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CHAPTER 1 INTRODUCTION
Motivation

Real-time Systems

Real-time systems are hardware and software systems where the utility of computational results ex-

ists within well defined time deadlines [43]. For example, in automotive engine control applications, it

is imperative that the controller provide the engine with the proper air/fuel/spark mixture at the proper

instant in time, otherwise engine and emissions performance will degrade significantly. Another example

in automotive adaptive cruise control (ACC) applications where the controller must dynamically adjust

the vehicle’s speed to avoid a potential collision using hard-real-time data generated by several distinct

sources each processed by a distinct hard-real-time software task. Figure 1 illustrates a high-level block

diagram of an adaptive cruise control system [32]. In the ACC system, the wheel sensors provide vehicle

Figure 1: Adaptive Cruise Control (ACC) High Level Block Diagram in ”Efficient Real-Time Support for
Automotive Applications: A Case Study”, by Goud et al., Proc. of the Embedded Real-Time Computing
Systems and Applications, 2006.

speed data while the radar software component detects and tracks other vehicles and/or objects that exist

along the current direction of travel. Once the raw data has been obtained, the control unit must execute

sophisticated software algorithms in a timely fashion each partitioned into disparate real-time software

tasks. The tasks subsequently perform the necessary computations to implement the complex adaptive

cruise control feature in real-time. Figure 2 illustrates the diverse task set and the corresponding data set

used in the complex computations involved in adaptive cruise control systems [32]. The ACC tasks are

shown as circles with the corresponding input and output data for each task. The diagram illustrates the
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Figure 2: Adaptive Cruise Control (ACC) Taskset in ”Efficient Real-Time Support for Automotive Ap-
plications: A Case Study”, by Goud et al., Proc. of the Embedded Real-Time Computing Systems and
Applications, 2006.

dependencies of each task on the correct and timely output of predecessor tasks. Thus, it is clear that ACC

tasks must meet their respective deadlines in order for the vehicle to promptly and automatically adjust

the vehicle speed to avoid a potential collision. Thus, the real-time systems computation is dependent on

both the generation of correct logical results along with the time when these results are available. Three

prominent categories or classifications of real-time systems are hard-real-time systems, firm-real-time sy-

stems, and soft-real-time systems. Soft-real-time systems are systems where an occasional deadline miss

results in diminished utility or reduced quality of service (QoS). Firm-real-time systems are systems that

can tolerate or are resilient to an occasional deadline miss. Here, each deadline miss results in a useless

or unusable computation thereby adversely impacting system performance. In hard-real-time systems,

however, deadline misses result in catastrophic operational effects, adversely impacting critical system

functions. Thus, these systems are constrained to meet stringent deadlines regardless of computational

load on the system, otherwise the system is considered to have completely failed. Today, real-time com-

puting systems have become ubiquitous building blocks in many engineering applications comprising the

most critical element in achieving required system performance. For example, in airplane flight applica-

tions, the modern fly by wire flight control system is categorized as a hard-real-time system. The system

is comprised of a high-performance microprocessor and associated electro-mechanical actuators, where

the timeliness and accuracy of the frequent in-flight control actions in response to various environmental

and weather-related conditions is paramount for the safety of the pilot, crew, and passengers. Due to the

complexity of real-time application requirements, the requisite functionality is implemented via a set of

tasks, each responsible for performing some suitable subset of system computation. Figure 3 illustrates a
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Figure 3: Fly by Wire Hard-Real-Time Taskset in ”Real-Time Systems”, by Jane W.S. Liu, 2000.

sample hard-real-time taskset utilized by a fly-by-wire avionics flight control system [21, 44]. Raw data

from each sensor shown on the left is filtered and processed using signal conditioning algorithms running

at the proscribed rate. The conditioned data is used by several motion control algorithms each running at

the required rates for proper motion control. Lastly, the motion control decisions result in the actuation of

the individual ailerons to carry out proper flight control. Like the ACC system example, it can be readily

seen that the output of each real-time task in the fly-by-wire flight control system is critical to correct sy-

stem operation. Therefore, the real-time system designer must assure the correct and timely functionality

of each real-time computing task and the associated electro-mechanical parts for all the operating conditi-

ons of the system. Verifying that all tasks in hard-real-time system tasksets meet their respective deadlines

is no doubt a non-trivial computational task.

Worst Case Execution Time (WCET)

Worst Case Execution Time (WCET) is the maximum execution time of a real-time computing task

to produce correct computational results [59]. One of the notable challenges of computing WCET is

the set of inputs that result in the maximum execution time is not always known [71]. WCET is used

primarily by real-time system designers to assess or characterize the worst-case timing behavior of tasks

in a partitioned task scheduled implementation for various input and output scenarios. The resulting WCET

is then compared to pre-established timing budgets or used as input to real-time schedulability analysis.

Real-time schedulability analysis is the mathematical and functional verification of the scheduling software

component along with the various computing algorithms comprising each distinct task. A real-time system
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implemented via multiple tasks consists of key software components such as a task scheduler, a system

clock or tick, and the processing algorithms contained in software tasks. One of the characteristics that

real-time systems possess over non-real-time systems is the utility of computations heavily depends on the

schedulability of its processes or tasks. In other words, the ability of each task to meet is specified timing

deadline. A deadline is defined as the maximum time allotted for each task to complete its computation

or processing for a given set of inputs. In a real-time system, tasks are accepted by the scheduler software

component, then scheduled to use the CPU in accordance with their assigned priority as dictated by the

chosen scheduling algorithm, subject to the constraint that its processing must be completed as specified by

the task deadline. The ability of a given task to meet its deadline is highly dependent on the performance

characteristics of the chosen scheduling algorithm in conjunction with the performance characteristics of

the task specific algorithms. The precise modeling and evaluation of real-time system scheduling behavior

is the rigorous mathematical analysis of the scheduling algorithm’s ability to ensure that all real-time

system tasks meet their specified deadlines is the subject of schedulability analysis. A real-time system

meets the definition of schedulable if the scheduling algorithm can guarantee that all tasks can meet their

assigned deadlines, otherwise the system is said to be un-schedulable. The accuracy of the schedulability

assessment of real-time system performance is critically dependent on the accuracy of the various task

WCET values.

Task Preemption

Real-time scheduling algorithms are responsible for selecting tasks to use the CPU at any given mo-

ment from a list of tasks that are ready to execute. Most scheduling algorithms accomplish this via a

process known as task preemption. Task preemption results in the task currently using the CPU to be

momentarily suspended or interrupted by the real-time system scheduler, itself a privileged task. The

scheduler then selects the highest priority task to run, restores its execution context, thereby allowing the

new task to continue executing. This type of task scheduling change in real-time systems is known as a

context switch. A context switch is the process of storing and restoring the execution context of a running

task (typically a thread) so that execution can be resumed from the point at which the task was interrup-

ted some time later. In effect, the preemptive scheduler is a key real-time system component enabling

multiple tasks to share the CPU. The rules governing when task preemption occurs is a function of the

task preemption model and scheduling algorithm. The scheduling algorithms used in scheduling real-time

system tasks are categorized as fully preemptive, limited preemption or non-preemptive. A fully preemp-

tive scheduling algorithm allows tasks to be preempted at any code location during their execution. Tasks

run to completion in a non-preemptive scheduling algorithm before another task may use the CPU. Hence
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non-preemptive scheduling does not permit tasks to be preempted, introducing undesirable blocking on

higher-priority tasks. In a limited preemption scheduling algorithm, tasks may be preempted only at a

limited number of locations. Limited preemption scheduling is also known as deferred preemption sche-

duling. Preemptions caused by the execution of higher priority tasks are deferred until a later point in

time. The amount of preemption deferment is based on taskset execution characteristics, and the amount

of available execution slack during system operation. The task preemption model along with the chosen

scheduling algorithm utilized in any given real-time system can facilitate or inhibit the ability of tasks to

meet their required deadlines.

Cache Related Preemption Delay (CRPD)

Cache memory is basically high-speed memory inserted between the CPU and the much slower main

memory (RAM) acting much like a buffer. The concept of cache memories relies on two fundamental

characteristics exhibited by most software programs, namely spatial locality and temporal locality. Spatial

locality refers to the property where software programs repeatedly executes the same instructions and/or

manipulates data stored in the same location. Temporal locality is the property where software programs

repetitively access the same memory locations around the same time frame as opposed to being spread

evenly over the execution life of the program. The objective of cache memory designs is to limit the

number of accesses to the slower main memory by storing frequently accessed data in the faster cache

memory, thereby increasing the effective memory speed and thus allowing the CPU to operate at a faster

rate. For real-time systems that employ instruction and/or data caches, task preemption has the effect of

introducing additional delays in task execution resulting from cache related preemption delay. Cache rela-

ted preemption delay (CRPD) occurs when a task is preempted by higher priority tasks, whose subsequent

execution causes memory blocks stored in cache memory to be evicted [39]. When the interrupted task

resumes execution, the evicted cache memory blocks must be reloaded, introducing additional delay to the

overall task execution time. The additional delay resulting from CRPD can significantly impact the ability

of tasks in a real-time system to meet their deadlines thereby degrading system operation or causing total

system failure. Therefore, it is imperative that CRPD effects be accounted for when determining whether

hard-real-time tasksets can reliably meet their deadlines.

Schedulability Analysis

Today, high-performance microprocessors with advanced capabilities are commonplace in real-time

systems. These processors operate at higher clock frequency and often contain multiple cores in a single

processor [45]. Also, many processor manufacturers offer complete embedded computers, which include a

powerful processor, several I/O interfaces, and serial communication interfaces in a single compact printed
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circuit board (PCB) [46]. These modern embedded computers are ideal for contemporary hard-real-time

system development as they have higher computing capabilities, exhibit higher reliability, and are more

affordable than their previous counterparts. To realize the necessary performance gains, cache memory

designs are employed to enable the CPU to operate at the fastest rate possible. Cache memory, despite its

advantages, introduces schedulability challenges that real-time system designers must address during sy-

stem design to ensure that real-time tasks consistently meet their deadlines during runtime. Schedulability

analysis of the chosen scheduling algorithm and task preemption model in conjunction with the real-time

taskset relies heavily on accurate WCET and CRPD estimates. It is imperative that the WCET and CRPD

estimates be safe, meaning greater than or equal to the actual task performance in order for the schedu-

lability analysis results to be meaningful to real-time system designers. The fundamental problem with

existing CRPD calculation techniques is a significant level of pessimism or inaccuracy. The effect of this

inaccuracy in the context of schedulability analysis is that some tasksets may be declared un-schedulable

when in fact they are indeed schedulable, leading to over provisioning of CPU resources.

Until the last decade, real-time systems were mainly constrained by the available CPU processing

power, where the CPU processing power was the scarcest resource. Earlier, the cost of real-time hardware

systems was substantially high, compared to the combined cost of software design and testing [62]. In

recent times, the average cost per tera flop has been reduced exponentially [38]. Today, modern real-time

system manufacturers face different challenges. For real-time computing applications, the software design,

development, and testing costs now represent the highest portion of product development costs due to

increasing size and complexity of software programs as witnessed in a majority of engineering application

domains. Lack of proper preemption point placement and schedulability analysis frameworks along with

the difficultly involved in streamlining the real-time design process are prominent contributors to the higher

development costs. It is clear that real-time system designers need to focus more attention on the software

design and associated implementation issues. With the ever-increasing complexity exhibited by the real-

time system physical domain along with variable hardware constraints, the number, size, and complexity

of the real-time tasks developed to meet these diverse requirements is rapidly increasing. Thus, designing

a reliable system with efficient resource provisioning where real-time tasks are guaranteed to meet their

deadlines has become a central issue in achieving guaranteed robust real-time system performance. With

the increasing size and complexity of real-time software tasks, accurate WCET and CRPD estimates are

paramount to realizing efficient provisioning of CPU resources.
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Figure 4: qurt Data Cache.

Motivation Summary

There are many important previous research results on cache related preemption delay (CRPD), sche-

dulability analysis, and limited preemption point placement in real-time system designs (see Chapter 2).

However, from a CRPD perspective, previous work has characterized CRPD as a single valued function

dependent only on task preemption at each program location during execution. Figures 4 and 5 illus-

trate that actual CRPD values are inherently an interdependent function based on the previous and next

preemption point within the context of a limited preemption model. The horizontal axis captures program

locations corresponding to execution in a linear control flow graph. The vertical axis measures the CRPD

at each program location. Two curves are shown, one denoting the minimum CRPD, and the other deno-

ting the maximum CRPD assuming preemption occurs at that program location. What is readily apparent

from the two figures is the CRPD values are program location dependent. To see the potential benefits of

the interdependent CRPD function, the CRPD values computed in current start of the art methods would

correspond to the maximum lines shown in the two figures. It is clear that no state of the art methods have

incorporated this inherent interdependence of CRPD on the actual locations of preemptions in the task

code. The benefits of integrating an interdependent CRPD metric into automated preemption point place-

ment in a limited preemption model are increased accuracy, increased taskset schedulability, and improved

CPU resource provisioning. The resulting accuracy improvements our newly proposed CRPD metric as

integrated into our proposed preemption point placement algorithms have resulted in substantial gains in

real-time taskset schedulability as expected. Therefore, in this thesis, we fill this vacancy by suggesting a
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Figure 5: ndes Data Cache.
suitable schedulability analysis general framework for limited preemption scheduling.

In the rest of this chapter, we first discuss the objectives as well as the contributions of our work. Then

we will outline the rest of the thesis in the end of this chapter.

Objectives

In this thesis, we introduce a new metric called loaded cache blocks (LCB) which more accurately

characterizes the CRPD a real-time task may be subjected to due to the preemptive execution of higher

priority tasks. Our LCB metric is integrated into our newly developed algorithms that automatically place

preemption points supporting both linear and arbitrary control flow graphs (CFGs). Our proposed preemp-

tion point placement algorithms are shown to achieve optimal runtime performance for a given taskset.

Our schedulability framework offers a reliable and formal process, thus saving time and costs incurred

during the real-time system design cycle.

Thesis

The thesis of this document is:

Cache related preemption delay cost is inherently dependent on task preemption locations

in contrast to existing research. The CRPD interdependence can be leveraged to optimize

preemption point placement supporting limited preemption scheduling in real time systems.

The benefit of this approach is increased schedulability of hard-real-time tasksets by effecti-

vely minimizing the preemption overhead, and can be evaluated and verified empirically over

real-time benchmarks and synthetic test sets.
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Summary of Contributions

The main contributions of this thesis are listed as follows:

1. We propose a new CRPD metric, called loaded cache blocks (LCB) which accurately characterizes

the CRPD a real-time task may be subjected to due to the preemptive execution of higher priority

tasks (see Chapter 4).

2. We show how to integrate our new LCB metric into our newly developed algorithms that automati-

cally place preemption points supporting linear control flow graphs (CFGs) for limited preemption

scheduling applications (see Chapter 5).

3. We extend the derivation of loaded cache blocks (LCB), that was proposed for linear control flow

graphs (CFGs) to conditional CFGs for structured programs. (see Chapter 6).

4. We demonstrate how to integrate our revised LCB metric into our newly developed algorithms that

automatically place preemption points supporting conditional control flow graphs (CFGs) for limited

preemption scheduling applications. (see Chapter 6).

5. We show how to integrate the revised LCB metric into a revised algorithm that automatically place

preemption points supporting linear and conditional control flow graphs (CFGs) for limited preemp-

tion scheduling applications. (see Chapter 6).

6. We show how to integrate preemption placement with preemption threshold scheduling supporting

linear and conditional control flow graphs (CFGs) for limited preemption scheduling applications.

(see Chapter 7).

Organization

The following table gives the details of each chapter:
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Table 1: Chapter Contribution Summary

Chapter # Contribution

Chapter 2 Related work

Chapter 3 Models and definitions used in the dissertation

Chapter 4 Loaded cache block calculation for linear and

conditional control flow graphs

Chapter 5 Preemption point placement details for linear control flow graphs

Chapter 6 Preemption point placement details for conditional control flow graphs

Chapter 7 Integrating Preemption Thresholds with Limited Preemption Scheduling

Chapter 8 Future work

Chapter 9 Conclusion of this dissertation

Chapter 10 List of Publications
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CHAPTER 2 RELATED WORK
In this chapter, we present prior research on cache related preemption delay and limited preemption

point placement techniques. Our proposed linear and conditional PPP algorithms leverage elements from

these two prominent areas of real-time theory. We now briefly summarize the prior work in each of these

areas and describe how it relates to our proposed algorithm. For clarity, the descriptions of the related

works are divided into two separate subsections, namely, CRPD calculation, and limited preemption sche-

duling.

CRPD Calculation

The concept and algorithm for computing the set of useful cache blocks (UCBs) was proposed by Lee

et al. [39] analyzing the preempted task. Similarly, the set of evicting cache blocks (ECBs) was realized

by Tomiyamay and Dutt [69] analyzing the preempting task. More formal definitions of UCBs and ECBs

by Altmeyer and Burguiere [5] were subsequently refined and presented. By convention, the preempting

task’s memory accesses (ECBs) will evict the preempted task’s UCBs thereby resulting in non-negligible

CRPD.

Tighter bounds on the CRPD computation via the intersection of the ECB and UCB sets were achie-

ved by Negi et al. [52] and Tan and Mooney [67]. A cache state reduction technique by Staschulat and

Ernst [66] was employed trading off CRPD accuracy or tightness for a reduction in computational com-

plexity. CRPD analysis using memory access patterns was proposed by Ramaprasad and Mueller [60].

The over-approximation of cache misses in WCET analysis tools by introducing definitely-cached

useful cache block (DC-UCB) as proposed by Altmeyer and Burguiere [5]. DC-UCBs are cache blocks

that must reside in cache memory.

The ECB Union approach and a combined UCB Union and ECB Union approach by Altmeyer et

al. [6] were later introduced and shown to dominate earlier CRPD methods. The UCB Union and ECB

Union multiset approaches were subsequently introduced to reduce the pessimism in CRPD analysis also

proposed by Altmeyer et al. [7].

The above approaches assume that the CRPD cost of a preemption is computed independently to

obtain a safe, conservative bound. Conversely, an interdependent CRPD model using loaded cache blocks

(LCBs) was proposed. Recent work to improve the CRPD accuracy in PPP algorithms by Cavicchio et

al. [25] leading to tangible schedulability gains. Our research leverages the interdependent CRPD model

and extends preemption placement to conditional real-time code structures.



12

Limited Preemption Scheduling

Research in limited preemption scheduling attempts to address well known limitations of the non-

preemptive and fully preemptive scheduling paradigms. Two limited preemption scheduling models are

the deferred preemption scheduling model and the preemption threshold scheduling model.

First, the fixed preemption point model proposed by Burns [20] and the floating-point preemption

model proposed by Baruah [9] are two distinct sub-categories of deferred preemption scheduling. In the

floating preemption point model [9], the currently executing task continues executing for a minimum of

Qi time units or runs to completion if the remaining execution time is less than Qi. The parameter Qi

is computed via task set schedulability analysis [9] representing the maximum amount of blocking time

that task τi may impose on higher priority tasks. Since the start of the non-preemptive execution region

coincides with the arrival of a higher priority task, region locations are nondeterministic or floating. In

contrast, the fixed-point preemption model [20] differs from the floating preemption point model in that

the task code preemptions are confined to pre-defined fixed locations and computed using an offline PPP

algorithm.

Second, preemption threshold scheduling proposed by Wang and Saksena [70] employs a modified

priority-based scheme to determine when tasks may preempted. Each task in the preemption threshold

scheduling [70] approach is assigned two distinct priority values, each for a different purpose. These pri-

orities are known as the nominal static priority pi and a preemption threshold Πi priority. The preempting

task τk may only preempt the currently executing task τi if τk has a nominal priority pk exceeding the

assigned preemption threshold Πi.

Fixed PPP algorithms sought to minimize preemption overhead in fixed priority task sets in early work

by Simonson and Patel [64] and Lee et al. [39]. For tasks executing via preemption triggered floating non-

preemptive regions, Marinho et al. [48] successfully computed an upper-bound on task CRPD. Lastly, work

in fixed priority (FP) preemption threshold schedulability (PTS) analysis by Bril et al [19], supporting task

sets with arbitrary deadlines, successfully assigned optimal priority thresholds by minimizing independent

CRPD costs. This work was later complimented by combining the optimal threshold assignment algorithm

with a simulated annealing algorithm that optimizes task layout [18]. The effectiveness of these heuristic

solutions is limited by the employed cost model.

An optimal PPP algorithm was realized by Bertogna et al. [13, 14] with linear time complexity for

strictly linear CFG structures. A pseudo-polynomial preemption point placement algorithm was realized

[58] supporting well-structured series/parallel conditional CFG structures. The limitations of these soluti-
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ons stem from utilizing the less accurate independent CRPD cost model as compared to the interdependent

cost model accounting for the dependency between selected preemption points. Recently, a quadratic PPP

algorithm was proposed by Cavicchio et al. [25] using the interdependent CRPD cost model for linear

CFG structures.

In our work, we extend the dynamic programming algorithm proposed by Peng et al. [58] to incorpo-

rate the more accurate interdependent CRPD cost model supporting separate instruction and data direct-

mapped caches. Our conditional PPP algorithm realizes an enhanced minimized safe upper bound preemp-

tion point placement solution resulting in substantial improvements over previous PPP methods commen-

surate with the accuracy improvements using interdependent CRPD costs. Furthermore, the handling of

inline function calls is refined into function definition and function invocation components providing the

basis for future non-inline function support. Our comprehensive simulation approach utilizes real-time

code benchmark examples as a basis for comparison against several current state of the art scheduling

methods. Lastly, our evaluation demonstrates the superiority of the interdependent CRPD model coupled

with the limited preemption scheduling model resulting in a new state of the art.



14

CHAPTER 3 MODELS AND DEFINITIONS
Our work is cross-disciplinary research that leverages the concepts from both computer science and

electrical engineering. Therefore, in this chapter, we will introduce a basic overview on notations, con-

cepts, and models, to make readers more comfortable with the main concepts of this document. Also, we

only provide a very concise yet complete overview on the concepts and theories, details can be found in

relevant textbooks and research papers.

Real-Time Systems Model

In next couple of sub sections, real-time models, notations, and definitions are presented.

Jobs and Tasks

Any real-time system can be considered as a set of concurrent tasks [44]. Each task generates an

infinite number of jobs. The jobs from a same task obey sequential order of execution.

