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CHAPTER 1 INTRODUCTION

The improvements of living standard around the world, especially in the developing

countries, calls for more energy resources. Meanwhile, severe environmental issues (extreme

weather, air, and water pollution) urge researchers to improve energy utilization efficiency

and to find alternative/renewable energy sources. The International Energy Agency (IEA)

predicts the global energy needs will increase by 30% between today and 2040 [1]. According

to the IEA’s Renewables 2018 market analysis and forecast report [2], 40% of global energy

consumption growth will come from renewable sources in the next five years. In 2017,

renewable energy accounted for an estimated 70% of net additions to global power capacity

[3]. Among available renewable energy options, solar photovoltaics (PV) is taking the lead,

providing a promising future for clean energy.

However, despite the rapid growth, the application of solar PV still only accounts for less

than 2% of the total energy consumption in 2016 [3]. This is due to the higher cost compared

to traditional resources such as coal and oil, as well as the growing price of renewable

subsidies and grid integration. Envisioning a bright PV future, in 2010 the Department

of Energy (DOE) set up a goal that by reaching the price of $1/watt, at the same cost of

coal-based energy, the U.S. and the rest of the world would be able to enjoy a clean and

unlimited electricity generated from the sunlight [4]. In 2016, the DOE set the following

Levelized Cost of Electricity (LCOE) goals for PV to achieve by 2030 in order to enable

significantly greater PV adoption: $0.03 per kilowatt-hour (kWh) for utility-scale, $4 per

kWh for commercial, and $0.05 per kWh for residential systems [5]. The achievement of these

goals requires the collaboration of multiple parties including the government, the private

sector, and the scientists. Policy, finance, and market mechanisms have to be applied to

support the development and application of PV. More importantly, the researchers should

aspire to improve the efficiency of the PV modules so that these materials can match and even

surpass their traditional energy counterparts. There are three major areas which demand

attention: (1) increasing efficiency and energy yield; (2) reducing material and process costs,
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and (3) understanding reliability and mitigating degradation [6].

Over the past four decades, solar cell materials have evolved into the third generation.

Many new types of solar cells have been invented and existing cell efficiencies have increased

by various degrees. Table 1.1 lists all the three generations of solar cells with their main

material, power conversion efficiency (PCE), advantages/disadvantages and primary usage.

The high-performance experimental multi-junction cell is a special type of photovoltaic ma-

terial. Although it holds the world record in solar cell performance (reached more than

45% in 2015) [7], it has limited commercial applications due to its high production price.

Considering the variety of cells, the emerging PV research is very promising. For example,

the performance of perovskite cells almost doubled in five years, from 12% in 2013 to 23%

in 2018 [7]. The extensive study on organic semiconductors is also fruitful: their PCE has

increased by more than five times in twenty years, from merely 3% to 17% [8].

Table 1.1: Three generations of solar cells, with their main materials, PCE, advantages,
disadvantages and main usage.

GEN. Materials PCE Advantages Disadvantages Usage

1st
crystalline
silicon

21-28%
good PCE,
high stability

rigid,
high energy
in production

rooftops

2nd

thin film
amorphous
silicon,

CIGS & CdTe

22-23%

low
production

costs,
flexible

scarce elements,
high energy
in production

utility-scale
photovoltaic
power stations

3rd

polymers,
organometallic,

inorganic
substances

11-17%
low-cost,
flexible,

easy production
low PCE

still in
R&D phase

Forty years ago Heeger, MacDiarmid, Shirakawa, and coworkers discovered that the or-

ganic conjugated polymers can be doped to form metallic-like conducting materials [9], the

research on conjugated oligomers and polymers has gained monumental advancement. The

organic photovoltaic (OPV) cells have many advantages including lightweight, flexible, and
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cheap manufacturing. However, they are still less competitive in terms of performance com-

pared to other photovoltaic platforms. More work is needed to improve the PCE so that the

organic semiconductor can compete with other materials.

Figure 1.1: Conversion efficiencies of best research solar cells worldwide from 1976 through
2018 for various photovoltaic technologies. Efficiencies determined by certified agen-
cies/laboratories [7].

The light-to-electricity power conversion in OPV devices can be modeled by a four-

step process. Each step includes multiple factors which can impact the overall efficiency

in various degrees. As a result, the detailed mechanisms of each step play a crucial role

in the optimization of the whole performance. Therefore improvements require a deeper

understanding of the basic chemistry and physics behind all aspects of the process. In

next section the detailed conversion process and all relevant terms will be analyzed. In

particular, charge transfer states (CTSs) exist as a dispensable part of the overall solar cell

function. The exact role of CTSs is still under debate [10–14], but there is a consensus that

they are critical to the overall performance of the cells and their correct determination is

extraordinarily important for a detailed understanding of free charge generation mechanism.

Extensive studies have been performed on the energetics of CTSs and their relation to the
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electron splitting and recombination [15–18].

The photo-current in a solar device is generated by the splitting of electron-hole pairs.

In order to improve the power conversion efficiency, it is required to simultaneously increase

the charge separation and minimize the recombination. The dielectric constant is an ex-

ceptionally significant parameter for reducing relaxation and recombination [19]. One of the

reasons why organic solar materials have a very limited power conversion efficiency is because

of their low dielectric constant (εr ∼ 3− 4), compared to εr > 10 for inorganic counterparts

where free charge carriers can be readily created upon excitation. It has been shown that

at εr = 9, the exciton binding energy is equal to kBT [19], suggesting a significant increase

in charge separation. In 2016, Ma and coworkers examined the effect of dielectric screening

on the CTS binding energy in MDMO-PPV: PCBM polymer-fullerene bulk heterojunction

(BHJ) photovoltaic device [20]. By adding camphoric anhydride, whose relative permittivity

is 24.8 in the amorphous phase and 3.2 when crystalline, they increased the film dielectric

constant, reduced the CTS energy, and increased the power conversion efficiency by 75% at

20 wt % of camphoric anhydride.

Theoretical simulations can provide insightful interpretations and valuable information

along with experiments [8, 21, 22]. The calculation of the OPV materials is a difficult task

because of the large molecular size and the presence of the dielectric environment. In a

bulk-heterojunction model, the large amount of molecules makes it impossible to calculate

the properties quantum mechanically. Instead, only the optical response of a limited number

of molecules can be computed. However, the number of basis functions is still large when a

reasonable basis set is applied. Furthermore, the evaluation of electronic properties becomes

more complicated when the solvent-solute interactions are considered. All these issues have

to be examined with a detailed review of theoretical methods, which will be included in the

next chapter.

The aim of this thesis is to understand the basic chemistry and physics behind the power

conversion process, in particular, the exciton generation part. A model protocol will be
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provided to simulate the charge transfer state under the influence of dielectric environment, so

that better optimized molecular structures for OPV applications can be proposed, simulated

and tested. This will also give informative insights into the optimal design of organic solar

cells. This thesis is composed of four chapters, the first one introduces OPV materials,

CTSs and solvent effects; the second one gives an overview of the theoretical methods for

characterizing and calculating the electronic excitations in a polarizable environment; the

third part is a computational study on a typical OPV molecular system; and the last chapter

summarizes and looks into the future projects. The rest of this introduction is divided into

three sections. In Section 1, the development of OPVmaterials will be mentioned, the reasons

why they are an excellent alternative to the traditional inorganic cells will be explained, and

the details of the power conversion process will be examined. In Section 2, the role of CTS

will be investigated. In Section 3 the solvent effect on the electronic energetic landscape will

be reviewed.

1.1 Organic Solar Cells

1.1.1 Development of OPV Materials

Organic conducting polymers have evolved to the third generation since their invention.

The first generation material is polyacetylene. The second generation includes more soluble

and processible polymers and copolymers such as poly[paraphenylene vinylene] (PPVs). The

third generation semiconducting polymers contain more complex molecular structures [23].

See Figure 1.2 for an illustration of the molecular structures of some important semiconduct-

ing polymer candidates. The most recent generation consists of the molecules which have

ideal band gap for light absorption and are soluble in a variety of solvents.
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Poly[paraphenylene vinylene] 
                   (PPV)

Poly[ethylene dioxythiophene] 
               (PEDOT)

Poly[2-methoxy-5-(2-ethylhexyloxy)-
1,4-phenylenevinylene] (MEH-PPV)

Poly[3-hexylthiophene] (P3HT)

  [6,6]-phenyl C70-butyric 
acid methyl ester (PC70BM)

[6,6]-phenyl-C61-butyric 
acid methyl ester (PCBM)

Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']-
dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)

C60Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-
di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)

Figure 1.2: Molecular structures of some important 1st, 2nd and 3rd Generation organic solar
cell materials as donor ((a)-(g)) and acceptor ((h)-(j)). 1st GEN.: (a) PA; 2nd GEN.: (b)
PPV, (c) PEDOT, (d) P3HT and (e) MEH-PPV; 3rd GEN.: (f) PCPDTBT, (g) PCDTBT.
Fullerene derivative as electron acceptors: (h) C60, (i) PCBM and (j) PC70BM.

The search for electron donor molecules which have ideal optical and electronic proper-

ties has been extensively carried out. Fullerenes are agreed as the default acceptors since

they bear some excellent properties. The lowest unoccupied molecular orbitals (LUMO)

of fullerenes usually have a lower energy than most polymer candidates [24], leading to a

higher electron affinity than the donors [25]. In addition, they have a relatively high electron
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mobility [26], making the transport much easier after free charge carrier generation.

1.1.2 Advantages/Disadvantages of OPV Materials

Advantages

The reasons why organic solar materials are a promising alternative to the conventional

inorganic semiconductors can be understood in three aspects: engineering, cost, and envi-

ronmental concerns.

First, in terms of engineering, they are flexible, light-weight, and easily fabricated by sim-

ple manufacturing techniques such as vacuum evaporation/sublimation, solution cast, and

roll-to-roll ink-jet printing [27]; furthermore, the electronic band gap of organic semiconduc-

tors can be optimized on the atomic level so that they can have excellent light-absorbing

capabilities and the OPV layer can be extremely thin (100-200 nm) [28]. Second, they

are cost-effective since the source materials are abundant in nature and manufacturing is

relatively simple, enabling mass production. Lastly, they have substantial ecological and

economic advantages [29].

Moreover, organic solar materials provide an excellent research tool for progressing the

understanding of fundamental properties of various π-bonded molecules [9], the invention

and validation of new quantum chemistry methods, and the utilization and comprehension

of semiconductors.

Disadvantages

Although the organic semiconductors have so many advantages, they are still in research

phase and have yet to see in commercial applications. The reasons are threefold: low PCE,

stability issues, and lack of deep understanding of the structure-properties relationship.

Over nearly two decades the power conversion efficiency (PCE) of OPV devices has

improved drastically, from merely 2 ∼ 3% to 17.3% [8]. However, the PCE is still significantly

lower than inorganic-based devices. Multiple factors contribute to this limited performance,

one of them is the low dielectric constant (∼3) in organic components. Furthermore, the

exciton binding energy in organic semiconductors is larger (1 to 2 orders of magnitude) than
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that of the silicon-based inorganic cells, making the generation of free charge carriers much

more difficult. To solve this problem, a deeper understanding of the whole light-to-electricity

energy conversion process is needed.

The OPV cells need to be set up in open areas, which can make them prone to incurring

serious damage as the materials are susceptible to oxygen and water [30]. In order to have

a consistent performance, the devices need regular maintenance, thus adding extra cost and

human efforts to the whole application.

The electronic structure of organic semiconductors can be engineered on the atomic

level. However, the engineering principle requires a thorough understanding of the structure-

properties relationship and the basic chemistry and physics behind the power conversion

process. This is not a trivial task at the current stage. Without knowledge of the connection

between molecular structure and material properties, the design of novel devices can only be

performed in a trial and error fashion, leading to waste of time and effort.

1.1.3 Power Conversion Process

In inorganic semiconductors, electrons and holes are free to move after the excitation

happens. However, due to the low dielectric constant of organic materials, the excitons

created are still strongly bound, requiring extra effort to separate. In order to improve

the free charge carrier generation, a detailed understanding of the whole power conversion

process in organic solar cells is necessary. OPV devices absorb energy from the sunlight,

generate electron-hole pairs, create free charges by separating the electron-hole pairs, and

finally produce electricity by the flow of free charges carriers. The light-to-electricity power

conversion process has four fundamental steps [25, 31, 32]: (1) exciton generation; (2) exciton

diffusion; (3) exciton dissociation; (4) free charge carrier transportation and collection at the

electrodes. An illustration of the photoninduced electron transfer from polymer to PCBM

and a schematic representation of the power conversion process are shown in Figure 1.3.
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Figure 1.3: Illustration of the photoinduced charge transfer from the polymer (donor) to
PCBM (acceptor) on the left, and a schematic of the power conversion process on the right.

During the exciton generation step, the donor (acceptor) absorbs photons and creates

electron-hole pairs. This step involves light absorption and exciton creation on the polymer

(donor) part. The electronic structure of organic semiconductor plays a crucial role. The

photon flux of the AM1.5 solar spectrum peaks at around 700 nm (1.8 eV), which can be

captured effectively by some low-bandgap polymers such as PCDTBT [25] in Figure 1.2(g).

Massive efforts have been applied to synthesize donor candidates possessing ideal band gaps

in order to effectively harness the sun’s photons while keeping the polymer layers thin. After

the absorption of photons whose energy is equal to or larger than the band gap, the electron-

hole pairs generated are strongly bound by Coulomb attraction with a large binding energy.

As a result, extra steps are needed for the dissociation of excitons to create free charge

carriers, in contrast to inorganic semiconductors where weakly bound excitons are formed

and free charges are obtained after excitation.

During the exciton diffusion step, electron-hole pairs diffuse within the donor (acceptor)

phase. In this step, the excitons can either move to the donor/acceptor (D/A) interface and

dissociate into free charges or recombine to decay. The diffusion length, which is the product

of diffusion coefficient and exciton lifetime, is considerably smaller (one order of magnitude)

than the thin film thickness (one order of magnitude) [33–36]. Therefore in a bilayer OPV
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model the active layer is only a small part of the overall D/A junction. In contrast to a

BHJ model where the excitons can diffuse to the D/A interface easily since the polymer and

fullerene molecules are mixed together, which partially explains the superior performance of

BHJ devices over bilayer models.

During the exciton dissociation step, excitons move to the D/A interface and dissociate

into free charges. After the competition between recombination and diffusion, some excitons

survive and arrive at the interface, then dissociation can take place quite effectively with an

internal quantum efficiency approaching 100% [10, 37]. The exact dissociation process is still

unclear, some researchers believe that the (hot) excitons with excess electronic or vibrational

energy tend to have a large dissociation probability [15, 17], whereas other studies show that

cold excitons can also contribute no less to the free charge generations [10, 12]. Another

concern comes from the intrinsic properties of the materials, in inorganic semiconductors,

the weakly bound electron-hole pairs can be separated effortlessly because the dielectric

environment has a strong screening effect on the Coulomb attraction. Whereas the organic

materials usually have a small dielectric constant, making it more difficult to overcome the

separation barrier.

The last step is free charge carriers transportation and collection at respective electrodes.

