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Time Scale and Fractionality in Financial Time Series 
 
 
Structured Abstract 
 
Purpose: Turvey (2007, Physica A) introduced a scaled variance ratio procedure for 
testing the random walk hypothesis (RWH) for financial time series by estimating Hurst 
coefficients for a fractional Brownian motion model of asset prices. This article extends 
his work by making the estimation procedure robust to heteroskedasticity and by 
addressing the multiple hypothesis testing problem. 
 
Methodology: Unbiased, heteroskedasticity consistent, variance ratio estimates are 
calculated for end-of-day price data for eight time lags over 12 agricultural commodity 
futures (front month) and 40 U.S. equities from 2000-2014. A bootstrapped stepdown 
procedure is used to obtain appropriate statistical confidence for the multiplicity of 
hypothesis tests. The variance ratio approach is compared against regression based testing 
for fractionality. 
 
Findings: Failing to account for bias, heteroskedasticity, and multiplicity of testing can 
lead to large numbers of erroneous rejections of the null hypothesis of efficient markets 
following an independent random walk. Even with these adjustments, a few futures 
contracts significantly violate independence for short lags at the 99% level, and a number 
of equities/lags violate independence at the 95% level. When testing at the asset-level, 
futures prices are found not to contain fractional properties, while some equities do. 
 
Research limitations: Only a subsample of futures and equities, and only a limited 
number of lags, are evaluated. It is possible that multiplicity adjustments for larger 
numbers of tests would result in fewer rejections of independence.  
 
Value: This paper provides empirical evidence that violations of the random walk 
hypothesis for financial time series are likely to exist, but are perhaps less common than 
previously thought. 
 
Keywords: financial time series, fractional Brownian motion, heteroskedasticity, 
multiple hypothesis testing, random walk, variance ratio 
 
JEL Codes: Q14, G13, G12 
 
  



1 Introduction 
In his seminal paper on the efficient markets hypothesis (EMH), Fama (1970) stated that 
markets fully reflecting all available information is so general a definition of efficiency as 
to be empirically untestable. He therefore defined efficiency in terms of price formation 
according to a “fair game” model, in which returns based on current information follow a 
submartingale. A direct implication of this definition is that prices must follow a random 
walk if both short and long positions are allowed on all assets, the so-called random walk 
hypothesis (RWH). However, broad dissent arose in the 1980s with Grossman and 
Stiglitz (1980) identifying equilibrium disequilibrium in the form of rents to information 
for arbitrageurs, both Shiller (1981) and DeBondt and Thaler (1985) identifying over-
reaction, and Lo and Mackinlay (1988) introducing variance ratio testing to debunk RWH 
econometrically. 

Since that time, further evidence against EMH has accumulated along the lines of 
supply-and-demand imbalances (Hirshleifer, 1989, 1990; Bessembinder, 1992) and limits 
to arbitrage (Shleifer and Vishny, 1997). Despite these challenges, Fama (1998) 
concluded that market efficiency “survives the challenge from the literature” because the 
anomalies identified are essentially chance results; namely, under-reaction/overreaction 
and momentum/mean-reversion are about equally common. More recently, the mid-
2000s spike in commodity prices concurrent with the development of commodity index 
investing led to claims of a price bubble (Masters, 2008) and a large number of articles 
evaluating efficiency of futures markets, with mixed evidence. A series of papers by 
Scott Irwin and coauthors (e.g., Irwin, 2013) dismissed these claims based on limited 
evidence across a wide range of approaches, and there continues to be conflicting 
evidence. Acharya et al. (2013) developed a model in which capital constrained 
speculators lead to increased hedging costs and verified it using 30 years of oil and gas 
futures, whereas Brunetti and Reiffen (2014) showed that commodity index traders 
actually lower hedging costs using a proprietary daily data set from the Commodity 
Futures Trading Commission (CFTC).  

In contrast to futures markets, findings of inefficiencies in equities and options 
markets are not as mixed in recent years, especially along the lines of limits to arbitrage 
and financial institutions/infrastructure as key drivers. Bollen and Whaley (2004) found 
evidence that implied volatility is a function of net buying pressure from public order 
flow in index options, and Constantinides et al. (2009) identified excess returns in index 
put options that violate first order dominance. On the supply side, Duffie (2010) showed 
that slow-moving capital leads to commonplace, temporary price imbalances (e.g., up to a 
month) in equities but not longer term imbalances because market participants have time 
to overcome search costs and short-term capital constraints. On the demand side, Hong et 
al. (2012) showed that arbitrageurs amplify economic shocks in equities through the 
unwinding of speculative short positions following good news, and Cao et al. (2013) 
found evidence that some hedge funds are able to forecast market liquidity. 

