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PE3IOME

AHOMaMST Mojiesieil, NMPHMEHSIEMBIX B T'PaBHTAalMOHHON M MarHMTHOI MHTEp-
nperamii MosKeT GbiTh Npe/ICTaBjieHa B BIJE KOHBOIOUMH ABYX GyHKImii. OnHa n3 Hux
ONKCHLIBACT MJA0THOCTD MM HaMarHMYeHHOCTb, @ BTopast — reomerpuio. Onucanne aHo-
MaaMit B KOHBOIOIWMOHHOH (OpMe JaeT BO3MOYKHOCTHL NPUMEHSITL annapart JauHeiiHoii
onrumanbhoil grasrpaumi. Ilnannpopanie 06paTHHIX GUABTPOB MOKeT OBITH JI0BEEHO
JI0 KOHIlA TOJILKO B cavuae onpejenensoii mosgean. Ilapamerpnt oGpartHoro (uiabrpa
MONYUaloTCst Kak peuleHitst vpasHenust Beiiiepa ¢ menosib3oBaHueM B KauecTBe aBTo-
Koppenstutonnoii Gyuriun Toil GVHKIMM, KoTopast onucbiBaerT reomerpuio. Ilapamerpst
HHTEPIPETai M0JIVYAIOTCs Kak Pe3yJbTaT KOHBOLOHH H3MEPEHHBIX TaHHBIX 1 Napa-
merpos oGpartHoro (uibrpa. Padota SHAKOMHT ¢ TIIaHHPoBaHHeM 00paTHLIX GHABTPOB
M Ha CHHTETHYECKHX NMpHMEpaX MoKas3biBaeT ornpejesieHite napaMeTpoB BO3MYIAoNX
Tel.

SUMMARY

The anomalies of the models applied in gravity and magnetic interpretation can be
obtained as a convolution of two functions. One of these describes the geometry (depth,
shape) the second is connected to density distribution of magnetization. The description
of anomalies by convolution makes possible the application of linear optimum filters. Inverse
filters can be designed if the model is given. The coefficients of the inverse filters are
obtained from the Wiener equation which contains the samples of the autocorrelation
of the function describing the geometry of the models.

The parameters are supplied by the convolution of the inverse filter with measured
data. Design procedure of the inverse filter is given and its application for determination
of the parameters of the magnetic bodies is demonstrated by a synthetic example.

Introduction

The anomalies belonging to a class of models which are often applied
in the interpretation of gravity and magnetic anomalies can be written as a
convolution of two functions. One of these, denoted by A(x), describes
the density or magnetization (depending on the nature of the anomaly)
the other one, denoted by k(z), describes the geometry of the applied
model. The anomaly in a point then becomes

a(x) = fwh(x) k(2" —2), Zy, Zy, o, B) d2’, (1)
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where the actual values of the parameters Z,, Z,, « and 8 can be deter-
mined by choosing an appropriate model; Z, and Z, denote the depths of
the upper and lower boundaries of the causative body, « and 8 denote the
direction of the Earth’s magnetic field, and that of the magnetization of
the body. (The two latter parameters obviously do not appear in the case
of gravity anomalies). Formula (1) refers to two-dimensional causative
bodies, but could be easily generalized to the three-dimensional cass.

In a class of interpretational problems the function h(z) is to be
determined when a(x) and k(x) are known. Bott, M. H. P. (1967 and
1973) suggested two procedures for the solution of such problems but
solutions can also be obtained by inverse filtering (Robinson and
Treitel, 1967).

The inverse filter should output the A(z), when the anomaly a(x) is
the input to the filter. The imnulse response () can be determined by
minimalization of the mean square deviation between actual and desired
outputs, i. e. between a(x) ¥ w(x) and A(x). In digital form the criterion
can be written as

Ol (h;— 2 w;a,_ \2\ = min, 2
< l(z ; %1 1) l (2)

when /7 denotes the computation of the expectad value.

Computing the deviatives of (2) with respect to the w, filter coeffi-
cients the well-known Wiener equations, a set of linear simultaneous
equations

S oo . ) == . N
Z Hj(/(,(,(ﬂ —7) = @,(k) =001y v d (3)
i

is obtained and the solution of the equations supply the w; coefficients.
(In the equation ¢, denotes the autocorrelation of the input, Pna denotes
the cross-correlation of the desired output and the input).

The inverse filtering is but a special case of linear optimum filtering
and the interpretation is hased on the estimation of the Paq a0d @, corre-
lation functions.

The inverse filtering will be illustrated in the followings by synte-
tic examples in the interpretation of total magnetic fields due to two-
dimensional prisms.