After the separation of excitons, electrons will be in the acceptor phase and holes will be in the

donor phase. Electricity can only be generated when electrons and holes are transported and

collected at the corresponding electrodes as shown in Figure 1.3. During the transportation

process, the free charge carriers can recombine to form an energy loss channel. The holes

are more susceptible to recombination since their mobility in the polymer domain is lower

than the electron mobility in fullerenes phase [38, 39]. Apart from intrinsic properties of the

materials, the morphology of the overall structure is also a decisive factor in determining

the transportation efficiency. An ordered (crystalline) structure can provide a much easier

charge transportation route thus having higher conductivity, which affords a more efficient

power conversion device [30].
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The primary focus of this thesis is on the third step, where the strongly bound excitons

are called CTSs. The aim is to gain more insight into the properties of these states so that

the mechanism of free charge carriers creation can be revealed and better design rules of

the organic solar cells can be properly proposed. The excitons can only dissociate when

the driving force (energy difference between the LUMO levels of donor and acceptor) is

larger than the binding energy. One way to reduce the Coulomb interaction between the

electron-hole pairs is to employ the dielectric screening. When the dielectric constant of the

environment increases, the binding energy of the exciton should decrease, thus making it

easier for obtaining free charge carriers. But the detailed mechanism is still unclear.

In the following sections, a brief review will be given for the role of CTSs in the perfor-

mance of the OPV devices and for solvent effects on the energetics of CTSs.

1.2 Charge Transfer State

In the power conversion process, an intermediate state exists between the bound exciton

and free charge carriers, it has multiple names which can be used interchangeably or to serve

different purposes. These names include charge transfer state, charge transfer excitons,

exciplex, polaron pairs, geminate pairs [11, 13]. In this thesis, charge transfer state will be

used.

Charge transfer is one of the most important processes in a variety of photochemical,

photophysical, and biological phenomena [40]. In the process of light-to-electricity conver-

sion occurring in organic solar cells such as BHJ devices, excitons are created by absorbing

photons in the electron donor domain and then diffuse to the heterojunction interface to

dissociate into free charges. The existence of CTSs can be observed in experiments by using

ultrafast transient absorption spectroscopy [15] or steady-state and time-resolved photolu-

minescence (PL) techniques [11]. Although intensive research effort has been made, the

mechanism of free charge generation in BHJs is still unclear. Much research suggests that

interfacial CTSs play a significant role in the generation of free photocarriers. These states

are also involved in singlet fission processes, thus providing a possible way to increase the
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conversion efficiency [41]. It has been proposed that high-lying singlet states, i.e., hot ex-

citons, could directly convert to hot interfacial CTSs which immediately yield free charge

carriers [15, 42] due to the excessive energy. On the other hand, there are experimental

results [10, 12] suggesting that vibrationally equilibrated or cold CTSs could also serve as

precursors of free charges. In addition, the results of transient absorption spectroscopy re-

veal that the electric field generated by interfacial CTSs may affect the optical transitions

in the surrounding molecules and cause ultrafast free charge generation [43]. There are also

other works [17, 44, 45] such as the observation of polaronic signature within 100 fs but no

further relaxation in the resonance Raman spectroscopy which suggests direct exciton disso-

ciation into free charges [46]. The mechanism of resonant tunneling for delocalized excitons

in the presence of strong vibronic coupling may also facilitate the ultrafast long-range charge

separation [47–49]. Nevertheless, the CTS is a crucial factor in ultrafast charge separation

processes in BHJ materials and deserves substantial research attention.

Electronic excitations in a multichromophoric system such as conjugated polymers are

usually tightly bound excitons which are numerically difficult to characterize due to their

many body nature. Compared to inorganic semiconductors, the low dimensionality (quasi-1D

or 2D) and low relative permittivity (ε = 2− 4) of organic conjugated molecules strengthen

the electron-hole interaction and result in relatively small exciton size and large exciton bind-

ing energy (0.3-0.5 eV) that cannot be perturbatively treated. Such fact further complicates

the theoretical simulation on the corresponding excited-state processes. Another difficulty

in excited-state simulations comes from the interaction between the reacting molecular sys-

tem and its surrounding polarizable media such as a solvent or solid state matrix. Due to

the difference in electrostatic dipole between excitations such as intermolecular CTSs and

intramolecular excitations, quantitative modeling of the excited-state energetic alignment is

a non-trivial computational task that requires methods not only to account for the afore-

mentioned strong excitonic effect but also to correctly model the polarizable environment

with respect to the excitation.
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A thorough understanding of CTSs is crucial to obtain an optimal design for the ideal per-

formance of organic solar cells. The expression for estimating the PCE is η = JSC×VOC×FF
Pinc

,

where JSC is the short-circuit current density, which directly depends on the external quan-

tum efficiency, VOC is the open circuit voltage, FF is the fill factor, and Pinc is the power

density of the incident light. The maximum open circuit voltage is determined directly by

the energy of CTSs [13].

The dielectric environment of the OPV devices also has a considerable impact on the

overall performance. Various studies have shown that increasing the ratio of the component

with higher dielectric constant (ε) (usually fullerenes) or using polymers with larger ε, thus

providing a greater spatially averaged permittivity, leads to a lower CTS energy and a more

efficient charge dissociation [50–53]. In the next section, a brief overview of the role of solvent

effect on the CTS energy will be given.

1.3 Solvent Effects

A major concern in the simulation of CTS comes from the interaction between the molec-

ular system and its surroundings such as solvent or solid state. Many works have been per-

formed in vacuo, but in order to take into account the influence of the dielectric condition

on the electronic properties of the material, the solvent models must be applied in calcula-

tions. Incorporating solvent in a quantum chemistry calculation of a modestly large organic

molecule is nontrivial if both solute and solvent are treated quantum mechanically. A com-

mon solution is to deal with the solvent in a continuum manner and only apply quantum

mechanical treatment to the solute molecule.

The Stokes shift is used to characterize the difference between absorption and emission

spectra of the same electronic transition, which is caused by the different response time of

the various degrees of freedom of the solvent. The interaction between the solute molecule

and the solvent system can be partitioned into to two parts, fast and slow. When a vertical

excitation takes place in the solute, the solvent fast degrees of freedom readjust to the solute

excited state density instantaneously, whereas the solvent slow degrees of freedom are in the
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unrelaxed configuration corresponding to the solute ground state density. This situation is

called nonequilibrium solvation and is usually described by the optical dielectric constant

[54]. After a certain delay, the solvent slow degrees of freedom reorganizes so that both slow

and fast components are in equilibrium with the solute excited state configuration, which

is named equilibrium solvation and can be represented by both the optical and the static

dielectric constant [55, 56].

The environmental polarization can alter the excited-state electronic structure of the

solute and vice versa [57]. In organic semiconductors, the CTSs are notably sensitive to

the nearby solvent polarization because of their large electrostatic dipoles [58]. Research

has shown that the electrons localized on an electron donor can be stabilized by solvent

polarization [59], then as the environment becomes more polar, the energy of CTS decreases

[56]. Meanwhile, the exciton binding energy and charge recombination are reduced, leading

to more free charges and better device performance [19, 20, 60–64].

The CT excitations in solution can be computed by adopting basic continuum models

where the solvent is a continuum dielectric hosting the solute in a cavity [65]. In such a

model, the continuous dielectric medium is described by a constant referred to as dielectric

constant or relative permittivity. The solvation energy can then be obtained by solving the

electrostatic (Poisson) problem for the cavity surface charge induced by the solute electron

density upon excitations [66]. An example of such approach is the Linear Response-Time

Dependent Density Functional Theory (LR-TDDFT) method, which however, often under-

estimates the CT energy correction because the solvent polarization is evaluated from the

transition density rather than the excited-state density [67–69]. One way to address this

deficiency is to use the so-called state-specific (SS) solvation approach, in which the correc-

tion on the transition energy is computed by making the excited-state density self-consistent

with the corresponding solvent polarization. As shown in previous studies [55, 69–72], the

SS approach is generally reliable at determining the energy correction associated with the

charge redistribution of the solute upon the electronic transition. However, the SS method
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is much more computationally demanding than the LR model because it requires external

iterations to reach self-consistency between the solvent potential and the electron density of a

specific excited state. This requires separate computations for each excited state of interest,

whereas the LR method can calculate multiple states at once. A detailed formulation and

comparison of the two solvent models, LR and SS, will be examined in the next chapter.

The aim of this thesis is to study the solvent effects on the energetics of excited states,

especially CTS, in OPV devices during a light-to-electricity power conversion process compu-

tationally. In Chapter 2, the computational methods will be reviewed, a systematic analysis

of the one-electron transition density matrix (TDM) will be formulated to identify exci-

tonic and charge transfer excitations, and then two solvation models will be derived and

compared. In Chapter 3, these methods will be applied to study a typical organic molecular

system and investigate how the solvent polarity affects the alignment of excitation energetics.

Conclusions and outlook will be given in the last Chapter.
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CHAPTER 2 COMPUTATIONAL BACKGROUND

2.1 Overview

Generally, in organic photovoltaics, the exciton binding energy and electron-hole sepa-

ration lie between those of Frenkel excitons [73] and Wannier-Mott excitons [74]. Therefore

both excitonic and charge transfer characters may exist simultaneously in the photoexcita-

tion of conjugated compounds which further complicates the description of the corresponding

electronic structures [75–79]. An intermolecular Charge Transfer (CT) state is formed with

prominent charge displacement between neighboring molecules and is often followed by a

strong Stark effect due to its large electric dipole moment. In contrast, an excitonic (EX)

state is associated with limited charge movement and the electron and hole are relatively

tightly bound. Therefore, one can formally distinguish a CT state from EX states by ex-

amining the static dipole moments. However, the EX and CT characters often coexist in

one excitation with a varying degree of mixing. Examination of the corresponding transition

density matrix (to be specified in Section 2.2.1) provides a more accurate estimate of the

CT characters for a given excited state.

In the past two decades, TDDFT has become a routine technique for excited-state com-

putation because of its favorable accuracy-to-cost ratio [80]. In the Kohn-Sham (KS) formal-

ism the Schrödinger equation, in terms of non-interacting electron density, can be solved by

the self-consistent field method with the approximate exchange-correlation (XC) functional

representing molecular Hamiltonian [81]. The linear response TDDFT based on Casida’s

formulation has been widely used to compute electronic excitations and is programmed in a

variety of electronic structure codes [82]. However, in the case of strong excitonic effect in

conjugated structures, TDDFT method often fails to predict electron-hole interaction effects

[83–85], the energies of CT excitations [81, 86], as well as material band gaps and chem-

ical reaction barriers [87]. Improvements can be achieved by introducing the charge/spin

constraints on the electronic density obeying chemical intuition such as constrained DFT

method [59, 65, 88].
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An alternative way to eliminate the delocalization error in XC functionals is to adopt

hybrid functionals that involve nonlocal exchange potential with range separation [89, 90].

CAM-B3LYP [91], ω97X [92] and screened range-separated hybrid (SRSH) [93] are examples

of long-range-corrected models, where the exchange potentials at short-range and long-range

are approximated separately.

The van der Waals interactions between molecules are essential in determining molecular

structures and conformations for large molecules and aggregates [94, 95]. A prevalent way

to account for these interactions is to add empirical dispersion corrections to the underlying

functional. Popular models include Petersson-Frisch [96] and Grimme’s [97–99] models which

are reliable to use together with a variety of XC functionals when computing large molecular

systems.

Considering all the aforementioned factors, many studies on the CT transitions in organic

semiconductors have been conducted using different techniques. For example, the energet-

ics of CT excitations at organic interfaces have been calculated based on SRSH functional

[100]. This study demonstrated agreement with the experimental values for the CTS en-

ergies of the donor/acceptor complexes such as pentacene/C60 and poly-3-hexylthiophene

(P3HT)/PCBM. Zheng and coworkers have developed several protocols to compute CT

state energies for conjugated molecules in polar solvent. By employing the Baer-Neuhauser-

Livshits (BNL) functional and PCM for solvent effect in the constrained DFT method, they

showed that solvation can considerably affect the CTS energies [65]. This observation suc-

cessfully explained the enhanced red-shift between the absorption and emission spectra of

stilbene-functionalized octahedral silsesquioxanes [101]. A similar protocol also reproduces

the solvated CTS energies for a series of functionalized anthracene and tetracyanoethylene

dimers [65]. Nieman et al. employed TDDFT with range-corrected CAM-B3LYP functional

to simulate the CTSs in P3HT: fullerenes complex separated by aligned oligothiophenes.

Combined with experimental studies, their work revealed that the CT process can be im-

proved by the dielectric environment [21]. In this Chapter, the computational methods for



18

studying the characteristics of electronic excitations will be examined by means of a detailed

analysis on the one-electron transition density matrix, and the formulation of solvation mod-

els for calculating excitations in a dielectric environment will be derived.

2.2 Analysis of Excitonic and Charge Transfer Interactions

In this section, a detailed analysis of the one-electron transition density matrix will be

used to study the properties of electronic transitions. First, the method of how to formulate

the transition density matrix will be shown, then a real space analysis on the matrices will

be given, and finally, a numerical procedure to calculate the degree of charge transfer for

each excited state will be proposed.

2.2.1 Transition Density Matrix

The density matrix is a powerful tool for studying the optical properties of large or-

ganic molecules since it is computationally feasible and carries the essential information on

electronic excitations.

The charge density of an orbital a adopts a form

ρ̄aa = 〈g|C†
aCa|g〉 , (2.1)

where |g〉 represents the ground-state many-electron wave function and C†
a/Ca is the

creation/annihilation operator.

The Hohenberg-Kohn theorems prove that the ground state density uniquely determines

the properties of the system, thus the charge distribution and ground state energy can be

calculated from the charge density.

The single electron density matrix can be formulated as

ρνµab ≡ 〈ν|C†
aCb|µ〉 , (2.2)

where |ν〉 and |µ〉 are electronic states and a, b denote atomic orbitals. So ρνν represents

the reduced single-electron density matrix of state ν and ρνµ is the transition density matrix

between states ν and µ.

For a molecular system driven by an external electric field, the time-dependent wave
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function can be written as:

Ψ(t) =
∑

ν

Cν(t) |ν〉 , (2.3)

and its density matrix is given by

ρab(t) ≡ 〈Ψ(t)|C†
aCb|Ψ(t)〉 =

∑

νµ

C⋆
ν(t)Cµ(t)ρ

νµ
ab , (2.4)

so the time-dependent single-electron density matrix ρab(t) can be obtained from ρνµab , which

is density matrix of the transition between state ν and µ.

2.2.2 Real Space Representation of Transition Density Matrix

The ground state properties can be calculated from the ground state density matrix

ρggab ≡ 〈g|C†
aCb|g〉. Its diagonal elements ρggaa can be used for population analysis, and the off-

diagonal elements ρggab can represent the bonding between atomic orbitals a and b. Similarly,

for transition density matrix ρgνab (transition from ground state |g〉 to excited state |ν〉), the

diagonal elements ρgνaa denote the net charge induced on atomic orbital a, whereas the off-

diagonal elements ρgνab represent the joint amplitude of an extra electron appearing on orbital

a and a hole appearing on orbital b [102].