To summarize, the literature suggests substantial evidence against the stronger 
forms of EMH, but violations may be more consistently found in equities than in future 
markets. This is intuitively reasonable based on liquidity alone, but does require explicit 
testing. The time scale of these violations is also in question, as short- and medium-term 
violations (e.g., as in Asness et al., 2013) appear to be most common. Turvey (2007, 
herein Turvey) addressed the “memory” inherent in agricultural commodity prices by 



extending the fractional Brownian motion model of Mandelbrot and van Ness (1968) into 
a scaled variance ratio estimator of the Hurst coefficient and demonstrating superior 
Monte Carlo performance against their original rescaled range (“R/S”) statistic. Turvey 
used simulated confidence intervals for the null hypothesis of Ĥ = 0.5  to show that 
agricultural commodity prices for the period 1996-2001 do not, in general, allow for 
rejection of the null hypothesis of a geometric Brownian motion, but that some individual 
commodities do exhibit fractional properties. 

A key caveat is in order. In light of the large quantity of financial data available, 
and the multiplicity of testing conducted by financial researchers, there are legitimate 
concerns of data-snooping bias and related problems when the literature is evaluated as a 
whole. Data-snooping bias is generally defined as statistical inference performed after the 
researcher has inspected the data (it may include Leamer’s (1978) “specification 
searches,” for example). However there is also a similar meta problem that can arise 
when the researcher begins to inspect data after many other researchers have already 
performed mass inference testing on the same data. Fama (1998), Turvey, and Irwin and 
Sanders (2011) all implied these concerns in the manner of their evaluation of literature 
and results, but do not state them explicitly, whereas Harvey et al. (2014), in a recent 
NBER working paper, advanced the notion that standards for new findings in finance 
should be revised to only accept significance findings for t-ratios greater than 3.0. 
Naturally, this solution offers some protection against both classes of problem, but it may 
not go far enough against within-researcher data-snooping bias because of the sheer 
sample sizes available in many financial time series. Of course, within-researcher data-
snooping concerns are not new, as improvements on the basic Bonferroni correction for 
multiple hypothesis testing in the last two decades have become seminal papers in their 
own right. These papers include Benjamini and Hochberg (1995) developing a procedure 
for controlling the false discovery rate, Benjamini and Yekutieli (2001) refining this 
procedure for dependence between tests, and Romano and Wolf (2005a, 2005b) proving 
and demonstrating a subsampling method for stepwise control of the familywise error 
rate, with both improved finite sample power and desirable asymptotic properties.  

In this article, we extend Turvey’s approach to be robust to both heterskedasticity 
and non-normal innovations by relying on the asymptotic results of Lo and Mackinlay 
(1988)(herein, LM). To address concerns regarding the large number of hypothesis tests 
inherent in this type of analysis, we extend the procedure of Romano and Wolf (2005b) to 
the variance ratio testing conducted herein using a block bootstrap. Results of the 
stepdown procedure are then held to the standard of Harvey et al. (2014) to protect 
against meta-level data-snooping across studies in finance. By combining these 
approaches, we are able to compare and contrast variance ratio testing by asset and time 
lag against Turvey’s regression-based approach to identify fractional properties at the 
asset level. 

We find that a properly adjusted variance ratio testing procedure fails to reject 
random walks for nearly all agricultural commodity futures prices (and lags) for the 
period 2000-2014 (and fails to reject all of them using a 3σ  standard), and our extended 
version of Turvey’s approach does not reject random walks for any of the commodity 
futures price series tested. Variance ratio testing of the same time series for U.S. equities 
leads to no rejections at suitable levels because many equities prices/lags exhibit adjusted 
p-values below 0.05, but none below 0.01. However, when testing our extension of 



Turvey’s procedure against equities at the asset level, a substantial percentage of equities 
tested show strong fractional properties, significant at the 99.9% level. Since it is well-
known that variance ratio testing can be overly sensitive to short-term dependence (Lo, 
1991), we take this pattern of results as evidence of long-term memory in the time series 
of some equities prices.  

Overall, it is shown that failing to adjust for heteroskedasticity and for the 
multiplicity of hypothesis tests can lead to too many rejections of the independence null, 
and to substantial statistical overconfidence in the strength of the rejections (because 
unadjusted p-values will indicate a likelihood of results due only to random chance which 
is far too small). In doing so, we provide rigorous evidence in support of the findings of 
Irwin and Sanders (2011) that commodity futures markets are likely to be weak-form 
efficient. Our findings are similar for the Dow Jones (DIA) and S&P 500 (SPY) 
exchange traded funds (ETFs), and for the majority of Dow stocks. However, we do find 
significant evidence of long-term memory in a subset of Dow stocks, consistent with the 
original results of LM. 

The remainder of this article is organized as follows. The next section describes 
the theory and econometrics behind the results. It gives a brief review of the theory 
behind fractional Brownian motion and the role of the Hurst parameter in determining 
memory, or lack thereof, in a time series. This is followed by a review of the method of 
Turvey and its extension to a heteroskedasticity-consistent form using the asymptotic 
results of LM, and a review of the Romano and Wolf stepwise subsampling procedure for 
controlling FWER. Section 3 describes our data sources and Section 4 presents the results 
and demonstrates the impact of correcting for the multiple-hypothesis testing problem. 
Section 5 discusses implications for future research, and concludes. 
 