Total magnetic field due to two-dimensional prisms

The total magnetic field due to a two-dimensional magnetized prisms
can be easily evaluated by the logarithmic potential (Grant F. S.
West G. F., 1965). Inthe two-dimensional ccordinate system (x,z),
shown in Fig. 1., the total-field in an arbitrary point with coordinates
and z can be expressed as follows

’

2 X 2
l(x,z) = —2th/ mf\.r'.;;’)In((.r—.r’)‘3+(z—:’)z)z(I;r’dz', (4)
De)p
1 Xy
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where o denotes the direction of the Earth’s magnetic field and g that
of the magnetization, m(x,z’) is the magnetization of the prism. After
some elementary manipulations the expression for the total-field in the
point P(x,0), shown in Fig. 1. becomes

P(x,0)
s, o‘!n@, X
Y2
8
rs
fa

z

Fig. 1. The two-dimensional prism in the xz coordinate system

Hzx,0) = — 27;1,[((-)1 —0,—0,+0,)costcos [ +In "173 coszsin I+
Ta T4

+In 172 ginzeos I+ (@, — 0,—0,+0,)sin Tsin ]] (5)
Yoty
assuming homogeneous magnetization within the prism (m is the mag-
netization with direction 7, while / denotes the inclination of the Ilarth’s
magnetic field).

For the sake of simplicity let us assume that the magnetic anomaly
is computed at the level z = 0, the inclination of the Earth’s magnetic
field is 90°, and the direction of the magnetization of the prism is either
90° or 270°. (It can be shown, that the assumptions simplify the com-
putations but do not modify the general validity of the suggested com-
putational procedure).

By using the assumptions again in equ. (4) after elementary compu-
tations we obtain for the total field the relation

X3

tx,0) =2 sinr/m(x’) [—2' — —— 2 Jda:’
(x—2')2+23 (v—a')%+23

Xy

if the magnetization m does not depend on z. Let us introduce the function

.’/(x)=f—_'—'—‘*“‘- (7)
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The function defined by (7) depends on the geometry of the prism,
only and it is independent of the magnetization. Therefore the anomaly

can be written as
+ o

t(x,0) = 2sint f m(x’) gle —a’) da’ (8)

——y

i. e. the total-field anomaly is indeed obtained as a convolution of a func-
tion m(x) describing the magnetization and a function g(x) describing
the geometrical configuration. Equ. (8) is equivalent to equ. (6) only in
those cases when the magnetization outside the prism is zero.

Determination of the inverse filter

In the previous part it wasshown that the total-field anomaly can
be written as the convolution

i(x) = m(x) % g(x) . (9)

Let us assume that the {(x) anomaly is due to a random distribution
of the magnetization m(x). Tt can also be assumed that the expected
value of the magnetization is zero and the magnetizations of the prisms
are uncorrelated, i. e.

Hmy} =0 (10)
and
Emymy ) = 0. (11)

A further assumption is that the anomaly f(x) is a composite field
due to prisms with different magnetization but identical shape.

The total-field in the i-th point of the magnetic profile within a
stationary interval can be given by the general expression

ti=7n,e!frg,~+7?i. (12)

where 7; denote the random noise component.

The inverse filter tries to reconstitute the series m, from the data ¢,
describing the profile. The length of the deconvolution operator (i. e. the
length of the inverse filter) be L. Then the desired output

TE= My, (13)

where

(14)
The actual output of the deconvolution becomes

L
€= 2 Wity (15)
k=0
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The operator {w,} minimalizes the deviation between the desired
and actual outputs in the mean square sense, i. t.

{(r - Z Wyt - }: min . (16)

By the computation of the derivatives with respect to the filter
coefficients w, the Wiener equations are obtained:

L
2 Wi pull—k) = g,(0) I=10;1; 0l (17)
k=0

where ¢, is the autocorrelation of the input, ¢,, the crosscorrelation of
the desired output and the input.

First we estimate the autocorrelation ¢, and cross-correlation ¢,
then the solution of the set of linear simultaneous equations (17) yields
the coefficient . The definition of the autocorrelation ¢, is

Pull) = H(m; % g, —n) (Mo % g +n,00)} (18)

and after taking the expected value of the product it yields
qll([) =8 (/\gg(l) + ¢r:n(l) ’ (19)

where ¢,, and ¢,, are the autocorrelation of the function describing
the (re()metr\ and that of the random noise component, respectively;
while S denotes the autoc -orrelation of the magnetization for the argu-
ment zero. In deriving (19) we made use of the assumption that the
noise and the data of the noise-free profile is uncorrelated. The definition
of the cross correlation ¢, (1) is