Definition 1 (Job). A real-time job j = (A,E,D) is characterized by three parameters, an arrival time

A, an execution time E, and a deadline D, with the requirement that this job must receive E units of

execution over the interval [A,D).

Figure 6 illustrates the definition of a real time job.

Figure 6: Real-Time Job Execution.

Periodic Task Model

In the periodic task model [10], a task Ti is completely characterized by a 4-tuple (ai, ei, di, pi), where

1. the offset ai denotes the instant at which the first job generated by this task becomes available for

execution.

2. the execution requirement ei specifies an upper limit on the execution requirement of each job gene-

rated by this task.

3. the relative deadline di denotes the temporal separation between each job’s arrival time and deadline.

A job generated by this task arriving at time-instant t has a deadline at time-instant (t+ di).
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4. the period pi specifies the separation of or the inter-arrival times of successive jobs generated by the

task.

That is, Ti = (ai, ei, di, pi) generates a potentially infinite succession of jobs, each with execution-

requirement ei, at each instant (ai + k ·pi) for all integer k ≥ 0, and the job generated at instant (ai+k ·pi)

has a deadline at instant (ai + k · pi + di) [10].

Sporadic Task Model

The sporadic task model differs from the periodic task model because of its inability to express job

arrival time until the run-time moment. A sporadic task system contains a set of sporadic tasks [10].

Definition 2 (Sporadic Task). A sporadic task τi is completely described by a 3-tuple τi = (ei, di, pi)

where ei is the worst-case execution time, di is the relative deadline, and pi is the minimum inter-

arrival time between successive jobs. By definition, sporadic tasks generate an infinite sequence of jobs.

Successive job arrivals will be separated by a minimum time denoted by pi. A sporadic task system

τ
def
= {τ1, . . . , τn} is a collection of n sporadic tasks.

The utilization indicates the amount of time that system becomes busy due to tasks in a task model.

Formally, the utilization Ui of a periodic or sporadic task τi is defined to be the ratio of its execution

requirement to its period: Ui = ei
pi

. The utilization U(τ) of a periodic or sporadic task system τ is defined

to be the sum of the utilizations of all tasks in τ : U =
∑

Ti∈τ Ui. For any task system under any known

uniprocessor scheduling algorithm, the utilization should not exceed 1 and cannot schedulable otherwise;

however, this does not necessarily say that a system is schedulable if the utilization is under 1.

Control Flow Graphs

Each task τi contains real-time code represented by a series/parallel control flow graph (CFG), denoted

Gi. We introduce the basic block notation δji where i is the task identifier and j is the basic block identifier.

A dummy basic block δ0i with zero WCET is added at the beginning of each task to capture the preemption

that occurs prior to task execution. In our model, a basic block is a set of one or more instructions that

execute non-preemptively. Basic blocks are essentially the vertices Vi of a conditional control flow graph

(CFG) connected by directed edgesEi representing the execution sequence of one or more job instructions.

Figure 7 shown below illustrates the conditional basic block connection structure.
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Figure 7: Conditional Control Flow Graph.
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Linear CFGs represents a special case or subset of the problem for conditional CFGs as shown in Figure 8. 
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Figure 8: Linear CFG Structure.

The CFG for task τi denoted Gi is a tuple (Vi,Ei,δsi ,δei ) representing the real-time task code structure.

Flow graphs are directed graphs describing the task execution sequence from a starting basic block δsi to

an ending basic block δei through one or more execution paths p ∈ Pi(Gi, δsi , δei ), where Pi(·) denotes all

possible execution paths starting with δsi and ending at δei in Gi. An execution path p through Gi is an

ordered sequence of basic blocks from some starting instruction δsi to an ending instruction δei . A directed

edge ex,yi = (δxi , δ
y
i ) where ex,yi ∈ Ei connecting basic blocks δxi and δyi represents the execution of basic

block δxi immediately preceding the execution of basic block δyi . We introduce an operator �p describing

a more general execution precedence relation, where δxi �p δ
y
i represents the execution of basic block

δxi preceding the execution of basic block δyi by zero or more instructions along some path p. Similarly,

operator ≺p represents the execution of basic block δxi preceding the execution of basic block δyi by one

or more instructions along some path p. We further introduce notation describing a subgraph in task τi

as Gai with the tuple (V a
i ,Eai ,δs

a

i ,δe
a

i ) where a is the subgraph identifier, δs
a

i is the starting basic block,

and δe
a

i is the ending basic block. Similar notation used to describe the paths in subgraph a is given as

P ai (Gai , δ
sa
i , δ

ea
i ). Preemptions are permitted at the edges ex,yi between basic blocks. We introduce the

non-preemptive basic block execution time notation bji where i is the task identifier and j is the basic

block identifier, hence using this convention we have:

CNPi = max
p∈Pi(Gi,δsi ,δei )

[Σ
δji∈p

bji ]. (1)

Tasks may be preempted by multiple higher-priority tasks as determined by the employed scheduling

algorithm. In this paper, we support fixed priority (FP), Deadline-Monotonic (DM) and Earliest-Deadline-

First (EDF) scheduling. The processor utilization Ui of task τi is given by:

Ui = CNPi /Ti. (2)

In a limited preemption approach, each task is permitted to execute non-preemptively for a maximum

amount of time denoted by Qi. Previous research on limited preemption scheduling by Baruah et al. [9]

has used the above information to determine the value of Qi for each task. The determination of Qi is

dependent on the placement of preemption points. Preemptions occur after the last basic block instruction
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and before the first instruction of the next basic block. The details supporting the computation of Qi are

presented in the schedulability analysis section of Chapter 4.

Online and Offline Algorithms

In offline scheduling algorithms, all scheduling decisions are made before the system begins executing.

These scheduling algorithms select jobs to execute by referencing a table describing the pre-determined

schedule. Usually, offline schedules are repeated after a least common multiple (LCM) period. The offline

schedulers require the full knowledge of the job before the they execute.

In online scheduling algorithms, scheduling decisions are made without specific knowledge of jobs

that have not yet arrived. These scheduling algorithms select jobs to execute by examining properties of

active jobs. Online algorithms can be more flexible than offline algorithms since they can schedule jobs

whose behavior cannot be predicted ahead of time.

Scheduling Algorithms

Real-time jobs are selected for execution by the scheduler component. The scheduler uses a scheduling

algorithm to perform job selection. Typical examples of scheduling algorithms are earliest deadline first

(EDF), least laxity first (LLF), rate monotonic (RM), deadline monotonic (DM), and fixed priority (FP)

to name a few [22]. At each time instance t scheduling algorithms select an active job j whose priority

is the highest. In essence, scheduling algorithms tend to differ in the manner and/or task metric used

to determine the highest priority job. The EDF algorithm selects the job with the earliest deadline [10].

Similarly, the LLF algorithm selects the job with the smallest laxity as the highest priority job. One very

well-known fixed priority scheduling algorithm is the RM algorithm. The RM algorithm, selects jobs with

shorter periods as the highest priority job [44]. Finally, the DM algorithm selects the job with the smallest

or shorter deadline as the highest priority job [44].

Depending on the scheduling requirements, a hard-real-time system might employ online or off-line

scheduling algorithms. For example, if a hard-real-time system has a well-defined taskset whose charac-

teristics are known a priori, and there are no runtime task modifications expected, then off-line scheduling

algorithms are often deemed suitable. The off-line scheduling algorithms are more suitable for systems

with sufficient resources to handle the known taskset. However, an off-line scheduling algorithm is gene-

rally unsuitable to manage continuously varying and somewhat dynamic task/job characteristics that are

unknown ahead of time. Online scheduling techniques which account for dynamic task characteristics are

often employed in these instances [44]. It is customary that online scheduling algorithms used in dynamic

environments may use heuristic methods optimized for the specific taskset.

The primary intention of this section is to provide a review of previous work that summarizes the
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real-time system model used in our work. As such, research on scheduling algorithms and associated

techniques are in scope, as our algorithms must be compatible with the underlying scheduling algorithm.

For convenience, Table 2 summarizes the terminology presented in this section.

Term Description
bji Basic block j WCET in task τi CFG
CNPi Non-preemptive task τi execution time
Di Relative deadline of task τi
δji Basic block j in task τi CFG
δ0i Dummy basic block with zero WCET added to each task CFG
δe
a

i Ending basic block in task τi subgraph a CFG
δs
a

i Starting basic block in task τi subgraph a CFG
Ei The set of directed edges in task τi CFG
Eai The set of directed edges in task τi subgraph
ex,yi A directed edge connecting basic blocks δxi and δyi
Gi Task τi control flow graph (CFG)
Gai Task τi subgraph a CFG
i Index variable denoting the preempted task

Ni + 1 Number of basic blocks in task τi CFG
Pi Unique set of paths through task τi CFG
P ai Unique set of paths through task τi subgraph a CFG
P ai P ai (Gai , δ

sa
i , δ

ea
i ) using graph boundaries δs

a

i and δe
a

i

p Current path through task τi CFG
pi Fixed priority of task τi
Qi Maximum non-preemptive execution region for task τi
Ti Task τi inter-arrival time or period
τ Taskset containing n tasks τ1, τ2, . . . τn
τi Task τi in taskset τ
Ui The processor utilization of task τi
Vi The set of vertices in task τi CFG
V a
i The set of vertices in task τi subgraph a CFG

Table 2: System Model Terminology
In the next subsections, we give details on the system hardware cache models employed on uniproces-

sor systems.

Cache Memory Models

Cache Memory

Cache memory is basically a high-speed memory array which essentially buffers the slower main

memory from the CPU. The goal of cache memory is to minimize the number of occurrences where

instructions and data must be fetched from main memory. With the ever-increasing gap between CPU

processing speed and main memory access speed, real time system designers are attempting to maximize

CPU throughput via cache memory. Cache memory designs consist of cache data memory, cache directory,
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cache controller, address buffers, and data buffers. Figure 9 illustrates the high-level block diagram of key

cache memory design components [33].

Figure 9: Key Cache Memory Design Components in ”The Cache Memory Book: The Authoritative
Reference on Cache Design”, Second Edition, by J. Handy, 1998.

The cache data memory is the high-speed memory array where replicas of recently used main memory

data are stored. The cache directory acts as storage for the main memory addresses whose data is currently

stored in the cache data memory. The cache controller contains hardware logic responsible for controlling

the cache memory operation. The operational characteristics of hardware logic are generally referred to as

cache policies. The cache directory is examined by the cache controller when main memory is accessed

to determine whether the data is already held in the cache data memory. The cache directory stores the

address tag bits along with a valid bit indicating if that cache memory location has valid data. Alternative

terms used for cache directory are cache-tag and content addressable memory (CAM). In the electronics

domain, the data buffer is a hardware device used to store data temporarily while it is being moved from

main memory to the cache data memory. The address buffer stores the most recently memory address

accessed and is used by the cache controller. The data and address buffers also serve to amplify the current

in order to facilitate the fan out needed by the cache memory design.

Direct Mapped Caches

Initially, we consider a single processor system with direct mapped instruction and data caches. Direct

mapped cache memory possesses the property where only one cache memory location exists for each main

memory data entry. Hence there is no need for a cache replacement policy as only a single unique cache

memory location is replaced with each subsequent main memory access. Let a be the number of address
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Figure 10: Cache Memory Address Decomposition.

Figure 11: Direct Mapped Cache Hit Determination Logic.

bits used in a CPU that employs a direct mapped cache memory design. Further, let b the number of

bits representing the cache block size and let k be the number of bits representing the number of cache

lines in the cache data memory. The number of bits used for the cache directory or cache-tag is given by

t = a− k − b. Figure 10 illustrates a typical address decomposition for direct mapped caches [33].

Direct mapped caches have a distinct advantage of simplicity, as the tag bits only have to be checked

for a single slot to determine a match or hit. One of the primary disadvantages of direct mapped caches

is that the scheme suffers from many addresses, 2t−k specifically, that end up colliding to the same cache

data memory slot. This causes each cache line to be potentially frequently evicted, thereby imposing a

cache reload delay or penalty on a running task. Figure 11 illustrates the cache hit determination logic for

direct mapped caches [33].

The k bits comprising the slot field of the address are used to index or select the cache data memory

and cache tag memory location. On a CPU memory access request, the t bits comprising the tag field of
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Figure 12: Set Associative Cache Memory Design Components.

the address are compared to the tag bits stored in the tag memory. If they are equal, then a cache hit occurs,

and the data is buffered for use by the CPU.

Set Associative Caches

To overcome the frequent eviction of cache lines, cache designers may employ the use of multiple

sets for each cache data memory location. Let the parameter n denote the number of cache sets. Cache

memory designs that have multiple sets for each cache data memory location are known as n-way set

associative caches. Figure 12 illustrates a high-level block diagram of key set associative cache memory

design components [33].

Due to having multiple sets for each cache data memory location, a mechanism to determine which

specific set to replace is required. This mechanism is known as a replacement policy or replacement

algorithm. Figure 13 illustrates the cache hit determination logic for set associative caches [33].

Similar to direct mapped caches, the k bits comprising the slot field of the address are used to index

or select the cache data memory and cache tag memory location. On a CPU memory access request, the

t bits comprising the tag field of the address are compared to the tag bits stored in the tag memory. The

primary difference for set associative caches is the tag memory has to be examined simultaneously for all

n sets. If one set contains a match, then a cache hit occurs, and the data is buffered for use by the CPU.

Fully Associative Caches

A fully associative cache implements a cache policy allowing any main memory block to be mapped

to any cache line. The hardware for determining whether the desired memory block is in cache memory

requires comparing the memory block address tag bits to the stored tag bits of every cache block (line,slot)
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Figure 13: Set Associative Cache Hit Determination Logic.

Figure 14: Fully Associative Cache Memory Address Decomposition.

in parallel. A fully associative cache must use content addressable memory to translate processor addresses

into cache data RAM addresses.

Let a be the number of address bits used in a CPU that employs a fully associative cache memory

design. Further, let b the number of bits representing the cache block size and let k be the number of bits

representing the number of cache lines in the cache data memory. The number of bits used for the cache

directory or cache-tag is given by t = a − b. Since the memory block can occupy any location in cache

data memory, there is no need for including the k cache slot bits. Figure 14 shown below illustrates a

typical address decomposition for fully associative caches [33].

Due to having all cache blocks available for each cache data memory access, a mechanism to determine

which specific set to replace is required. This mechanism is known as a replacement policy or replacement

algorithm. Figure 15 illustrates the cache hit determination logic for fully associative caches [33]. When

a cache miss occurs, the cache controller must select a cache block that is empty or not valid to place
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Figure 15: Fully Associative Cache Hit Determination Logic.

the main memory data currently being accessed. If no empty cache blocks exist, the cache controller must

choose a cache block to evict based on the cache eviction policy design. If the evicted cache block contains

dirty data (i.e. the data is different from main memory contents), then the data in the cache block must be

copied back to main memory before the new data may be loaded. One of the primary advantages of fully

associative caches is their excellent temporal locality properties. In this model, the flexible memory block

placement allows the design and implementation of replacement policies to minimize the replacement of

cached memory blocks that will be referenced again. One of the disadvantages is its high cost for large

cache memory designs due to the need for a tag comparator for each cache block.

In the following subsections, we give details on the various cache replacement policies used on uni-

processor systems. Since our future work will likely implement the CRPD metric and limited preemption

point placement for various cache replacement policies or algorithms, the supporting summaries of popular

algorithms are provided for reference.

Cache Replacement Policies

Cache replacement policies [65], also known as cache replacement algorithms, are responsible for the

selection of the cache line to place the newly referenced data in when a read miss occurs. If empty cache

lines are available, then they are prioritized over occupied or valid cache lines. If there are no empty cache

lines, then an occupied cache line must be chosen for removal. The rules or algorithms that choose an

occupied cache line for removal are designed to select cache lines that are least likely to be reused in the

future. In other words, cache lines that are most likely to be reused should be avoided where possible.
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Lastly, before the new data may be loaded, the data in the selected cache line must be written back to main

memory if it has been modified.

Belady’s Algorithm

Belady’s cache replacement algorithm [11,49], also known as the optimal algorithm or the clairvoyant

algorithm, always selects the cache block whose information is no longer needed or will not be needed

for the longest period of time. In order to accomplish this, the system must examine all future memory

references. For obvious reasons, it isn’t practical to determine how far in the future cached data will be

required using online replacement algorithms. As such, this replacement algorithm is strictly used as a

comparator to determine the relative effectiveness as compared to more practical approaches.

Least Recently Used (LRU)

The least recently used (LRU) replacement algorithm selects the cache block that has the largest age.

In other words, the cache block that was used least recently. Figure 16 illustrates the operation of the algo-

rithm. It is often convenient to visualize LRU algorithm operation by using a FIFO list data structure. The

Figure 16: LRU Cache Replacement Algorithm.

LRU algorithm requires aging information to be maintained in order to determine which block is the least

recently used. For set associative and fully associative caches, aging information is maintained for each

cache set. For example, an 8-way set associative cache has 8! or 40320 different block orderings requiring

sixteen bits to represent aging information. For fully associative caches, its customary to represent the

aging information by using counters or lists. When a cache hit occurs, the ages of all other cache blocks

are incremented. Memory access workloads where LRU performs well have two important characteristics:

(1) a preponderance of memory references with smaller reuse distances [29]; and (2) the vast majority of

these memory references have reuse distances that are smaller than the number of available cache memory

blocks. Workloads with these two characteristics exhibit strong locality properties, resulting in a higher

number of cache hits. On the other hand, LRU is known to perform poorly with workloads exhibiting

weak locality properties. The primary reason for this is that LRU inherently operates under the assump-

tion that cache blocks that haven’t been accessed for the longest time are expected to be next accessed in

the longest time frame. Common applications of the LRU algorithm include virtual memory management,
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file buffering, and database buffering. Cost wise, LRU is infeasible and unaffordable, as it must maintain

the LRU ordering for each memory access. In practice, more practical cost-effective implementations of

LRU are used whose algorithms are discussed in subsequent sections.

Least Recently Used K (LRU-K)

The least recently used K (LRU-K) replacement algorithm [53, 54], a more practical implementation

of the LRU algorithm, measures the time intervals using counters tracking successive memory references

whose primary goal is to retain cache blocks with smaller reference or inter-arrival counts. Figure 17

illustrates the operation of the algorithm [53, 54]. The inter-arrival counts are known as the backward

Figure 17: LRU-K Cache Replacement Algorithm.

K-distance metric, denoted bt(p,K), where bt(p,K) is the backward distance to the Kth most recent

reference to cache block p, otherwise, if there have been less than K references, bt(p,K) is assigned the

value of ∞. LRU-K selects the cache block whose backward K-distance metric is the maximum value

from the last K memory references. In other words, cache blocks selected for replacement are those with

the largest K reference length. In cases where multiple cache blocks have the same maximum backward

K-distance value, a secondary selection algorithm must be employed to break ties. In practice, the LRU-K

replacement algorithm is widely used in database buffering applications.

Most Recently Used (MRU)

The most recently used (MRU) replacement algorithm selects the cache block that was used most

recently. The MRU algorithm has been found useful for applications using repeated sequential scanning

of file data. Figure 18 illustrates the operation of the algorithm [28]. It is most suitable for memory access

Figure 18: MRU Cache Replacement Algorithm.
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patterns where the older data items are more likely to be accessed [28]. MRU is not widely used as several

new cache replacement algorithms have been recently developed that have successfully addressed cache

performance during sequential scans of file data.

Random Replacement (RR)

The random replacement (RR) algorithm randomly selects a cache blocks discarding the contents to

make room as needed. The RR algorithm requires no bookkeeping information about past memory access

history. The primary advantage of the random replacement approach is its simplicity. This replacement

policy has been employed on ARM Cortex-R series processors.

First-In First-Out (FIFO)

The first-in first-out (FIFO) algorithm, known as one of the simplest cache replacement algorithms,

stores cached memory blocks in a queue data structure. The most recently accessed memory blocks are

inserted at the back end and the least recently used or oldest memory blocks are located at the front

end of the queue. FIFO selects the oldest memory block at the front end for replacement. Figure 19

illustrates the operation of the algorithm [63]. Advantages of the FIFO approach is its simplicity and

Figure 19: FIFO Cache Replacement Algorithm.

associated low overhead. By itself, FIFO performs poorly in practical applications, hence it is rarely

used unmodified. Historically, the FIFO algorithm has been used in the VAX/VMS operating system,

with modifications [63]. The Second Chance (SC) algorithm [68], is widely known as one of the more

commonly used FIFO algorithm variants.

Least Frequently Used (LFU)

The least frequently used (LFU) replacement algorithm selects the cache block that has been referen-

ced the least amount. The LFU algorithm maintains usage counters that increment every time a cache

hit occurs for a particular cache block. Figure 20 illustrates the operation of the algorithm [4, 26]. A

frequency-based memory access workload characterization known as the Independent Reference Model

(IRM) has been extensively studied. Under IRM, memory access patterns occur in a randomly independent

manner according to some fixed probability distribution over all blocks in main memory. In essence, the

IRM model favors frequency-based memory access patterns or workloads. In accordance with the IRM
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Figure 20: LFU Cache Replacement Algorithm.

model, the LFU cache replacement algorithm has been shown to be optimal [4, 26]. On the other hand,

disadvantages of LFU include logarithmic complexity, ignoring recent memory accesses, and performing

poorly as memory access patterns change, as its frequency bias can often result in stale cache contents that

may not be referenced again.

Least Recently/Frequently Used (LRFU)

The Least Recently/Frequently Used (LRFU) replacement algorithm [40, 41], utilizes a weighted re-

cency and frequency (CRF) metric that effectively combines and subsumes the LRU and LFU replacement

algorithms. A self-adaptive tuning parameter λ acts as the weighting factor. When λ approaches a value

of 1, the CRF value will favor access recency causing LRFU to behave like LRU. When λ approaches a

value of 0, the CRF value will favor access frequency causing LRFU to behave like LFU. One of the major

disadvantages of the LRFU approach is its high computational overhead.

Clock/ClockPro

The Clock replacement algorithm [2, 27], was designed to approximate the LRU algorithm. Advanta-

ges include implementation simplicity, minimal hardware support required, and it outperforms the FIFO

algorithm. Disadvantages include a relatively weak estimation of LRU algorithm, poor performance for

memory access patterns with weak locality properties, and a failure to account for frequency of access.