2 On Variance Ratio Tests, “Scaled” and Multiple 
2.1 Fractional Brownian Motion and the Scaled Variance Ratio 
In the tradition of the Black-Scholes-Merton model, asset prices can be modeled as 
following a geometric Brownian motion (gBm), so that the log prices follow a standard 
(arithmetic) Brownian motion (Bm). Turvey utilizes the fractional Brownian motion 
(fBm) as a generalization of Bm that (i) incorporates Bm as a special case, and (ii) 
provides a conveniently consolidated alternative hypothesis for empirical testing. For our 
purposes, the key feature of fBm is its autocorrelation structure. Namely, if x is an fBm 
process, it is a continuous time Gaussian process with mean zero and autocovariance 
 

(1)    E x t + Δt( )x t( )⎡⎣ ⎤⎦ =
1
2
σ 2 t + Δt( )2H − t 2H − Δt 2H( )     

 
which reduces to zero (and the standard Bm) for H = 0.5 . For our purposes, the key 
feature of fBm is the growth of variance over time, given by 
 
(2)     E (x(t + Δt)− x(t))2⎡⎣ ⎤⎦ =σ

2 Δt( )2H , 
 
which collapses to σ 2t  when H = 0.5  (the standard Bm exhibits variance linear in time). 
Critically, H < 0.5  will cause the series to exhibit mean-reversion and variance growing 



more slowly than time, while H > 0.5  will cause the series to exhibit momentum or 
trend-following properties with variance growing more rapidly than time. In both cases, 
the fractional process will exhibit long-term memory, exhibited by slower decay of the 
autocorrelation coefficients for large lags than is found in short-term dependent processes 
(like an AR(1) process, as noted in Lo (1991)).  

We thank a referee for pointing out that fBm generalizes the standard Bm in some 
sense, but it is not the only generalization possible. Furthermore, fBm with H ≠ 0.5  is 
not a semi-martingale, which means that typically the no-arbitrage property is ruled out – 
a feature which may not be desirable in asset pricing models. However, Bender et al. 
(2007) show that no arbitrage pricing is possible for a broad class of portfolios when a 
mixed-fBm model is considered, one in which innovations follow a mixture distribution 
with both an fBm and standard Brownian component. Despite these features of the more 
generalized modeling problem, our presentation here is for consistency with that 
developed in Turvey. 

An immediate consequence of Eq. 2 is that the ratio of the k-period variance to the 
one-period variance is then given by 
 

(3)      
E (x(t + k)− x(t))2⎡⎣ ⎤⎦

σ 2 = k2H .  

 
Letting  VR

!(k)  denote the variance ratio on the left-hand side of Eq. 3, estimated from 

data, yields an estimate of the Hurst parameter:  Ĥ = lnVR! 2 ln k . Clearly, Ĥ = 0.5  in 
expectation for a standard Bm, but it is necessarily subject to sampling variability.  

Turvey recognizes that more stable estimates of Ĥ over the full sample price 
series can be generated by regression analysis using estimated variance ratios for a 
number of lags. In addition to stability, this procedure also has the benefit of isolating 
systematic deviations from gBm across all lags, while being less sensitive to 
autocorrelation coefficients that are only distorted for shorter lags, as might arise from a 
short-term dependent process. The estimating equation is: 
 
(4)        lnVR

!(k) = β0 + β1 ⋅ ln k + ε    
 

where the null hypothesis isH0 :β0 = 0, β1 = 1  and where Ĥ = 0.5β̂1 . Turvey goes on to 
show that confidence intervals for rejection of standard Bm as the null hypothesis 
H0 : Ĥ = 0.5( )  can be simulated as a function of the lag, k, and sample size, and that this 

procedure outperforms other established procedures for estimating Hurst, especially 
rescaled range analysis. 
 We also thank a referee for pointing out the advantage of the original Hurst 
exponent, estimated from the R/S rescaled range statistic. Namely, it is well-defined for 
all types of distributions, including those with fat-tailed innovations and infinite 
variances. We justify our approach in terms of the discussion provided by Lo (1991), who 
points out that while the R/S statistic may be robust to a broader class of processes, the 
R/S statistic is sensitive to short-term dependence, which ultimately must be corrected 



using knowledge of autocorrelations. Lo (1991) also points out that the strong-mixing 
assumptions supporting the LM heteroskedasticity consistent variance ratio estimator 
(which we use, see Section 2.2 below) do not support infinite variance processes but they 
do allow for unconditional leptokurtosis via time-varying conditional heteroskedasticity. 
 The key innovations in this paper involve extending Turvey’s method by 
combining a block bootstrap, weighted least squares, and a stepdown procedure to control 
the familywise error rate (FWER) explicitly in the context of multiple hypothesis testing. 
The methods are shown to be complementary to the variance ratio testing approach in 
understanding the nature of various financial time series. We do not show whether 
extension of the original R/S statistic to multiple testing is similarly straightforward, but 
it is likely that some adaptation of the R/S statistic to our framework is possible.  
 