The flow of the charges induced by the optical transition can be captured with transition

density matrix. The charges belong to different atomic orbitals in ρνµab and need to be

contracted to each atom. A procedure proposed by Tretiak and Mukamel [102] is applied for

this task. Conventionally, the hydrogen atoms are ignored in this procedure since they have

negligible contributions to the delocalized electronic transitions. For non-hydrogen atoms,

the total induced charges on atom M are given by the sum of diagonal elements

(ρgν)M =

∣

∣

∣

∣

∣

∑

aM

(ρgν)aMaM

∣

∣

∣

∣

∣

(2.5)

and the effective electronic coherence between atom M and N is denoted by the average over
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all off-diagonal elements

(ρgν)MN =

√

∑

aM bN

[(ρgν)aM bN ]
2 (2.6)

where aM and bN are the atomic orbitals of atom M and N , respectively.

Following this scheme, an electronic density matrix of the same dimension as the number

of non-hydrogen atoms in the molecular system can be obtained. Contour charge density

maps can be made from these matrices to visualize the collective electronic motions of each

transition.

2.2.3 Charge Transfer Character

A procedure has been formulated to obtain and visualize the transition density matrix

in both atomic orbital space and real space. Next, it is necessary to look at how to perform

a quantitative analysis of the transition density matrix to get details on the character of the

electronic excitations.

For a molecular system having more than one chromophore, the electronic transitions

can be dominated by either EX or CT character. By visually examining the charge contour

plots of the transition density matrix of certain excited state one can determine whether this

transition is dominated by EX or CT character. Moreover, a detailed numerical analysis

can be formulated to get a quantitative measure of the degrees of CT character for each

electronic transition.

In a molecular system comprising of two parts, there are four possible types electronic

excitations: local transition on each monomer and charge transfer between two parts, see

Figure 2.1 for illustration. Furthermore, these four possible types of transitions can interact,

creating four resonance states [103]. Following the naming conventions used by Chandra and

Lim, these states are referred to as σ, γ, δ and ρ [104].
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Figure 2.1: Schematic illustrations of one-electron excitation in a dimer molecular system,
with two monomers A and B. (0) for ground state, (1) for local excitation (excitonic state),
(2) for charge transfer state, (1) and (2) are represented with localized orbitals. The linear
combinations of (1) and (2) provide the delocalized states as (3) and (4).

The molecular system in Figure 2.1 is consisted of two monomers A and B, each having

two molecular orbitals: i (initial) and f (final) for monomer A; i′ and f ′ for monomer B. If

the two chromophores are considered as having weak interactions (or the separation between

two monomers being at an intermediate (6 − 150 Å) to large (> 150 Å) range), then the

total wave function can be given by the product of the wave functions of A and B, ΨA and

ΨB, respectively.

ΨTot = NM(ΨAΨB), (2.7)

where N is the normalization constant and M is the antisymmetrizing operator. Since

A and B are weekly interacting, the interaction terms can be omitted and the Hamiltonian

can be written as HTot = HA +HB with the total energy ETot = EA + EB.

However, the main concern is in the molecular systems at the short range(3 − 6Å). In

particular, the aim is to study the electron transfer between the different fragments of the

whole system, so the interactions have to be considered. For a pair of two-level systems, the

wave function for the closed shell ground state |g〉 shown in Figure 2.1 (0) can be given as:

|g〉 = |AB〉 = 2−1/2 |(core) i ī i′ ī′〉 , (2.8)
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where (core) represents all the orbitals except the last four electrons. i, i′ are associated

with electrons of α spin and ī, ī′ for electrons of β spin.

The four localized excited states (two excitonic and two charge transfer), shown in Figure

2.1 (1) and (2), can be expressed as:

|A⋆B〉 = 2−1/2 |(core) i′ ī′ [i f̄ + ī f ]〉 , (2.9)

|AB⋆〉 = 2−1/2 |(core) i ī [i′ f̄ ′ + ī′ f ′]〉 , (2.10)

|A+B−〉 = 2−1/2 |(core) i′ ī′ [i f̄ ′ + ī f ′]〉 , (2.11)

|A−B+〉 = 2−1/2 |(core) i ī [i′ f̄ + ī′ f ]〉 . (2.12)

For a transition from orbital s to orbital r, the single excitation operator Ers is defined

as:

Ers |m1m2 . . . 0r . . . 1s . . .〉 = C†
rCs |m1m2 . . . 0r . . . 1s . . .〉 (2.13)

= (−1)θ(r−s) |m1m2 . . . 1r . . . 0s . . .〉 , (2.14)

where the sign factor (−1)θ(r−s) is determined from θ(r−s) = θr − θs, which can be consid-

ered as the number of occupied spin orbitals occurring between the locations corresponding

to the spin orbital φr and φs in the wave function |m〉 [105]. With the single excitation

operator and the Hartree-Fock ground state |g〉, the aforementioned four localized states can

be written as:

|A⋆B〉 = 2−1/2Efi |g〉 , (2.15)

|AB⋆〉 = 2−1/2Ef ′i′ |g〉 , (2.16)

|A+B−〉 = 2−1/2Ef ′i |g〉 , (2.17)

|A−B+〉 = 2−1/2Efi′ |g〉 . (2.18)

At long intermolecular distances, these wave functions exist as degenerate pairs [106],

and the true eigenfunctions are equal mixtures of the following delocalized states:
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|σ〉 = 2−1/2(|A⋆B〉 − |AB⋆〉) (2.19)

=
1

2
(Efi − Ef ′i′) |g〉 , (2.20)

|γ〉 = 2−1/2(|A⋆B〉+ |AB⋆〉) (2.21)

=
1

2
(Efi + Ef ′i′) |g〉 , (2.22)

|δ〉 = 2−1/2(|A−B+ + |A+B−〉〉) (2.23)

=
1

2
(Efi′ −Ef ′i) |g〉 , (2.24)

|ρ〉 = 2−1/2(|A−B+ − |A+B−〉〉) (2.25)

=
1

2
(Efi′ −Ef ′i) |g〉 . (2.26)

These expressions are based on localized orbitals. They can also be given by the de-

localized basis as illustrated in Figure 2.2 [106, 107]. The detailed equations are omitted

here, since the aforementioned representations contain adequate information for electronic

transition properties analysis.

Figure 2.2: Molecular orbitals of a dimer (monomer A and B) system represented in the
localized and delocalized orbital space.

To analyze these excited transitions, the one-electron transition density matrix ρgνab for-

mulated in the last section can be used,
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ρgνab = 〈g|C†
aCb|ν〉 = 〈g|Eab|ν〉 , (2.27)

where the excitation operator Eab is used to denote the transition from orbital b to orbital

a.

In an orthogonal basis of localized orbitals the transition density matrix can be expressed

as ρ
gν,[LO]
ab . If the orbitals a and b belong to the same monomer A or B, the transition should

be considered a local excitation. If a and b are associated with different fragments, the

transition is a charge transfer excitation. Following the approach developed by Luzanov

[108] and Lischka [107], a concept called charge transfer number Ων
AB can be defined as

Ων
AB =

1

2

∑

a∈A
b∈B

(ρ
gν,[LO]
ab )2, (2.28)

where A and B represent two monomers, a and b are molecular orbitals of A and B, respec-

tively.

To generalize the calculation of charge transfer number to the nonorthogonal basis of

atomic orbitals [107], the above equation can be written as:

Ων
AB =

1

2

∑

a∈A
b∈B

(ρgν,[AO]S [AO])ab(S
[AO]ρgν,[AO])ab, (2.29)

where ρgν,[AO] is the one-electron transition density matrix of excited state ν in AO basis and

S [AO] is the overlap matrix.

The charge transfer character (CT) can be defined as:

CT =
1

Ω

∑

A
B 6=A

Ων
AB, (2.30)

where Ω is the normalization constant which is close to 1. For a completely charge transfer

state, the value of CT should be 1; whereas for a completely localized or excitonic state, CT

is 0.

In practice, the two monomers A and B are categorized as either donor (D) who donates

electrons or acceptor (A) who accept electrons. The electronic excitations of this dimer
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system can be described by four charge transfer numbers,

CT (DA) =
1

Ω

∑

D
A 6=D

Ων
DA, (2.31)

CT (AD) =
1

Ω

∑

A
D 6=A

Ων
AD, (2.32)

DD =
1

Ω

∑

D

Ων
DD, (2.33)

AA =
1

Ω

∑

A

Ων
AA, (2.34)

where CT (DA)/CT (AD) represents the charge transfer from (donor to acceptor)/(acceptor

to donor), and DD/AA is the charge localization on donor/acceptor.

2.3 Solvation Models: Linear-Response and State-Specific Meth-
ods

There are two ways to take the solvent into account in a theoretical calculation, explicit

and implicit. In an explicit formalism, the individual solvent molecules are included. The

solvent-solute polarization and solvent-solvent interactions are described using empirical po-

tentials. With an appropriate number of solvent molecules in the proper configurations, the

explicit model can provide an accurate estimation of the electronic properties of the solute

molecules and can be used to explore properties such as hydrogen bonding and viscosity.

However, this method is too computationally demanding and prohibitively expensive for

moderate size systems, let alone large organic molecules. In an implicit formalism, the sol-

vent is treated as a polarizable continuum with a dielectric constant ε, instead of averaging

over numerous configurations of individual solvent molecules. The solute is located in a cav-

ity, surrounded by a continuous dielectric medium. The solute-solvent mutual polarization

is simulated using a self-consistent reaction field (SCRF), where self-consistency should be

reached between the charge density of the solute molecule and the solvent potential. The

interactions can be illustrated in a three-step process using a self-consistent picture: the

solute electron density polarizes the solvent by inducing charge redistribution on the cavity
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surface, then the induced charges modify the charge density of the solute, finally after a

certain number of interactions a balance is achieved between the solute electron density and

the induced solvent potential.

One of the most commonly used implicit models is the polarizable continuum model

(PCM) [67]. The electronic properties of the solute molecule under the influence of dielec-

tric environment can be studied by using PCM coupled with a quantum mechanical (QM)

description of the solute [66]. In the solvent domain, an electrostatic problem (Poisson prob-

lem) can be formulated and solved using various approaches, such as the apparent surface

charge (ASC), the multiple expansion (MPE) method, and the generalized Born approxima-

tion (GBA) [67]. In the solute domain an effective Hamiltonian can be written to include the

solvent-solute interactions so that, upon applying a perturbative or a variational treatment

of the QM problem, electronic excitation energies can be obtained.

Within the QM continuum solvation formalism two different schemes, LR and SS, are

usually used to calculate the electronic excitation energy [55]. This section is devoted to the

formulation of these two solvent approaches in the context of the basic polarizable continuum

model. First, the continuum model and the electrostatic problem are presented, then the

solute charge distribution is treated in a quantum regime coupled with the effects of the

environment. In the second part, two solvent schemes will be formulated and compared.

2.3.1 Basic Continuum Solvation Model

According to J. Tomasi et al. [109], in a focused model, the solute-solvent system can be

partitioned into two parts, one focused F, and the other remainder R. The solute is included

in the focused part since it requires a more detailed description while the solvent is considered

in the remainder part. For such a system, the Hamiltonian can be written as:

ĤFR(f, r) = ĤF (f) + ĤR(r) + Ĥ int(f, r), (2.35)

where f and r stand for the degrees of freedom of F and R, respectively.

The solvent degrees of freedom are included in two terms, pure solvent ĤR(r) and inter-

action Ĥ int(f, r). By eliminating the solvent term and only considering the solvent in the



27

interaction counterpart, a significant simplification can be made to the continuum solvation

models, resulting in an effective Hamiltonian

ĤFR
eff(f, r) = ĤF (f) + Ĥ int(f, r). (2.36)

This procedure helps to avoid a detailed consideration of the solvent and considerably

simplifies the calculations. However, the solvent degrees of freedom (i.e., r) are still included

in the interaction term. The model can be further simplified by bringing in the solvent

response function, and then the effective Hamiltonian has a form

ĤFR
eff (f, r) = ĤF (f) + V̂ int[f,Q(r, r ′)], (2.37)

where the solvent response function Q(r, r ′) is expressed as a sum of separate terms

representing different contributions of the solute-solvent interaction. These include electro-

static, dispersion, repulsion and cavity formation, among which electrostatic interaction is

the dominant force, thus only this term is taken into account in the basic model [109].

Electrostatic Problem

In a basic polarizable continuum model, the solute is placed in a cavity, surrounded by the

solvent. The charge distribution ρM of the solute polarizes the solvent, which in turn modifies

the solute charge density. These interactions can be seen in a self-consistent picture, requiring

an iterative procedure for obtaining an explicit numerical solution. The final value of the

solute charge density ρM , reached upon convergence of the iterative procedure, determines

the interaction potential in Eq. (2.37).

An electrostatic problem as a Poisson equation is formulated to find the potential.

−∇[ǫ(r)∇V (r)] = 4πρM(r), (2.38)

−∇2V (r) = 4πρM(r), ǫ(r) = 1 within cavity, (2.39)

−ǫ∇2V (r) = 0, ǫ(r) = ǫ outside of cavity. (2.40)

V is the sum of the electrostatic potential VM and the reaction potential VR. VM is

generated by the solute charge distribution ρM . VR is generated by the polarization of the

dielectric environment. The reaction potential can be simulated by an apparent surface
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charge (ASC) distribution σ(s) on the boundary between the solvent and the solute, i.e., the

surface of the cavity C [66].

V (r) = VM(r) + Vσ(r). (2.41)

In the ASC method, the solvent potential can be represented as:

Vσ(r) =

∫

Γ

σ(s)

| r− s |
with Γ = ∂C. (2.42)

With appropriate boundary conditions, the potential V in Eq. (2.38) can be uniquely

determined.

2.3.2 Electronic Excitations in QM-PCM Formulation

To calculate the solute charge distribution and how it can be affected by the dielectric

medium, it is necessary to solve the Schrödinger equation with an effective Hamiltonian

defined as the sum of the vacuum Hamiltonian of the solute molecule and an electrostatic in-

teraction term describing the mutual polarization between solute and solvent, corresponding

to Eq. (2.37):

Ĥeff = Ĥvac + V̂ int. (2.43)

In what follows two different approaches to calculating the excitation energies, namely,

SS and LR methods will be examined.

State-Specific Method

The state-specific method uses perturbation theory to solve the Schrödinger equation for

the states of interest and calculate the excitation energies as the differences between the

corresponding values of the free energy functionals [55].

The stationary states Ψi of a solute can be obtained as the eigenfunctions of the time-

independent Schrödinger equation:

HM(Ψi) |Ψi〉 = Ei |Ψi〉 , (2.44)

where HM(Ψ) = Hvac
M + V (Ψi). V (Ψi) describes the interaction of the solute with the

solvent. V (Ψi) adopts a form:
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V (Ψi) = V̂ 〈Ψi| Q̂ |Ψi〉 , (2.45)

where V̂ is the molecular electrostatic potential operator and Q̂ is the apparent charge

operator. The electrostatic potential generated by the solute M is described by apparent

surface charges evenly distributed on the surface of the cavity containing M . Q̂ is used to

represent the polarization of the solvent under the influence of this potential.