Clock is appropriately named after the means by which pages are selected for replacement. Figure 21

illustrates the operation of the algorithm [2, 27]. Each cache block maintains a bit known as the clock bit

representing recent usage. Each cache set requires a pointer called the clock hand responsible for tracking

the next cache block to examine. As each cache block is examined, its usage bit is extracted and inserted

into the MSB of a k-bit shift register as the previous register contents are shifted right by a single bit

position. If the usage bit is set, the cache block remains cached, otherwise, it is evicted. The usage bit is

subsequently cleared with the clock hand pointing to the current circular list entry is advanced. A revised

version of the algorithm, ClockPro [35], extended the basic Clock algorithm to consider both access re-

cency and access frequency. Figure 22 illustrates the operation of the algorithm [35]. Access frequency
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Figure 21: Clock Cache Replacement Algorithm.

Figure 22: ClockPro Cache Replacement Algorithm.

information is added where each cache block is categorized as a hot block (frequently accessed) or a cold

block (not frequently accessed). This is implemented by three clock hands called hothand, coldhand, and

testhand. The coldhand pointer points to the least recently used cold cache block and is used to identify

candidate cold cache blocks to replace. The hothand pointer points to the hot cache block least recently

used and is used to modify its hot status to cold if not recently accessed. The testhand pointer is used to

test cold cache blocks as a means to identify resident cold blocks that are replacement candidates. Each

cache block maintains three status bits, namely, clock bit, test, and hot. The hot bit categorizes the block

as either hot or cold. The test bit is used for cold cache blocks to indicate its usage is being evalua-

ted or tested for replacement during the test period. If the cold cache block is not accessed during the

test period once terminated by the hothand, then it is evicted from cache memory. Advantages include

consideration of both frequency and recency data, implementation simplicity compared to LRU, minimal

additional hardware support in the form of three bits per cache block, three address pointers for each cache

set, and tangible performance improvements over the Clock algorithm. Disadvantages include increased
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implementation complexity compared to Clock. Clock and ClockPro are primarily used in virtual memory

(VM) applications.

Segmented LRU (SLRU)

The segmented least recently used (SLRU) replacement algorithm uses an approach whereby the cache

is divided into two distinct segments. These segments are called the probationary segment and the pro-

tected segment. The cache contents of each segment are stored in order of most recently accessed to least

recently accessed. Data from cache hits are moved to the protected segment and placed in the cache block

or slot corresponding to the most recently accessed information. The data movement to the protected seg-

ment may displace a cache block already stored which is moved to the most recently used location of the

probationary segment. If the probationary segment is full, data must be discarded from the cache, where

cache blocks stored in the least recently used location are chosen for replacement. Figure 23 illustrates

the operation of the algorithm. Likewise, data from cache misses are moved to the probationary segment

Figure 23: Segmented LRU Cache Replacement Algorithm.

and placed in the cache block or slot corresponding to the most recently accessed information. One can

readily see that cache blocks stored in the protected cache segment have been accessed a minimum of two

times. The sizes of the probationary and the protected segments is a key SLRU algorithm parameter set in

accordance with expected memory access patterns.

Low Inter-Reference Recency Set (LIRS)

The Low Inter-Reference Recency Set (LIRS) replacement algorithm [36], like the SLRU approach, di-

vides the cache into two distinct partitions or sets. These sets are called the High Inter-Reference Recency

(HIR) block set and Low Inter-Reference Recency (LIR) block set. The LIR set comprises the majority

of the cache (size LLIRS) while the HIR set comprises a minority (size LHIRS). LIRS records history
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information on each block called the recent Inter-Reference Recency (IRR) metric. In the LIRS approach,

the IRR metric measures the number of other memory blocks that are accessed between two consecutive

references to a specific cache block. In cache literature, the term reuse distance [29] is frequently used.

LIRS operates under the assumption that cache blocks with large IRR values are likely to continue to be

large on the next IRR metric update. In accordance with this assumption, cache blocks with large IRR

values are selected for replacement. The reasoning behind this assumption is cache blocks with large IRR

values are more likely to be later evicted before being re-referenced again. In other words, LIRS attempts

to keep cache blocks in the LIR set in the cache and selects blocks from the HIR set for replacement.

Cache blocks move between the LIR and HIR sets when the updated IRR value of a cached HIR block is

smaller than the maximum recency values of all LIR cache blocks. In this scenario, the LIR/HIR statuses

of the HIR block and the LIR block with the maximum recency value are then switched. In practice, a

maximum recency threshold RMAX is used to trigger LIR/HIR status switching. When an HIR cache

block has an updated IRR value smaller than the threshold, the associated cache block re-categorization

occurs. In essence, the threshold controls the relative difficulty or ease that an HIR cache block becomes

an LIR cache block.

Adaptive Replacement Cache (ARC)

The Adaptive Replacement Cache (ARC) replacement [50], is an adaptive online algorithm that ana-

lyzes recent memory access patterns to dynamically prioritize between recency favorable workloads and

frequency favorable workloads. Like the SLRU and LIRS approaches, ARC divides the cache into two

distinct partitions or sets, denoted as L1 and L2. Set L1 contains cache blocks that have been accessed

once, whereas set L2 contains cache blocks that have been accessed at least twice. L1 emphasizes access

recency whereas L2 emphasizes access frequency. Figure 24 illustrates the operation of the ARC algo-

rithm. The ARC sets L1 and L2 can be thought of as a cache directory with twice the number of cache

blocks as the cache memory contains. If we let c denote the number of memory blocks that are resident

in the cache memory, then the size of the cache directory sets L1 and L2 is 2c. ARC has been shown to

be what is known as scan-resistant, where ”one access only memory” requests remain in the L1 partition

of the ARC cache without evicting cache blocks with higher temporal locality stored in the L2 partition.

L1 and L2 are further subdivided into top and bottom subsets denoted as T1, B1, T2, and B2. Memory

blocks resident in the cache are stored in subsets T1 and T2 whose aggregate size is always c. The size

of set T2, denoted by p, is the set with higher locality memory blocks. The parameter p is known as the

ARC algorithms adaptive parameter. The size of set T1 is therefore c−p. Sets B1 and B2 contain memory

blocks not stored in the cache whose memory accesses conform to membership in sets L1 and L2 respecti-
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Figure 24: ARC Cache Replacement Algorithm.

vely. The online nature of ARC results in continuous updates to the p parameter according to memory

access patterns. At a high level, pseudo cache hits in the B1 subset cause p to increase, whereas pseudo

cache hits in the B2 subset cause p to decrease. The size of the increase or decrease, denoted by learning

rate variables δ1 and δ2, is a function of the relative sizes of subsets B1 and B2. Similar in some respects

to the SLRU approach, ARC differs from SLRU in its dynamic adjustment of the sizes of the protected

segment (L2) and the probationary segment (L1). ARC attempts to predict the best possible partition of

cache memory by analyzing recently evicted cache blocks. In fiduciary terms, ARC invests in the cache

directory subset exhibiting the best performance in the recent past. Basically, ARC attempts to strike a

balance between the LRU and LFU approaches.

Clock with Adaptive Replacement (CAR)

The Clock with Adaptive Replacement (CAR) replacement algorithm [8], combines the adaptive re-

placement (ARC) and the Clock replacement algorithms. Like ARC, CAR maintains two ordered sets:

L1 stores recently accessed memory blocks and L2 stores frequently accessed memory blocks. L1 and

L2 are cache directories partitioned into subsets of resident cache blocks (T1 and T2) and non-resident

cache blocks (B1 and B2). The sizes of the resident cache block sets T1 and T2 are dynamically adjusted

in accordance with memory access patterns as per the parameter p. Further, as in ARC, the parameter

p is updated as pseudo cache hits occur to blocks in the non-resident cache block sets B1 and B2. The

difference with the CAR approach is the subsets T1 and T2 are managed using the Clock algorithm. The

benefit of using the Clock algorithm to manage T1 and T2 is a simpler hardware implementation. As the
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sizes of T1 and T2 vary, the new entries are added to the list tail.

Clock with Adaptive Replacement with Temporal Filtering (CART)

The Clock with Adaptive Replacement with Temporal filtering (CART) replacement algorithm [8], was

designed to prevent correlated memory references from polluting the T2 cache subset. Correlated memory

references [61] are basically successive short-term cache hits that may not correspond to the long-term

utility that T2 embodies. The result of such cache pollution is a reduction in cache hit performance. This

phenomenon results from the fact that two successive memory references form the criteria by which ARC

and CAR use to characterize potential long-term utility of cache blocks. The improvement offered by

CART to address this limitation is the creation of what is termed a temporal filter whose objective is to

incorporate a temporal characteristic into the long-term utility test. The mechanism behind this temporary

filter is the use of a temporal locality window to distinguish between short term and long-term successive

memory references. Short term successive memory references fall inside the temporal locality window

whereas long term successive memory references fall outside. In CART, the temporal locality window is

an adaptive parameter updated in accordance with memory access patterns. Application of the temporal

filter assigns a utility status to each cache block, S for short term utility and L for long term utility. The

utility status is updated when cache misses occur. With respect to the ARC sets, the following conventions

are used: 1) cache blocks in T2 and B2 are assigned a long term utility status L; 2) cache blocks in B1 are

assigned a short term utility status L; and 3) cache blocks in T1 may be assigned either short term utility

status L or long term utility status L. Cache blocks at the head of T1 are replaced if the reference bit is

unset and the filter status is short term L, otherwise if the filter status is long term L, the cache block is

moved to the tail of T2. Cache blocks at the head of T1 are moved to the tail of T1 if the reference bit is

set and the filter status is short term L. Cache blocks at the head of T2 are replaced if the reference bit is

unset. Cache blocks at the head of T2 are moved to the tail of T1 if the reference bit is set. All cache block

movement results in the reference bit being cleared. CAR/CART outperforms LRU and CLOCK, while

offering comparable performance to ARC.

Summary

In this chapter, we briefly built the essential technical background required by the other chapters.

Since our work is cross-disciplinary, we carefully introduced the basic overview on notations, concepts,

and models, to make readers more comfortable with the main concepts covered in this document. While

we only provided a concise yet complete overview on related concepts and theory, additional details can

be found in relevant textbooks and research papers. In the next chapter, we will extend our discussion to

present a new approach for minimizing cache overhead in a limited preemption model. We achieve this via
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an interdependent approach for computing CRPD and integrating it into a new algorithm for preemption

point placement in a linear control flow graph executing on a uniprocessor system.
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CHAPTER 4 CRPD COMPUTATION
In the previous chapter, we introduced various cache models for uniprocessor systems to provide the

reader with the necessary background information. In this chapter, we present our research regarding a

new approach for computing CRPD that emphasizes the interdependence of preemption points along with

accounting for the cache memory blocks that are reloaded thereby realizing significant accuracy gains.

This chapter presents a methodology for analyzing cache related preemption delay in uniprocessor

hard-real-time systems. The first section presents brief introduction and overview of this research. The

second section provides an overview of the hardware, real-time, and cache models used throughout the

chapter. The enhanced CRPD computation approach supporting both linear and conditional control flow

graphs is detailed in the third section. The fourth section illustrates method of computing loaded cache

blocks using a concrete example. The concept of LCB interdependence is discussed in the fifth section.

Finally, the sixth section gives a chapter summary.

Introduction

The importance of CRPD in schedulability analysis stems from it comprising the majority of preemp-

tion overhead. CRPD occurs when a task denoted τi is preempted by one or more higher priority tasks

denoted τk. The execution of high priority tasks results in the eviction of cache memory blocks that must

be subsequently reloaded when task τi resumes execution. Two primary models of CRPD computation

exist, 1) the independent CRPD cost model, and 2) the interdependent CRPD cost model. The vast majo-

rity of CRPD research falls under the independent CRPD model. Here, costs are solely a function of the

preemption location under consideration. Since the next preemption may occur at any forward point in the

task code, independent CRPD methods must conservatively utilize the next code location corresponding to

the maximum CRPD cost. The interdependent CRPD cost model, however, overcomes this limitation by

considering and computing costs between each pair of task code locations thereby achieving more accu-

racy. A key factor in preemption location decisions, CRPD cost accuracy is of paramount importance to

schedulability and preemption placement algorithms.

This chapter discusses the following important contribution:

• We propose a new CRPD metric, called loaded cache blocks (LCB) which accurately characterizes

the CRPD a real-time task may be subjected to due to the preemptive execution of higher priority

tasks. Our objective is to account for the cache blocks that are reloaded between each set of potential

preemption points.
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Interdependent CRPD Computation

While existing research has focused on computing the upper bounds on cache related preemption delay

(CRPD), our approach achieves higher accuracy by computing the loaded cache blocks (LCBs), as defined

below, due to higher priority task preemption by using the set of potential/chosen preemption locations.

The sets of various cache blocks are represented as sets of integers. We employ standard definitions of

CRPD terms UCB and ECB as described by [5, 39].

Definition 1. Useful Cache Block (UCB): A memory block m is called a useful cache block at program

point δj1i , if

(a) m may be cached at δj1i and

(b) m may be reused at program point δj2i that may be reached from δj1i without eviction of m on this path.

More formally, cache blockm ∈ UCB(τi) if and only if τi hasm as a useful cache block in some cache-set

s. Note this definition of UCB embodies a task level view. Cache block m ∈ UCBout(δ
j
i ) if and only if δji

has m as a useful cache block in some cache-set s where

UCB(τi) =
⋃
δji∈τi

UCBout(δ
j
i ). (3)

The notation UCBout(δ
j
i ) is the set of useful cache blocks cached in task τi post-execution of basic block

δji . Similarly, the notation UCBin(δji ) is the set of useful cache blocks cached in task τi pre-execution of

basic block δji .

Definition 2. Evicting cache block (ECB): A memory blockm of the preempting task is called an evicting

cache block, if it may be accessed during the execution of the preempting task.

Cache block m ∈ ECB(τk) if and only if τk may evict m in some cache-set s. Note this definition of

ECB also embodies a task level view. Cache block m ∈ ECB(δji ) if and only if δjk may evict m in some

cache-set s where

ECB(τk) =
⋃
δjk∈τk

ECB(δjk). (4)

The notation ECB(δjk) is the set of evicting cache blocks accessed in task τk during execution of basic block

δjk. In order to determine which cache blocks may be reloaded once preemption occurs, we introduce the

notion of an accessed useful cache block (AUCB).

Definition 3. Accessed useful cache block (AUCB): A memory block of the preempted task is called an

accessed useful cache block if it may be accessed during the execution of a basic block δji for task τi.
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The term AUCBout(δ
j
i ) represents the useful cache blocks (UCBs) accessed by task τi during execution of

basic block at location δji . The definition of AUCB is introduced to capture the set of task accessed memory

at a specific basic block location subsequently used in the calculation of blocks that must be reloaded when

task preemptions occur. We compute the set of accessed useful cache blocks (AUCBs) as follows:

AUCBout(δ
j
i ) = UCBout(δ

j
i ) ∩ ECB(δji ). (5)

where UCBout(δ
j
i ) is the set of useful cache blocks for task τi post basic block δji execution; and ECB(δji )

denotes the set of cache blocks accessed in task τi during execution of basic block δji . It is important to note

that only cache block evictions due to preemption are considered, as intrinsic cache misses are captured

as part of WCET analysis in the term CNPi . Using the previously defined terms, we may now define and

explicitly compute the cache blocks that are re-loaded due to preemption which are called loaded cache

blocks (LCBs).

Definition 4. Loaded cache block (LCB): A memory block of the preempted task is called a loaded cache

block, if it may be re-loaded during the non-preemptive region (i.e., within a series of basic blocks with no

preemptions) immediately following a preemption.

LCB(δcurri , δnexti ) denotes the set of cache blocks re-loaded during execution of the non-preemptive region

between basic block δcurri and basic block δnexti , resulting from preemption of task τi, where basic block

location δcurri and δnexti are the potential/selected preemption point and next potential/selected preemption

point respectively. In our model, a preemption point located at basic block δcurri occurs at the edge between

δcurri and δcurr+1
i .

The definition of LCB is introduced to capture the set of reloaded cache memory at a specific basic

block as a function of the current and next selected preemption points. Here, we account for the over-

head within a non-preemptive region for reloading UCBs that could have potentially been evicted by the

preemption occurring immediately after δcurri and used by some basic block prior to the preemption occur-

ring immediately after δnexti .

LCB(δcurri , δnexti ) = [UCB(δcurri ) ∩ [∪ν∈λAUCB(δνi )]] ∩ [∪τk∈hp(i)ECB(τk)] (6)

where λ def
= {ν|ν ∈ p; p ∈ Pi(Gi, δcurri , δnexti )}

The linear flowgraph structure is a special case of the conditional flowgraph structure as shown in Fi-

gure 8 where the equation for computing loaded cache blocks (LCBs) exhibits a simpler form as shown in
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Equation 7:

LCB(δcurri , δnexti ) = [UCBout(δ
curr
i ) ∩ [∪ν∈λAUCBout(δ

ν
i )]] ∩ [∪τk∈hp(i)ECB(τk)] (7)

where λ def
= {ν|ν ∈ [curr+1, curr+2, . . . , next]} and δcurri represents the current selected preemption

point where δcurri ∈ ρi and δnexti represents the next selected preemption point where δnexti ∈ ρi, and

ρi ⊆ {δ0i , δ1i , . . . , δ
Ni
i } is an ordered set by ascending index of selected preemption points for task τi:

ρi
def
= {δmi |δmi is a selected preemption point of task τi ∧m ∈ [0, 1, 2, . . . , Ni]}

This formula for LCB(δcurri , δnexti ) results in the accounting of loaded cache blocks where the preemption

occurs. Once we have the set of cache blocks that must be re-loaded due to preemption, the CRPD related

preemption overhead may be computed as shown below.

γi(δ
curr
i , δnexti ) = |LCB(δcurri , δnexti )| ·BRT. (8)

where BRT is the cache block reload time; and LCB(δcurri , δnexti ) represents the loaded cache blocks or

memory accessed by the preempted task τi at basic block δcurri caused by higher priority preempting tasks.

The modified preemption cost as a function of the current and next preemption points is given by:

ξi(δ
curr
i , δnexti ) = γi(δ

curr
i , δnexti ) + π + σ + η(γi(δ

curr
i , δnexti )). (9)

where π is the processor pipeline cost, σ is the scheduler processing cost, and η() is the front side bus

contention resulting from the cache reload interference as described in [55–57]. For convenience, Table 3

summarizes the terminology presented in this chapter.

To illustrate our approach for computing LCBs, two supporting examples are presented. The first

example demonstrates how LCBs are computed. The second example illustrates the interdependence of

LCBs.

Example LCB Calculation

To illustrate our approach for computing LCBs, consider the following example. Assume we have

two tasks, τ1 and τ2 with UCBs and ECBs for each listed in Figure 25. Please note that we have not

shown the ECBs, UCBs, or AUCBs in the following figures for δ0i as it is a dummy basic block with

no elements for each of the aforementioned sets. The computation for LCBs uses the accessed useful

cache blocks (AUCBs) since the cache blocks that are re-loaded during execution of the non-preemptive

region between preemption points is a function of the memory that is explicitly accessed by the preempted
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Term Description
AUCBout(δ

j
i ) Accessed UCBs post basic block j execution

BRT Cache memory block reload time
δcurri Basic block curr denoting the current preemption
δnexti Basic block next denoting the next preemption

ECB(δjk) Accessed cache memory blocks during task τk basic block j execution
ECB(τk) Accessed cache memory blocks during task τk execution

ξi(δ
curr
i , δnexti ) Preemption cost for preemptions at basic blocks δcurri and δnexti

LCB(δcurri , δnexti ) Loaded Cache Blocks for preemptions at δcurri and δnexti

η(γi) The front side bus contention resulting from the cache reload interference for
preemptions at δcurri and δnexti

ρi The set of preemption points selected for task τi
π The processor pipeline cost
σ The scheduler processing cost

UCBin(δji ) The set of Useful Cache Blocks before task τi basic block j execution
UCBout(δ

j
i ) The set of Useful Cache Blocks after task τi basic block j execution

UCB(τi) The set of Useful Cache Blocks during task τi execution
γi(δ

curr
i , δnexti ) LCB cardinality for preemptions at basic blocks δcurri and δnexti

Table 3: CRPD Terminology

task. The computed AUCBs for each task is shown in Figure 26. In accordance with Equation 7 one

can readily see that the AUCBs are simply the intersection of the UCBs and ECBs for each basic block.

In our example, assume preemptions are taken at basic blocks δ21 and δ41 for task τ1. For simplicity, we

Task 

ID 
Evicting Cache Blocks ECB(

𝐢
𝐣) 

𝐢
𝟏
 𝐢

𝟐
 𝐢

𝟑
 𝐢

𝟒
 𝐢

𝟓
 

τ1 {1,2} {3,4,8} {4,5,6,8} {1,2,7,8} {1,2,7,8} 

τ2 {1,9} {3,10} {11,12} {5,7,13} {1,3,7,8} 

 
Task 

ID 
Useful Cache Blocks UCBout(𝐢

𝐣) 

𝐢
𝟏
 𝐢

𝟐
 𝐢

𝟑
 𝐢

𝟒
 𝐢

𝟓
 

τ1 {1,2} {1,2,4,8} {1,2,8} {1,2,7,8} {1,2,7,8} 

τ2 {1} {1,3} {1,3} {1,3,7} {1,3,7,8} 
 

Figure 25: Taskset ECBs and UCBs.

Task 

ID 
Accessed Useful Cache Blocks AUCBout(𝐢

𝐣) 

𝐢
𝟏
 𝐢

𝟐
 𝐢

𝟑
 𝐢

𝟒
 𝐢

𝟓
 

τ1 {1,2} {4,8} {8} {1,2,7,8} {1,2,7,8} 

τ2 {1} {3} {1,3} {7} {1,3,7,8} 
 

Figure 26: Taskset AUCBs.

calculate the LCBs associated with these two preemption points. For LCB(δ21 , δ
4
1), we have UCB(δ21) =

{1, 2, 4, 8}. The second expression is the set of memory that is accessed in basic blocks δ31 and δ41 , namely

{8} ∪ {1, 2, 7, 8} = {1, 2, 7, 8} comprising the set of AUCBs. The third expression is the set of

ECBs for task τ2 where ECB(τ2) = {1, 3, 5, 7, 8, 9, 10, 11, 12, 13}. Thus, LCB(δ21 , δ
4
1) is given by the
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intersection of the three sets:

LCB(δ21 , δ
4
1) = {1, 2, 4, 8} ∩ {1, 2, 7, 8} ∩ {1, 3, 5, 7, 8, 9, 10, 11, 12, 13} = {1, 8}

The preemption cost γ(δ21 , δ
4
1) for a BRT = 390µs is given by:

γ(δ21 , δ
4
1) = |{1, 8}| · 390 = 780µs

Using the same method, LCB(δ41 , δ
5
1) is given by:

LCB(δ41 , δ
5
1) = {1, 2, 7, 8} ∩ {1, 2, 7, 8} ∩ {1, 3, 5, 7, 8, 9, 10, 11, 12, 13} = {1, 7, 8}

The preemption cost γ(δ41 , δ
5
1) for a BRT = 390µs is given by:

γ(δ41 , δ
5
1) = |{1, 7, 8}| · 390 = 1170µs

Using the method illustrated here, the preemption cost matrix entries for each pair of basic blocks are

computed in a similar fashion and used as input to our preemption point placement algorithm.