2.2 Asymptotic Heteroskedasticity-Consistent (Scaled) Variance Ratio Tests  
A key challenge in extending Turvey’s method more broadly is accounting for 
heteroskedasticity, given ample evidence in the literature of persistence, clustering and 
autocorrelation of volatility for financial time series. LM work with a standardized 
variance ratio, VR1(k) =VR(k) / k , and derive a test statistic that is asymptotically normal, 
heteroskedasticity-consistent, and robust to non-normality of innovations, while also 
having good finite sample performance through the use of overlapping periods for 
estimating sample autocorrelations.  

The variance ratio test statistic of LM considers the compound null hypothesis of 
a random walk with: (i) uncorrelated increments, (ii) sample autocorrelations 
asymptotically uncorrelated with one another, (iii) finite variance, and (iv) a mixing 
condition limiting the maximum amount of dependence and heterogeneity while still 
inducing the Law of Large Numbers and the Central Limit Theorem (see White, 1984). 
Construction of the test statistic for  VR1

!(k)  proceeds as follows, with notation adapted to 
be internally consistent herein. First, let nk = T  and define the variance ratio estimator to 
be the ratio of unbiased variance estimates for lags k and 1, estimated from overlapping 
periods in the case of k: 
 

(5)    

 

VR1!(k) =
(nk −1)

t=k

nk

∑ pt − pt−k − kµ̂( )2

k(nk − k +1) 1− k
nk

⎛
⎝⎜

⎞
⎠⎟ t=1

nk

∑ pt − pt−1 − µ̂( )2
, 

 
where the coefficient on the denominator represents bias correction of the sample k-lag 
variance due to overlapping periods. This variance ratio estimator is still necessarily 
biased due to Jensen’s inequality, but Lo and Mackinlay (1989) show that its finite-
sample properties are close to their asymptotic limits. To correct for heteroskedasticity, 
let ρ̂ j  be the sample autocorrelation coefficient at lag j, and note that the variance ratio 
has the asymptotic relationship: 
 

(6)     
 
VR1!(k) =

a
1+ 2 1− j

k
⎛
⎝⎜

⎞
⎠⎟ ρ̂ j

j=1

k−1

∑ . 



 
Letting nk = T , a heteroskedasticity-consistent estimator for the variance of ρ̂ j  is: 
 

(7)    δ̂ j =
nk

t= j+1

nk

∑ pt − pt−1 − µ̂( )2 pt− j − pt− j−1 − µ̂( )2

t=1

nk

∑ pt − pt−1 − µ̂( )2⎛
⎝⎜

⎞
⎠⎟

2   

 
where µ̂ = (pT − p0 ) /T  is the mean drift of the sample. Accordingly, the asymptotic 

variance of  VR1
!(k)  is estimated in a heterskedasticity-consistent fashion by: 

 

(8)      θ̂(k) = 4
j=1

k−1

∑ 1− j
k

⎛
⎝⎜

⎞
⎠⎟
2

δ̂ j . 

 
The test statistic of LM is then simply: 
 

(9)     
  
ϕ *(k) =

nk VR1!(k)−1( )
θ̂(k)

~
a

N 0,1( ).   

 
This test-statistic can then be used to generate p-values for standard hypothesis testing, 
though the applied researcher needs to take care when testing a large number of 
hypotheses, such as when a panel of asset prices are tested across multiple time lags. In 
the stepdown method described below, either the test-statistics or the associated p-values 
can be used to obtain equivalent results, subject to the caveat that the stepdown procedure 
is one-sided, so test-statistics must be converted to absolute values for a two-sided test. 
 
2.3 Multiple Hypothesis Variance Ratio Testing 
As will be shown below, we intend to test variance ratios for financial time series 
covering (12 futures contracts + 40 equities) ×  8 lags, resulting in J = 416  hypothesis 
tests. For this many tests, failing to correct for the number of tests will lead to an inflated 
Type I error rate (too many false rejections or “false discoveries”). For example, consider 
a single test with α = 0.001 , which has a 0.1% chance of incorrectly rejecting a true null 
hypothesis as false. If 416 such tests are conducted, then the probability of at least one 
incorrect rejection is given by 1− 1−α( )416 = 34.05% . Correcting this problem explicitly 
means controlling the familywise error rate (FWER), which is the probability of at least 
one false discovery among all the hypotheses when performing multiple hypothesis tests. 
The most basic (worst-case) method to control FWER is the Bonferroni method of 
rejecting the null only for p-values less than 1/ J . Unfortunately, this method is overly 
conservative in many cases, leading to too many failures to reject. 