L
Pull) = (C{mi»‘-p[lgo T My — =+ - 1] : (20)

which gives

@) = Sg_,;,,. (21)

Putting the correlations (19) and (21) into equation (17) we obtain

L .
S wipgel— k) + N*8) = g1+, T T ) (22)

where N* = NS and §,, is the Kronecker delta symbol, i. e.
_|N k=0

(Pnn( ) lO f—
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Application of the inverse filters to synthetic models

For the solution of the equation (17) one has to know the function
g(x) and the autocorrelation ¢,,(/). The latter can be computed from its
definition

Peell) = Lg(x) gl + 1)} (24)
therefore
22z 22z, 1
Poll) = 7| —+ 22— |————— (2 d5+7,4,) | -
Vae 4, " 4, [4;;+41sz s
e A e (25)
Brarzg ) ‘
where
l, = P+42 l, =1, +42%;
Ay = P+22—2% Ay =l +27—723. (26)

Fig. 2. shown the normalized autocorrelation ¢, (1)/¢,,(0).

In the model computions the effects of the random Toise will be
neglected. An efficient algorithm was developed by N. Levinson for
the solution of the set of equations (17). (See e.g. in Wiener, 1947)
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Fig. 2. The normaalized autocorrclation of the function deseribing
the geometry of the model
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The first example shows the magnetic field of a two-dimensional
prism with the parameters h = 20, Z, = 2, Z, = 4 (measured in the
units of the sampling interval), m = 0,02 (in cgs units) / = 90°, 7 = 90°
and the result of the deconvolution. The prism and its magnetic field
t(z) is given in the upper part of Fig. 3, and the result obtained by a
deconvolution filter with 101 coefficients is given in the lower part of
Fig. 3. The output of the filter is a pulse, whose length is equal to the
length of the prism and the amplitude is equal to magnetization of the
prism. In the computation of the magnetization the constant multiplier
(left out in the preceeding part) was also taken into consideration. The
magnetization obtained by the inverse filter is denoted by m,(x). It is
clearly seen that the relative error is less than 10%,.
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Fig. 3. Total magnetic field due to a vertically magnetized prism of length 20X sampling
distance (in y—s),
the position of the prism,
output of the deconvolution filter (the magnetization m, is measured in egs units)

The filter containing 101 coefficients has also been applied to the
magnetic field due to a prism with the parameters 4 = 2 (length), Z, = 2,
Z, = 4 and m = 0,02 (in cgs units), [ = 90°, 7 = 90°. The prism, its
field and the result of the deconvolution are shown in Fig. 4. The rela-
lative error of m,, obtained by the filter do not deviate more the 209,
from the theoretical value 0.02.

The filter with 101 coefficients, which had been proved to be very

efficient in the previous examples was applied to a magnetic profile
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Fig. 4. Total magnetic field due to a vertically magnetized prism of length 2% sampling
distance (in p—s)
the position of the prism
output of the deconvolution filter (the magnetization my is measured in egs units)

obtained as the composite field due to 13 prisms with different parametets.
These parameters are summarized in Table I. (h denotes the lengths of
the prisms, Z, and Z, denote the depths of the top and the bottom,
respectively, m gives the magnetization in cgs units, 7 is the inclination
of the Earth’s magnetic field and 7 is the direction of magnetization of
the prisms, both measured in degrees).

Normal and inverse magnetizations regularly follow in the sequence.
The synthetic profile is symmetric with respect to the center. The mag-
netic field due to the sequence of prisms is shown in Fig. 5., together
with the output of the deconvolution filter (in the upper and lower parts,
respectively).

The filtered profile my(x) correctly restores the original lenghts
of the blocks, while the relative error in the magnetization amounts to
10—20%,.
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Table I
h m I P
No 7 Zy [cgs] (] [°]
1 2 4 20 0.012 90 90
2 2 4 10 0,012 90 270
3 2 4 20 0.012 90 90
4 2 4 4 0.012 90 270
5 2 4 2 0.012 90 90
6 2 4 6 0.012 90 270
7 2 4 20 0.030 90 90
8 2 4 6 0.012 90 270
9 2 4 2 0.012 90 90
10 2 4 4 0.012 90 270
11 2 4 20 0.012 90 90
12 2 4 10 0.012 90 270
13 2 4 20 0.012 90 90
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Fig. 5. Composite field of 13 prisms (in y —s)
the position of the prisms,
the output of the deconvolution (my is measured in egs units)

The author is greatly indebted to dr. A. Meské for his help in the
method of investigation.

Computatinns were made in the computer Center of the University
by Razdan-3 and the provision of computing facilities is gratefully ack-
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