Example of LCB Interdependence

To further exemplify the interdependence of preemption points, consider the example shown below. In

order to account for all re-loaded cache blocks (LCBs), preemptions are always included at the first basic

block δ0i and the last basic block δNii as shown in Figure 27. This is commensurate with the preemptions

that occur before and after the task executes. Assume we have two tasks where τ2 contains four basic

blocks which may be preempted by task τ1. For simplification, assume that the ECBs of task τ1 evicts all

UCBs of task τ2. Let us further assume that we have ρ2 = {δ02 , δ12 , δ22 , δ42}. Using our LCB computation

approach, only the re-loaded lines as captured in the terms LCB(δ12 , δ
2
2) and LCB(δ22 , δ

4
2) are included in

the C2 computation. LCB(δ02 , δ
1
2) = 0 as no LCBs have been cached until after execution of basic block

δ12 .

Figure 27: LCB Interdependence
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Summary

In this chapter, we presented a new method for computing a substantially improved interdependent

CRPD metric. Our novel new CRPD metric is utilized in the following chapters supporting our work in

preemption placement algorithms for linear and conditional CFGs.
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CHAPTER 5 MINIMIZING CACHE OVERHEAD VIA LOADED
CACHE BLOCKS AND PREEMPTION PLACEMENT

In the previous chapter, we introduced various cache models for uniprocessor systems to provide the

reader with the necessary background information. In this chapter, we present our research for minimizing

cache overhead via loaded cache block calculation and preemption point placement for linear control flow

graphs [25].

Uniprocessor hard real-time systems have been widely using in an increasing number of real-time and

embedded systems. These systems need to operate under strict timing and application design constraints.

In this chapter, we discuss a theoretic framework to ensure hard-real-time deadlines on a uniprocessor

platform by minimizing the cache overhead when selecting task preemption points in a limited preemption

model. We use a new approach for computing CRPD that emphasizes the interdependence of preemption

points along with accounting for the cache memory blocks that are reloaded thereby realizing significant

accuracy gains. Also, we show how the real-time system designer can use our approach to minimize cache

overhead via the optimal selection of preemption points to ensure taskset schedulability constraints are

met.

This chapter presents a methodology for designing and analyzing linear control flow graphs in unipro-

cessor hard-real-time systems. The first section presents brief introduction and overview of this research.

The second section provides an overview of the hardware, real-time, and cache models used throughout

the chapter. The third section integrates our enhanced CRPD computation into taskset schedulability ana-

lysis for real-time systems scheduled with the Earliest Deadline First (EDF) algorithm. The fourth section

describes our innovative preemption point placement algorithm leveraging the integrated WCET/CRPD

computation to select a set of preemption points that minimizes cache overhead while ensuring taskset

schedulability. The fifth section describes the results of our simulations and related experiments. Finally,

the sixth section gives a chapter summary.

Introduction

One of the noticeable contributors to preemption overhead is due to cache related preemption delay

(CRPD). CRPD occurs when a task denoted τi is preempted by one or more higher priority tasks denoted

τk whose execution results in the eviction of cache memory blocks that must be subsequently reloaded

when task τi resumes execution. Limited preemption approaches have the advantage of reduced blocking

with a limited number of allowed preemptions while having the advantage of sections of non-preemptive

regions (NPRs) reducing the preemption overhead. One promising approach to implementing a limited

preemption approach is selecting preemption points for each task subject to the constraint on maximum
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non-preemptive region execution time Qi. A paper by Bertogna et al. [14] proposed and realized a linear

time algorithm for selecting optimal preemption points for a sequential basic block structure. Basic blocks

are the vertices V of a control flow graph (CFG) connected in a sequence by edges E representing the

execution sequence of one or more job instructions. A sequential basic block structure implies that con-

ditional logic and branches are fully contained within basic block boundaries. Existing research utilizes

pessimistic CRPD costs that effectively limit the effectiveness of preemption point placement algorithms.

The primary contributions outlined in this paper include improved accuracy for computing CRPD cost ta-

king into account where preemptions actually occur, and providing an optimal preemption point placement

algorithm implemented via dynamic programming using the more accurate CRPD cost. Furthermore, we

demonstrate using a case study improved task set schedulability as compared to state-of-the-art methods.

This chapter discusses the following important contributions:

• We propose a new CRPD metric, called loaded cache blocks (LCB) which accurately characterizes

the CRPD a real-time task may be subjected to due to the preemptive execution of higher priority

tasks. Our objective is to account for the cache blocks that are reloaded between each set of potential

preemption points.

• We show how to integrate our new LCB metric into our newly developed algorithms that automati-

cally place preemption points supporting linear control flow graphs (CFGs) for limited preemption

scheduling applications.

• We empirically evaluate the breakdown utilization of tasks utilizing our preemption point placement

algorithm in a limited preemption scheduling environment. We demonstrate the superiority of our

approach versus several state of the art methods.

Our enhanced CRPD computation method was presented in Chapter 4.

Integrated WCET/CRPD Calculation

The modified preemption cost as a function of the current and next preemption points is given by:

ξi(δ
curr
i , δnexti ) = γi(δ

curr
i , δnexti ) + π + σ + η(γi(δ

curr
i , δnexti )). (10)

where π is the pipeline cost, σ is the scheduler processing cost, and η() is the front side bus contention

resulting from the cache reload interference as described in [55–57]. The output of our algorithm is

an optimal set of preemption points, with respect to our computed preemption cost ξi(), subject to the

maximum allowable non-preemption region Qi. The optimal set of preemption points obtained using

the enhanced accuracy of our preemption cost computation is used to calculate each task’s WCET with

preemption overhead given by:
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Ci = Bi(ρi) = CNPi +

|ρi|−1∑
m=1

[ξi(ρ
m
i , ρ

m+1
i )] (11)

where ρmi is themth selected preemption point for task τi. To further clarify what we mean by preemption,

we say that δmi is a “preemption point” if the preemption between basic blocks δmi and δm+1
i is enabled,

meaning the scheduler may preempt between these two basic blocks. Commensurate with our preemption

point placement algorithm discussed later, preemptions are always taken at basic blocks δ0i and δNii hence

δ0i , δ
Ni
i ∈ ρi for any feasible set of preemption points ρi. Supplemental clarification of this requirement

is shown in the example of LCB interdependence in the appendix. The complete problem formulation with

constraints for finding the minimum WCET with preemption overhead cost Bi(ρi) for task τi is given by:

Bi(ρi) = min
ρi∈τi

{[ |ρi|−1∑
m=1

ξi(ρ
m
i , ρ

m+1
i ) +

Ni∑
s=1

bsi

]
| Ψi(ρi) = True

}
(12)

The selection of optimal preemption points is subject to the constraint Ψi(ρi) that no non-preemptive

region in task τi exceeds the maximum allowable non-preemption region parameter Qi:

Ψi(ρi) =

 True, if qmi (ρi) ≤ Qi for m ∈ [1, |ρi| − 1]

False, otherwise

 (13)

where qmi (ρi) represents the mth non-preemptive-region (NPR) time for task τi, capturing the cost of the

preemption ρmi given that ρm+1
i is the next selected preemption point, plus the basic block cost of all

blocks between ρmi and ρm+1
i :

qmi (ρi) =
[
ξi(ρ

m
i , ρ

m+1
i ) +

∑
s:δsi∈{ρmi ,...,ρ

m+1
i }

bsi

]
(14)

Our approach employs the results of schedulability analysis and the aforementioned WCET + CRPD

calculation with the maximum allowable non-preemption region parameter Qi computed for each task

τi. The objective is to select a subset of preemption points that minimizes each tasks WCET + CRPD

parameter Ci. We introduce slight variations of terms Ψi, qi, and Bi, used in solving intermediate sub-

problems of our proposed algorithm. The selection of optimal preemption points is subject to the constraint

that no non-preemptive region in task τi exceeds the maximum allowable non-preemption region parameter

Qi:

Ψi(δ
j
i , δ

k
i ) =

 True, if qi(δ
j
i , δ

k
i ) ≤ Qi for δji , δ

k
i ∈ ρi

False, otherwise

 (15)
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where qi(δ
j
i , δ

k
i ) represents a possible candidate optimal non-preemptive-region (NPR) time with succes-

sive preemption points at basic block locations δji and δki for task τi:

qi(δ
j
i , δ

k
i ) =

[
ξi(δ

j
i , δ

k
i ) +

k∑
n=j+1

bni

]
(16)

The next expression gives a recursive solution to the CRPD+WCET minimization problem for the subpro-

blem of the first i basic blocks. We compute the WCET including the preemption point δki using the term

Bi(δ
k
i ) for task τi as given by:

Bi(δ
k
i ) = min

m∈{0,1,...,k−1}

{[
Bi(δ

m
i ) + qi(δ

m
i , δ

k
i )
]
|Ψi(δ

m
i , δ

k
i ) = True

}
(17)

when k ∈ {1, 2, . . . , Ni}. For the base case where k = 0, we have Bi(δ0i ) = 0. This recursive formu-

lation is necessary for developing the dynamic programming solution presented in the next section. The

following theorem shows our problem has optimal substructure, and thus the formulation of Equation 17

represents an optimal solution.

Theorem 1. The WCET + CRPD cost variable Bi(δki ) utilized in Equation 17 exhibits optimal substruc-

ture.

Proof. Let ∆k
i be the subproblem of the sequential control flowgraph containing basic blocks {δ0i , δ1i , . . . , δki }.

To prove optimal substructure, we show that we can obtain the optimal set of preemption points for mini-

mizing the WCET+CRPD for any ∆k
i by using the optimal solutions to subproblems ∆0

i ,∆
1
i , . . . ,∆

k−1
i .

Let Bi(δ0i ), Bi(δ
1
i ), . . . , Bi(δ

k−1
i ) represent the cost of the optimal solution to these subproblems. We

need to show that Equation 17 represents the optimal cost to ∆k
i .

By way of contradiction, assume there is a better feasible solution ρ′i for the sub-problem of deter-

mining the optimal limited preemption execution costs from basic block δ0i to basic block δki ; that is,

Bi(ρ
′
i) is strictly smaller than the solution to ∆k

i obtained in Equation 17 (i.e., Bi(δki )). Let δ`i (where

` ∈ {0, 1, . . . , k−1}) be the last preemption point prior to δki in the set ρ′i, and let ρ′′i be the set of preemp-

tion points obtained from ρ′i by removing the preemption point after δki (i.e., ρ′′i is a solution to ∆`
i). Thus,

we can represent the cost of the solution ρ′i (i.e., Bi(ρ′i) by the left-hand-side of the following inequality:

Bi(ρ
′′
i ) + qi(δ

`
i , δ

k
i ) < Bi(δ

k
i ). (18)

Since ρ′i is a feasible solution to ∆k
i , it must be that Ψi(δ

`
i , δ

k
i ) is true. Hence, from Equation 17 and

the min operation, we can obtain an upper bound on Bi(δki ) by considering the solution to subproblem



45

∆`
i :

Bi(δ
k
i ) ≤ Bi(δ`i ) + qi(δ

`
i , δ

k
i ). (19)

Combining the inequalities of Equations 18 and 19, we finally obtain Bi(ρ′′i ) < Bi(δ
`
i ). However, this

contradicts our assumption at the beginning of the proof that Bi(δ`i ) represented an optimal solution to

subproblem ∆`
i . Thus, a solution ρ′i with smaller cost than Bi(δki ) cannot exist, and Equation 17 computes

the minimum obtainable cost for the problem ∆k
i .

Preemption Point Placement Algorithm
Implementing a recursive algorithm directly from Equation 17 would lead to a computationally intrac-

table implementation. Instead, we now propose anO(N2
i ) dynamic programming algorithm for computing

the optimal preemption points. Our dynamic programming preemption point placement algorithm is sum-
marized in Algorithm 1.

Algorithm 1 D.P. Optimal Preemption Point Placement
1: function Select Optimal PPP (Ni,bi,Qi,ξi)
2: Bi ← ∞ ρprev ← {δ0i };
3: if bki > Qi for some k ∈ {1, . . . , Ni} then
4: return INFEASIBLE;
5: end if
6: Bi(δ

0
i ) ← 0;

7: for k : 0 ≤ k ≤ Ni do
8: CNP

i (δki ,δki )← 0;
9: qi(δ

k
i , δ

k
i )← 0;

10: for j : k − 1 ≥ j ≥ 0 do
11: CNP

i (δji , δ
k
i )← bj+1

i + CNP
i (δj+1

i , δki );
12: qi(δ

j
i , δ

k
i )← ξi(δ

j
i , δ

k
i ) + CNP

i (δji , δ
k
i );

13: if qi(δji , δki ) ≤ Qi then
14: Pcost ← Bi(δ

j
i ) + qi(δ

j
i , δ

k
i );

15: if Pcost < Bi(δ
k
i ) then

16: Bi(δ
k
i )← Pcost;

17: ρprev(δki )← δji ;
18: end if
19: end if
20: end for
21: end for
22: ρi ← Compute PPSet(Ni, ρprev);
23: return FEASIBLE;
24: end function
25:
26:
27: function Compute PPSet(Ni,ρprev)
28: Computes ρi from ρprev (Details omitted)
29: end function

For each task τi, we are given the following parameters: 1) the number of basic blocks Ni , 2) the non-

preemptive execution time of each basic block bi, 3) the maximum allowable non-preemptive region Qi,
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and 4) the preemption cost matrix ξi. The preemption cost matrix ξi is organized for each basic block

δji and contains the preemption cost for all successor basic blocks of the task’s control flow graph. The

minimum preemption cost up to all basic blocks is computed and stored in an array denotedBi. Each entry

of the Bi array is initialized to infinity. As we consider whether each basic block δki is in the set of optimal

preemption points, the location of the previous basic block δji with minimal preemption cost is stored in an

array denoted ρprev. The algorithm examines each basic block from δ1i to δNii to minimize the preemption

cost by traversing backwards from the current basic block δki under consideration in order to find the basic

block δji with minimal preemption cost subject to the constraint qi(δ
j
i , δ

k
i ) ≤ Qi. While each basic block

will have a predecessor with minimum preemption cost, the list of selected preemption points is obtained

by starting with basic block δNii and hopping to the predecessor basic block stored at ρprev(δ
Ni
i ), denoted

δmi . Basic blocks δNii and δmi are added to the optimal preemption point set ρi. This basic block hopping

process continues until basic block δ0i is reached. The set ρi contains the complete list of selected optimal

preemption points. To exemplify how our algorithm works, consider the following example.
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Figure 28: Linear CFG Algorithm Example.
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Figure 29: Algorithm Example.

Let Ni = 6 and Qi = 12 for the following basic block structure with WCET and preemption costs

shown in Figure 29. The algorithm computes and stores the cumulative non-preemptive execution costs

for starting and ending basic block pairs in a matrix denoted CNPi (δji ,δki ). For example, CNPi (δ1i ,δ3i ) =

b2i + b3i = 2 + 2 = 4. We do not include b1i since the preemption occurs after execution of basic block
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δ1i . Using this information, the combined WCET and CRPD costs for each basic block pair is computed

and stored in a matrix denoted qi. For example, qi(δ1i ,δ3i ) = CNPi (δ1i ,δ3i ) + ξi(δ
1
i ,δ3i ) = 4 + 5 = 9.

The remaining qi matrix entries are computed in a similar fashion. These matrices are shown in Figure 30.

The shaded cells in the qi matrix represent cases where the combined WCET and CRPD costs for these

basic block pairs exceed the maximum allowable non-preemptive region parameter Qi. During execution

of the algorithm, the minimum combined WCET + CRPD costs are computed for each basic block and

stored in an array denoted Bi. Basic block pairs with preemptive costs that are less than or equal to Qi

are candidates for selection. When a lower cost is determined for a given basic block, the predecessor

preemption point is updated in the ρprev array which keeps track of the selected predecessor preemption

points thereby forming a daisy chain containing the entire set of selected preemption points. The final

results are illustrated in Figures 30 and 31 below.
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Figure 30: Combined WCET and CPRD Costs.
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Figure 31: Algorithm Results.

The maximum blocking time Qi that each task may tolerate utilizes the computed task WCET para-

meter Ci. The method for obtaining the maximum blocking time is eloquently summarized by Bertogna

et al. for the Earliest Deadline First (EDF) and Fixed Priority (FP) scheduling algorithms [14] [13]. The



48

circular dependency between the maximum blocking time Qi and task WCET Ci parameters suggests an

iterative approach to allow the two parameters to convergence to a steady state. One such iterative appro-

ach contains the following steps as given in Algorithm 2. Convergence of Algorithm 2 results primarily

from the fact that the optimal preemption points do not change unless the parameter Qi changes. Since

Qi represents the execution time slack available to a task τi, as expected Qi has been observed to exhibit

non-increasing values during each subsequent algorithm iteration. The need to subsume higher level pro-

gramming constructs being the prominent assumption of the linear basic block structure can potentially

diminish the utility of our approach if the non-preemptive execution time of any basic block violates the

constraint CNPi > Qi. For this case, we need to “break-up” the basic block by permitting preemption

every Qi time units.

Algorithm 2 Iterative Schedulability and Preemption Point Placement Algorithm
1: Assume the CRPD of the task system is initially zero.
2: repeat
3: Run the Baruah algorithm to obtain the maximum non-preemptive region Qi for each task.
4: Select optimal preemption points using our dynamic programming algorithm and CRPD calculation.
5: Compute the WCET + CRPD Ci from the selected preemption points.
6: until the selected preemption points do not change or the system is not feasible for the computed

WCET + CRPD.
7: The breakdown utilization is given by U.

Evaluation

The evaluation of our preemption point placement algorithm will embody two methods: 1) charac-

terization and measurement of preemption costs using real-time application code, and 2) a breakdown

utilization schedulability comparison for various CRPD computational approaches.

Preemption Cost Characterization

To characterize the behavior and estimate the benefit of the approach proposed in this paper, a case

study of representative tasks was performed. The ten tasks were randomly selected from the Malarda-

len University (MRTC) WCET benchmark suite [51]. Each task was built using Gaisler’s Bare-C Cross

Compiler [30] for the GRSIM LEON3 [31] simulated target.

Tasks were first analyzed using AbsInt’s a3 WCET [1] to determine the set of basic blocks. Next, the

basic blocks {δ0i , δ1i , δ2i , ..., δ
Ni
i }were serialized by recording their order during execution. Program points

were identified as the address of the final instruction of each basic block δji for j ∈ [0, Ni] to match the

sequential basic block structure used by our preemption point placement algorithm. Each program point

served as a breakpoint when running the task on the simulator. In accordance with the sequential basic
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block structure used in our algorithm, only the data cache is used to compute CRPD as the linear basic

block structure offers only limited opportunities for instruction cache blocks to be revisited.

During the execution of each basic block, the data cache states were saved as ΥD(δji ) at each break-

point. The cache snapshots were selected as the final visit of each program point where the data cache

contents ΥD(δji ) were captured and recorded. From the final ΥD(δji ) snapshots, a conservative estimate

of LCBs shared between program points was determined.

Shared LCBs were calculated by intersecting the cache state snapshots from δji to δki , except δki . A

cache line that remains unchanged after the execution of {δj+1
i , δj+2

i , ..., δki } will be present in the cache

before execution of the basic block that δki represents. It is only from these unchanged cache lines that the

shared LCBs between δji and δki can be selected. The complete set of unchanged cache lines serves as a

safe upper-bound on the LCBs shared between each basic block pair. The equation below formalizes this

idea, using the data cache snapshots ΥD(δji ).

LCB(δji , δ
k
i ) ⊆

k⋂
m=j+1

ΥD(δmi ) (20)

Availability

This method may be verified and reproduced using the same tools and data. Gaisler’s compiler and

simulator are freely available. AbsInt’s a3 tool is available for educational and evaluation purposes. The

programs written, and data used in our work can be found on GitHub [24] thereby permitting the research

community to reproduce and leverage our work as needed.

Results

The results are presented as an illustration of the potential benefit of our proposed method, utilizing

pairs of preemptions to determine costs, over methods that consider only the maximum CRPD at a par-

ticular preemption point (e.g., Bertogna et al. [14]). In terms of LCB computation this implies that the

maximum LCB value over all subsequent program points must be used as the CRPD cost:

max{LCB(δji , δ
k
i ) | j < k} (21)

In the following graphs, each point in the graph represents two points in the program. The first point

of the program δji is fixed by the x-axis. The y-axis indicates the shared LCB count with a later program

point. The first graph shown in Figure 32 is for the recursion program of the MRTC benchmark suite. The

lines represent the minimum and maximum shared LCBs between various program points. At each point

on the graph, the index of the next preemption point associated with the respective minimum or maximum
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graph value at that location is shown. At program point δ4i , the minimum CRPD value is coupled with

program point δ7i having a shared LCB count of 14 whereas the single-valued CRPD computation method

finds 24 shared LCBs coupled at program point δ5i . To compare the potential utility of a method that uses
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Figure 32: Recursion Data Cache.

at each preemption a single-valued CRPD and our method which determines CRPD based on a pair of

adjacent preemption points, consider any program point on the horizontal access of Figures 32, 33, or 34.

For any program preemption point δki , a single-valued approach would, to be safe, use the value reported

in the larger-valued dashed line. However, an approach that considered pairs of preemptions, as in our

approach, can reduce the value and potentially obtain a CRPD reported on the solid line. The difference

between the performance of these two preemption point placement algorithms is an example of the benefit

provided by considering location aware CRPD cost.