To obtain additional power over Bonferroni, we use the method of Romano and 
Wolf (2005b), herein RW, who demonstrate a bootstrapped stepdown procedure based on 
the empirical distribution of the maximal test statistic under the null hypothesis. This 



procedure not only controls for non-normality of innovations and heteroskedasticity, two 
well-documented features of financial time series, it also increases the power of multiple 
testing by taking advantage of the dependence structure between tests. In particular, a 
block bootstrap (Lahiri, 2003) to preserve within-period cross-correlations between 
equities adds additional power since the equities examined herein are highly correlated 
due to their membership in the Dow average. To be clear, cross-correlations of asset 
returns within time periods, e.g., due to macroeconomic or other factors, in no way 
violates RWH, which is only concerned with autocorrelation within single time series. 
Thus, the block-bootstrap helps generate the sampling distribution under the null 
hypothesis of no serial correlation within assets. 
 The algorithm proceeds as follows. Let  τ j = 1− !pj  (1 minus the estimated, two-
sided p-value) be the test statistic for hypothesis H j , and let τ1 ≥ τ 2 ≥…≥ τ J  be the 
sorted test statistics over all hypotheses. Test the intersection hypothesis,  HJ = ∩H j . If 
HJ  is rejected, set aside H1  as rejected; otherwise, accept all hypotheses. Following 
rejection of an individual hypothesis, repeat this step, forming and testing a new 
intersection hypothesis from the remaining individual hypotheses. The procedure ends as 
soon as one intersection hypothesis is accepted. Testing an intersection hypothesis is 
performed by estimating the distribution of the maximum of the test statistics τ1,…,τ J . 
The intersection hypothesis is rejected if τ1 ≥ x

* , where the critical value is estimated 
according to: 
 
(10)    x* = inf x :Pr max τ1,...,τ J{ } ≤ x( ) ≥1−α{ }    
 
using the bootstrapped data. Here, α  is the desired FWER. Following RW, we use 
B = 10,000  bootstrap replications for each test, where the bootstrapped sample has the 
same number of observations as the original sample, and where the block bootstrap 
indicates permutations of “rows” consisting of cross-sectional asset returns at time t. In 
this manner, the block bootstrap is used as a form of permutation testing, that (i) remains 
robust to realized heteroskedasticity (and non-normality), while (ii) allowing for 
construction of the distribution of test statistics under the null of no auto-correlation 
within assets. 
 
2.4 A Combined Approach 
There is an obvious connection between the one-off estimate of Ĥ  and the estimated 
variance ratio: this estimate of the Hurst parameter is a monotone increasing transform of 
the variance ratio, and it is trivial to show that tests of the estimated Hurst parameter are 
equivalent to any other variance ratio test using a monotone increasing transform, so long 
as the underlying variance ratio estimates agree. Figure 1 below shows the 95%, 99%, 
and 99.9% asymptotic confidence intervals for the LM asymptotic variance ratio, 
alongside the same intervals for Ĥ  (the heteroskedasticity-consistent version is not 
shown; it is similar, but the exact curves are necessarily data dependent). For single 
hypothesis tests, the beauty of this comparison is that the monotone increasing transform 
preserves the confidence intervals, so the applied researcher can take advantage of the 



asymptotic results of LM for hypothesis testing in large samples without relying on 
simulated confidence intervals.  
 

[ Figure 1 about here ] 
 
On the other hand, multiple hypothesis testing (a common situation when dealing 

with financial time series) is not nearly so straightforward, as formalized procedures must 
be used to control FWER. In the case of variance ratio testing in particular, even when 
multiple hypothesis testing is executed correctly, the pattern of null rejections may be 
inconsistent across assets and lags leaving the researcher to guess at the underlying 
causes. Adding to this problem is the fact that variance ratio tests provide increasingly 
weak identification as the number of lags grows. Consider the simple example of 
estimating  VR

! 50 (k)  from Eq. 6: ρ̂1  gets 49 times the weight of ρ̂49  in this estimate, 
meaning that even large lags generate variance ratios that are primarily concerned with 
low-order autocorrelations. This feature of variance ratio testing means, among other 
things, that estimated variance ratios may be perfectly consistent with an fBm process, 
but still fail to reject the null at larger time lags due to lack of power. This lack of power 
can arise both from construction of the test statistic, which places lower weights on long-
lag autocorrelations relative to shorter lags, and from the subtle structure of the sample 
autocovariance matrix generated by an fBm process. 

The essence of Turvey’s method is recognizing that testing a more restrictive 
alternative hypothesis can lead to more useful insights as to the nature of financial time 
series behavior. Through regression, it can be estimated whether variance ratios grow in a 
fractional manner as described by fBm, and whether they have a fixed component 
indicative of heteroskedasticity or other non-independent dynamics not fully captured by 
the fBm model. These estimates are much more useful a posteriori than the individual 
variance ratio tests because they characterize the entire time series, and because 
individual variance ratio tests may be overly sensitive to short-term dependence. 

We propose the following extension of Turvey’s method: 
 
1. Estimate  VR

!(k)  for each asset ×  lag combination, using the bias-
corrected method of LM, but without dividing by k. 

2. Estimate  VR
!(k)  again for each of the block bootstrapped permutations, 

to obtain the sample standard deviation of  lnVR
!(k) , conditional on lag. 

3.  Estimate β̂0, β̂1  via Eq. 4 on the original data using weighted least 
squares (WLS), with sample size (if it varies) and sample standard 
deviation to generate the weights (see below). 

4. Repeat step 3 for the bootstrapped distribution of  VR
!(k) . 

5. Choose the desired FWER (α )  and apply the RW stepdown procedure 
using  τ j = 1− !pj  for the test statistics, where  !pj  is the two-sided p-
value estimated via WLS. 

