it may be used to  term inate  the process. 
When yj^ is greater than  y%'̂  it obviousty means th a t the thicknesses 
in and around the  grid point P, .̂ should be diminished. Though the y%* 
is a sum of various contributions from all prisms the greatest contribu­
tion comes from the  prism vertically beneath th a t grid point. Therefore 
we modify the  thickness of th a t prism  by

where K  is a constant m ultiplier the choice of whose numerical value will 
be dealt with later. The s ta rte r model may also be constructed by using 
th is consideration. I f  the grav ity  field at the  grid point P,^ would be

(3.1)

(3.2)
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solely due to  the prism vertically beneath and th is is concentrated to  a 
mass point lying in the mean depth / / '.  y.,. would lie

(3-3)

Fty . 3.7 t he  ^ -com ponen t o f  th e  g ra v ity  field d u e  to  a th in  re c ta n g u la r  p rism  w ith  b ase  o f  
5 x 3  k m - a n d  h e ig h t 0,1 km . D en sity  c o n tra s t  is 0.1 cgs u n it.  V alues o f  th e  field  o v e r an  

a rea  o f  21 x 2 1  k m - w ere used  a s  in p u t to  th e  i te ra t iv e  process

From th a t  equation follows

(3.4)

when y„, is measured in mgals and in kilometers. This choice is diffe­
rent from th a t suggested in the literature e.g. by  B o t t  (I960) or by
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C o r d e !  ! and H e n d e r s o n  (1968). They used the  Houguer slab

(3.5)

(3.6)

I t  can be shown, however, th a t the  s ta rte r  models (3.4) and (3.5) are 
very simitar, both giving thicknesses proportions! to  the  gravity  data. 
The s ta rte r  mode! is used to  compute the  first set o fy ^  d a ta  and equation 
(3.2; gives the first set of corrections to the s ta rte r  mode! i.e. in this and 
in a!! the foHowing steps

3.^ D ev iatio n s Ix 'tw ecn e x ac t ant! com putet! v a lues, rep re sen ted  by  th e  first ab so lu te  
m o m en ts  (fo rm ula  3.7) p lo tte d  ag a in st th e  n u m b er o f  i te ra tio n s  for th re e  v a lu es o f  th e

p a ram e te r

The gravity  fie!d due to  the mode! with the ..improved thicknesses" 
is computed by the approxim ations described in P art 2. The com puted 

vatues are input to  equation (3.2) yielding new corrections to be 
applied again in equation (3.6).

The sum of the absotute vatues of the differences are a!so computed 
in cacti stcii. The nrncess term inates when

(3.7)
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.7.3 \  a r ia tio n  o f  th e  ca lcu ta ted  cross sec tio n s o f  th e  s tru c tu re  o b ta in e d  in i te ra tiv e
s te p s

/ 'é / .  3 .1 V aria tio n  o f  th e  ca lcu la ted  g ra v ity  fieh) a lo n g  a p ro file  in th e  i te ra t iv e  s te p s
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w)iere A' is the num ber of grid points. Equation (3.7) involves th a t  the 
measured and calculated fields are considered identical when the average 
difference is less than d.bOl mgal. It is not proved th a t the iterative 
process converges hut in all cases investigated so far ra ther fastconver- 
^cnce ha,ve been found.

7^/y. !h e  m ap  of th e  d e v ia tio n s  be tw een  th e  m ode! s tru c tu re  am! its  !ast a p p ro x i­
m atio n

A method described hv C o r d e 1 1 and H e n d e r s o n  (1968. p. 
597) uses the  following defining relationships between thicknesses in 
two consecutive iterative steps

(3.8)
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(Instead of the denotations of the cited publication we used tlto.se defined 
in th is paper for a better comparison.) The convergence of C o r d e l l  
and H e n d e r s o n s  procedure is slower th a t the  convergence ob ta i­
ned by (3.4) and (3.6) by a factor about 2 depending on the properties of 
the geological test model.

A further disadvantage of equation (3.8) is th a t it can not be modified 
when necessary while equation (3.4) contains a param eter A* which may 
also be used to  influence the speed of convergence.

Fly. 3.7. through -1.4 illustrate both the  application of the  present 
procedure and the role of the param eter A'.