The second graph represents the lms benchmark task data cache shown in Figure 33, and the third graph

represents the adpcm benchmark task data cache shown in Figure 34. Similar to the recursion benchmark

data cache, the variability in the minimum and maximum shared LCBs for each program point further

exemplifies the benefit of using location aware CRPD cost in preemption point placement. Maximum

and minimum data cache costs for the other seven tasks show similar variability but are not shown here

due to space limitations. In summary, the CRPD cost was consistently reduced or maintained compared

to the single-valued approach. A maximum of 68% reduction of contributing cache lines in the bsort

benchmark along with an average of 18.6% decrease over all benchmarks was notably observed. The

ability of our method to leverage this reduction leads to the schedulability improvements observed in the

next subsection. In examining the graphs for all tasks and data caches a few common traits were noted.



51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  20  40  60  80  100  120  140  160  180

U
C

B
s
 S

h
a

re
d

 w
it
h

 S
u

b
s
e

q
u

e
n

t 
P

ro
g

ra
m

 P
o

in
t

Program Point

Minimum
Maximum

Figure 33: LMS Data Cache.
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Figure 34: ADPCM Data Cache.

The minimum shared LCBs sharply increases at the end of each task’s execution. This is due to the nature

of the conservative estimation of shared LCBs and the tasks, and the number of instructions in the basic

block between the final program points is relatively small thereby limiting the number of data cache lines

that could be eliminated by the intersection.

Drastic spikes downwards in the shared LCB counts for the minimum and maximum curves coincide

with function call boundaries, or large conditional blocks. At these boundaries, the maximum and mini-

mum LCB counts are approximately the same. There is a sharp upward spike in the early program points

for the maximum curves. This trend is due to the early initialization blocks built into tasks. In our analysis,
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the minimum curves show a clear benefit of selecting preemption points outside of the early initialization

section.

Breakdown Utilization

The previous analysis illustrates the benefit of using a more precise CRPD cost in preemption point

placement thereby reducing the preemption overhead for an individual task, however, it does not address

the benefits to task set schedulability. To evaluate task set schedulability benefits a second case study was

performed focusing on the breakdown utilization of the MRTC WCET benchmark suite [51] for various

algorithms. Our study compares the Lunniss et al. UCB only approach for EDF [47], the Bertogna et al.

Explicit Preemption Point Placement algorithm [14], and our improved Explicit Preemption Point Place-

ment algorithm. For notational convenience the UCB Only approach for EDF will be referred to as UOE,

the Bertogna Explicit Preemption Point Placement algorithm as BEPP , and our Explicit Preemption

Point Placement algorithm as EPP .

The appropriate schedulability test for UOE is comprised of three parts: γucbt,j , U∗j , and U∗ each repre-

senting the maximum CRPD for task τj , the utilization of task τj including CRPD, and the utilization of

the task set respectively as documented in Lunniss et al. [47]. A task set is schedulable when U∗ ≤ 1.

Borrowing the breakdown utilization evaluation technique from [47], each task has its deadline and

period set to Ti = Pi = u · Ci where u is a constant. The constant, u, begins at the number of tasks (ten)

and is increased in steps of 0.25 until the task set becomes schedulable. Incremental negative adjustments

are then made to determine when the set becomes un-schedulable, indicating the final breakdown utiliza-

tion. For each task, the set of shared LCBs are calculated at each program point. Taking the maximum

shared LCB count for any task is safe and appropriate for calculating U∗.

For BEPP , the maximum shared LCB counts obtained in the earlier evaluation serve as input. Las-

tly, for EPP , the shared LCB counts obtained in the earlier evaluation serve as input for our enhanced

preemption point placement algorithm. The last input variables required for both approaches are Ci and

BRT . Ci was captured as the total number of cycles required to complete the task without preemptions.

The breakdown utilization study sweeps the BRT parameter from 10 µs to 390 µs, representing values

across several different types of processors.

The breakdown utilization determination leverages our iterative schedulability and preemption point

placement algorithm as outlined in the following steps below as given in Algorithm 3. Using ten tasks, the

breakdown utilization comparison between UOE, BEPP , and EPP are summarized in Figure 35.
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Algorithm 3 Breakdown Utilization Evaluation Algorithm
1: Start with a task system that may or may not be feasible.
2: Assume the CRPD of the task system is initially zero.
3: Run the Iterative Schedulability and Preemption Point Placement Algorithm 2
4: if the task system is feasible/schedulable then
5: Increase the system utilization by decreasing the periods via a binary search.
6: else
7: Decrease the system utilization by increasing the periods via a binary search.
8: end if
9: The breakdown utilization is given by U.

Figure 35: Breakdown Utilization Comparison.

The breakdown utilization results indicate thatBEPP dominates the UOE algorithm primarily due to the

limited preemption model utilizing CRPD cost at the basic block level. EPP dominates BEPP resulting

from the more accurate location aware CRPD cost used in our preemption point placement algorithm. As

expected, the breakdown utilization converges for all three methods for small BRT values as the cache-

overhead becomes negligible.

Summary

In this work, we presented an enhanced approach for calculating the CRPD taking into account the

selected preemption points resulting in greater accuracy. Using a more precise CRPD calculation, we

also presented an improved algorithm for selecting a limited number of preemption points for each task

subject to schedulability constraints. Our improved preemption placement algorithm was demonstrated

to minimize the overall preemption cost, an important result in achieving schedulability in real-time sys-

tems. We highlighted the iterative nature of considering schedulability constraints in our preemption point
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placement algorithm and proposed an algorithm combining schedulability analysis with limited preemp-

tion point placement. This approach effectively illustrates how the individual tasks non-preemption region

parameters Qi and the optimal selected preemption points will eventually converge. Furthermore, our

enhanced algorithm was demonstrated to be optimal in that if a feasible schedule is not found, then no

feasible schedule exists by any known method utilizing a static Qi value. Our algorithm was shown to run

in quadratic time complexity. Potential preemption points can be defined automatically using Gaisler’s

compiler and simulator along with AbsInt’s a3 tool or defined manually by the programmer during design

and implementation. Our experiments demonstrated the effectiveness of the enhanced CRPD calculation

by illustrating the benefits using the task set from the MRTC WCET benchmark suite [51]. We also de-

monstrated the benefits of our enhanced limited optimal preemption point placement algorithm and its

increased system schedulability as compared to other algorithms. While our task model is defined using a

linear sequence of basic blocks, it was deemed a highly suitable model to introduce our revised methods

for enhanced CRPD calculation and optimal limited preemption point placement.

In future work, we plan to 1) extend the techniques described here to set-associative caches, 2) perform

a schedulability comparison of synthetic task set for various preemption models, and 3) remove the linear

basic block restriction thereby permitting arbitrary control flow graphs.
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CHAPTER 6 REALIZING IMPROVED PREEMPTION PLACEMENT
IN REAL-TIME PROGRAM CODE WITH INTERDEPENDENT
CACHE RELATED PREEMPTION DELAY

In the previous chapter, we introduced innovative methods for computing accurate CRPD, integrating

the enhanced CRPD with EDF schedulability analysis, and placing optimal preemption points to ensure

taskset schedulability for linear control flow graphs in uniprocessor systems. In this chapter, we present

our research for minimizing cache overhead via loaded cache block calculation and preemption point

placement for conditional control flow graphs.

This chapter presents a methodology for designing and analyzing conditional control flow graphs in

uniprocessor hard-real-time systems. The first section presents brief introduction and overview of this

research. The second section provides an overview of the hardware, real-time, and cache models used

throughout the chapter. The third section presents an informal problem statement outlining the various

real-time disciplines that collectively comprise our work. The fourth section summarizes the fixed priority

(FP) and earliest deadline first (EDF) schedulability analysis constraints for limited preemption schedu-

ling. The real-time conditional flow graph model is detailed in the fifth section. The sixth section presents

a formal problem statement describing the objective function for selecting preemptions in conditional flo-

wgraphs. The seventh section discusses our enhanced pseudo quartic time interdependent CRPD conditio-

nal preemption point placement algorithm. A case study using MRTC benchmarks demonstrates improved

task set schedulability in the eighth section. Finally, the nineth section gives a chapter summary.

Introduction

The utility of real-time system computations depends on two important properties, correctness and

timeliness. The timeliness property (the subject of schedulability analysis) is concerned with ensuring

real-time task computations are completed within required deadlines. Designers of real-time systems must

choose the scheduling paradigm that will ultimately determine if the real-time task set will meet its time-

liness objectives. The available choices are 1) non-preemptive scheduling, 2) fully preemptive scheduling,

and 3) limited preemption scheduling. Non-preemptive scheduling suffers from blocking of high priority

tasks and fully preemptive scheduling suffers from substantial preemption overhead (up to 44% [55–57]

of a tasks WCET) each approach degrading task set schedulability. Limited preemption scheduling at-

tempts to 1) reduce blocking by limiting the number of allowed preemptions, maximizing non-preemptive

task execution and 2) reduce preemption overhead via non-preemptive regions. Regardless of the chosen

scheduling paradigm, effective schedulability analysis of real-time task sets mandates accurate WCET and

CRPD estimates. In this paper, the recognized benefits of limited preemption scheduling motivate our
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work on PPP algorithms.

PPP algorithms select preemption points for each task to 1) minimize the contribution of CRPD to

the task’s overall WCET, and 2) ensure the execution time between adjacent preemptions is limited by

the maximum non-preemptive region execution time. The maximum non-preemptive region execution

time, denoted Qi, is determined via task set schedulability analysis. The motivation behind our work is

the utility of existing PPP algorithms are limited either by the less accurate CRPD costs or by assuming

a linear code structure (i.e., no branches or loops are permitted) [13, 14, 25, 58]. Our approach removes

this linear code assumption and combines the interdependent CRPD cost model with an improved PPP

algorithm thereby reducing overall task WCET. The benefits of our approach will be illustrated in a case

study employing real-time tasks from the MRTC benchmark suite. This chapter discusses the following

important contributions:

• We revise the interdependent CRPD metric, called loaded cache blocks (LCB) to consider the com-

plexity of conditional control flow graphs.

• We show how to integrate our new LCB metric into our newly developed algorithms that auto-

matically place preemption points supporting conditional control flow graphs (CFGs) for limited

preemption scheduling applications.

• Our breakdown utilization methodology evaluates the effectiveness of our conditional preemption

placement algorithm using real-time code via the Malardalen MRTC benchmarks.

• We empirically evaluate the breakdown utilization of tasks utilizing our preemption point placement

algorithm in a limited preemption scheduling environment. We demonstrate the superiority of our

approach versus several state of the art methods.

Informal Problem Statement

In this section, we will summarize the subsequent sections and their use in our work using an informal

problem statement to set the proper context.

The problem we solve in this paper is to minimize the WCET+CRPD of each real-time task τi in a

task set τ whose code structure is represented by a real-time conditional flow graph Gi such that all tasks

meet their prescribed deadlines in accordance with the employed scheduling algorithm. To achieve this

objective, we propose a conditional preemption placement algorithm that computes CRPD costs using an

interdependent CRPD cost model. Task preemptions are subject to the constraint that all non-preemptive

regions must be less than or equal to the maximum allowable non-preemptive region parameter Qi deter-

mined via task characteristics and the scheduling algorithm.

Our work embodies several diverse real-time disciplines, namely, graph grammars, CRPD analysis,
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preemption placement, and schedulability analysis. Each discipline is discussed in a separate section for

clarity. The foruth section details the fixed priority (FP) and earliest deadline first (EDF) schedulability

analysis constraints for limited preemption scheduling. These scheduling constraints limit preemption

placement in such a way that task set schedulability is achieved. Real-time conditional flow graphs along

with an overview of graph grammars are discussed in the fifth section. Graph grammars are used to parse

the real-time task code during preemption placement. Once these fundamental topics are covered, the

sixth section presents a formal problem statement describing the objective function for selecting preempti-

ons in conditional flowgraphs. Our conditional preemption placement algorithm parses the real-time task

code using a set of production rules presented in the seventh section. As each production rule is applied,

the WCET+CRPD cost and the associated preemption points are computed and stored for processing in

subsequent production rules. Our enhanced CRPD computation method was presented in Chapter 4.

Schedulability Analysis

In this section, analysis of EDF [9, 12] and FP [72] limited preemption scheduling, summarizes the

computation of the maximum non-preemptive region parameter Qi supporting our conditional and linear

preemption point placement algorithms.

The goal of schedulability analysis is to determine whether a taskset is schedulable under the worst-

case task activation pattern. The worst-case activation pattern for task τi, known as the critical instant,

results in the maximum response time. Earlier work [43] proved the critical instant for each task coincides

with the synchronous activation of the task with all higher priority tasks where all jobs released immedia-

tely in accordance with the minimum inter arrival time. For FP scheduling the set of higher priority tasks

is represented by:

k ∈ hp(i) = {k | k < i} (22)

For EDF scheduling, the set of higher priority tasks is represented by:

k ∈ hp(i) = {k | Dk < Di} (23)

To facilitate the schedulability analysis for FP scheduling, the request bound function [42]RBF (t) is used

to examine the maximum cumulative execution request in an interval of length t generated by jobs of τi.

RBFi(t) =
⌈ t
Ti

⌉
(CNPi + γi) (24)
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where γi denotes the preemption cost due to preemption by higher priority tasks hp(i) during execution of

task τi. To facilitate the schedulability analysis for EDF scheduling, the demand bound function DBF (t)

is used to examine the maximum cumulative execution request in an interval of length t generated by jobs

of τi.

DBFi(t) =
(

1 +
⌈ t−Di

Ti

⌉)
(CNPi + γi) (25)

where γi denotes the preemption cost due to preemption by higher priority tasks hp(i) during execution of

task τi. Starting with the critical instant, the cumulative execution request in an interval t for task τi and

all higher priority tasks hp(i) is given by:

Wi(t) =
∑

j∈i,hp(i)

RBFj(t) (26)

Characterized by the non-preemptive regions inherent to limited preemption scheduling, the analysis must

take into account the longest NP region in the lower priority tasks. The maximum NP region in task τi is

given by:

qmaxi ≤ Qi = min
h∈hp(i)

βh (27)

For FP scheduling, the blocking factor Bi each task τi experiences is given by:

Bi = max
l∈lp(i)

{qmaxl } (28)

where the set of lower priority tasks lp(i) for FP scheduling is given by:

l ∈ lp(i) = {l | l > i} (29)

For EDF scheduling, the set of lower priority tasks is represented by:

l ∈ lp(i) = {l | Dl > Di} (30)

Since the lowest priority task τm is subjected to no blocking, by convention we have Bm = 0. We

can use the schedulability analysis derived for floating non-preemptive regions [15] to establish taskset

schedulability:

Wi(t) +Bi ≤ t, ∀ t ∈ mTi, m ∈ N (31)
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Another way to look at this FP limited preemption schedulability constraint is to characterize the amount

of blocking tolerance βi that a task τi can withstand while meeting its deadlines.

βi = max
t∈A|t<Di

{
t−

∑
j∈hp(i),i

RBFj(t)
}

(32)

where A = {mTj ,m ∈ N, 1 ≤ j < n}. Similarly, for EDF, we have:

βi = min
t∈A|Di≤t<Di+1

{
t−

∑
τj∈τ

DBFj(t)
}

(33)

whereA = {mTj + Dj , m ∈ N, 1 ≤ j ≤ n}. With suitable expressions for βi introduced, we can express

the taskset limited preemption schedulability constraint for both FP and EDF scheduling as summarized

in Theorem 2 by Bertogna et al. [14].

Theorem 2. A task set τ is schedulable with limited preemption scheduling if, for all i | 1 ≤ i ≤ n,

Bi ≤ βi (34)

We can restate the taskset schedulability constraint in terms of the maximum non-preemptive region para-

meter Qi via Theorem 3 by Bertogna et al. [14].

Theorem 3. A task set τ is schedulable with limited preemption scheduling if, for all i | 1 < i ≤ n,

qmaxi ≤ Qi = min
h∈hp(i)

βh (35)

In summary, each task is permitted to execute non-preemptively for a maximum amount of time denoted

by Qi thereby ensuring taskset schedulability as long as preemption points are placed such that all non-

preemptive regions are less than or equal to Qi. For convenience, Table 4 summarizes the terminology

presented in this section.

Real-Time Conditional Flow Graph

The types of real-time conditional flow graphs used in our work belong to the class of graphs known

as series-parallel flow graphs [37]. We use the series/parallel terminology to describe the supported graph

composition steps. Series-parallel flow graphs can be created using varying sequences of four basic ope-

rations, namely graph creation, series composition, parallel composition and cyclic composition. Creation

of graph GAi consists of two basic blocks as vertices, δsi and δei , containing a connecting directed edge

es,ei = (δsi , δ
e
i ) as shown in Figure 36.
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Term Description
Bi Task τi blocking factor
βi Task τi blocking tolerance

DBF i(t) Demand bound function specifying the maximum cumulative execution request
in an interval of length t generated by jobs of task τi

hp(i) The set of task τi higher priority tasks
k Index variable denoting the preempting task
l Index variable denoting τi blocking tasks

lp(i) The set of task τi lower priority tasks
qmaxj The maximum NP execution region in task τj

RBF i(t) The resource bound function specifying the maximum cumulative execution request in
an interval of length t generated by jobs of task τi

t Cumulative task set execution time
Wi(t) The cumulative execution request for task τi
γi The preemption cost during task τi execution

Table 4: Schedulability Terminology
 

+ = 

G𝑖
𝐴

 G𝑖
𝐵

 G𝑖
𝐶

 

 𝑖
 𝑠

  𝑖
 𝑒

  𝑖
 𝑠

  𝑖
 𝑒

 

Figure 36: Graph Creation.

Series composition takes two disjoint graphs, GAi and GBi creating a new graph GCi with a connecting

directed edge ee
a,sb

i = (δe
a

i , δ
sb
i ) where δe

a

i represents the sink node of graph GAi and δs
b

i represents the

source node of graph GBi as shown in Figure 37.
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Figure 37: Series Composition.

Parallel composition takes four disjoint graphs, GAi , GBi , GCi , and GDi , creating a new graph GEi with

edges es,s
b

i = (δsi , δ
sb
i ), es,s

c

i = (δsi , δ
sc
i ), ee

b,e
i = (δe

b

i , δ
e
i ), and ee

c,e
i = (δe

c

i , δ
e
i ) where δs

b

i and δs
c

i

represent the source nodes, and δe
b

i and δe
c

i represent the sink nodes of graphs GBi and GCi respectively as

shown in Figure 38.
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Figure 38: Parallel Composition.
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Cyclic composition takes three disjoint graphs, GAi , GBi , and GCi , creating a new graph GDi with edges

es,s
b

i = (δsi , δ
sb
i ), ee

b,e
i = (δe

b

i , δ
e
i ), and ee,si = (δei , δ

s
i ) where δs

b

i represent the source node, and δe
b

i

represent the sink node of graph GBi as shown in Figure 39.
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Figure 39: Cyclic Composition.

Our previous work was limited to linear control flow graphs constructed using graph creation and

series composition operations only. To demonstrate the applicability of series-parallel graphs to modern

real-time applications, well known and commonly used real-time structured programming language con-

structs such as ordered linear statement sequences, if-then statements, if-then-else statements, switch sta-

tements, bounded unrolled loops, and inline functions [3] comprise the supported software artifacts. One

can readily observe that series-parallel graphs are partitioned into series and parallel connected linear code

sections of basic blocks each having single entry and exit points. Due to the constrained resources of most

real-time embedded processors, well written programs must employ a safe subset of programming lan-

guage constructs such as conditional statements, bounded loops, and efficient functions with no recursion

guaranteed to terminate within a bounded execution time in order to support cooperative tasking [71]. As

a result, the real-time task code represented via series-parallel graphs can be efficiently implemented by

most structured programming languages such as C. In the following sections, we present a context free

graph grammar describing the series-parallel graphs supported in our work. The use of a context free

grammar is compulsory for real-time conditional code preemption placement algorithms.

Grammar Background

In this section, we present a brief overview of context-free graph grammars. Historically, graph gram-

mars have been used to facilitate the code optimization phase of program compilation [37]. In our work,

we use a graph grammar to 1) recognize and construct control flow graphs conforming to the series-parallel

graph structure previously described, and 2) generate intermediate structured programmatic constructs that

can be efficiently solved as smaller subproblems and subsequently combined together to solve larger sub-

problems realizing our real-time conditional code-based PPP algorithm.

Formally, a grammar G defines a textual language L(G) that is parsed and recognized via a set of

production rules. Production rules are of the form LHS ← RHS where the left-hand side (LHS) is a
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non-terminal string and the right-hand side (RHS) contains non-terminal and/or terminal strings. A non-

terminal string is a symbolic syntactic variable denoting some valid language construct. A terminal string

represents some abstract or symbolic construct that is part of a textual based language L(G). The ap-

plication of a production rule means the non-terminal string on the left-hand side is substituted for the

non-terminal and/or terminal strings on the right-hand side. The process of rewriting or substituting lan-

guage strings in this manner is called a derivation. In the compiler domain, the set of valid language

symbols are also known as tokens. Typically, these language symbols consist of numerical strings, key-

words, identifiers, or symbols, comprising a program. A grammar G whose production rules contain only

non-terminal strings on the left-hand side of each production is called a context free grammar. A context

free grammar G where each valid string S ∈ L(G) has a unique derivation sequence that recognizes S is

called unambiguous.

Like their textual counterparts, context free graph grammars consist of production rules containing

both non-terminal and terminal strings. However, in a graph grammar, a terminal string represents a single

vertex or basic block and a non-terminal string represents a set of vertices or basic blocks and the directed

edges connecting them. Therefore, we can think of a graph grammar as a set of production rules describing

how basic blocks are connected thereby representing a valid control flow graph G ∈ L(G). Formally, a

graph G is in the language L(G), if there exists a sequence of derivations, starting from a specified non-

terminal node, that uses the productions of G and results in graph G [58].

In the following subsection, we present a context free graph grammar specification describing the real-

time conditional CFGs that are addressed in our work. Real time code snippets exemplifying each grammar

production rule are presented along with each grammar production rule.

Grammar Specification

Our real-time conditional graph grammar production rules are specified in this paper in Backus-Naur

form (BNF) presented in the seventh section. Non-terminals are textually denoted between angle brackets

〈CB〉 and graphically denoted by an enclosing box. Terminals or basic blocks are textually denoted by

(δji , b
j
i ) where δji is the basic block identifier and bji is the WCET, and graphically by a filled circle. The

limitations of series-parallel graphs eliminate the use of goto statements and return statements preceding

the end of a function. It is well known that real-time structured programs can be exclusively comprised of

sequential statements, conditional statements, functions, and loop statements only [17].