 



The above algorithm generates estimates of the Turvey regression equation (and 
consequently, of Ĥ = 0.5 ⋅ β̂1 ) that are robust to heteroskedasticity innovations, as well as 
correctly and explicitly tested within a multiple hypothesis testing framework. The 
weighted least squares estimates are more efficient than standard OLS because the 
structure of heteroskedasticity under the null hypothesis can be directly controlled.  

As mentioned in the Data section below, there can be cases of missing data for 
some of the assets being tested. Letting Tik  denote the number of observed returns for 
asset i at lag k, and Tikm  denoting the same for the mth bootstrapped sample drawn, the 
conditional sample standard deviation for WLS is given by: 
 

(11)     

 

1
wik

=
Tik

σ̂ Tikm ⋅ lnVR! ikm (k)( )  . 

 
The next section discusses the data used in this study. The following section presents the 
results, comparing the variance ratio testing approach against the extended (Turvey) 
regression approach in the context of explicit multiple hypothesis testing. 
 
3 Data 
All data are sourced from Quandl (quandl.com) via their API. End of day agricultural 
commodity futures closing prices are from the Chicago Board of Trade (CME/CBOT) 
and the InterContinental Exchange (ICE). We use rolling front-month expiries only, 
following Turvey. The CME contracts evaluated are corn (C), oats (O), soybeans (S), and 
wheat (W), as well as feeder cattle (FC), live cattle (LC), and lean hogs (LN). The ICE 
contracts are cocoa (CC), coffee (KC), cotton (CT), orange juice (OJ), and sugar (SB). 
Following Turvey, the rolling futures prices are not adjusted to address splicing bias, 
which might arise when lagged returns are calculated across contract expiries. We thank a 
referee for pointing this out, but note that the combination (i) of a wide range of lags in 
our analysis, (ii) relatively close spacing in time of contract expiries, and (iii) liquidity 
issues in non-front-month contracts, creates substantial challenges in adapting the 
computation of variance ratios to adjust for splicing bias explicitly. In the interest of 
brevity, we leave this extension as an area for future research. 

End of day equities closing prices come from Yahoo Finance and are adjusted for 
splits and dividends. Data are obtained for the DIA (Dow) and SPY (S&P 500) ETFs, as 
well as the 38 stocks making up the Dow Jones Industrial Average (DJIA) at any time in 
the sample period. The stocks are the current Dow 30, plus Alcoa (AA), American 
International Group (AIG), Bank of America (BAC), Citigroup (C), Hewlett-Packard 
(HPQ), Honeywell (HON), International Paper (IP), Altria Group (MO), and AT&T (T). 
Kraft (KRFT), General Motors (GM) and Kodak Eastman (KODK) are excluded due to 
trading disruptions and mergers, and Visa (V) is excluded due to having substantially less 
data available over the sample period (their initial public offering occurred in 2008). 

All data are collected for the sample period of 2000-2014, inclusive. Equities 
markets were open for 3773 trading days in the sample period, whereas futures markets 
were open for 3790 days. In order to make all calculations consistent with the 
contemporaneous block bootstrap procedure, futures prices are dropped for the 17 days in 
which equities did not trade. Because the futures prices used are for the rolling front 



month contract, there are occasional cases around expiry where no trading occurred. 
There were also a number of cases where trading did not occur due to lack of market 
interest. The majority of futures contracts had data for 3750 or more days, with 
exceptions being cocoa (3672 days, or 97.3%), cotton (3504/92.9%), coffee 
(3648/96.7%), orange juice (3245/86.0%) and sugar (3498/92.7%). In all calculations, 
missing data were not treated as generating zero returns, but rather were treated as 
explicitly generating missing returns, meaning that sample sizes for variance ratios and 
attendant bias corrections were adjusted accordingly. 
 
4 Results 
This section presents the results of our analysis. It begins by presenting the variance ratio 
testing results and showing the impact of the stepdown procedure on perceived statistical 
significance of the test statistics. Next, the test statistics are checked as to whether they 
conform to the assumptions of the stepdown procedure, and an explicit correction is 
applied as a robustness check. This adjustment results in nearly identical results. Next, 
results of the extended Turvey procedure are presented, and contrasted against the 
variance ratio testing results.  

Tables 1 and 2 present the results of the estimation procedure detailed above for 
statistical significance of heteroskedasticity consistent variance ratios against a null 
hypothesis of 1.0. Table 1 presents results for futures contracts, while Table 2 presents 
results for equities, but results in both cases are adjusted for multiple hypothesis tests 
using the same stepdown procedure (i.e., the stepdown procedure generates both tables 
simultaneously). *, ** and *** denote statistical significance at the 95%, 99% and 99.9% 
levels respectively, and a, b and c denote ‘significance’ at the same levels without 
adjustment for the multiplicity of tests. All tests are two-sided. So, for example, 1.3236*,a 
denotes a variance ratio of 1.3236 which is significantly different from 1.0 at the 95% 
level, with or without adjustment for multiple tests, while 0.9318*,b denotes a variance 
ratio of 0.9318 that is significantly different from 1.0 at the 95% level, but which appears 
to be significant at the 99% level if the adjustment for multiple tests is ignored. When 
reading the table, note that variance ratios <1.0 (>1.0) correspond to Hurst parameters 
<0.5 (>0.5), indicating mean-reversion (momentum, or a trend-following property) in the 
underlying time series. 
 