Due to the nonlinear nature of the effective Hamiltonian, a new functional has to be

defined in order to solve Eq. (2.44), which can be viewed as the free energy functional:

G(Ψi) = 〈Ψi|HM(Ψi) |Ψi〉 −
1

2
〈Ψi|V (Ψi) |Ψi〉 , (2.46)

Hereafter the state wave function Ψi will be referred to as i.

The excitation energy can be calculated as the difference between the excited and the

ground state (GS) value of G:

∆G0i = G(i)−G(0). (2.47)

The above definition of the excitation energy assumes instantaneous adjustment of the

solvent configuration to excitation of the solute molecule, i.e., the solvent and the solute are

in equilibrium. The non-equilibrium case will be examined later.

The nonlinear Schrödinger equation Eq. (2.44) can be solved perturbatively. The zero-

order Hamiltonian can be written as:

HM(0) = Hvac
M + V (0). (2.48)

Assuming the unperturbed solutions are known:

HM(0) |i(0)〉 = E
(0)
i |i(0)〉 , (2.49)

where |i(0)〉 represents the ith electronic state under the reaction field of the ground state

|0〉.

The excitation energy corrected to first order has a form:
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∆GI
0i = GI(i)−G(0) (2.50)

= 〈i(0)|HM(0) |i(0)〉 − 〈0|HM(0) |0〉+
1

2
〈i(0)|V (i(0)) |i(0)〉

− 〈i(0)| V (0) |i(0)〉+
1

2
〈0|V (0) |0〉

(2.51)

= ∆E
(0)
0i +

1

2
[〈i(0)| V (i(0)) |i(0)〉+ 〈0|V (0) |0〉]− 〈i(0)| V (0) |i(0)〉 , (2.52)

and can be recast in terms of the solvation operators V̂ and Q̂:

∆GI
0i = ∆E

(0)
0i +

1

2
[〈i(0)| V̂ |i(0)〉 − 〈0| V̂ |0〉] · [〈i(0)| Q̂ |i(0)〉 − 〈0| Q̂ |0〉], (2.53)

where |i(0)〉 is the zero-order approximation for the excited state |i〉. ∆E
(0)
0i is the zero-

order excitation energy that corresponds to the electronic transition from the ground state

to the unperturbed ith electronic state under V (0), which is the fixed reaction field that

corresponds to the ground state; the rest of the terms describe the interaction occurring

from the change in reaction field from V (0) to V (i(0)), which is the reaction field created by

the unperturbed excited state |i(0)〉.

When non-equilibrium effects are considered, the solvent-solute interaction term V is

partitioned into two parts, a dynamic (fast) part Vd and an inertial (slow) part Vin.

V (Ψ) = Vin(Ψ) + Vd(Ψ), (2.54)

where in− stands for inertial and d− stands for dynamic.

Then a non-equilibrium free energy adapts a form:

Gneq(i, 0) = 〈i|Hvac
M |i〉+

1

2
〈i|Vd(i) |i〉+ 〈i| Vin(0) |i〉 −

1

2
〈0|Vin(0) |0〉 (2.55)

= 〈i|Hvac
M + V (0) |i〉+

1

2
〈i| Vd(i) |i〉 − 〈i|Vd(0) |i〉 −

1

2
〈0|Vin(0) |0〉 . (2.56)

A non-equilibrium nonlinear Schrödinger equation can be obtained as [110, 111]:

[Hvac
m + Vin(0) + Vd(i)] |i〉 = Eneq

i |i〉 . (2.57)

Using a similar perturbative technique:

{Hvac
m + V (0) + λ[Vd(i)− Vd(0)]} |i〉 = Eneq

i |i〉 , (2.58)

with a zero-order Hamiltonian Eq. (2.48) and its solution Eq. (2.49). The perturbative

non-equilibrium free energy is:
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Gneq,λ(i, 0) = 〈i|Hvac
m + V (0) + λ[Vd(i)− Vd(0)] |i〉

−
1

2
λ[〈i|Vd(i) |i〉 − 〈0|Vd(0) |0〉]−

1

2
〈0|V (0) |0〉 .

(2.59)

Substituting the energies and wave functions as a power series of λ, the non-equilibrium

excitation energy, corrected to first-order has the following form:

∆Gneq,I
0i = Gneq,I(i, 0)−G(0) (2.60)

= ∆E
(0)
0i +

1

2
[〈i(0)| V̂ |i(0)〉 − 〈0| V̂ |0〉] · [〈i(0)| Q̂d |i

(0)〉 − 〈0| Q̂d |0〉], (2.61)

where Q̂d is the apparent charge operator of the dynamic response of the solvent.

Comparing Eq. (2.53) and Eq. (2.61), it can be observed that the only difference is

the apparent charge operator, i.e., only the dynamic part of the solvent-solute interaction is

included in the non-equilibrium situation.

For the other solvent approach, namely linear-response, a similar excitation energy ex-

pression corresponding to ∆Gneq,I
0i in Eq. (2.61) should be derived. This will allow the

differences between the two methods to be compared.

Linear-Response Method

In the linear-response approach, the excitation energies are determined directly as the

singularities of the frequency-dependent linear response functions of the solute molecule in

the ground state. Therefore the explicit calculation of the excited state wave functions can

be avoided [55].

Contrary to the SS approach, whose states are the solutions of time-independent Schrödinger

equation, the LR method starts with the nonlinear time-dependent Schrödinger equation

with a time-dependent Hamiltonian and the solutions are the states of the solute under a

time-dependent external field given by:

HM(Ψ) |Ψ〉 = i
∂

∂t
|Ψ〉 , (2.62)

HM(Ψ) = Hvac
M + V (Ψ) +W (t), (2.63)

where HM(Ψ) represents the Hamiltonian of the solute molecule M , V (Ψ) is the solvent

potential due to solute-solvent interaction, W (t) denotes the interaction of the solute with
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the external field, and lim
t→−∞

W (t) = 0 since only the adiabatic case is considered.

Through a series of derivations [55], the expressions for first-order correction to the exci-

tation energy corresponding to Eq. (2.61) is given as:

ωI
i = ∆E

(0)
0i + 〈i(0)| V̂ |0〉 〈i(0)| Q̂d |0〉 , (2.64)

∆E
(0)
0i has the same meaning as in Eq. (2.61), representing the zero-order transition

energy of the excitation |0〉 → |i(0)〉 under the fixed reaction field of the ground state; the

rest of the terms describe the energy arising from the interaction between the excitation and

the reaction field.

Comparison of State-Specific and Linear-Response Methods

Now the differences between LR and SS approaches can be examined by comparing the

two excitation energy expressions, Eq. (2.61) and Eq. (2.64). The common term, ∆E
(0)
0i , can

be interpreted as the energy change of the solute when the molecule undergoes an excitation

from the ground state |0〉 to the (unperturbed) excited state |i(0)〉, under the reaction field

V (0). During this transition, the ground state of the solute is always in equilibrium with

the solvent. The difference between the two methods comes from the second term, which

describes the interaction of the solvent configuration with the solute excitation. In such a

process the fast degrees of freedom of the solvent readjust to the change in the charge density

of the solute excited state |i(0)〉. In SS, this term is 1
2
[〈i(0)| V̂ |i(0)〉−〈0| V̂ |0〉] · [〈i(0)| Q̂d |i

(0)〉−

〈0| Q̂d |0〉], which includes the expectation values over both the ground and excited state of

the electrostatic potential operator V̂ as well as the dynamical apparent charge operator

Q̂d. Whereas in LR, the corresponding term is 〈i(0)| V̂ |0〉 〈i(0)| Q̂d |0〉, which has expectation

values over the transition matrix of the operator V̂ and Q̂d. This represents a dynamical

correction to the excitation energy, thus avoiding the explicit calculation of the excited state

wave function.

So far, the analysis of LR and SS methods has been carried out from two different starting

points. SS applies a perturbation on the time-independent Schrödinger equation whereas

LR solves the time-dependent Schrödinger equation under a time-dependent external field.



33

However, a unified formalism can be used to derive the excitation energy expressions for

SS and LR. Bjorgaard et al. [56] compared these two solvent approaches by implementing

conductor-like screening method (COSMO) in the time-dependent self-consistent filed (TD-

SCF) framework started from a von-Neumann-type equation of motion of a single-electron

density matrix.

The corresponding excitation energy expressions they obtained are

∆ΩSS = Tr(TVS(ρ̄k)) (2.65)

for SS method, and

∆ΩLR = Tr(TVS(P )) + Tr(ξTVS(ξ)) (2.66)

for LR method, where VS is the COSMO effective solvent potential.

ρk = P + νk, (2.67)

νk = ξ(interband) + T (intraband), (2.68)

ρ̄k = P + Tk. (2.69)

P is the ground state density matrix, ρk is the excited state density matrix for state k, and

νk is the transition density matrix. νk can be divided into two parts in a molecular orbital

picture: ξ(interband) represents hole→particle or particle→hole transitions; T (intraband)

denotes hole→hole or particle→particle excitations. A simplification is made by neglecting

the interband component to obtain ρ̄k. Note that similar to the comparison made at the

beginning of this section, the SS approach requires explicit calculations of the density matrix

of a specific excited state k, whereas the LR method only needs the transition density.

By employing a dipole approximation with the dipole moment defined as µρ = Tr(µ̂ρ)

for an arbitrary density matrix ρ, where µ̂ is the dipole moment operator, Bjorgaard and

coworkers also obtained the approximated expressions for the transition energy corresponding

to Eq. (2.61) and Eq. (2.64) as:

∆ΩSS
∝
∼ µT · µP + µT · µTk

, (2.70)

∆ΩLR
∝
∼ µT · µP + µ2

ξ. (2.71)
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It can be observed that the first term in Eq. (2.70) and Eq. (2.71), µT · µP , corresponds

to ∆E
(0)
0i = 〈i(0)|HM(0) |i(0)〉 − 〈0|HM(0) |0〉 in Eq. (2.64) and Eq. (2.61), representing the

electronic interaction energy of the ground state (P or |0〉) with the change in excited state

charge density (T or |i(0)〉). For the second term in Eq. (2.70) and Eq. (2.71), µT · µTk
is

associated with 1
2
[〈i(0)| V̂ |i(0)〉−〈0| V̂ |0〉]· [〈i(0)| Q̂d |i

(0)〉−〈0| Q̂d |0〉], which can be considered

as the correlated readjustment of the solvent configuration with respect to the excited state

electron density; µ2
ξ is similar to 〈i(0)| V̂ |0〉 〈i(0)| Q̂d |0〉, which accounts for the dispersion

correction, i.e., the response of the solvent due to the oscillation of the electron density of

the solute molecule at the Bohr frequency [55].
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CHAPTER 3 A TDDFT STUDY ON THE PCPDTBT:PCBM

LOW BAND GAP SYSTEM

This chapter is reproduced with permission from the Journal of Photon-

ics for Energy 8(3), 032215 (21 May 2018). Kangmin Liu, Hao Li, Sergei

Tretiak, Vladimir Chernyak, ”Solvent effects and charge transfer states in or-

ganic photovoltaics: a time-dependent density functional theory study on the

PCPDTBT:PCBM low band gap system”.

3.1 Introduction

Among all the OPV devices, BHJ materials composed of polymeric electron donors

and fullerene-based electron acceptors have gained enormous attention due to their high

power conversion efficiency and numerous technological advantages [112, 113]. PCPDTBT:

PCBM pair shown in Fig. 3.1 represents a promising BHJ family of low band gap copoly-

mer system due to their high charge mobility, good processability, optimal band gap of

PCPDTBT molecule, and the outstanding solubility of PCBM [114–116]. Although the

excited-state properties of these materials have been studied by a variety of theoretical

methods [15, 117, 118], detailed investigation of solvent effects on electronic transitions is

still lacking. The potentially strong dipole-dipole interaction between the BHJ matter and

its surrounding medium may considerably affect excited-state properties and likewise the

generation of free charges. It has been reported that by adding a high permittivity addi-

tive, camphoric anhydride, to an MDMO-PPV: PCBM system, the charge-separated state

energy decreases more rapidly than that of the CTS, resulting in an overall reduction of the

CT exciton binding energy [19]. Loi and coworkers found that by increasing the concen-

tration of PCBM in the PCPDTBT: PCBM bulk heterojunction system, a red shift of the

CTS emission spectra was observed. This can be attributed to the reduction of Coulom-

bic interaction between the electron and hole due to the increase in the average dielectric

constant of the medium (PCBM ∼ 3.9 and polymer ∼ 2.5 − 3) [11, 119]. However, this

phenomenon observed in this particular molecular system has not been reproduced in theo-
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retical calculations. Although a similar trend has been observed for smaller molecular pair

anthracene: tetracyanoethylene (TCNE) using semiempirical approaches with a conductor-

like screening method (COSMO) [56]. Nieman and coauthors studied the energetic ordering

of excited states and the stabilization of CTSs for a P3HT/Oligomers/C60 system and found

that the CTSs are the lowest energy states which can be further stabilized by polar envi-

ronments [21]. However, the correct electronic states alignment has not been recovered in

calculations of PCPDTBT: PCBM. Therefore, this molecular system is taken as a typical ex-

ample to illustrate how the nearby dielectric environment affects electronic excitations and

to reproduce the correct energetic alignment of excited states, especially for CTSs, using

quantum-chemical simulations.

S

S

H3C
CH3

S
S

H3C CH3

S
S

H3C CH3

S

S

H3C

CH3N
S

N

N

S

N

N

S

N

N

S
N

H3CO

O

(a)

(b)

1

2

3

4

Figure 3.1: Chemical structures of (a) Poly[2,6-(4,4-dimethyl-4H-cyclopenta[2,1-b:3,4-b′]-
dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and (b) [6,6]-Phenyl-C61-butyric
acid methyl ester (PC61BM or PCBM)

3.2 Methods

Here the focus is on the low-lying electronic singlet states in the BHJ complex of PCPDTBT:

PCBM. Detailed ab initio simulations on dynamical processes in real BHJ aggregates are

currently numerically forbidden due to the large dimension of the system and the complexity

arising from the configuration of the mixture. Therefore, in this work, the donor: acceptor
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interface is simplifies as a molecular model that consists of a tetramer of the donor oligomer

and a single buckyball. Such a simplified model allows extensive numerical simulations by

probing the effects of several density functionals, geometries and a broad range of dielectric

constants, thus delivering detailed information on solvent effects on the energy level align-

ment. Because the optical band gap in PCPDTBT tends to saturate for oligomers with four

repeat units [115, 117], PCPDTBT tetramer is selected to minimize the numerical cost and

retain the essential physics of interest. Our computational model is an approximation to the

experimental polymer: fullerene blend: it neglects the effects of intramolecular delocaliza-

tions beyond the oligomer length, geometrical conformations due to solid state packing, and

the effects of intermolecular interactions with neighboring polymers and fullerenes that may

also perturb the excited state alignment.

LC hybrid functionals CAM-B3LYP [91] and ωB97XD [120] have been employed together

with the 6-31G(d) basis set for both ground-state structure optimizations and excited-state

calculations. The 6-31G(d) basis was shown to be sufficient in the simulations of BHJ systems

in the comparison with larger cc-pVTZ basis [65]. The Coulomb-attenuating method is used

in CAM-B3LYP functional to modulate the fraction orbital exchange in the XC functional

within the range of 19-65%. To describe intermolecular dispersion interactions binding the

dimer, Grimme’s dispersion correction has been applied together with CAM-B3LYP func-

tional to the DFT-D2 and DFT-D3 levels [98, 99], hereafter referred to as GD2 and GD3.