Problem Statement

Using our series-parallel graph structure, the objective is to select a set of effective preemption points

ρi that minimizes the WCET+CRPD of task τi whose real-time condition code is given by graph Gi, sub-
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ject to the constraint that all non-preemptive regions must be less than or equal to the maximum allowable

non-preemptive region parameter Qi. The problem we solve in this paper is given by:

Problem Statement:

Given a real-time conditional flow graphGi ∈ L(G), an interdependent CRPD cost function ξi(δxi , δ
y
i ) and

WCET bji for each basic block, find a set of Effective Preemption Points (EPPs) ρi ⊆ E that minimizes

the cost function:

Φi(Gi, ρi)
def
= max

p∈Pi(Gi,δsi ,δei )
[
∑
δxi ∈p

bxi +
∑

(δx
i
,δ
y
i
)∈p,ρi

δxi ≺pδ
y
i

ξi(δ
x
i , δ

y
i )] (36)

subject to the constraint ∀p ∈ Pi(Gi, δ
s
i , δ

e
i ), δ

w
i ∈ ρi,∃eu,vi = (δui , δ

v
i ), ex,yi =

(δxi , δ
y
i ) where eu,vi , ex,yi ∈ ρi ::

[
∑
δw
i

∈p
δui �pδwi �pδxi

bwi + ξi(δ
u
i , δ

x
i )] ≤ Qi (37)

The cost function Φi(Gi, ρi) evaluates to the maximum cost across all paths p through the task code.

Preemption Point Placement Algorithm

In this section, we present a dynamic-programming algorithm that achieves an improved solution ρi

to the effective PPP problem compared to existing PPP methods. The set of selected feasible preemption

points ρi minimizes our WCET cost objective function Φi(Gi, ρi) in that any other set of preemption

points ρ
′
i would result in a WCET cost Φ

′
i(Gi, ρi) ≥ Φi(Gi, ρi). To sufficiently describe our dynamic-

programming algorithm, we first present a motivating example, then a high-level overview, followed by

a recursive formulation based on our real-time conditional context-free grammar G. The production rules

described in the recursive formulation are applied to the CFG as part of the individual parsing steps in a

bottom-up fashion.

Motivating Example

To present the benefits of preemption point placement using the interdependent CRPD model, consider

the following example as shown in Figure 40. The WCET costs are given for each basic block along with

the independent CRPD costs shown along each edge between adjacent basic blocks and summarized in

Figure 41. The interdependent CRPD cost matrix summarizes the CRPD costs for each pair of connected

basic blocks illustrating the opportunities for cost reduction as shown in Figure 42. Unconnected basic

blocks have −1 CRPD cost entries. The upward pointing arrows denote the minimum independent CRPD
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Figure 40: Motivating Example.


i
 Z A B C D1 D2 D3 E1 E2 E3 F G H 

 0 1 3 5/7 5 1 6 1 1 3 3 1 0 
 

Figure 41: Independent CRPD Costs.

 


i
 Z A B C D1 D2 D3 E1 E2 E3 F G H 

Z -1 0 0 0 0 0 0 0 0 0 0 0 0 

A -1 -1 1 1 1 1 1 1 1 1 1 1 1 

B -1 -1 -1 3 3 3 3 3 3 2 2 2 1 

𝐶 -1 -1 -1 -1 5 4 1 7 7 1 4 2 1 

𝐷1 -1 -1 -1 -1 -1 5 5 -1 -1 -1 5 3 2 

D2 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 

D3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 4 2 

E1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 

E2 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 6 5 3 

E3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 5 2 

F -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 2 

G -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 

H -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 

Figure 42: Interdependent CRPD Costs.

cost solution whose WCET and preemption cost is 26. The downward pointing arrows denote the mini-

mum interdependent CRPD cost solution whose WCET and preemption cost is 22 for both paths. The

interdependent PPP algorithm chooses alternate preemption points (i.e. edges eC,D1, eC,E1, eD3,F , and

eE3,F ) in accordance with the reduced preemption cost at those locations thereby illustrating the benefits

of the interdependent CRPD model as highlighted in Figure 42.

High-Level Overview

Dynamic programming algorithms are used to efficiently implement complex algorithms where so-

lutions to smaller subproblems are computed, stored, and subsequently reused in the solutions to larger

subproblems. In our approach, we compute solutions to subsets of the real-time conditional control flow

graph as it is being constructed in accordance with our grammar G production rules. Grammar G is struc-

tured in such a way that solutions are computed in the following order at each level of the parse tree,

namely, 1) basic blocks, 2) linear sections, 3) conditional sections, and 4) aggregate block structures. We
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use the maximum non-preemptive region parameter Qi as a suitable constraint on the number of compu-

ted solutions stored for each subgraph. We introduce two solution interface parameters, ζpred, and ζsucc,

denoting the non-preemptive execution times that a given solution presents to predecessor and successor

subgraphs when subgraphs are combined to form solutions to larger subgraphs. To illustrate this concept,

consider the following intermediate graph structure GAi with a proposed set of preemption points selected

as denoted by the up and down arrows shown in Figure 43. Alternatively, we can visualize the solution
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Figure 43: Subgraph Solution Interface.

interface parameters ζpred and ζsucc as basic blocks whose execution times are ζpred units and ζsucc units

respectively as shown in Figure 44. In this simplistic model, we note that preemption is not permitted at the

exterior edges as the added basic blocks denote non-preemptive execution. We use infinite weight edges

to enforce non-preemption between some basic blocks. Therefore, for each subgraph, we must compute
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Figure 44: Equivalent Subgraph Solution Interface.

at most (Qi + 1)2 distinct solutions for each value of ζpred and ζsucc in the range of [0 . . . Qi − 1]. We

can think of the WCET cost and associated preemption point solutions as a set of (Qi + 1) × (Qi + 1)

matrices, denoted as Φi(G
A
i , ζpred, ζsucc) and ρi(GAi , ζpred, ζsucc) respectively. Later, when subgraph GAi

is combined with other programmatic constructs in the parse tree to solve a larger subproblem, we use the

ζpred and ζsucc parameters to constrain which solutions from each subgraph can be combined and conside-

red as potential solutions for the larger subgraph. We introduce two functions used to identify the visible

predecessor preemption points, denoted ρpredi and the visible successor preemption points, denoted ρsucci .

The function ρpredi (GAi , ζpred, ζsucc) returns the set of visible selected preemption points in the intermedi-

ate solution that may be reached along any path p ∈ Pi(GAi , δs
A

i , δe
A

i ) starting at the first basic block δs
A

i

and reaching some basic block δyi ∈ ρpredi by executing non-preemptively subject to the constraint that

ζpred ≤ Qi as shown in Figure 45.
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Figure 45: Visible Predecessor Preemption Points.

Similarly, the function ρsucci (GAi , ζpred, ζsucc) returns the set of visible selected preemption points in the

intermediate solution that may be reached along any path p ∈ Pi(G
A
i , δ

sA
i , δe

A

i ) starting at basic block

δyi ∈ ρsucci and reaching the ending basic block δe
A

i by executing non-preemptively subject to the constraint

that ζsucc ≤ Qi as shown in Figure 46.
 

Figure 46: Visible Successor Preemption Points.

Thus, the sets ρpredi and ρsucci are used to determine the additive preemption cost between two subgraphs

whose solutions are being combined. In the next subsection, we present a recursive formulation that

achieves an effective minimized safe upper bound preemption solution for each larger subgraph as a com-

bination of the minimized safe upper bound preemption solutions to the respective smaller subgraphs.

Recursive Formulation

In accordance with our context-free grammar G, the various subgraphs GAi are created via applying

the production rules on a textual based graph description that conforms to the language L(G) presented

below. As each production rule or derivation is applied, a defined subset of basic blocks and their con-

nection relationships are assigned to subgraphs denoted by their non-terminal symbol. As each production

rule is encountered, the cost function ΦSG
i , and the selected preemption points ρSGi are computed over all

possible values of ζpred and ζsucc in the range [0 . . . Qi], where < SG > represents the larger subgraph

being constructed. For instance, the subgraph created by the linear blocks production is denoted with a

suitable abbreviation to establish a proper association between the production rule, the subgraph GSGi , the

WCET cost objective function ΦSG
i , and the set of selected preemption points ρSGi .

The time complexity with respect to each production rule relates to the computation of the new cost

and preemption matrices using the associated formulas. The time complexity is shown for the most pro-

found production rules in our grammar G. Moreover, the time complexity of parsing any graph Gi using

our production rules is highly dependent on the structures present in the real-time program code being
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analyzed. For a graph containing Ni nodes the worst-case number of production rules executed is 2Ni− 1

or O(Ni).

We now present the grammar G production rules focusing on the computation of the WCET cost ob-

jective function Φi(G
A
i , ζpred, ζsucc) and the associated set of selected preemption points ρi(GAi , ζpred, ζsucc)

comprising the set of solutions generated at each level of the parse tree for all values of ζpred and ζsucc

in the range of [0 . . . Qi]. In this section, we present production rules P1 through P7 supporting the con-

ditional CFG and block structures, while the remaining production rules P8 through P13 containing the

other programming constructs such as loops, and functions are presented in the following subsections.

For instruction production rule P1, we have:

<SB>← (δji , b
j
i )

The following graphical example shown in Figure 47 illustrates production rule P1. A basic block is

identified by a label and its corresponding WCET. The label we use is the address of the instruction

contained in the basic block. Recall that by convention, basic blocks contain one or more instructions. In

our approach, each basic block contains a single instruction.

<SB> ← (𝐢
𝐣
, 𝐛𝐢

𝐣
) 

 

Figure 47: Production Rule P1.

The derivation of production rule P1 creates a subgraph GSBi containing a single basic block, δji . The

associated WCET cost and preemption point functions are given by:

Φ
SB(j)
i (ζpred, ζsucc) =


∞, if bji > Qi

bji , if (bji + ζpred + ζsucc) ≤ Qi

bji , if (bji + ζpred + ζsucc) > Qi

 (38)

ρ
SB(j)
i (ζpred, ζsucc) =


∅, if bji > Qi

∅, if (bji + ζpred + ζsucc) ≤ Qi

δji , if (bji + ζpred + ζsucc) > Qi

 (39)

There are three distinct cases to consider for production rule P1. For case 1, the WCET bji of basic block

δji exceeds the maximum non-preemptive region Qi, hence there is no solution for this graph. For case

2, the sum of basic block δji WCET bji , the preceding non-preemptive region ζpred, and the succeeding
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non-preemptive region ζsucc is less than Qi, so no preemption is needed (ρi = ∅). For case 3, the sum of

basic block δji WCET bji , the preceding non-preemptive region ζpred, and the succeeding non-preemptive

region ζsucc is greater than Qi, so a preemption is needed (ρi = δji ).

All real-time code examples presented in this section employ assembly language code for the MIPS pro-

cessor family compiled using the GCC compiler. The following real-time code example exemplifies the

application of production rule P1:

<SB>←


grammar representation : (i40013c, 4)

instruction code : 0x40013c lw v1, 8(sp)

WCET : 4 cycles


For conditional production rule P2, we have:

<CB>← <SB> [ <Blocks> ] [ <Blocks> ]∗ <SB>

The following graphical example shown in Figure 48 illustrates production rule P2. The conditional block

is comprised of two linear section blocks (for simplicity), and two connecting basic blocks, one located at

the start of the conditional, and one located at the end of the conditional.

              <CB>                 ←   <SB>   [ <Blocks> ]   [ <Blocks> ]*  <SB> 
 

 

 

 
Figure 48: Production Rule P2.

The derivation of production rule P2 creates a subgraph GCBi concatenating a single basic block, δji in

subgraph GSB(j)
i , followed by one or more blocks each forming a conditional section in subgraph GCSai

where a ∈ [1, r] and r denotes the number of conditional sections, ending with a single basic block, δki

in subgraph GSB(k)
i . Solutions previously computed for the r conditional sections are combined with the

solutions computed for the leading and trailing basic blocks δji and δki respectively. The computation of

the cost and preemptions associated with the semantics of production rule P2 exhibits time complexity

executing in O(Ni4rQ
2
i ) time. Each <SB> contains 2 solutions with each of the r <Blocks> structures
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containing (Qi + 1)2 solutions. The associated WCET1 cost and preemption point functions are given by:

ΦCB
i (ζpred, ζsucc) = max

a∈N:1≤a≤r
{min

s,t,u
{ΦSB(j)

i (ζpred, ζsuccs) + maxδmi ,δni [ξi(δ
m
i , δ

n
i )] +

ΦCSa
i (ζpredt , ζsucct) + maxδvi ,δwi [ξi(δ

v
i , δ

w
i )] +

Φ
SB(k)
i (ζpredu , ζsucc)}}

(40)

where the variables in the min and max expressions (ζsuccs , ζpredt , ζsucct , ζpredu , δmi , δni , δvi , and δwi )

represent values where the function ΦCB
i (ζpred, ζsucc) is minimized subject to the following constraints:

(ζsuccs + maxδmi ,δni [ξi(δ
m
i , δ

n
i )] + ζpredt) ≤ Qi (41)

(ζsucct + maxδvi ,δwi [ξi(δ
v
i , δ

w
i )] + ζpredu) ≤ Qi (42)

δmi ∈ ρsucci (G
SB(j)
i , ζpred, ζsuccs) (43)

δni ∈ ρ
pred
i (GCSai , ζpredt , ζsucct) (44)

δvi ∈ ρsucci (GCSai , ζpredt , ζsucct) (45)

δwi ∈ ρ
pred
i (G

SB(k)
i , ζpredu , ζsucc) (46)

ρCBi (ζpred, ζsucc) = ρ
SB(j)
i (ζpred, ζsuccs)

r⋃
a=1

ρCSai (ζpredt , ζsucct)
⋃

ρ
SB(k)
i (ζpredu , ζsucc)

(47)

The solutions for conditional blocks GCBi are created by considering each of the two possible solutions

stored in subgraph GSB(j)
i and subgraph GSB(k)

i . For each pair of solutions, we iterate through (Qi + 1)2

solutions stored in each of the r conditional section subgraphsGCSai determining the minimized combined

cost and preemption solutions. While each conditional section GCSai cost is minimized, the overall cost of

the conditional block GCBi is the maximum of all conditional sections considered selected for each value

of ζpred and ζsucc. While combining solutions for each conditional section, the maximum preemption

cost between the solutions for combined subgraphs GSB(j)
i and GCSai along with the combined subgraphs

GCSai and GSB(k)
i are added to the costs of the solutions for each subgraph. The first pair uses the visible

successor preemptions of subgraph GSB(j)
i and the visible predecessor preemptions of subgraph GCSai .

Similarly, the second pair uses the visible successor preemptions of subgraph GCSai and the visible prede-

cessor preemptions of subgraph GSB(k)
i . The preemptions for each minimized solution contain the current

preemption solutions for subgraphs GSB(j)
i and GSB(k)

i along with the union of each of the r minimized

1ζpred and ζsucc are bolded to denote that they are constants in determining the costs for Equations 40-47; all other ζ and δ
values vary over their respective ranges.
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conditional section preemption solutions. The basic blocks δmi , δni , δvi , and δwi represent elements of the

predecessor and successor visible preemption sets used to determine the interdependent preemption cost

of the combined solutions. It is important to note that in order to maintain a safe cost bound, we must use

the cost associated with the worst-case predecessor/successor preemption points for each solution when

smaller solutions are combined into larger solutions. Formally, given the Φi and ρi functions for each

substructure of GAi where each ρAi (ζpred, ζsucc) represents a feasible solution for substructure A given

preemptions ζpred before (resp., ζsucc) after and ΦA
i represents a safe upper bound on the total WCET

and preemption cost of that solution. Thus, the solutions selected by our algorithm are minimized in ac-

cordance with our cost functions, however, our use of the maximum preemption cost when combining

solutions potentially destroys global optimality. This concept applies to all presented production rules.

Theorem 4. Given Φi and ρi functions for each substructure ofCB where each ρAi (ζpred, ζsucc) represents

a feasible solution for substructure A given preemptions ζpred before, ζsucc after, and ΦA
i is a safe upper

bound on the total WCET and preemption cost of that solution. Applying production P2 over a feasible

Gi, GCBi and Qi results in a feasible solution ρCBi and a safe upper bound ΦCB
i given by Equations 40,

41-46, and 47 respectively.

Proof. The proof is by direct argument. We need to prove that our solution ensures that the task level Qi

constraint is not violated and the cost function ΦCB
i (ζpred, ζsucc) results in a safe upper bound. To prove

theQi constraint is not violated, we must show 1) the non-preemptive execution time of the combined solu-

tions does not exceedQi at each solution interface, and 2) the non-preemptive execution time of the combi-

ned solution at the new predecessor and successor interfaces does not exceedQi. Let Φ
SB(j)
i (ζpred, ζsuccs)

with ζpred,ζsuccs ∈ [0 . . . Qi] represent a safe upper bound cost solution for subgraph GSB(j)
i for basic

block δji , with its corresponding set of selected preemption points denoted by ρSB(j)
i (ζpred, ζsuccs) be a

limited preemption execution safe upper bound cost solution for basic block δji . We make an identical sta-

tement for subgraph GSB(k)
i for basic block δki , whose cost function is denoted Φ

SB(k)
i (ζpredu , ζsucc), and

whose set of selected preemption points are denoted ρSB(k)
i (ζpredu , ζsucc). We make a similar statement

for subgraph GCSai starting at basic block δscsai and ending at basic block δecsai , whose cost function is

denoted ΦCSa
i (ζpredt , ζsucct), and whose set of selected preemption points are denoted ρCSai (ζpredt , ζsucct)

where a ∈ [1, r]. Since we have a safe upper bound cost solution for each of the combined subgraphs,

we can conclude that ΦCB
i (ζpred, ζsucc) computed in Equation 40 represents a safe upper bound cost solu-

tion for the concatenated series subgraphs GSB(j)
i

⋃r
a=1 G

CSr
i ∪ G

SB(k)
i starting at basic block δji , and

ending at basic block δki with its corresponding selected preemption points denoted by ρCBi (ζpred, ζsucc)

and computed in Equation 47. Condition 1 is met in accordance with Equations 41-46 whose purpose is to
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ensure the non-preemptive execution time of the combined solutions does not exceed Qi at each solution

interface. Condition 2 is met per the definition of the parameters ζpred, and ζsucc respectively, whose range

is given by [0 . . . Qi]. Thus, the problem finds a feasible safe upper bound cost preemption points solution

when applying production P2.

The following real-time code example exemplifies the application of production rule P2:

<SB>←


grammar representation : (i40010c, 4)

instruction code : 0x40010c beqz v0, 400118

WCET : 4 cycles



<Blocks>←



grammar representation : (i400110, 4)

(i400114, 4)

instruction code : 0x400110 addiu v0, v0,−1

0x400114 j 400120



<Blocks>←



grammar representation : (i400118, 4)

(i40011c, 4)

instruction code : 0x400118 lw v0, 12(sp)

0x40011c addiu v0, v0, 1



<SB>←


grammar representation : (i400120, 4)

instruction code : 0x400120 lw v0, 18(sp)

WCET : 4 cycles


Once the production rules for the four sub-components have been applied, they are subsequently aggregated

into a conditional block <CB> as follows:

<CB>← <SB> [ <Blocks> ] [ <Blocks> ]∗ <SB>

For blocks production rule P3, we have:

<Blocks>← [ <SB> ]

The following graphical example shown in Figure 49 illustrates production rule P3. Here a single basic
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block is subsumed into an aggregate block structure.

<Blocks> ← <SB>  

 

 
Figure 49: Production Rule P3.

The derivation of production rule P3 creates a subgraph GBLKSi that is equivalent to the subgraph GSBi .

The associated WCET cost function is given by:

ΦBLKS
i (ζpred, ζsucc) = ΦSB

i (ζpred, ζsucc) (48)

The associated set of selected preemption points function is given by:

ρBLKSi (ζpred, ζsucc) = ρSBi (ζpred, ζsucc) (49)

The existing single block cost and preemption solutions are copied to the aggregate blocks structure.

The following real-time code example exemplifies the application of production rule P3:

<SB>←


grammar representation : (i40013c, 4)

instruction code : 0x40013c lw v1, 8(sp)

WCET : 4 cycles


Once the production rule for the single block sub-component has been applied, it is subsequently aggregated

into a <Blocks> structure as follows:

<Blocks>← [ <SB> ]

For blocks production rule P4, we have:

<Blocks>← [ <CB> ]

The following graphical example shown in Figure 50 illustrates production rule P4. Here a single condi-

tional block structure is subsumed into an aggregate block structure.

<Blocks>                           ←                  <CB> 
 

 

 

Figure 50: Production Rule P4.
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The derivation of production rule P4 creates a subgraph GBLKSi that is equivalent to the subgraph GCBi .

The associated WCET cost function is given by:

ΦBLKS
i (ζpred, ζsucc) = ΦCB

i (ζpred, ζsucc) (50)

The associated set of selected preemption points function is given by:

ρBLKSi (ζpred, ζsucc) = ρCBi (ζpred, ζsucc) (51)

The existing conditional block cost and preemption solutions are copied to the aggregate blocks structure.

The following real-time code example exemplifies the application of production rule P4:

<SB>←


grammar representation : (i40010c, 4)

instruction code : 0x40010c beqz v0, 400118

WCET : 4 cycles



<Blocks>←



grammar representation : (i400110, 4)

(i400114, 4)

instruction code : 0x400110 addiu v0, v0,−1

0x400114 j 400120



<Blocks>←



grammar representation : (i400118, 4)

(i40011c, 4)

instruction code : 0x400118 lw v0, 12(sp)

0x40011c addiu v0, v0, 1



<SB>←


grammar representation : (i400120, 4)

instruction code : 0x400120 lw v0, 18(sp)

WCET : 4 cycles
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Once the production rules for the four sub-components have been applied, they are subsequently aggregated

into a conditional block as follows:

<CB>← <SB> [ <Blocks> ] [ <Blocks> ]∗ <SB>

Once the production rule for the conditional block sub-component has been applied, it is subsequently

aggregated into a <Blocks> structure as follows:

<Blocks>← [ <CB> ]

For aggregate blocks production rule P5, we have:

<Blocks>← <SB> <Blocks>

The following graphical example shown in Figure 51 illustrates production rule P5. Here a single basic

block is concatenated onto the front of an existing aggregate block structure.