[ Table 1 and Table 2 about here ] 
 

Among the highlights of Table 1 are that the feeder cattle (FC) contract at lags 2 
and 5, and the oats (O) contract at lag 2, exhibit variance ratios rejecting independence at 
the 99% level, but which appear to reject independence at the 99.9% level if multiplicity 
of testing is not properly addressed. In fact, no asset/lag combination tested achieves 
significance at the 99.9% level, or even the 99.7% 3σ( )  level recommended by Harvey et 
al. (2014). For equities, Table 2 shows that many asset/lag combinations achieve 
significance at the 95% level, but none do so at the 99% level, even though a large 
number appear to be significant at the 99% level and one stock, UTX (United 
Technologies Corp.), at lag 2 even appears to be significant at the 99.9% level when 
multiple testing is ignored. This pattern demonstrates that simple rules of thumb for 
disregarding marginal findings of statistical significance cannot replace a formalized 



stepdown procedure accounting for the statistical dependence structure between all tests 
conducted, simultaneously. The role of heteroskedasticity is also important here. 
Referring back to Panel A of Figure 1, it is clear that many results of marginal statistical 
significance fall well outside the asymptotic confidence intervals, even when evaluating 
statistical significance of a single test.   
 As part of qualifying these results, it is important to verify that the test statistics 
generated in fact conform to the requirements of the stepdown procedure. The stepdown 
procedure of RW recommends studentized test statistics, but only requires that the 
statistics be reasonably well-behaved (see their paper for details). The heteroskedasticity 
consistent test statistic, ϕ * , of LM is asymptotically unit normal, but not independent 
across equites or across time lags. The stepdown procedure exploits this non-
independence, exhibited as a non-diagonal covariance matrix between the test statistics, 
to gain power while controlling FWER. However, there is no guarantee that the test 
statistics we generate are unit normal in finite samples, and in the case of this particular 
sample, some systematic violations are observed with respect to the lag, k.  

Figure 2 shows how the first four standardized sample moments (mean, standard 
deviation, skewness, excess kurtosis) of the test statistics vary over lags in the 
bootstrapped sample ( I = 52  assets, T ≈ 3770  time periods, with 10,000 bootstrapped 
permutations of 1-period returns). The general pattern is that all the moments converge 
towards their asymptotic behavior over the short- to medium-term lags, but the skewness 
and excess kurtosis then begin to diverge away from zero for longer-term lags. It appears 
that the nature of Figure 2 arises because the moments of the distribution of test statistics 
converge towards their asymptotic levels at different rates according to the number of 
lags; other than the original derivation of asymptotic convergence, anecdotal evidence for 
this claim exists in the form of test statistics on the excluded Visa stock price data which 
have T ≈1700  and produced a more exaggerated version of Figure 2. 

 
[ Figure 2 about here ] 

 
 As a robustness check, we generate adjusted versions of the test statistics which 
were normalized by their bootstrapped mean and standard deviation to be in the form of 
z-scores: ϕ′ = ϕ * − µ̂ϕ( ) /σ̂ϕ . The goal of this procedure was to ensure that test statistics 
forced into the long tail of the distribution by their finite-sample properties (for specific 
lags) were compared on an equal scale to test statistics not exhibiting finite-sample 
departures from their asymptotic distribution. In Figure 3, Panel A shows the kernel 
densities of the LM bootstrapped test statistics, ϕ * , by lag, while Panel B shows the same 
kernel densities after normalization into z-scores. Despite this adjustment (and despite the 
loss of aesthetic desirability in Panel A!), the results of the stepdown procedure were 
almost completely unchanged. In fact, the only change was to move oats (O), lag 2, from 
significance at the 99% level to significance at the 95% level. That said, it should be 
noted that the stepdown procedure does not admit precise p-values, only identification of 
whether a specific test statistic survives the stepdown procedure for a given FWER level. 
Regardless, the stability of the multiple testing results to lag-wise scaling lends 
substantial credibility to their robustness. 
 



[ Figure 3 about here ] 
 
 Nonetheless, as discussed earlier, interpretation of the variance ratio testing 
results is difficult because a specific alternative hypothesis is not clearly identified. 
Instead, the variance ratio testing results can only show that there is some combined 
autocorrelation structure leading to violations of RWH at some lags, but not others. 
Worse yet, many failures to reject (even at the 95% level) are observed at large lags, and 
it cannot be known with certainty whether this is due to low statistical power for 
identifying these effects. Furthermore, there is the potential problem that variance ratios 
are affected by short-term dependence in the time series. For these reasons, the approach 
of Turvey to assess fractionality (or long-term memory) at the asset level may be 
preferable. We now present the estimation results of our algorithm extending Turvey, as 
outlined in Section 2 above. 
 Table 3 below shows the extended regression results with resulting estimates for 
the Hurst parameter, Ĥ , at the asset level over the full time series. The table shows 
estimates of β̂0  and β̂1  estimated from Eq. 4 for both futures and equities, with statistical 
significance compared for individual hypothesis tests (a,b,c) against explicit multiple 
testing (*,**,***), as in tables 1 and 2. It is immediately obvious in Table 3 that the constant 
term in the regression equation is significantly different from zero at the 99.9% level for 
every asset considered. While many of these values are quite small, some are larger than 
0.1. The fBm-only model upon which Turvey’s method is based does not explicitly 
consider the coefficient structure of the regression in Eq. 4, so it remains an area of future 
research to generalize the meaning of these estimates in the form of  VR