Compared to CAM-B3LYP, the ωB97XD functional includes more orbital exchange vary-

ing from 22% to 100%. In addition, the empirical dispersion correction is already built in

ωB97XD functional.

3.2.1 Optimization of Geometries

The ground-state geometries of both PCPDTBT and PCBM monomers were optimized in

vacuo using three different schemes, CAM-B3LYP/GD2, CAM-B3LYP/GD3, and ωB97XD.

The optimized monomer structures were then combined together by placing the fullerene

above the center of the PCPDTBT molecule. Specifically, the initial complex is oriented
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such that the center of PCBM is aligned with the second benzothiadiazole segment with the

closest interatomic distance being 3.1Å, whereas the side group of PCBM is placed away from

PCPDTBT to minimize steric hindrance. The complex of PCPDTBT: PCBM was subject to

further ground-state optimization in vacuo with the respective functionals. Different initial

dimer configurations have been approached with the consideration of maximizing the π − π

stacking and minimizing the steric hindrance so that the global optimal structures can be

found.

A tricky part of the monomer optimization is the starting geometry of PCPDTBT. The

original ethylhexyl side chain on the cyclopentane ring is shortened to be a methyl group in

order to avoid unnecessary complexity in the 3D dimensional structure. The original opti-

mized geometry was obtained from Lanzani’s paper [15]. After cleaning and symmetrizing

using GaussView [121], it was re-optimized according to the aforementioned schemes. The

results from different functionals, in Fig. 3.2, show that the general shape is planar but have

a small degree of fluctuation in dihedral angles.

Figure 3.2: Optimized geometries of the polymer molecule PCPDTBT

3.2.2 Excited State Calculation

The lowest 20 vertical excitations of the oligomer, the buckyball, and their complex

have been calculated both in vacuo and in solvent environment with varying static dielectric
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constant using DFT/TDDFT method. The density of states (DOS) of the excitonic states in

the individual PCPDTBT and PCBM has been calculated respectively. The charge transfer

character for the intermolecular CT excitations were evaluated from the calculation of the

dimers.

3.2.3 Applying Dielectric Environment

The simulation in solution was performed using PCM [109] with varying dielectric con-

stant. First, the solvent effect on excited states were evaluated at the LR TDDFT level

[122]. Here the calculations do not require the excited-state density explicitly, thus avoiding

significant numerical cost [55]. Further excited-state computations were performed based

on the SS approach [72], in which the effective solvent potential directly depends on the

excited state density. The energy correction due to solvation is approximated by the free

energy difference between the ground and excited states. Recent studies have shown that

excitations involving significant charge transfer can invoke strong solvent effects in the SS

model, which is missing in the LR counterpart [56, 69].

In the case of vertical excitation, the non-equilibrium solvation procedure associated with

fast solvent response requires optical dielectric constant in addition to the static counterpart.

Both factors are involved in equilibrium solvation, but only the optical one is responsible for

non-equilibrium states. Solvent permittivity including optical dielectric constant (ε∞) and

static dielectric constant (ε0) can be specified for different solvents and solvation scenarios.

Since the dominant solvent effect comes from the static dielectric constant of the solvent, in

this work, the focus is on the solvent effect of static dielectric constant and the frequency-

dependent optical one is left for future study. Specifically, in all simulations the optical

dielectric constant was fixed to ε∞ = 2.0 close to that of dichloromethane, whereas ε0 was

allowed to vary in the range of 3 < ε0 < 30. All calculations were conducted with Gaussian

09 computational package [123].

As for the optimization of the PCPDTBT: PCBM dimer geometry, it is of significant

importance to sought an answer as to whether the solvent would make a significant impact.
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The geometries optimized in vacuo were subject to further optimization in solvent with

various degrees of dielectric strength. The results show that the solvent stabilizes the dimer

structure and the stabilization effects are stronger as the dielectric constant increases, see

Fig. 3.3. And it was observed that after the permittivity of the solvent reaches a certain

value, such as ε0 = 20, the stabilization tends to saturate. In addition, the energy difference

between ground state geometries optimized in vacuo and in solvent is substantially larger

than the average thermal energy at room temperature (1kBT = 25meV ), so both vacuum

and solvated geometries are used in the electronic excited state calculations.

Figure 3.3: The energy of the ground state geometry optimized in vacuo and in solvent with
various dielectric constant, ε0 = 1 represents vacuo, ∆Ω is the energy difference between the
geometries optimized in solvent and in vacuo.

In Gaussian package, the keyword for assigning solvent environment is SCRF=(PCM,

Solvent=Generic, Read), where (Generic) enables the assignment of optical and static di-

electric constant. First, a single-point TD-DFT calculation of the vertical excitation can

be performed with linear response method. Then for the excited states of interest, the

state-specific approach is applied using external iteration with the keyword SCRF=(PCM,

Solvent=Generic, ExternalIteration, Read).
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3.2.4 Calculation of Charge Transfer Character

The intermolecular CT states can be distinguished from ordinary excitonic states by

employing the so-called CT character which can be obtained by averaging over the respective

matrix elements of the transition density matrix [94, 107]. The CT character ranging from

0 to 1 represents completely localized excitation on a single molecule and full CT transition,

respectively. In the present work, the excitations with CT character greater than 0.9 are

defined as intermolecular CT states, less than 0.1 as EX states, and the transitions with

0.1 < CT < 0.9 are referred to as hybrid states [95]. The focus of this work is on the

energetics of the lowest CT state denoted by CT-1 and the lowest two EX states (EX-1

and EX-2). The solvent dielectric environment effects on the energetics and CT character

are studied. The electronic excitations are visualized using the natural transition orbitals

(NTOs) [124] and contour plots of the transition density matrices [102].

Extract Transition Density Matrix and Overlap Matrix from Gaussian RWF

The calculation of charge transfer character requires the extraction of transition density

matrices and overlap matrices from the Gaussian read-write-file. According to the Gaussian

Program Development Features, the RWF number 514 is the overlap matrix and 633 is the

excited-state CI densities (transition density matrices) [125]. After extracting the matrices

from the RWF, the following procedure is applied to prepare the data.

1. Determine the number of excited states nstates and the number of basis functions n.

2. Extract 514 and 633 from RWF using rwfdump command.

3. The raw 514 file starts from a block of header information which has no use for our

analysis. Only keep the part after the line ”Dump of file ...”. Then the overlap matrix

is obtained, which is a lower triangular matrix and needs to be converted to a full n×n

matrix by copying the lower triangle elements to the corresponding positions on the

upper triangle.

4. The raw 633 file also starts from a block of header information. Only the numbers after

the line ”Dump of file ...” should be kept. The number block can be divided into 3
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partitions. The first partition includes a random number and nstates zeros. The second

partition is the transition density matrix needed for later calculations, it has n(n+1)
2

·20

elements. The last partition is 2 · nstates matrix with dimension n × n, 2 stands for

alpha and beta spin of the electrons.

Transition Density Matrix

In the PCPDTBT: PCBM molecular system, there are in total 218 atoms. The molecules

are labeled according to the following scheme: in PCBM number 1-74 are used for non-

hydrogen atoms and 163-176 are used for hydrogen atoms; in PCPDTBT number 75-162

are used for non-hydrogen atoms and 177-218 are used for hydrogen atoms. The basis set

is 6-31G(d). The number of basis functions for each atom can obtained according to Table

3.1.

Table 3.1: Number of basis functions for each atom.

Element C N O S H
Number of basis functions 15 15 15 19 2

A 4 × 4 matrix can be formulated to represent the structure of the transition density

matrix of these two molecules. As shown in Fig. 3.4. Four terms can be used to represent

the charge transfer between PCPDTBT and PCBM for each electronic excited state. These

terms will be examined in details with an example later. The correspondence between the

charge transfer character and the elements of the transition density matrix is shown in Table

3.2.
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Figure 3.4: A schematic representation of the structure of the transition density matrix.

Table 3.2: Representation of Charge transfer and excitonic character by the elements of
Transition Density Matrix.

Charge transfer Excitonic
CT(DA) CT(AD) DD AA

Donor → Acceptor Acceptor → Donor Donor → Donor Acceptor → Acceptor

M21+M23

+M41+M43

M12+M14

+M32+M34

M22+M44

+M24+M42

M11+M33

+M13+M31

The extracted transition density matrices are in the atomic orbital space. Using the

method mentioned in Chapter 2, the matrix is contracted into atom-based real space accord-

ing to the number of basis functions of each heavy (non-hydrogen) atom. Then a contour

plot of the transition density matrix can be drawn for each excited state as an excellent visual

aid for the determination of charge transfer and excitonic character. Fig. 3.5 includes three

example contour plots of transition density matrices with different distributions of charge

transfer character. There are 162 heavy atoms, 74 on the PCBM (Acceptor) part and 88 on
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the PCPDTBT (Donor) part. The contour plot can be divided into 4 blocks corresponding

to the charge transfer character of Acceptor to Donor (AD), Donor to Donor (DD), Accep-

tor to Acceptor (AA) and Donor to Acceptor (DA). Numerical values for charge transfer

character can be obtained using a scheme developed by Luzanov and Lischka [107, 108].

Note that the plots on the left and in the middle are dominated by DD. This means these

two excited states have a large charge delocalization within the donor PCPDTBT molecule.

Therefore they should be considered as excitonic states. Whereas in the plot on the right, the

electronic transition is dominated by DA, which shows a strong charge transfer from donor

PCPDTBT to acceptor PCBM. Hence this excited state should be considered as a charge

transfer state. In summary, the contour plots of transition density matrices of electronic

excited states provide an excellent qualitative measure of the charge transfer.

Figure 3.5: Contour plots of the transition density matrices for three excited states with
one charge transfer number assigned to each block. The axis labels represent indices of non-
hydrogen atoms from PCBM to PCPDTBT (PCBM: 1-74, PCPDTBT: 75-162). The inset
of each plot shows the character of the electronic mode. D stands for Donor and A represents
Acceptor, DA-charge transfer from Donor to Acceptor, AD-charge transfer from Acceptor
to Donor, DD-charge localization within Donor, AA-charge localization in Acceptor.

3.3 Results and Discussion

Using optimal ground-state geometries for PCPDTBT, PCBM, and their complex, the

lowest 20 excited states were computed in vacuo and in solvent with varied ε0. Obtained

excitation energies, oscillator strengths, transition density matrices, and NTO analysis are

detailed in Appendix A Supplementary Information (SI) A. The primary focus is on the
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lowest two excitonic states (EX-1,2) and the lowest CT state (CT-1).

3.3.1 Electronic Excitations in Vacuo

The simulated stick absorption spectra for the 15 lowest states of PCPDTBT, PCBM,

and the complex of PCPDTBT: PCBM computed in vacuo are shown in Fig. 3.6. The

detailed numerical results can be found in SI Table A.1, A.2 and A.3.

Figure 3.6: Stick absorption spectra of PCPDTBT, PCBM, and PCPDTBT: PCBM complex
(from left to right) in vacuo computed at CAM-B3LYP/GD3 (top row), CAM-B3LYP/GD2
(middle row), and ωB97XD (bottom row). The x-axis denotes transition energies Ω, the
y-axis denotes Log10(f), f being unitless oscillator strength of a given transition. States are
color-coded according to the CT character, i.e., blue for EX states with CT ≤ 0.1, green for
hybrid states with 0.1 < CT < 0.9, and red for CT states with CT ≥ 0.9.
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Figure 3.7: Density of states of PCPDTBT: PCBM complex in vacuo computed at (a)
CAM-B3LYP/GD3, (b) CAM-B3LYP/GD2, and (c) ωB97XD. The x-axis denotes transition
energies Ω; the y-axis denotes density of states with arbitrary units.

From Fig. 3.6 and 3.7, it is obvious that the distribution of the excitation energy has one

common feature for all three functionals results, which is that the first excited state is far

away from other states and only the first excited state has a significant oscillator strength.

In addition, the DOS for CAM-B3LYP/GD3 and CAM-B3LYP/GD2 calculations are quite

similar, whereas the energies predicted by ωB97XD are about 0.2 eV blue shifted.

The spectra for the monomers calculated at the three TDDFT levels agree very well

with each other in terms of both excitation energy and oscillator strength. As expected,

the multiple excited states in the PCPDTBT oligomer are optically allowed such as the

lowest energy band-gap transition, which corresponds to the peak at 725 nm in its UV-Vis

absorption spectrum associated with the S0 → S1 transition [115]. In contrast, almost all

excitations in the PCBM are optically forbidden due to the high symmetry of the molecule.

To analyze and compare the EX/CT character in the complex, the excitations of interest

can be visualized using the respective NTOs and contour plots of the transition density

matrices as shown in Fig. 3.8, 3.9, and Fig. A.1, A.2, A.3 in Appendix A SI. First, it can

be seen that the lowest two excited states EX-1 and EX-2 in the complex are associated

with the oligomer; their transition energies are only slightly perturbed by the presence of

the fullerene. Indeed, the lowest excitation is limited within the PCPDTBT moiety but

delocalized over the entire oligomer, whereas the second excitation can be represented by

the NTOs pairs, each involving half of the oligomer chain (Fig. A.1). This observation can

be interpreted by the symmetry of the exciton wave function [126]. The CT transitions in
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the complex appear at much larger energies. Namely, the lowest observed CT state from the

ωB97XD calculation has slightly higher transition energy and a stronger CT character than

those obtained from CAM-B3LYP levels. Specifically, the lowest CT state in the ωB97XD

calculation corresponds to the eighth excited state with CT = 0.95, whereas CT-1 obtained

from CAM-B3LYP is attributed to the third excitation with CT = 0.63 and 0.75 for GD2

and GD3 levels, respectively. The NTO representation in Fig. 3.8 qualitatively agrees with

the CT characters evaluated from the transition densities, e.g., CT-1 in ωB97XD carries

more CT character while the one determined from CAM-B3LYP/GD2 has the least. The

two-dimensional contour plots (Fig. 3.9) of the transition density matrix for dimer states can

be roughly interpreted as a 2×2 block matrix in which the diagonal elements represent the

excitations happening within each monomer, whereas the off-diagonal blocks indicate that

the excitation transfers a charge from one moiety to the other. This representation already

suggests a weak hybridization of the excitonic and CT character for all states in question.

Thus, both the visualized NTOs as well as the contour plots of the transition density matrices

confirm that excited states EX-1,2 occur in the oligomer moiety. In contrast, in the CT-1

state electrons are driven from PCPDTBT to the fullerene moiety.
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Figure 3.8: Visualization of natural transition orbitals (NTOs) of the lowest CT state with
the highest occupied transition orbital (HOTO) on the left and the lowest unoccupied
transition orbital (LUTO) on the right computed at (a) CAM-B3LYP/GD3, (b) CAM-
B3LYP/GD2, (c) ωB97XD. The associated eigenvalues λ are 0.91, 0.92, and 0.97, respec-
tively, which represent the weights of the particle-hole pairs contribution to the excitation.
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Figure 3.9: The lowest two excited states EX-1,2 and the lowest charge transfer state CT-1
of PCPDTBT: PCBM in vacuo given by contour plots of the transition density matrices from
the ground state to excited states, obtained by CAM-B3LYP/GD3/6-31G(d) (top), CAM-
B3LYP/GD2/6-31G(d) (middle), ωB97XD/6-31G(d) (bottom). The axis labels represent
indices of non-hydrogen atoms from PCBM to PCPDTBT (PCBM: 1-74, PCPDTBT: 75-
162). The inset of each plot shows the character of the electronic mode, excitation energy
Ω, oscillator strength f , and the CT character.