Fty . .3.6 T h e  v a r ia tio n  o f  th e  /J  (f irs t ab so lu te  m o m en t) if  th e  d e p th  o f  th e  re fe ren ce  
p tan e  h a s  a  10%  e rro r  (co n tin u o u s line) th e  v a r ia tio n  o f  /J fo r th e  ex ac t d e p th  is also 

show n for a com parison  (b ro k en  line)

The test structu re  is a th in  rectangular prism with a square horizontal 
cross section. The edges of the  prism are 5 km. 5 km and 0.1 km. The 
depth  of the reference plane is 1 km, the density  contrast /Ip =  0.1 cgs 
unit. The gravity  field produced by the test model is shown in Fiy. -3./ 
over an area of 21 X 21 km-. The field was digitized and input to  the ite ra­
tive procedure. I t  would be cumbersome and superfluous as well to  show 
all interm ediate results for various A* values and in each iterative steps. 
Aly. 3.2 illustrates ra ther clearly the role of A by showing the  D (defined 
by th e  left hand side of (3.7) ) p lotted against the num ber of iterations. I f
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.Fi'y. -Ï.7 ( '¡d o d a te d  cross sec tio n s o f  th e  s tru c tu re  o b ta in e d  in th e  ite ra tiv e  s te p s  if  th e  
d e p th  o f  th e  re ference  p ian e  h a s  a  t0 %  e rro r

( 'a )cu ia ted  g ra v ity  fietds a long  a  p ro fite  in th e  ite ra tiv e  s te p s  if  th e  d e p th  o f 
th e  re ference  p lan e  h as  a  10%  e rro r
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A" =  0.1 convergence is slow. W ith A* — 0.2 th e  process become faster 
b u t some im provem ent is desirable. A" =  0.3 proved to  be the  proper 
choice. In  order to  give an idea of the  variations of the  com puted s tru c ­
tu re  and its caicuiatcd gravity  fieid in the consecutive iterations vertical 
cross sections a ie  shown in F iy . 3.3. and 3.3 rcspectiveiy. The section 
goes through the  center of the structu re  (and therefore through the  center 
of the  grav ity  fieid). I t  is worth to  mention th a t  whiie the  com puted

V'ty. t.9  G ra v ity  fieid  d u e  to  a  rea lis tic  geological s tru c tu re .  T h e  p iace  o f  a  p ro file  is
in d ic a te d  b y  s tra ig h t line  A —A'

gravity  field becomes appearentiy  identical with the  m easured field the 
com puted structu re  deviates from the model. The errors i.e. the  devia­
tions between the  model and the  computed structures are shown by isoli­
nes in Fiy. 3.3. Similar map for the deviations between ,,m easured" and 
com puted gravity  fields is not worth to  construct because deviations are 
smaller th an  0.005 milligal everywhere. The errors in the  com puted struc­
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tu re  are not due to the  com putational m ethod but may be considered as 
due to  the hunted "resolving power" o f grav ity  fieid measurements, 
f ndulations of order o f some meters a t about the depth  of I km can not 
be detected  a t the surface.

tt  may be of interest th a t a slight change in the depth  of the reference 
ptane gives a solution whose field is also very dose to  the field of the 
model and the convergence of the iterations rem ains rattier fast. The 
speed of con vergence is illustrated  by a ptot of A> vatues against ttie num ­
ber of iterations shown in Fiy. .3.6*. The sim ilar quantities obtained by the 
use of the  exact depth  are atso shown for a  comparison, ft woutd be diffi- 
cutt to  say from the speed o f convergence which is the  correct depth. 
Cross sections ittustrating the change in the catcutated structu re  and the 
corresponding gravity  fietds in the  iterative steps are shown in Fay. ,3.7. 
amt d.<3. respectivety. As it might tie expected the structu re  seems to 
be thicker than  it is in reality  because more anomatous mass is necessary 
to produce the same gravity  effect if the  depth  becomes greater.

The gravity  fietd of a realistic s tructu re  is shown in Fry. J.P. Results 
of the iterations are illustrated by da ta  along a profile through the peak 
of the  structure. Some of the calculated cross sections and the calculated 
gravity  values are shown in F/y. 3./77. and 3./7. The exact values are So 
close to the last iteration that separate lines could not be drawn. The 
illustrations show th a t the iterative process converges very rap id lvand  
the obtained values are very close to the model structure.

Fiy. 3.7# C a icu ia ted  cross sec tio n s ot th e  s tru c tu re  o b ta in e d  in ite ra tiv e  s te p s
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/-'iy. 3 ./7  ('¡tlcttlateti g ra v ity  v a lu es a lo n g  th e  p ro file  in th e  i te ra t iv e  s te p s  ( A g  v a lu es
s h o u ! d b e m u l t ip ! id b y 2 )
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