!(k) = kα0+2H . 
However, it is possible that these estimates are revealing a mixed-fBm model with a 
standard Brownian component, as discussed in Section 2.1 above and in Bender et al. 
(2007). It is also possible that the estimates are due to the combination of 
heteroskedasticity and non-normality of innovations in the observed data, but we leave 
these extensions and associated model checking as an area for future research. 
 

[ Table 3 about here ] 
 
 It is also immediately obvious in the table that β̂1  is not significantly different 
from 1.0 for any of the futures contracts tested, though wheat appears to be significant at 
the 99% level when its hypothesis test is considered in isolation. For equities on the other 
hand, eleven of the 40 assets tested exhibit significant fractionality at the 99.9% level 
after controlling for multiple testing.  Interestingly, every one of these exhibits an 
estimated Hurst parameter less than 0.5, implying a mean-reverting process, on average, 
as opposed to the (not significant) estimates for futures which vary above and below 0.5 
about equally. We also note that the significance of the estimates of β̂1  and the 
corresponding values for Ĥ  are consistent with both the pattern of estimated variance 
ratios in Table 2, and with the discussion in Section 2 indicating that weakening of 
variance ratio testing power over increasing lags could lead to failures to reject 
independence even when variance ratio patterns are strongly consistent with fBm. Table 
3 also highlights the important role of controlling for heterogeneity in our extension of 



Turvey’s method: there are numerous cases where assets without significant fractionality 
have estimated values of Ĥ  that are further from 0.5. 
 
5 Discussion 
It is clear from the evidence presented that variance ratio testing and regression 
estimation of the Hurst parameter are complementary approaches in attempting to 
understand the nature of financial time series. Variance ratio testing is best at identifying 
departures from the independence null for shorter time lags, while Hurst regression 
estimation is better at synthesizing the behavior of a time series into a test against a 
consolidated alternative hypothesis. It is possible that variance ratio tests have some 
substitutability with the constant term in the regression approach, but further modeling 
and empirical work is needed in this area, especially given the potential for mixed-fBm 
asset pricing models as an alternative explanation. 
 As discussed above, both approaches can give false rejections of the random walk 
hypothesis as a result of failing to explicitly adjust for heteroskedasticity and non-
normality of innovations, so the new procedure presented here represents a step forward 
in consolidated testing of time series behavior. Furthermore, financial time series are 
necessarily evaluated both in the context of other time series simultaneously by the same 
researcher, and under the shadow of hypothesis testing by many researchers checking the 
same data over time. For these reasons, applied financial researchers will need to adjust 
findings to explicitly achieve an acceptable familywise error rate for the number of 
hypothesis tests considered, and this acceptable error rate may be decreasing over time as 
additional research is produced (Harvey et al., 2014). In light of this, the methods 
considered herein take these steps explicitly, and only results significant at the 3σ  level 
should be considered as new discoveries in the area.  
 According to these standards, the results may be summarized as follows. For the 
12 futures contracts and 40 U.S. equities considered over eight different time lags, none 
was discovered to violate time independence at the highest significance level after 
adjustment for the multiplicity of tests. This is evidence in support of the findings and 
assertions of Fama (1998), Turvey (2007), and Irwin (2013). On the other hand, when 
testing against a consolidated alternative hypothesis at the asset level, eleven equities 
were discovered to exhibit fractional, mean-reverting properties at the highest 
(multiplicity adjusted) 3σ  significance level, consistent with Lo and Mackinlay’s (1988) 
original results. Future research is needed to determine whether these results will hold 
when the analysis extends to the full set of listed equities and futures contracts, and to 
determine whether the variance ratio vs. fractional modeling approach is best. Future 
work will also determine the role of regression results in identifying mixed-fBm models 
(Bender et al., 2013) and the extent to which research designs in finance need to adapt 
explicit accounting for large numbers of hypothesis tests. 
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Figures 
Figure 1: 95%, 99% and 99.9% Confidence Intervals for H0  
(panels side-by-side if possible) 
 

 
Panel A:  H0 :VR!1 = 1     

 
 

 
 
  Panel B: H0 : Ĥ = 0.5  
  



Figure 2: Bootstrapped Moments of ϕ *  by Lag 

 
 
 
  



Figure 3: Kernel Densities of Test Statistics by Lag 
(panels side-by-side if possible) 
 

 
 
Panel A: Finite Sample ϕ *    

 
 
 

 
 

Panel B: Adjusted ϕ′   
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