3.3.2 Electronic Excitations in Solvent

The states of interest, EX-1,2 and CT-1 have been singled out from the simulation in

vacuo by examining the excitation nature as well as evaluating the CT character. Here,
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the PCPDTBT: PCBM dimer is exposed to the polarizable solvent environment with varied

static dielectric constant. In this way, the solvent effect on electronic transitions can be

illustrated. Both LR and SS solvation have been performed for all simulations.

The dependence of transition energies for the states of interest of PCPDTBT: PCBM

complex on the solvent polarity is shown in Fig. 3.10. Note that the respective ground-state

geometries in vacuo have been directly employed in the solution simulation without further

optimization in these calculations. Detailed numerical results including excitation energy,

oscillator strength, and CT character can be found in Tables A.4, A.5, and A.6 in Appendix

A SI. In the low-cost LR simulations, the solvatochromic shift (i.e., the excitation energy

difference between gas phase and solution phase) is small, and the solvent polarity has a

little to no effect on all excitations. Overall, it is observed that variation in energies due to

solvent within 0.01 eV for both excitonic and CT states in all three levels of simulations.

Such weak solvent effect can be attributed to the LR approach in which the solvatochromic

shift is computed from transition density which tends to be small. More importantly, the

CT character of CT-1 state considerably diminishes with respect to the dielectric constant

in CAM-B3LYP simulations, whereas the CT character of EX-1,2 states are relatively stable

(Fig. 3.12 in SI). Such observation being opposed to physical intuition motivates us to adopt

the more reliable SS approach. Here, a very significant decrease in the CT-1 energy (up

to 0.4 eV) has been observed in all simulations using the SS solvation approach. In the

cases of CAM-B3LYP computation, the CT energy saturates when ε0 ≥ 13, which can be

easily found in common polar solvent. In addition, the CT character of CT-1 state increases

(0.95 in CAM-B3LYP) compared to the gas phase results (0.6-0.7). As expected, the solvent

effects simulated by the SS approach are much less pronounced for the excitonic states EX-

1,2 both in excitation energy and in the CT character. Because polar solvent affects the CT

and EX states in different ways, a different alignment of energetics is observed. In CAM-

B3LYP/GD3 calculation, the CT state, which in gas phase is the third excitation, becomes

the second excited state in low polarity case and even becomes the lowest one when ε0 ≥ 8.
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In other words, strong polar solvent can stabilize polarizable excitations by much larger

solvatochromic shift and can induce a more polarized character to the states. In the case

of ωB97XD computations, a similar trend of energy change due to ε0 is observed, however,

the decrease in CT-1 energy (less than 0.3 eV) is less significant than those in CAM-B3LYP

calculations. The CT character of both excitonic and CT state are insensitive to the change

in ε0 for both LR and SS approaches.

Figure 3.10: Transition energies of states with respect to the dielectric constant of the solvent.
Solid and dashed curves represent SS and LR approaches, respectively. Computed at (a)
CAM-B3LYP/GD3, (b) CAM-B3LYP/GD2, (c) ωB97XD based on the ground geometries
optimized in vacuo.

The noticeable difference in the CTS stabilization between the three computational levels

is attributed to the different range-corrected properties taken into account in the function-

als. As mentioned in Section (3.2), a higher fraction of orbital exchange included in the

ωB97XD functional indicates less delocalized electron effect. Therefore, less CTS stabiliza-

tion due to the solvent effect is observed as a direct result of weaker CT character in ωB97XD

simulation compared to CAM-B3LYP counterparts. In addition, the difference in the disper-

sion correction results in different dimer configurations, in particular, the distance between

the two molecules. The separation between PCPDTBT and PCBM in ωB97XD simulation

(≈ 3.12 Å) is slightly further than those in CAM-B3LYP calculations (≈ 3.09 Å), whereas

the difference in distance between CAM-B3LYP simulations at GD2 and GD3 levels is less

than 0.01 Å. Such observation follows an obvious fact that the intermolecular CTSs are very

sensitive to the molecular distance and are less likely to form in the case of larger separation.
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3.3.3 Comparison of Excited State Calculations in Solvent Based
on Vacuum Geometry and Solvated Geometry

All results presented above are based on the calculations of geometries optimized in

vacuo. Comparison with geometries optimized in solvent with the corresponding dielectric

environment is also of interest. For example, the excited states are calculated in solvent

(ε0 = 3) using the geometries optimized in solvent (ε0 = 3) at the same level of theory.

Figure 3.11: Comparison of excited state calculations in solvent based on vacuum geometry
(1st row) and solvated geometry (2nd row). For the solvated calculations, each PCPDTBT:
PCBM ground state geometry is optimized in the presence of solvent with the correspond-
ing dielectric constant. Computed at (a) CAM-B3LYP/GD3, (b) CAM-B3LYP/GD2, (c)
ωB97XD level of theory.
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Figure 3.12: CT character of excited states with respect to the dielectric constant of the
solvent. Solid and dashed curves represent SS and LR approaches, respectively. Computed
at (a) CAM-B3LYP/GD3, (b) CAM-B3LYP/GD2, (c) ωB97XD based on the ground ge-
ometries optimized in vacuo (1st row) and in solvent (2nd row).

From Fig. 3.11 and 3.12, no significant difference between the calculation results based

on vacuum geometries and solvated geometries can be observed. This phenomenon indicates

that further geometrical optimization is not necessary because the molecular configuration is

essentially determined by the dispersive interactions and only weakly depends on the solvent.

The high internal quantum efficiency of charge separation is routinely achieved in the

devices with PCPDTBT: PCBM mixture. This suggests that CT states are generally en-

ergetically favorable compared with the excitonic counterparts. In the simulations, it is

observed that CT-1 becomes lower than EX-1 only for a single modeling approach (CAM-

B3LYP/GD3) for larger than the experimental value of the dielectric constant. Such ob-

served under-stabilization of CT states is due to multiple effects. The sensitivity of CT

state on the dispersion corrections and long-range-corrected model implementation in the

DFT functional has been already discussed above. It has been studied that neighboring

chromophores also play an important role in the CTS stabilization. The enhanced red-shift

of emissive CTS in silsesquioxane derivatives can be interpreted as the strong CT character

between chromophores as well as the solvent effect [101]. Such enhanced CTS stabilization
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has also been illustrated in the TDDFT simulation of P3HT: C60 complex with oligothio-

phene spacer. Significant energy drop in CTS has been obtained in the BHJ complex spaced

by three π-stacking oligomers compared with the counterpart with a single oligomer spacer

[21]. Generally, more chromophores result in higher degree of π-electron delocalization and

hence possibly stronger CT character, which makes the state more stable in the presence

of solvent effect. Considering the heterogeneous distribution of donor and acceptor in real

BHJ materials, the CTS stabilization due to the solvent effect observed in the simplified

molecular dimer will be enhanced when taking into account the nearby chromophores. In

addition, the electric field generated by interfacial charges in BHJ mixture may act similarly

as the polar solvent does to further facilitate the formation of CT state by lowering its energy

and optimize the overall power conversion efficiency [43]. Finally, vibrational stabilization

of polar CT state is larger than neutral EX state, which may further facilitate energetic

stabilization and formation of spatially separated polarons.

3.4 Summary

In this work, a TDDFT investigation is conducted to study how the solvent polarity

affects the electronic excitations in the representative organic BHJ PCPDTBT: PCBM sys-

tem simplified as a molecular dimer. Range corrected hybrid functionals CAM-B3LYP and

ωB97XD have been used along with the empirical Grimme’s models D2 and D3 dispersion

corrections to account for weak intermolecular interactions. Two prevalent solvation models,

the LR and SS approaches, have been applied and compared. Little to no solvent effect on

the solute energetics and CT character have been observed from the results in LR scheme.

The solvent effect is more pronounced in the SS simulation which is in line with experimen-

tal observations and common physical sense. Specifically, the intermolecular CT state with

large polarization is more sensitive to polar solvent than the homogeneous excitations. The

excitation energy of such states can be substantially stabilized by the dielectric medium and

such effects are well simulated within the SS method. The distance between donor and ac-

ceptor molecules, which is similar for CAM-B3LYP/GD3 and CAM-B3LYP/GD2 optimized
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geometries but a little longer for ωB97XD optimized structure, also has an impact on the

excitation energies and charge transfer properties. Based on the analysis of the NTOs and

CT characters, it can be concluded that solvent with a larger dielectric constant can lower

the CT energy and aggravate the CT character but has little effect on the excitations with

less charge redistribution. It has been found that the optimization of ground state geome-

tries in vacuo can provide similar stabilization effect as the solvated geometries. This can

help save a significant amount of computing time.

In summary, the TDDFT method that combines long-range-corrected hybrid functional,

dispersion correction, and state-specific solvation model provides an efficient and correct

approach to simulate the excited-state electronic structure of organic BHJ systems. The de-

tailed characterization of CTS stabilization due to the polar solvent environment within

the TDDFT framework has been demonstrated for the first time on the representative

PCPDTBT: PCBM system. The correct electronic energetic ordering and the stabiliza-

tion of CTS by polar environment are recovered in theoretical calculations. Future works

include extending this protocol to study the optical properties of other BHJ systems, which

is a highly active research area. These studies and proposed methods can aid in the discovery

of innovative and more efficient organic photovoltaic materials.
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CHAPTER 4 CONCLUSION AND FUTURE DIRECTIONS

4.1 Conclusion

Extensive research on renewable energy materials has been carried out for decades to

answer the growing demands and environmental concerns over the use of fossil fuels. One

of the promising candidates is OPV devices, which have multiple advantages with respect

to the traditional inorganic devices. However, the power conversion efficiency of this type

of emerging solar cell still needs to be improved for it to be able to compete with other

conventional energy sources. One of the reasons for the limited performance of OPV cells is

the low dielectric constant (ε ∼ 3− 4). Numerous studies have shown that by increasing the

device polarity, the exciton binding energy, charge transfer state energy and recombination

loss can be reduced. Thus the free charge carrier generation is improved and better conversion

efficiencies can be obtained [19, 20, 60–64]. However, the myth about how the dielectric

constant affects the CTSs energy has not been resolved. In this thesis, a representative

molecular system, PCPDTBT: PCBM, has been examined computationally.

In Chapter 3, a protocol that combines TDDFT with the polarizable continuum model

(PCM) is developed. Using range corrected hybrid functionals CAM-B3LYP and ωB97XD

with two solvation models, LR and SS, the electronic properties of a typical lower-band gap

polymer: fullerene molecular pair under the influence of polar environment have been studied.

It is observed that under the SS approach the CTS, which has characteristic large charge

redistribution, could be stabilized with increasing solvent polarity, whereas the EX, which

has a limited CT character, is not affected by the change in the surroundings. The calculation

results from the LR model show no substantial solvent effect on excited states, regardless of

the characters of the transitions. In accordance with the experimental discoveries that the

polar solvent can significantly reduce the CTS energy [19, 20], it concludes that a procedure

that integrates TDDFT with long-range-corrected hybrid functional CAM-B3LYP, Grimme’s

empirical dispersion correction D3, and state-specific solvation model can effectively predict

the energetics of charge transfer states in OPV materials.
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The findings in this thesis can provide valuable insights into the optimization of OPV

devices. First, the dielectric constant of the materials has a significant impact on the CTS

energy and the charge dissociation efficiency. Second, the calculations of electronic properties

of organic semiconductors can be performed effectively and efficiently using the geometries

optimized in gas phase since the results with vacuum geometries and solvated geometries

reveal negligible differences. Finally, a unified approach is provided to describe the CTS using

a detailed analysis of the one-electron TDM. Three tools including CT character, contour

plots of TDM in real space, and natural transition orbital can be used to effectively identify

and describe the characters of electronic excitations.

4.2 Future Directions

The protocol developed in this manuscript to study the effect of polar environment on

the electronic properties of PCPDTBT: PCBM molecular pair can be applied to other BHJ

molecular systems as well. New polymers are being synthesized for OPV applications, and

non-fullerene molecules are proposed to be effective acceptors. These various combinations

of donor: acceptor systems can be studied computationally using the procedure in this

thesis together with experiments to obtain a comprehensive apprehension of the material

properties. There are also other methods which can be used to address the solvent effect

on CTS, such as charge constraint DFT or SRSH functionals combined with PCM. These

approaches can be applied and compared with the current scheme in future studies.

The findings of this work have limitations. It only examined the energetics of CTS in

polar environment during vertical excitation, but charge dissociation is a dynamic picture,

which requires a dynamic simulation. The calculation of energetics of relevant states is only

a preliminary step for simulating the charge separation dynamics at the donor: acceptor

interface. A real-time (RT) view of the dissociation process can only be obtained by time-

domain simulations. Some candidate approaches include QM/MM simulation [17], RT-

TDDFT coupled with RT-TDPCM [127–129], and Monte Carlo method [130].

This work studied a polymer with four repeating units coupled with a fullerene molecule
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PCBM. However, in real BHJ devices the polymers are not limited to a certain length and the

number of molecules cannot be controlled macroscopically, only the ratio of polymer/fullerene

can be adjusted. In the active layer of a working OPV cell, the molecular shape, length,

relative positions/orientations of the consisting donor and acceptor compounds can all influ-

ence the overall performance. Thus a study including more polymer and fullerene molecules,

as well as different combinations of the structural configurations is necessary to pursue a

thorough understanding of the power conversion process.

Two solvation methods, LR and SS, were applied to account for the dielectric medium

in electronic excitation calculations. In the estimation of effective solvent potential, LR only

considers the ground-state and transition electron density, whereas SS takes both ground-

state and excited-state density into account. There is another intermediate approach referred

to as the vertical excitation model (VE). In such a model, the effective solvent potential for

the ground-state is determined by ground-state density only, but the electronic transition is

described by excited-state density [56]. VE is expected to be more efficient than SS while

providing a substantially correct description for the CTS. In future studies, VE should also

be employed and compared with LR and SS methods.

The dielectric constant can be divided into static and optical depending on the frequency.

The fast partition of the solvent response is determined by the dielectric constant at optical

frequency, whereas the slow component depends on both static and optical dielectric con-

stant. The electronic structure was computed in polar medium with varying static dielectric

constant while keeping the optical one at ε∞ = 2. Although the optical relative permittivity

can only change in a small range, it is necessary to know how different values of ε∞ could

affect the solvent relaxation time, the equilibrium, and nonequilibrium solvation. However,

the current existing quantum chemistry packages might not be able to evaluate these effects.

Therefore new methods need to be developed for a thorough research on this area.