 <Blocks>       ←   <SB> <Blocks> 

 

 

Figure 51: Production Rule P5.

The derivation of production rule P5 creates a subgraph GBLKS
′

i concatenating a previously created ag-

gregate blocks basic block subgraph GSBi in series with a previously created subgraph GBLKSi . The

associated WCET cost function is given by:

ΦBLKS
′

i (ζpred, ζsucc) = minr,s{(ΦSB
i (ζpred, ζsuccr) + max

δmi ,δ
n
i

[ξi(δ
m
i , δ

n
i )] +

ΦBLKS
i (ζpreds , ζsucc)}

(52)

where ζsuccr , and ζpreds represent the values where the function ΦBLKS
′

i (ζpred, ζsucc) is minimized and

valid solution combinations are subject to the following constraints:

(ζsuccr + max
δmi ,δ

n
i

[ξi(δ
m
i , δ

n
i )] + ζpreds) ≤ Qi (53)

δmi ∈ ρsucci (GSBi , ζpred, ζsuccr) (54)

δni ∈ ρ
pred
i (GBLKSi , ζpreds , ζsucc) (55)
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The associated preemption point function is given by:

ρBLKS
′

i (ζpred, ζsucc) = ρSBi (ζpred, ζsuccr) ∪ ρBLKSi (ζpreds , ζsucc) (56)

The solutions for aggregate blocks subgraph GBLKS
′

i are created by considering each of the two possible

solutions stored in subgraph GSBi . For each of the subgraph GSBi solutions, we iterate through each of the

(Qi + 1)2 aggregate block GBLKSi subgraph solutions determining the minimized cost and preemption

solutions. While combining each pair of solutions, the minimum preemption cost between the combined

solutions for subgraphsGSBi andGBLKSi are selected for each value of ζpred and ζsucc. The algorithm uses

the visible successor preemptions of subgraph GSBi and the visible predecessor preemptions of subgraph

GBLKSi . The preemptions for each minimized solution contain the union of selected preemption solutions

for subgraph GSBi and subgraph GBLKSi .

Theorem 5. Given Φi and ρi functions for each substructure of BLKS where each ρAi (ζpred, ζsucc)

represents a feasible solution for substructure A given preemptions ζpred before, ζsucc after, and ΦA
i is a

safe upper bound on the total WCET and preemption cost of that solution. Applying production P5 over

a feasible Gi, GBLKSi and Qi results in a feasible solution ρBLKSi and a safe upper bound ΦBLKS
i given

by Equations 52, 53-55, and 56 respectively.

Proof. The proof is by direct argument. We need to prove that our solution ensures that the task level

Qi constraint is not violated and the cost function ΦBLKS
′

i (ζpred, ζsucc) results in a safe upper bound.

To prove the Qi constraint is not violated, we must show 1) the non-preemptive execution time of the

combined solutions does not exceed Qi at each solution interface, and 2) the non-preemptive execution

time of the combined solution at the new predecessor and successor interfaces does not exceed Qi. Let

ΦBLKS
i (ζpred, ζsuccs) with ζpred,ζsuccs ∈ [0 . . . Qi] represent a safe upper bound cost solution for subgraph

GBLKSi , with its corresponding set of selected preemption points denoted by ρBLKSi (ζpred, ζsuccs) be a

limited preemption execution safe upper bound cost solution for subgraph GBLKSi . We make an identical

statement for subgraphGSBi , whose cost function is denoted ΦSB
i (ζpredu , ζsucc), and whose set of selected

preemption points are denoted ρSBi (ζpredu , ζsucc). Since we have a safe upper bound cost solution for

each of the combined subgraphs, we can conclude that ΦBLKS
′

i (ζpred, ζsucc) computed in Equation 52

represents a safe upper bound cost solution for the concatenated series subgraphsGSBi ∪ GBLKSi , with its

corresponding selected preemption points denoted by ρBLKS
′

i (ζpred, ζsucc) and computed in Equation 56.

Condition 1 is met in accordance with Equations 53-55 whose purpose is to ensure the non-preemptive

execution time of the combined solutions does not exceedQi at each solution interface. Condition 2 is met

per the definition of the parameters ζpred, and ζsucc respectively, whose range is given by [0 . . . Qi]. Thus,
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the problem finds a feasible safe upper bound cost preemption points solution when applying production

P5.

The following real-time code example exemplifies the application of production rule P5:

<SB>←


grammar representation : (i40013c, 4)

instruction code : 0x40013c lw v1, 8(sp)

WCET : 4 cycles


Once the production rule for the single block sub-component has been applied, it is subsequently aggregated

into a <Blocks> structure as follows:

<Blocks>← [ <SB> ]

The next instruction in the sequence will be parsed as a single block <SB> structure as follows:

<SB>←


grammar representation : (i400140, 4)

instruction code : 0x400140 sw v1, 4(sp)

WCET : 4 cycles


Once the production rule for the single block sub-component has been applied, it along with the previous

blocks <Blocks> structure are subsequently aggregated into a <Blocks> structure as follows:

<Blocks>← <SB> <Blocks>

For aggregate blocks production rule P6, we have:

<Blocks>← <CB> <Blocks>

The following graphical example shown in Figure 52 illustrates production rule P6. Here a single condi-

tional block is concatenated onto the front of an existing aggregate block structure.

<Blocks>                                      ←                  <CB>                     <Blocks>           
 

 

 

Figure 52: Production Rule P6.

The derivation of production rule P6 creates a subgraph GBLKS
′

i concatenating a previously created con-

ditional block subgraph GCBi in series with a previously created aggregate blocks subgraph GBLKSi . Pro-
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duction rule P6 exhibits the maximum time complexity for our algorithm executing in O(NiQ
4
i ) time.

Each <Blocks> and <CB> structure contains (Qi + 1)2 solutions. The associated WCET cost function is

given by:

ΦBLKS
′

i (ζpred, ζsucc) = minr,s{(ΦCB
i (ζpred, ζsuccr) + maxδmi ,δni [ξi(δ

m
i , δ

n
i )] +

ΦBLKS
i (ζpreds , ζsucc)}

(57)

where ζsuccr , and ζpreds represent the values where the function ΦBLKS
′

i (ζpred, ζsucc) is minimized and

valid solution combinations are subject to the following constraints:

(ζsuccr + maxδmi ,δni [ξi(δ
m
i , δ

n
i )] + ζpreds) ≤ Qi (58)

δmi ∈ ρsucci (GCBi , ζpred, ζsuccr) (59)

δni ∈ ρ
pred
i (GBLKSi , ζpreds , ζsucc) (60)

The associated preemption point function is given by:

ρBLKS
′

i (ζpred, ζsucc) = ρCBi (ζpred, ζsuccr) ∪ ρBLKSi (ζpreds , ζsucc) (61)

The solutions for aggregate blocks subgraph GBLKS
′

i are created by considering each of the (Qi + 1)2

possible solutions stored in subgraph GCBi . For each of the subgraph GCBi solutions, we iterate through

each of the (Qi + 1)2 aggregate block GBLKSi subgraph solutions determining the minimized cost and

preemption solutions. While combining each pair of solutions, the minimum preemption cost between the

combined solutions for subgraphs GCBi and GBLKSi are selected for each value of ζpred and ζsucc. The

algorithm uses the visible successor preemptions of subgraph GCBi and the visible predecessor preemp-

tions of subgraph GBLKSi . The preemptions for each minimized solution contain the union of selected

preemption solutions for subgraph GCBi and subgraph GBLKSi .

Theorem 6. Given Φi and ρi functions for each substructure of BLKS where each ρAi (ζpred, ζsucc)

represents a feasible solution for substructure A given preemptions ζpred before, ζsucc after, and ΦA
i is a

safe upper bound on the total WCET and preemption cost of that solution. Applying production P6 over

a feasible Gi, GBLKSi and Qi results in a feasible solution ρBLKSi and a safe upper bound ΦBLKS
i given

by Equations 57, 58-60, and 61 respectively.

Proof. The proof is by direct argument. We need to prove that our solution ensures that the task level

Qi constraint is not violated and the cost function ΦBLKS
′

i (ζpred, ζsucc) results in a safe upper bound.

To prove the Qi constraint is not violated, we must show 1) the non-preemptive execution time of the

combined solutions does not exceed Qi at each solution interface, and 2) the non-preemptive execution
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time of the combined solution at the new predecessor and successor interfaces does not exceed Qi. Let

ΦBLKS
i (ζpred, ζsuccs) with ζpred,ζsuccs ∈ [0 . . . Qi] represent a safe upper bound cost solution for subgraph

GBLKSi , with its corresponding set of selected preemption points denoted by ρBLKSi (ζpred, ζsuccs) be a

limited preemption execution safe upper bound cost solution for subgraph GBLKSi . We make an identical

statement for subgraphGCBi , whose cost function is denoted ΦCB
i (ζpredu , ζsucc), and whose set of selected

preemption points are denoted ρCBi (ζpredu , ζsucc). Since we have a safe upper bound cost solution for

each of the combined subgraphs, we can conclude that ΦBLKS
′

i (ζpred, ζsucc) computed in Equation 57

represents a safe upper bound cost solution for the concatenated series subgraphs GCBi ∪ GBLKSi with its

corresponding selected preemption points denoted by ρBLKS
′

i (ζpred, ζsucc) and computed in Equation 61.

Condition 1 is met in accordance with Equations 58-60 whose purpose is to ensure the non-preemptive

execution time of the combined solutions does not exceedQi at each solution interface. Condition 2 is met

per the definition of the parameters ζpred, and ζsucc respectively, whose range is given by [0 . . . Qi]. Thus,

the problem finds a feasible safe upper bound cost preemption points solution when applying production

P6.

The following real-time code example exemplifies the application of production rule P6:

<SB>←


grammar representation : (i400124, 4)

instruction code : 0x400124 lw v1, 8(sp)

WCET : 4 cycles


Once the production rule for the single block sub-component has been applied, it is subsequently aggregated

into a <Blocks> structure as follows:

<Blocks>← [ <SB> ]

The next instruction in the sequence will be parsed as a conditional block <CB> structure as follows:

<SB>←


grammar representation : (i40010c, 4)

instruction code : 0x40010c beqz v0, 400118

WCET : 4 cycles
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<Blocks>←



grammar representation : (i400110, 4)

(i400114, 4)

instruction code : 0x400110 addiu v0, v0,−1

0x400114 j 400120



<Blocks>←



grammar representation : (i400118, 4)

(i40011c, 4)

instruction code : 0x400118 lw v0, 12(sp)

0x40011c addiu v0, v0, 1



<SB>←


grammar representation : (i400120, 4)

instruction code : 0x400120 lw v0, 18(sp)

WCET : 4 cycles


Once the production rules for the four sub-components have been applied, they are subsequently aggregated

into a conditional block <CB> as follows:

<CB>← <SB> [ <Blocks> ] [ <Blocks> ]∗ <SB>

Once the production rule for the conditional block <CB> sub-component has been applied, it along with

the previous blocks <Blocks> structure are subsequently aggregated into a <Blocks> structure as follows:

<Blocks>← <CB> <Blocks>

For aggregate blocks production rule P7, we have:

<Blocks>← <Blocks> <Blocks>

The following graphical example shown in Figure 53 illustrates production rule P7. Here two aggregate

block structures are concatenated together to create a new aggregate block structure.

<Blocks>                                      ←               <Blocks>              <Blocks>           
 

 

 

Figure 53: Production Rule P7.
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The derivation of production rule P7 creates a subgraph GBLKS
′

i concatenating a previously created ag-

gregate blocks subgraph GBLKSai in series with a previously created aggregate blocks subgraph GBLKSbi .

Production rule P7 exhibits the maximum time complexity for our algorithm executing in O(NiQ
4
i ) time.

Each <Blocks> contains (Qi + 1) solutions. The associated WCET cost function is given by:

ΦBLKS
′

i (ζpred, ζsucc) = minr,s{(ΦBLKSa
i (ζpred, ζsuccr) + maxδmi ,δni [ξi(δ

m
i , δ

n
i )] +

ΦBLKSb
i (ζpreds , ζsucc)}

(62)

where ζsuccr , and ζpreds represent the values where the function ΦBLKS
′

i (ζpred, ζsucc) is minimized and

valid solution combinations are subject to the following constraints:

(ζsuccr + maxδmi ,δni [ξi(δ
m
i , δ

n
i )] + ζpreds) ≤ Qi (63)

δmi ∈ ρsucci (GBLKSai , ζpred, ζsuccr) (64)

δni ∈ ρ
pred
i (GBLKSbi , ζpreds , ζsucc) (65)

The associated preemption point function is given by:

ρBLKS
′

i (ζpred, ζsucc) = ρBLKSai (ζpred, ζsuccr) ∪ ρBLKSbi (ζpreds , ζsucc) (66)

The solutions for aggregate blocks subgraph GBLKS
′

i are created by considering each of the (Qi + 1)2

possible solutions stored in subgraph GBLKSai . For each of the subgraph GBLKSai solutions, we iterate

through each of the (Qi + 1)2 aggregate block GBLKSbi subgraph solutions determining the minimized

cost and preemption solutions. While combining each pair of solutions, the minimum preemption cost

between the combined solutions for subgraphs GBLKSai and GBLKSbi are selected for each value of ζpred

and ζsucc. The algorithm uses the visible successor preemptions of subgraph GBLKSai and the visible

predecessor preemptions of subgraph GBLKSbi . The preemptions for each minimized solution contain the

union of selected preemption solutions for subgraph GBLKSai and subgraph GBLKSbi .

Theorem 7. Given Φi and ρi functions for each substructure of BLKS where each ρAi (ζpred, ζsucc)

represents a feasible solution for substructure A given preemptions ζpred before, ζsucc after, and ΦA
i is a

safe upper bound on the total WCET and preemption cost of that solution. Applying production P7 over

a feasible Gi, GBLKSi and Qi results in a feasible solution ρBLKSi and a safe upper bound ΦBLKS
i given

by Equations 62, 63-65, and 66 respectively.

Proof. The proof is by direct argument. We need to prove that our solution ensures that the task level

Qi constraint is not violated and the cost function ΦBLKS
′

i (ζpred, ζsucc) results in a safe upper bound.
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To prove the Qi constraint is not violated, we must show 1) the non-preemptive execution time of the

combined solutions does not exceed Qi at each solution interface, and 2) the non-preemptive execu-

tion time of the combined solution at the new predecessor and successor interfaces does not exceed Qi.

Let ΦBLKSa
i (ζpred, ζsuccs) with ζpred,ζsuccs ∈ [0 . . . Qi] represent a safe upper bound cost solution for

subgraphGBLKSai , with its corresponding set of selected preemption points denoted by ρBLKSai (ζpred, ζsuccs)

be a limited preemption execution safe upper bound cost solution for subgraph GBLKSai . We make an

identical statement for subgraph GBLKSbi , whose cost function is denoted ΦBLKSb
i (ζpredu , ζsucc), and

whose set of selected preemption points are denoted ρBLKSbi (ζpredu , ζsucc). Since we have a safe upper

bound cost solution for each of the combined subgraphs, we can conclude that ΦBLKS
′

i (ζpred, ζsucc) com-

puted in Equation 62 represents a safe upper bound cost solution for the concatenated series subgraphs

GBLKSai ∪ GBLKSbi with its corresponding selected preemption points denoted by ρBLKS
′

i (ζpred, ζsucc)

and computed in Equation 66. Condition 1 is met in accordance with Equations 63-65 whose purpose is to

ensure the non-preemptive execution time of the combined solutions does not exceed Qi at each solution

interface. Condition 2 is met per the definition of the parameters ζpred, and ζsucc respectively, whose range

is given by [0 . . . Qi]. Thus, the problem finds a feasible safe upper bound cost preemption points solution

when applying production P7.

The following real-time code example exemplifies the application of production rule P7:

<SB>←


grammar representation : (i400124, 4)

instruction code : 0x400124 lw v1, 8(sp)

WCET : 4 cycles


Once the production rule for the single block sub-component has been applied, it is subsequently aggregated

into a <Blocks> structure as follows:

<Blocks>← [ <SB> ]

The next instruction in the sequence will be parsed as a conditional block <CB> structure as follows:

<SB>←


grammar representation : (i40010c, 4)

instruction code : 0x40010c beqz v0, 400118

WCET : 4 cycles
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<Blocks>←



grammar representation : (i400110, 4)

(i400114, 4)

instruction code : 0x400110 addiu v0, v0,−1

0x400114 j 400120



<Blocks>←



grammar representation : (i400118, 4)

(i40011c, 4)

instruction code : 0x400118 lw v0, 12(sp)

0x40011c addiu v0, v0, 1



<SB>←


grammar representation : (i400120, 4)

instruction code : 0x400120 lw v0, 18(sp)

WCET : 4 cycles


Once the production rules for the four sub-components have been applied, they are subsequently aggregated

into a conditional block <CB> as follows:

<CB>← <SB> [ <Blocks> ] [ <Blocks> ]∗ <SB>

Once the production rule for the conditional block <CB> sub-component has been applied, it is subse-

quently aggregated into a <Blocks> structure as follows:

<Blocks>← <CB>

Once the production rule for the aggregate block <Blocks> sub-component has been applied, it along with

the previous blocks <Blocks> structure are subsequently aggregated into a <Blocks> structure as follows:

<Blocks>← <Blocks> <Blocks>

For convenience, Figure 54 summarizes production rules P1− P4.
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Production Ƥ1:  

<SB> ← (𝐢
𝐣
, 𝐛𝐢

𝐣
) 

 

 

Production Ƥ2: 

              <CB>                 ←   <SB>   [ <Blocks> ]   [ <Blocks> ]*  <SB> 
 

 

 

 

Production Ƥ3:  

<Blocks> ← <SB>  

 

 

Production Ƥ4:  

         <Blocks>                  ←                  <CB> 
 

 

 

Figure 54: Production Rules P1− P4.

For convenience, Figure 55 summarizes production rules P5− P7.

Production Ƥ5:  

<Blocks>       ←   <SB> <Blocks> 

 
 

Production Ƥ6:  

<Blocks>                                      ←                  <CB>                     <Blocks>           
 

 

 

Production Ƥ7:  

<Blocks>                                      ←               <Blocks>              <Blocks>           
 

 

 
Figure 55: Production Rules P5− P7.

The grammar we have presented thus far are focused on the production rules for conditional structures.

Non-unrolled loops and functions are structured programming constructs that are also prevalent in real-

time code. We present the production rules supporting these structured programming elements in the

following subsections.
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Non-Unrolled Loops

For loop production rule P8, we have:

<Loop>← [ <Blocks> <MaxIter> ]

The following graphical example shown in Figure 56 illustrates production rule P8. Here a loop structure

is created from an existing aggregate block structure and the maximum number of loop iterations.

<Loop>                  ←    [ <Blocks>                         <MaxIter> ] 
 

                                                                                     100 

Figure 56: Production Rule P8.

The derivation of production ruleP8 creates a subgraphGLOOPi that is equivalent to the subgraphGBLKSi .

The associated WCET cost function is given by:

ΦLOOP
i (ζpred, ζsucc) = ΦBLKS

i (ζpred, ζsucc) × MaxIter (67)

where valid solution combinations are subject to the following constraints:

(ζsucc + ζpred) ≤ Qi (68)

The associated set of selected preemption points function is given by:

ρLOOPi (ζpred, ζsucc) = ρBLKSi (ζpred, ζsucc) (69)

The existing aggregate blocks cost and preemption solutions are copied to the loop structure.
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The following real-time code example exemplifies the application of production rule P8:

<Blocks>←



grammar representation : (i400100, 4)

· · ·

(i400110, 4)

(i400114, 4)

10

instruction code : 0x400100 lw v0, 10

· · ·

0x400110 addiu v0, v0,−1

0x400114 bnez v0, 400100

maximum iterations : 10


Once the production rule for the blocks <Blocks> structure has been applied, it along with the maximum

loop iterations <MaxIter> are subsequently aggregated into a <Loop> structure as follows:

<Loop>← [ <Blocks> <MaxIter> ]

For blocks production rule P9, we have:

<Blocks>← [ <LOOP> ]

The following graphical example shown in Figure 57 illustrates production rule P9. Here a single loop

structure is subsumed into an aggregate block structure.

         <Blocks>                ←             [ <Loop> ]  
 

 

 

Figure 57: Production Rule P9.

The derivation of production ruleP9 creates a subgraphGBLKSi that is equivalent to the subgraphGLOOPi .

The associated WCET cost function is given by:

ΦBLKS
i (ζpred, ζsucc) = ΦLOOP

i (ζpred, ζsucc) (70)
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The associated set of selected preemption points function is given by:

ρBLKSi (ζpred, ζsucc) = ρLOOPi (ζpred, ζsucc) (71)

The existing loop block cost and preemption solutions are copied to the aggregate blocks structure.

The following real-time code example exemplifies the application of production rule P9:

<Blocks>←



grammar representation : (i400100, 4)

· · ·

(i400110, 4)

(i400114, 4)

10

instruction code : 0x400100 lw v0, 10

· · ·

0x400110 addiu v0, v0,−1

0x400114 bnez v0, 400100

maximum iterations : 10


Once the production rule for the blocks <Blocks> structure has been applied, it along with the maximum

loop iterations <MaxIter> are subsequently aggregated into a <Loop> structure as follows:

<Loop>← [ <Blocks> <MaxIter> ]

Once the production rule for the loop <Loop> component has been applied, it is subsequently aggregated

into a <Blocks> structure as follows:

<Blocks>← [ <Loop> ]

For aggregate blocks production rule P10, we have:

<Blocks>← <Loop> <Blocks>

The following graphical example shown in Figure 58 illustrates production rule P10. Here an existing

loop structure is concatenated with an existing aggregate block structure to create a new aggregate block

structure.
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         <Blocks>                                      ←               <Loop>                <Blocks>           

 

 

 

Figure 58: Production Rule P10.

The derivation of production rule P10 creates a subgraph GBLKS
′

i concatenating a previously created

aggregate blocks subgraph GLOOPi in series with a previously created aggregate blocks subgraph GBLKSi .

Production ruleP10 exhibits the maximum time complexity for our algorithm executing inO(NiQ
4
i ) time.