Theoretical and computational research acts as a supporting role in the discovery and

optimization of novel materials. Theoreticians rely on experimental studies to build the
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real devices and verify the calculation results. A collaboration between theoreticians and

experimentalists is not only necessary but also beneficial to all parties and the development

for better OPV applications. Researchers shall apply the calculation protocol developed in

this thesis to more molecular systems, work with experimental groups to obtain the optimal

combinations, and push the limit of power conversion efficiency to a higher degree.
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APPENDIX A SUPPLEMENTARY INFORMATION

Excited electronic structure calculations are performed with three functional models. In

Sec. A.1, the results of the calculations in vacuo are provided. The NTOs for EX-1, 2 are

shown in Fig. A.1, A.2, and A.3, the excitation energies and oscillator strengths for the

first 15 excited states of PCPDTBT, PCBM, and PCPDTBT: PCBM are included in Table

A.1, A.2, and A.3, which correspond to the results calculated with the functional CAM-

B3LYP/GD3/6-31G(d), CAM-B3LYP/GD2/6-31G(d), and B97XD/6-31G(d), respectively.

In Sec. A.2, the results of the calculations in solvent based on the geometries optimized

in vacuo are provided. Table A.4, A.5, and A.6 correspond to functional CAM-B3LYP/6-

31G(d)+GD3, CAMB3LYP/6-31G(d)+GD2, and B97XD/6-31G(d), respectively. In each

table, the excitation energy, oscillator strength, and CT character of EX-1, 2, as well as

CT-1 in solvent with different polarity are shown with two solvent approaches, namely, LR

and SS.

The previous section examines the electronic properties based on vacuum geometries.

In Sec. A.3, the results of the calculations in solvent based on solvated geometries are

provided. Table A.7, A.8, and A.9 correspond to functional CAM-B3LYP/6-31G(d)+GD3,

CAM-B3LYP/6-31G(d)+GD2, and B97XD/6-31G(d), respectively. In each table, the exci-

tation energy, oscillator strength, and CT character of EX-1, 2, as well as CT-1 in solvent

with different polarity are shown with two solvent approaches, namely, LR and SS.
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A.1 Excited State Calculations in Vacuo

A.1.1 CAM-B3LYP/6-31G(d) with Grimmes D3 Dispersion

Figure A.1: Natural transition orbitals of (a) EX-1 and (b) EX-2 states, both have two
major contributing pairs, λ is the associated eigenvalue which represents the weight of the
particle-hole pair contribution to the excitation. The highest occupied transition orbital
(HOTO) and the lowest unoccupied transition orbital (LUTO) are labeled.

Table A.1: Excitation energies Ω and oscillator strengths f of PCPDTBT, PCBM, and
PCPDTBT: PCBM in vacuo. Charge transfer characters for PCPDTBT: PCBM are listed.
D stands for Donor and A for Acceptor, DA-charge transfer from Donor to Acceptor, AD-
charge transfer from Acceptor to Donor, DD-charge localization within Donor, AA-charge
localization in Acceptor. Computed by CAM-B3LYP/6-31G(d) on the ground state geome-
try optimized by the same functional with the empirical dispersion correction GD3.

CAM-B3LYP-GD3/6-31G(d) geometry in vacuo
PCPDTBT PCBM PCPDTBT: PCBM

mode Ω(eV ) f Ω(eV ) f Ω(eV ) f DA AD DD AA
1 2.13 3.38 2.49 0.00 2.10 2.58 0.02 0.00 0.97 0.00
2 2.42 0.56 2.52 0.00 2.39 0.70 0.05 0.00 0.94 0.01
3 2.64 0.07 2.59 0.00 2.46 0.08 0.75 0.00 0.08 0.17
4 2.98 0.23 2.62 0.00 2.49 0.03 0.29 0.00 0.03 0.68
5 3.19 0.01 2.75 0.00 2.52 0.06 0.33 0.00 0.11 0.55
6 3.27 0.03 2.79 0.00 2.53 0.06 0.28 0.00 0.14 0.58
7 3.32 0.01 2.85 0.00 2.58 0.13 0.46 0.00 0.48 0.06
8 3.58 0.74 2.91 0.00 2.59 0.00 0.00 0.00 0.00 0.99
9 3.71 0.21 2.94 0.00 2.62 0.00 0.04 0.00 0.01 0.95
10 3.79 0.13 3.03 0.00 2.74 0.00 0.15 0.00 0.06 0.79
11 3.83 0.05 3.06 0.00 2.75 0.00 0.56 0.00 0.20 0.24
12 3.89 0.03 3.07 0.00 2.79 0.00 0.03 0.01 0.00 0.96
13 3.94 0.01 3.16 0.00 2.84 0.00 0.01 0.01 0.00 0.99
14 3.99 0.04 3.22 0.00 2.88 0.00 0.02 0.01 0.01 0.97
15 4.03 0.02 3.26 0.01 2.92 0.00 0.01 0.01 0.00 0.98
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A.1.2 CAM-B3LYP/6-31G(d) with Grimmes D2 Dispersion

Figure A.2: Natural transition orbitals of (a) EX-1 and (b) EX-2 states, both have two
major contributing pairs, λ is the associated eigenvalue which represents the weight of the
particle-hole pair contribution to the excitation. The highest occupied transition orbital
(HOTO) and the lowest unoccupied transition orbital (LUTO) are labeled.

Table A.2: Excitation energies Ω and oscillator strengths f of PCPDTBT, PCBM, and
PCPDTBT: PCBM in vacuo. Charge transfer characters for PCPDTBT: PCBM are listed.
Computed by CAM-B3LYP/6-31G(d) on the ground state geometry optimized by the same
functional with the empirical dispersion correction GD2.

CAM-B3LYP-GD2/6-31G(d) in vacuo
PCPDTBT PCBM PCPDTBT: PCBM

mode Ω(eV ) f Ω(eV ) f Ω(eV ) f DA AD DD AA
1 2.15 3.39 2.48 0.00 2.08 2.28 0.037 0.00 0.96 0.00
2 2.43 0.54 2.51 0.00 2.41 0.81 0.028 0.00 0.97 0.00
3 2.65 0.06 2.59 0.00 2.45 0.013 0.63 0.00 0.02 0.35
4 2.99 0.23 2.61 0.00 2.48 0.04 0.23 0.01 0.03 0.74
5 3.21 0.01 2.74 0.00 2.51 0.08 0.17 0.00 0.09 0.74
6 3.28 0.03 2.78 0.00 2.53 0.14 0.60 0.00 0.20 0.19
7 3.33 0.02 2.85 0.00 2.58 0.00 0.01 0.01 0.00 0.99
8 3.60 0.77 2.89 0.00 2.59 0.08 0.15 0.00 0.30 0.55
9 3.72 0.20 2.93 0.00 2.61 0.05 0.29 0.00 0.26 0.44
10 3.81 0.13 3.02 0.00 2.70 0.03 0.74 0.00 0.20 0.06
11 3.85 0.04 3.05 0.00 2.74 0.00 0.01 0.01 0.00 0.98
12 3.91 0.03 3.06 0.00 2.78 0.00 0.03 0.01 0.00 0.95
13 3.95 0.01 3.15 0.00 2.83 0.00 0.02 0.01 0.00 0.97
14 4.00 0.03 3.21 0.00 2.87 0.00 0.02 0.01 0.01 0.96
15 4.04 0.02 3.24 0.01 2.91 0.00 0.02 0.01 0.00 0.97
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A.1.3 ωB97XD/6-31G(d)

Figure A.3: Natural transition orbitals of (a) EX-1 and (b) EX-2 states, both have two
major contributing pairs, λ is the associated eigenvalue which represents the weight of the
particle-hole pair contribution to the excitation. The highest occupied transition orbital
(HOTO) and the lowest unoccupied transition orbital (LUTO) are labeled.

Table A.3: Excitation energies Ω and oscillator strengths f of PCPDTBT, PCBM, and
PCPDTBT: PCBM in vacuo. Charge transfer characters for PCPDTBT: PCBM are listed.
Computed by ωB97XD/6-31G(d) on the ground state geometry optimized by the same
functional.

ωB97XD/6-31G(d) in vacuo
PCPDTBT PCBM PCPDTBT: PCBM

mode Ω(eV ) f Ω(eV ) f Ω(eV ) f DA AD DD AA
1 2.29 3.38 2.56 0.00 2.22 2.41 0.03 0.00 0.97 0.00
2 2.56 0.57 2.59 0.00 2.52 0.80 0.01 0.00 0.98 0.01
3 2.77 0.08 2.66 0.00 2.56 0.02 0.01 0.00 0.01 0.98
4 3.13 0.24 2.69 0.00 2.58 0.00 0.01 0.00 0.00 0.99
5 3.44 0.01 2.82 0.00 2.66 0.00 0.00 0.00 0.00 0.99
6 3.53 0.13 2.86 0.00 2.67 0.36 0.16 0.00 0.81 0.02
7 3.61 0.07 2.93 0.00 2.68 0.00 0.00 0.00 0.01 0.98
8 3.74 0.74 2.98 0.00 2.76 0.00 0.95 0.00 0.02 0.03
9 3.88 0.17 3.00 0.00 2.81 0.00 0.01 0.01 0.00 0.99
10 4.04 0.02 3.09 0.00 2.85 0.00 0.05 0.01 0.01 0.94
11 4.18 0.02 3.15 0.00 2.89 0.01 0.79 0.00 0.11 0.11
12 4.34 0.00 3.16 0.00 2.92 0.00 0.01 0.01 0.00 0.98
13 4.44 0.02 3.25 0.00 2.94 0.00 0.07 0.01 0.00 0.92
14 4.49 0.03 3.30 0.00 2.98 0.00 0.08 0.01 0.01 0.90
15 4.52 0.05 3.32 0.01 3.01 0.01 0.77 0.00 0.11 0.12
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A.2 Excited State Calculations in Solvent Based on Vacuum Ge-
ometries

A.2.1 CAM-B3LYP/6-31G(d) with Grimmes D3 Dispersion

Table A.4: Excitation energies Ω, oscillator strengths f , and CT characters of the molecu-
lar pair of PCPDTBT: PCBM in solvent with varying static dielectric constant, ε. Three
modes are of the main concern, including the first two excitonic states (EX-1,2) and the
charge transfer state (CT-1). Computed by CAM-B3LYP/6-31G(d) using the LR and the
SS approaches on the vacuum geometry optimized by the same functional with the empirical
dispersion correction GD3.

CAM-B3LYP-GD3/6-31G(d) PCPDTBT: PCBM in solvent with vacuum geometry
LR SS

ε0 mode Ω(eV ) f DA AD DD AA Ω(eV ) f DA AD DD AA

1
EX-1 2.10 2.58 0.02 0.00 0.97 0.00 2.10 2.58 0.02 0.00 0.97 0.00
EX-2 2.39 0.70 0.05 0.00 0.94 0.01 2.39 0.70 0.05 0.00 0.94 0.01
CT-1 2.46 0.08 0.75 0.00 0.08 0.17 2.46 0.08 0.75 0.00 0.08 0.17

3
EX-1 2.08 2.72 0.02 0.00 0.98 0.00 2.10 2.57 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.39 0.70 0.04 0.00 0.95 0.01
CT-1 2.46 0.08 0.65 0.00 0.08 0.28 2.21 0.05 0.95 0.00 0.03 0.01

5
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.57 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.39 0.70 0.04 0.00 0.96 0.01
CT-1 2.46 0.08 0.60 0.00 0.08 0.32 2.14 0.07 0.96 0.00 0.03 0.01

8
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.56 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.70 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.57 0.00 0.08 0.36 2.09 0.09 0.96 0.00 0.03 0.01

10
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.56 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.70 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.55 0.00 0.08 0.37 2.08 0.10 0.96 0.00 0.04 0.01

13
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.56 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.70 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.54 0.00 0.08 0.38 2.06 0.11 0.95 0.00 0.04 0.01

15
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.56 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.70 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.54 0.00 0.08 0.39 2.06 0.12 0.95 0.00 0.04 0.01

18
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.56 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.70 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.53 0.00 0.08 0.39 2.05 0.12 0.95 0.00 0.04 0.01

20
EX-1 2.08 2.73 0.02 0.00 0.00 0.00 2.10 2.56 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.00 0.00 2.38 0.70 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.53 0.00 0.00 0.40 2.05 0.13 0.95 0.00 0.04 0.01

25
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.56 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.70 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.52 0.00 0.08 0.40 2.04 0.14 0.95 0.00 0.05 0.01

30
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.56 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.70 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.52 0.00 0.08 0.41 2.04 0.14 0.94 0.00 0.05 0.01
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A.2.2 CAM-B3LYP/6-31G(d) with Grimmes D2 Dispersion

Table A.5: Excitation energies Ω, oscillator strengths f , and CT characters of the molecular
pair of PCPDTBT: PCBM in solvent with varying static dielectric constant, ε. Computed
by CAM-B3LYP/6-31G(d) using the LR and the SS approaches on the vacuum geometry
optimized by the same functional with the empirical dispersion correction GD2.

CAM-B3LYP-GD2/6-31G(d) PCPDTBT: PCBM in solvent with vacuum geometry
LR SS

ε0 mode Ω(eV ) f DA AD DD AA Ω(eV ) f DA AD DD AA

1
EX-1 2.08 2.28 0.04 0.00 0.96 0.00 2.08 2.28 0.04 0.00 0.96 0.00
EX-2 2.41 0.81 0.03 0.00 0.97 0.00 2.41 0.81 0.03 0.00 0.97 0.00
CT-1 2.45 0.01 0.63 0.00 0.02 0.35 2.45 0.01 0.63 0.00 0.02 0.35

3
EX-1 2.06 2.41 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.37 0.91 0.02 0.00 0.98 0.00 2.40 0.81 0.03 0.00 0.97 0.00
CT-1 2.45 0.01 0.56 0.00 0.02 0.42 2.26 0.04 0.94 0.00 0.02 0.03

5
EX-1 2.06 2.41 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.91 0.02 0.00 0.98 0.00 2.40 0.80 0.03 0.00 0.97 0.00
CT-1 2.45 0.01 0.54 0.00 0.01 0.45 2.20 0.05 0.95 0.00 0.02 0.03

8
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.25 0.04 0.00 0.96 0.00
EX-2 2.38 0.92 0.02 0.00 0.98 0.00 2.40 0.80 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.52 0.00 0.01 0.47 2.16 0.06 0.95 0.00 0.03 0.02

10
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.25 0.04 0.00 0.96 0.00
EX-2 2.38 0.92 0.02 0.00 0.98 0.00 2.40 0.80 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.51 0.00 0.01 0.47 2.14 0.07 0.95 0.00 0.03 0.02

13
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.25 0.04 0.00 0.96 0.00
EX-2 2.38 0.92 0.02 0.00 0.98 0.00 2.39 0.80 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.50 0.00 0.01 0.48 2.13 0.07 0.95 0.00 0.03 0.02

15
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.25 0.04 0.00 0.96 0.00
EX-2 2.38 0.92 0.02 0.00 0.98 0.00 2.39 0.80 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.50 0.00 0.01 0.48 2.13 0.07 0.95 0.00 0.03 0.02

18
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.25 0.04 0.00 0.96 0.00
EX-2 2.38 0.92 0.02 0.00 0.98 0.00 2.39 0.80 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.50 0.00 0.01 0.49 2.12 0.08 0.95 0.00 0.03 0.02

20
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.25 0.04 0.00 0.96 0.00
EX-2 2.38 0.92 0.02 0.00 0.98 0.00 2.39 0.80 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.50 0.00 0.01 0.49 2.12 0.08 0.95 0.00 0.03 0.02

25
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.25 0.04 0.00 0.96 0.00
EX-2 2.38 0.92 0.02 0.00 0.98 0.00 2.39 0.80 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.49 0.00 0.01 0.49 2.11 0.08 0.95 0.00 0.03 0.02

30
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.25 0.04 0.00 0.96 0.00
EX-2 2.38 0.92 0.02 0.00 0.98 0.00 2.39 0.80 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.49 0.00 0.01 0.49 2.11 0.08 0.95 0.00 0.03 0.02
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A.2.3 ωB97XD/6-31G(d)

Table A.6: Excitation energies Ω, oscillator strengths f , and CT characters of the molecular
pair of PCPDTBT: PCBM in solvent with varying static dielectric constant, ε. Computed by
ωB97XD/6-31G(d) using the LR and the SS approaches on the vacuum geometry optimized
by the same functional.

ωB97XD/6-31G(d) PCPDTBT: PCBM in solvent with vacuum geometry
LR SS

ε0 mode Ω(eV ) f DA AD DD AA Ω(eV ) f DA AD DD AA

1
EX-1 2.22 2.41 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.52 0.80 0.01 0.00 0.98 0.01 2.52 0.80 0.01 0.00 0.98 0.01
CT-1 2.76 0.00 0.95 0.00 0.02 0.03 2.76 0.00 0.95 0.00 0.02 0.03

3
EX-1 2.20 2.55 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.77 0.00 0.94 0.00 0.02 0.03 2.66 0.00 0.95 0.00 0.02 0.03

5
EX-1 2.20 2.55 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.66 0.00 0.95 0.00 0.03 0.03

8
EX-1 2.20 2.56 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.58 0.00 0.94 0.00 0.02 0.04

10
EX-1 2.20 2.56 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.58 0.00 0.94 0.00 0.02 0.04

13
EX-1 2.20 2.56 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.55 0.00 0.94 0.00 0.02 0.04

15
EX-1 2.20 2.56 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.55 0.00 0.94 0.00 0.02 0.04

18
EX-1 2.20 2.56 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.50 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.50 0.00 0.94 0.00 0.02 0.04

20
EX-1 2.20 2.56 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.50 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.50 0.00 0.94 0.00 0.02 0.04

25
EX-1 2.21 2.56 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.50 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.58 0.00 0.94 0.00 0.02 0.04

30
EX-1 2.21 2.56 0.03 0.00 0.97 0.00 2.22 2.40 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.50 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.55 0.00 0.94 0.00 0.02 0.04
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A.3 Excited State Calculations in Solvent Based on Solvated Ge-
ometries

A.3.1 CAM-B3LYP/6-31G(d) with Grimmes D3 Dispersion

Table A.7: Excitation energies Ω, oscillator strengths f , and CT characters of PCPDTBT:
PCBM in solvent with varying dielectric constant, ε. The first two excitonic states (EX-1,2)
and the charge transfer state (CT-1) are of the main concern. Computed by CAM-B3LYP/6-
31G(d) using the LR and the SS approaches on the solvated geometry optimized by the same
functional with the empirical dispersion correction GD3.

CAM-B3LYP-GD3/6-31G(d) PCPDTBT: PCBM in solvent with solvated geometry
LR SS

ε0 mode Ω(eV ) f DA AD DD AA Ω(eV ) f DA AD DD AA

1
EX-1 2.10 2.58 0.02 0.00 0.97 0.00 2.10 2.58 0.02 0.00 0.97 0.00
EX-2 2.39 0.70 0.05 0.00 0.94 0.01 2.39 0.70 0.05 0.00 0.94 0.01
CT-1 2.46 0.08 0.75 0.00 0.08 0.17 2.46 0.08 0.75 0.00 0.08 0.17

3
EX-1 2.08 2.72 0.02 0.00 0.98 0.00 2.10 2.58 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.39 0.69 0.04 0.00 0.95 0.01
CT-1 2.46 0.08 0.63 0.00 0.08 0.29 2.21 0.06 0.95 0.00 0.03 0.01

5
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.58 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.39 0.69 0.04 0.00 0.96 0.01
CT-1 2.46 0.08 0.58 0.00 0.08 0.34 2.14 0.08 0.96 0.00 0.03 0.01

8
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.59 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.68 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.54 0.00 0.08 0.38 2.09 0.10 0.95 0.00 0.04 0.01

10
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.59 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.68 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.53 0.00 0.08 0.39 2.08 0.12 0.95 0.00 0.04 0.01

13
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.59 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.68 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.51 0.00 0.08 0.41 2.07 0.13 0.95 0.00 0.05 0.01

15
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.59 0.02 0.00 0.97 0.00
EX-2 2.36 0.81 0.02 0.00 0.97 0.00 2.38 0.68 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.51 0.00 0.08 0.41 2.06 0.14 0.94 0.00 0.05 0.01

18
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.59 0.02 0.00 0.97 0.00
EX-2 2.37 0.81 0.02 0.00 0.97 0.00 2.38 0.68 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.50 0.00 0.08 0.42 2.06 0.15 0.94 0.00 0.05 0.01

20
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.59 0.02 0.00 0.97 0.00
EX-2 2.37 0.81 0.02 0.00 0.97 0.00 2.38 0.68 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.50 0.00 0.08 0.42 2.05 0.15 0.94 0.00 0.05 0.01

25
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.59 0.02 0.00 0.97 0.00
EX-2 2.37 0.81 0.02 0.00 0.97 0.00 2.38 0.68 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.49 0.00 0.08 0.43 2.05 0.16 0.94 0.00 0.05 0.01

30
EX-1 2.08 2.73 0.02 0.00 0.98 0.00 2.10 2.59 0.02 0.00 0.97 0.00
EX-2 2.37 0.81 0.02 0.00 0.97 0.00 2.38 0.68 0.03 0.00 0.96 0.01
CT-1 2.47 0.08 0.49 0.00 0.08 0.43 2.05 0.17 0.94 0.00 0.06 0.01
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A.3.2 CAM-B3LYP/6-31G(d) with Grimmes D2 Dispersion

Table A.8: Excitation energies Ω, oscillator strengths f , and CT characters of the molecular
pair of PCPDTBT: PCBM in solvent with varying static dielectric constant, ε. Computed
by CAM-B3LYP/6-31G(d) using the LR and the SS approaches on the solvated geometry
optimized by the same functional with the empirical dispersion correction GD2.

CAM-B3LYP-GD2/6-31G(d) PCPDTBT: PCBM in solvent with solvated geometry
LR SS

ε0 mode Ω(eV ) f DA AD DD AA Ω(eV ) f DA AD DD AA

1
EX-1 2.08 2.28 0.04 0.00 0.96 0.00 2.08 2.28 0.04 0.00 0.96 0.00
EX-2 2.41 0.81 0.03 0.00 0.97 0.00 2.41 0.81 0.03 0.00 0.97 0.00
CT-1 2.45 0.01 0.63 0.00 0.02 0.35 2.45 0.01 0.63 0.00 0.02 0.35

3
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.27 0.04 0.00 0.96 0.00
EX-2 2.37 0.91 0.02 0.00 0.98 0.00 2.40 0.80 0.03 0.00 0.97 0.00
CT-1 2.45 0.01 0.57 0.00 0.02 0.41 2.26 0.05 0.95 0.00 0.02 0.03

5
EX-1 2.06 2.42 0.03 0.00 0.96 0.00 2.08 2.27 0.04 0.00 0.96 0.00
EX-2 2.38 0.91 0.02 0.00 0.98 0.00 2.40 0.80 0.03 0.00 0.97 0.00
CT-1 2.45 0.01 0.54 0.00 0.02 0.44 2.20 0.06 0.95 0.00 0.02 0.02

8
EX-1 2.06 2.43 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.91 0.02 0.00 0.98 0.00 2.40 0.79 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.52 0.00 0.01 0.47 2.16 0.07 0.95 0.00 0.03 0.02

10
EX-1 2.06 2.43 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.91 0.02 0.00 0.98 0.00 2.40 0.79 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.51 0.00 0.01 0.47 2.14 0.07 0.95 0.00 0.03 0.02

13
EX-1 2.06 2.43 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.91 0.02 0.00 0.98 0.00 2.39 0.79 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.50 0.00 0.01 0.48 2.13 0.07 0.95 0.00 0.03 0.02

15
EX-1 2.06 2.43 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.91 0.02 0.00 0.98 0.00 2.39 0.79 0.02 0.00 0.97 0.00
CT-1 2.45 0.01 0.50 0.00 0.01 0.48 2.13 0.08 0.95 0.00 0.03 0.02

18
EX-1 2.06 2.43 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.90 0.02 0.00 0.98 0.00 2.39 0.79 0.02 0.00 0.97 0.00
CT-1 2.46 0.01 0.50 0.00 0.01 0.48 2.12 0.08 0.95 0.00 0.03 0.02

20
EX-1 2.06 2.43 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.90 0.02 0.00 0.98 0.00 2.39 0.79 0.02 0.00 0.97 0.00
CT-1 2.46 0.01 0.50 0.00 0.01 0.48 2.12 0.08 0.95 0.00 0.03 0.02

25
EX-1 2.06 2.43 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.90 0.02 0.00 0.98 0.00 2.39 0.79 0.02 0.00 0.97 0.00
CT-1 2.46 0.01 0.50 0.00 0.01 0.49 2.11 0.09 0.95 0.00 0.03 0.02

30
EX-1 2.06 2.43 0.03 0.00 0.96 0.00 2.08 2.26 0.04 0.00 0.96 0.00
EX-2 2.38 0.90 0.02 0.00 0.98 0.00 2.39 0.79 0.02 0.00 0.97 0.00
CT-1 2.46 0.01 0.50 0.00 0.01 0.49 2.11 0.09 0.95 0.00 0.03 0.02
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A.3.3 ωB97XD/6-31G(d)

Table A.9: Excitation energies Ω, oscillator strengths f , and CT characters of the molecular
pair of PCPDTBT: PCBM in solvent with varying static dielectric constant, ε. Computed by
ωB97XD/6-31G(d) using the LR and the SS approaches on the solvated geometry optimized
by the same functional.

ωB97XD/6-31G(d) PCPDTBT: PCBM in solvent with solvated geometry
LR SS

ε0 mode Ω(eV ) f DA AD DD AA Ω(eV ) f DA AD DD AA

1
EX-1 2.22 2.41 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.52 0.80 0.01 0.00 0.98 0.01 2.52 0.80 0.01 0.00 0.98 0.01
CT-1 2.76 0.00 0.95 0.00 0.02 0.03 2.76 0.00 0.95 0.00 0.02 0.03

3
EX-1 2.20 2.57 0.03 0.00 0.97 0.00 2.22 2.42 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.77 0.00 0.95 0.00 0.02 0.03 2.66 0.00 0.95 0.00 0.02 0.03

5
EX-1 2.21 2.57 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.95 0.00 0.02 0.04

8
EX-1 2.21 2.57 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.79 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.95 0.00 0.02 0.04 2.58 0.00 0.94 0.00 0.02 0.04

10
EX-1 2.21 2.57 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.78 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.55 0.00 0.94 0.00 0.02 0.04

13
EX-1 2.21 2.57 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.78 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.55 0.00 0.94 0.00 0.02 0.04

15
EX-1 2.21 2.57 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.78 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.55 0.00 0.94 0.00 0.02 0.04

18
EX-1 2.21 2.58 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.78 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.51 0.00 0.94 0.00 0.02 0.04

20
EX-1 2.21 2.58 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.78 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.51 0.00 0.94 0.00 0.02 0.04

25
EX-1 2.21 2.58 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.78 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.55 0.00 0.94 0.00 0.02 0.04

30
EX-1 2.21 2.58 0.03 0.00 0.97 0.00 2.22 2.41 0.03 0.00 0.97 0.00
EX-2 2.49 0.90 0.01 0.00 0.99 0.00 2.51 0.78 0.01 0.00 0.98 0.01
CT-1 2.78 0.00 0.94 0.00 0.02 0.04 2.55 0.00 0.94 0.00 0.02 0.04
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Due to their various advantages, including lightweight, flexible, and cheap manufactur-

ing, organic photovoltaic materials have gained enormous research interest. Over nearly

two decades, the power conversion efficiency of organic solar devices has increased dramat-

ically. However, it is still low compared to traditional inorganic semiconductors. In order

to improve efficiency, a better understanding of the basic thermodynamic properties of the

light-to-electricity power conversion process is needed. One nontrivial aspect of organic solar

cells is the low dielectric constant, which leads to tightly-bound excitons upon vertical exci-

tations. The separation of electron-hole pairs requires a larger driving force to overcome the

Coulombic binding energy in organic semiconductors compared to their inorganic counter-

part. A particular state called charge transfer state appears during the dissociation process

of the bound excitons. The exact role of this particular type of state, whether a precursor

to efficient charge separation or a detrimental process which hinders the generation of free

charges, is still under debate. Extensive research has been performed to elucidate the mech-

anism of free charge carrier creation. Some studies show that the dielectric environment

plays a significant role during the charge dissociation process by affecting the energetics of

excited states. For example, MDMO-PPV: PCBM device becomes more efficient when the

dielectric constant reaches a certain value (εr = 9). The aim of this work is to map out the

alignment of excited states of a typical polymer: fullerene device, taking PCPDTBT: PCBM
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as a specific example system, and find out the characteristics of the charge transfer state

under the influence of polar solvent.

Long-range corrected time-dependent density functional theory combined with the polar-

izable continuum model has been used to study the solvent effect on excited state properties

of PCPDTBT: PCBM molecular system. Solvation model has been applied using the linear-

response and state-specific approaches to account for the dielectric environment. Electronic

transitions are characterized by their intrinsic properties based on a detailed analysis of the

one-electron transition density matrices. The tools include a numerical value termed charge

transfer character, contour plots of the transition density matrix, and natural transition or-

bital of each excited state. The results show that the influence of the solvent depends on the

nature of the excitations. For excitonic states, which have a characteristic of local excita-

tions, the solvent has little to no effects on the excitation energies according to both solvent

schemes. In contrast, a different trend is observed for states with a significant amount of

charge transfer. State-specific predicts a sufficient decline in the excitation energy as the

dielectric constant increases such that the charge transfer state can be stabilized to the low-

est excited state, whereas linear-response shows almost no change. The comparison of two

solvent approaches is discussed.

It concludes that a protocol that combines TDDFT with long-range-corrected hybrid

functional, CAM-B3LYP, Grimme’s empirical dispersion correction D3, and state-specific

solvation model can effectively and efficiently predict the energetics of charge transfer state

in organic photovoltaic materials. Future directions are also provided, including extension

of the current calculation scheme to more polymer: fullerene molecular systems, application

of other methods such as charge constraint density functional theory and range-separated

hybrid functionals combined with polarizable continuum model, simulation of the charge

dissociation process in a dynamic picture, and investigation of the solvent effect under the

variation of optical dielectric constant instead of focusing only on the static permittivity.
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