Each <Loop> and each <Blocks> contains (Qi + 1) solutions. The associated WCET cost function is

given by:

ΦBLKS
′

i (ζpred, ζsucc) = minr,s{(ΦLOOP
i (ζpred, ζsuccr) + maxδmi ,δni [ξi(δ

m
i , δ

n
i )] +

ΦBLKS
i (ζpreds , ζsucc)}

(72)

where ζsuccr , and ζpreds represent the values where the function ΦBLKS
′

i (ζpred, ζsucc) is minimized and

valid solution combinations are subject to the following constraints:

(ζsuccr + maxδmi ,δni [ξi(δ
m
i , δ

n
i )] + ζpreds) ≤ Qi (73)

δmi ∈ ρsucci (GLOOPi , ζpred, ζsuccr) (74)

δni ∈ ρ
pred
i (GBLKSi , ζpreds , ζsucc) (75)

The associated preemption point function is given by:

ρBLKS
′

i (ζpred, ζsucc) = ρLOOPi (ζpred, ζsuccr) ∪ ρBLKSi (ζpreds , ζsucc) (76)

The solutions for aggregate blocks subgraph GBLKS
′

i are created by considering each of the (Qi + 1)2

possible solutions stored in subgraph GLOOPi . For each of the subgraph GLOOPi solutions, we iterate

through each of the (Qi+1)2 aggregate blockGBLKSi subgraph solutions determining the minimized cost

and preemption solutions. While combining each pair of solutions, the minimum preemption cost between

the combined solutions for subgraphs GLOOPi and GBLKSi are selected for each value of ζpred and ζsucc.

The algorithm uses the visible successor preemptions of subgraph GLOOPi and the visible predecessor

preemptions of subgraph GBLKSi . The preemptions for each minimized solution contain the union of

selected preemption solutions for subgraph GLOOPi and subgraph GBLKSi .

Theorem 8. Given Φi and ρi functions for each substructure of BLKS where each ρAi (ζpred, ζsucc)

represents a feasible solution for substructure A given preemptions ζpred before, ζsucc after, and ΦA
i is a

safe upper bound on the total WCET and preemption cost of that solution. Applying production P10 over
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a feasible Gi, GBLKSi and Qi results in a feasible solution ρBLKSi and a safe upper bound ΦBLKS
i given

by Equations 72, 73-75, and 76 respectively.

Proof. The proof is by direct argument. We need to prove that our solution ensures that the task level

Qi constraint is not violated and the cost function ΦBLKS
′

i (ζpred, ζsucc) results in a safe upper bound.

To prove the Qi constraint is not violated, we must show 1) the non-preemptive execution time of the

combined solutions does not exceed Qi at each solution interface, and 2) the non-preemptive execution

time of the combined solution at the new predecessor and successor interfaces does not exceed Qi. Let

ΦLOOP
i (ζpred, ζsuccs) with ζpred,ζsuccs ∈ [0 . . . Qi] represent a safe upper bound cost solution for subgraph

GLOOPi , with its corresponding set of selected preemption points denoted by ρLOOPi (ζpred, ζsuccs) be a

limited preemption execution safe upper bound cost solution for subgraph GLOOPi . We make an identical

statement for subgraph GBLKSi , whose cost function is denoted ΦBLKS
i (ζpredu , ζsucc), and whose set of

selected preemption points are denoted ρBLKSi (ζpredu , ζsucc). Since we have a safe upper bound cost

solution for each of the combined subgraphs, we can conclude that ΦBLKS
′

i (ζpred, ζsucc) computed in

Equation 72 represents a safe upper bound cost solution for the concatenated series subgraphs GLOOPi ∪

GBLKSi with its corresponding selected preemption points denoted by ρBLKS
′

i (ζpred, ζsucc) and computed

in Equation 76. Condition 1 is met in accordance with Equations 73-75 whose purpose is to ensure the

non-preemptive execution time of the combined solutions does not exceed Qi at each solution interface.

Condition 2 is met per the definition of the parameters ζpred, and ζsucc respectively, whose range is given

by [0 . . . Qi]. Thus, the problem finds a feasible safe upper bound cost preemption points solution when

applying production P10.

The following real-time code example exemplifies the application of production rule P10:

<SB>←


grammar representation : (i400118, 4)

instruction code : 0x400118 lw v1, 8(sp)

WCET : 4 cycles


Once the production rule for the single block sub-component has been applied, it is subsequently aggregated

into a <Blocks> structure as follows:

<Blocks>← [ <SB> ]

The next instruction in the sequence will be parsed as a loop block <Loop> structure as follows:
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<Blocks>←



grammar representation : (i400100, 4)

· · ·

(i400110, 4)

(i400114, 4)

10

instruction code : 0x400100 lw v0, 10

· · ·

0x400110 addiu v0, v0,−1

0x400114 bnez v0, 400100

maximum iterations : 10


Once the production rule for the blocks <Blocks> structure has been applied, it along with the maximum

loop iterations <MaxIter> are subsequently aggregated into a <Loop> structure as follows:

<Loop>← [ <Blocks> <MaxIter> ]

Once the production rule for the loop block <Loop> sub-component has been applied, it along with the

previous blocks <Blocks> structure are subsequently aggregated into a <Blocks> structure as follows:

<Blocks>← <Loop> <Blocks>

For convenience, Figure 59 summarizes production rules P8− P10.

Production Ƥ8:  

<Loop>                  ←    [ <Blocks>                         <MaxIter> ] 
 

                                                                                                    100 

 

Production Ƥ9: 

         <Blocks>                ←             [ <Loop> ]  
 

 

 

Production Ƥ10:  

<Blocks>                                      ←               <Loop>                <Blocks>           
 

 

Figure 59: Production Rules P8− P10.
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Inline Functions

Functions are split into two grammar elements, namely, function definition and function invocation.

The conditional PPP algorithm generates solutions for the function definition blocks consistently with the

main task function. The generated function definition preemption solutions are combined with the function

invocation preemption solutions at each graph location where the function is called.

For function definition production rule P11, we have:

<Function>← [ <Blocks> <FunctionName> ]

The following graphical example shown in Figure 60 illustrates production rule P11. Here a function

definition is created from an existing aggregate block structure and identified by its corresponding function

name.

        <Function>                         ←   [ <Blocks>                            <FunctionName> ] 

 

                                                                                                         Initialize 

 

  
Figure 60: Production Rule P11.

The derivation of production rule P11 creates a subgraph GFUNCi that is equivalent to the subgraph

GBLKSi . The associated WCET cost function is given by:

ΦFUNC
i (ζpred, ζsucc) = ΦBLKS

i (ζpred, ζsucc) (77)

The associated set of selected preemption points function is given by:

ρFUNCi (ζpred, ζsucc) = ρBLKSi (ζpred, ζsucc) (78)

The existing aggregate blocks cost and preemption solutions are copied to the function definition block

structure.
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The following real-time code example exemplifies the application of production rule P11:

<Function>←



grammar representation : (i400044, 4)

(i400048, 4)

(i40004c, 4)

(i400050, 4)

· · ·

(i400258, 4)

(i40025c, 4)

Initialize

instruction code : 0x400044 addiu sp, sp,−8

0x400048 li v0,−1

0x40004c sw v0,−32760(gp)

0x400050 lw v1,−32760(gp)

· · ·

0x400258 addiu sp, sp, 8

0x40025c jr ra

function name : Initialize


Once the production rule for the blocks <Blocks> structure has been applied, it along with the function

name <FunctionName> are subsequently aggregated into a <Function> structure as follows:

<Function>← [ <Blocks> <FunctionName> ]

For function call production rule P12, we have:

<FunctionCall>← [ <Blocks> <FunctionName> ]

The following graphical example shown in Figure 61 illustrates production rule P12. Here a function

invocation is created from an existing aggregate block structure concatenated with the function definition

identified by function name. Here the function definition is represented by a rather simple two basic block

linear structure for simplicity.
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 <FunctionCall>               ←    [ <Blocks>                             <FunctionName> ] 

                                                                                                            Initialize 

 

 

Figure 61: Production Rule P12.

The derivation of production rule P12 creates a subgraph GFCALLi that is equivalent to the subgraph

GBLKSi . The associated WCET cost function is given by:

ΦFCALL
i (ζpred, ζsucc) = minr,s{(ΦBLKS

i (ζpred, ζsuccr) + maxδmi ,δni [ξi(δ
m
i , δ

n
i )] +

ΦFUNC
i (ζpreds , ζsucc)}

(79)

where ζsuccr , and ζpreds represent the values where the function ΦFCALL
i (ζpred, ζsucc) is minimized and

valid solution combinations are subject to the following constraints:

(ζsuccr + maxδmi ,δni [ξi(δ
m
i , δ

n
i )] + ζpreds) ≤ Qi (80)

δmi ∈ ρsucci (GBLKSi , ζpred, ζsuccr) (81)

δni ∈ ρ
pred
i (GFUNCi , ζpreds , ζsucc) (82)

The associated preemption point function is given by:

ρFCALLi (ζpred, ζsucc) = ρBLKSi (ζpred, ζsuccr) ∪ ρFUNCi (ζpreds , ζsucc) (83)

The solutions for the function call subgraph GFCALLi are created by considering each of the (Qi + 1)2

possible solutions stored in subgraph GBLKSi . For each of the subgraph GBLKSi solutions, we iterate

through each of the (Qi + 1)2 aggregate block GFUNCi subgraph solutions determining the minimized

cost and preemption solutions. While combining each pair of solutions, the minimum preemption cost

between the combined solutions for subgraphs GBLKSi and GFUNCi are selected for each value of ζpred

and ζsucc. The algorithm uses the visible successor preemptions of subgraph GBLKSi and the visible

predecessor preemptions of subgraph GFUNCi . The preemptions for each minimized solution contain the

union of selected preemption solutions for subgraph GBLKSi and subgraph GFUNCi .

Theorem 9. Given Φi and ρi functions for each substructure of FCALL where each ρAi (ζpred, ζsucc)

represents a feasible solution for substructure A given preemptions ζpred before, ζsucc after, and ΦA
i is a

safe upper bound on the total WCET and preemption cost of that solution. Applying production P12 over

a feasible Gi, GFCALLi and Qi results in a feasible solution ρFCALLi and a safe upper bound ΦFCALL
i

given by Equations 79, 80-82, and 83 respectively.

Proof. The proof is by direct argument. We need to prove that our solution ensures that the task level
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Qi constraint is not violated and the cost function ΦFCALL
i (ζpred, ζsucc) results in a safe upper bound.

To prove the Qi constraint is not violated, we must show 1) the non-preemptive execution time of the

combined solutions does not exceed Qi at each solution interface, and 2) the non-preemptive execution

time of the combined solution at the new predecessor and successor interfaces does not exceed Qi. Let

ΦBLKS
i (ζpred, ζsuccs) with ζpred,ζsuccs ∈ [0 . . . Qi] represent a safe upper bound cost solution for subgraph

GBLKSi , with its corresponding set of selected preemption points denoted by ρBLKSi (ζpred, ζsuccs) be a

limited preemption execution safe upper bound cost solution for subgraph GBLKSi . We make an identical

statement for subgraph GFUNCi , whose cost function is denoted ΦFUNC
i (ζpredu , ζsucc), and whose set

of selected preemption points are denoted ρFUNCi (ζpredu , ζsucc). Since we have a safe upper bound cost

solution for each of the combined subgraphs, we can conclude that ΦFCALL
i (ζpred, ζsucc) computed in

Equation 79 represents a safe upper bound cost solution for the concatenated series subgraphs GBLKSi ∪

GFUNCi with its corresponding selected preemption points denoted by ρFCALLi (ζpred, ζsucc) and computed

in Equation 83. Condition 1 is met in accordance with Equations 80-82 whose purpose is to ensure the

non-preemptive execution time of the combined solutions does not exceed Qi at each solution interface.

Condition 2 is met per the definition of the parameters ζpred, and ζsucc respectively, whose range is given

by [0 . . . Qi]. Thus, the problem finds a feasible safe upper bound cost preemption points solution when

applying production P12.

The following real-time code example exemplifies the application of production rule P12:

<FunctionCall>←



grammar representation : (i400018, 4)

(i40001c, 4)

(i400020, 4)

Initialize

instruction code : 0x400018 addiu sp, sp,−24

0x40001c sw ra, 20(sp)

0x400020 jal 400044

function name : Initialize


Once the production rule for the blocks <Blocks> structure has been applied, it along with the function

name <FunctionName> are subsequently aggregated into a <FunctionCall> block structure as follows:

<FunctionCall>← [ <Blocks> <FunctionName> ]
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For blocks production rule P13, we have:

<Blocks>← [ <FunctionCall> ]

The following graphical example shown in Figure 62 illustrates production rule P13. Here a function

invocation is subsumed into an aggregate block structure.

<Blocks>                          ←       [ <FunctionCall> ] 

 

  

Figure 62: Production Rule P13.

The derivation of production rule P13 creates a subgraph GBLKSi that is equivalent to the subgraph

GFCALLi . The associated WCET cost function is given by:

ΦBLKS
i (ζpred, ζsucc) = ΦFCALL

i (ζpred, ζsucc) (84)

The associated set of selected preemption points function is given by:

ρBLKSi (ζpred, ζsucc) = ρFCALLi (ζpred, ζsucc) (85)

The existing aggregate blocks cost and preemption solutions are copied to the function call block structure.

The following real-time code example exemplifies the application of production rule P13:

<FunctionCall>←



grammar representation : (i400018, 4)

(i40001c, 4)

(i400020, 4)

Initialize

instruction code : 0x400018 addiu sp, sp,−24

0x40001c sw ra, 20(sp)

0x400020 jal 400044

function name : Initialize


Once the production rule for the blocks <Blocks> structure has been applied, it along with the function

name <FunctionName> are subsequently aggregated into a <FunctionCall> block structure as follows:
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<FunctionCall>← [ <Blocks> <FunctionName> ]

Once the production rule for the function call <FunctionCall> component has been applied, it is subse-

quently aggregated into a <Blocks> structure as follows:

<Blocks>← [ <FunctionCall> ]

For aggregate blocks production rule P14, we have:

<Blocks>← <FunctionCall> <Blocks>

The following graphical example shown in Figure 63 illustrates production rule P14. Here an existing

function call structure is concatenated with an existing aggregate block structure to create a new aggregate

block structure.

 <Blocks>                                      ←        < FunctionCall >        <Blocks>           
 

 

Figure 63: Production Rule P14.

The derivation of production rule P14 creates a subgraph GBLKS
′

i concatenating a previously created ag-

gregate blocks subgraph GFCALLi in series with a previously created aggregate blocks subgraph GBLKSi .

Production ruleP14 exhibits the maximum time complexity for our algorithm executing inO(NiQ
4
i ) time.

Each <FunctionCall> and each

<Blocks> contains (Qi + 1) solutions. The associated WCET cost function is given by:

ΦBLKS
′

i (ζpred, ζsucc) = minr,s{(ΦFCALL
i (ζpred, ζsuccr) + maxδmi ,δni [ξi(δ

m
i , δ

n
i )] +

ΦBLKS
i (ζpreds , ζsucc)}

(86)

where ζsuccr , and ζpreds represent the values where the function ΦBLKS
′

i (ζpred, ζsucc) is minimized and

valid solution combinations are subject to the following constraints:

(ζsuccr + maxδmi ,δni [ξi(δ
m
i , δ

n
i )] + ζpreds) ≤ Qi (87)

δmi ∈ ρsucci (GFCALLi , ζpred, ζsuccr) (88)

δni ∈ ρ
pred
i (GBLKSi , ζpreds , ζsucc) (89)
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The associated preemption point function is given by:

ρBLKS
′

i (ζpred, ζsucc) = ρFCALLi (ζpred, ζsuccr) ∪ ρBLKSi (ζpreds , ζsucc) (90)

The solutions for the aggregate blocks subgraph GBLKS
′

i are created by considering each of the (Qi +

1)2 possible solutions stored in subgraph GFCALLi . For each of the function call subgraph GFCALLi

solutions, we iterate through each of the (Qi+1)2 aggregate blockGBLKSi subgraph solutions determining

the minimized cost and preemption solutions. While combining each pair of solutions, the minimum

preemption cost between the combined solutions for subgraphsGFCALLi andGBLKSi are selected for each

value of ζpred and ζsucc. The algorithm uses the visible successor preemptions of subgraph GFCALLi and

the visible predecessor preemptions of subgraph GBLKSi . The preemptions for each minimized solution

contain the union of selected preemption solutions for subgraph GFCALLi and subgraph GBLKSi .

Theorem 10. Given Φi and ρi functions for each substructure of BLKS where each ρAi (ζpred, ζsucc)

represents a feasible solution for substructure A given preemptions ζpred before, ζsucc after, and ΦA
i is a

safe upper bound on the total WCET and preemption cost of that solution. Applying production P14 over

a feasible Gi, GBLKSi and Qi results in a feasible solution ρBLKSi and a safe upper bound ΦBLKS
i given

by Equations 86, 87-89, and 90 respectively.

Proof. The proof is by direct argument. We need to prove that our solution ensures that the task level

Qi constraint is not violated and the cost function ΦBLKS
′

i (ζpred, ζsucc) results in a safe upper bound.

To prove the Qi constraint is not violated, we must show 1) the non-preemptive execution time of the

combined solutions does not exceed Qi at each solution interface, and 2) the non-preemptive execu-

tion time of the combined solution at the new predecessor and successor interfaces does not exceed Qi.

Let ΦFCALL
i (ζpred, ζsuccs) with ζpred,ζsuccs ∈ [0 . . . Qi] represent a safe upper bound cost solution for

subgraphGLOOPi , with its corresponding set of selected preemption points denoted by ρFCALLi (ζpred, ζsuccs)

be a limited preemption execution safe upper bound cost solution for subgraphGFCALLi . We make an iden-

tical statement for subgraph GBLKSi , whose cost function is denoted ΦBLKS
i (ζpredu , ζsucc), and whose

set of selected preemption points are denoted ρBLKSi (ζpredu , ζsucc). Since we have a safe upper bound

cost solution for each of the combined subgraphs, we can conclude that ΦBLKS
′

i (ζpred, ζsucc) compu-

ted in Equation 86 represents a safe upper bound cost solution for the concatenated series subgraphs

GFCALLi ∪ GBLKSi with its corresponding selected preemption points denoted by ρBLKS
′

i (ζpred, ζsucc)

and computed in Equation 90. Condition 1 is met in accordance with Equations 87-89 whose purpose is to

ensure the non-preemptive execution time of the combined solutions does not exceed Qi at each solution

interface. Condition 2 is met per the definition of the parameters ζpred, and ζsucc respectively, whose range
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is given by [0 . . . Qi]. Thus, the problem finds a feasible safe upper bound cost preemption points solution

when applying production P14.

The following real-time code example exemplifies the application of production rule P14:

<SB>←


grammar representation : (i400024, 4)

instruction code : 0x400024 lw v1, 8(sp)

WCET : 4 cycles


Once the production rule for the single block sub-component has been applied, it is subsequently aggregated

into a <Blocks> structure as follows:

<Blocks>← [ <SB> ]

The next instruction in the sequence will be parsed as a function call block <FunctionCall> structure as

follows:

<FunctionCall>←



grammar representation : (i400018, 4)

(i40001c, 4)

(i400020, 4)

Initialize

instruction code : 0x400018 addiu sp, sp,−24

0x40001c sw ra, 20(sp)

0x400020 jal 400044

function name : Initialize


Once the production rule for the blocks <Blocks> structure has been applied, it along with the function

name <FunctionName> are subsequently aggregated into a <FunctionCall> block structure as follows:

<FunctionCall>← [ <Blocks> <FunctionName> ]

Once the production rule for the loop block <Loop> sub-component has been applied, it along with the

previous blocks <Blocks> structure are subsequently aggregated into a <Blocks> structure as follows:

<Blocks>← <FunctionCall> <Blocks>

For convenience, Figure 64 summarizes production rules P11− P14.
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Production Ƥ11:  

<Function>                       ←   [ <Blocks>                             <FunctionName> ] 

 

                                                                                                         Initialize 

 

 

Production Ƥ12:  

<FunctionCall>               ←    [ <Blocks>                             <FunctionName> ] 

                                                                                                            Initialize 

 

Production Ƥ13:  

<Blocks>                          ←       [ <FunctionCall> ] 

 
 

 

Production Ƥ14:  

<Blocks>                                      ←        < FunctionCall >        <Blocks>           
 

 

 

Figure 64: Production Rules P11− P14.

The complexity of supporting non-inline functions arises from the requirement that a single function defi-

nition preemption solution be computed for all function invocations. This requirement does not mesh well

with the production rule grammar approach used here and requires specialized methods for computing the

preemption solution for each function definition. We use the term inline function to describe that each

function invocation combined with its corresponding function definition potentially results in a different

preemption solution, essentially behaving as if the function were actually inlined. The use of the notion of

inline functions is a limitation in all conditional real-time preemption placement approaches. The problem

of solving non-inline functions is a topic to be addressed in future work.

Interdependent CRPD Solution Handling

One of the primary motivations for our work is the interdependent CRPD cost model, which necessi-

tates a series of modifications to the conditional PPP algorithm for proper solution handling.
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Algorithm 4 Visible Section Pred. Preemptions
1: function vis pred pps sect(ςcurr, ρ, ρcall)
2: δlefti ← ςcurr.leftmostBB

3: δrighti ← ςcurr.rightmostBB

4: for δcurri ∈ [δrighti , δlefti ] do
5: if δcurri ∈ ρ then
6: ρcall ← ρcall ∪ δcurri

7: Exit the For Loop.
8: end if
9: end for

10: return ρcall
11: end function

Algorithm 5 Visible Section Successor Preemptions
1: function vis succ pps sect(ςcurr, ρ, ρcall)
2: δlefti ← ςcurr.leftmostBB

3: δrighti ← ςcurr.rightmostBB

4: for δcurri ∈ [δlefti , δrighti ] do
5: if δcurri ∈ ρ then
6: ρcall ← ρcall ∪ δcurri

7: Exit the For Loop.
8: end if
9: end for

10: return ρcall
11: end function

Algorithm 6 Visible Current Pred. Preemptions
1: function vis curr pred pps(ςcurr, ςstart, ρ, ρprev)
2: αsections ← true
3: ρcall ← ∅
4: ρnext ← ∅
5: ρprev ← vis pred pps sect(ςcurr, ςstart, ρprev)
6: if ρprev 6= ∅ then
7: ρcall ← ρcall ∪ ρprev
8: end if
9: if ςcurr 6= ςstart then

10: for ςnext ∈ ςpred(ςcurr) do
11: ρsect ←
12: vis pred pps sect(ςnext, ςstart, ρ, ρcall)
13: if ρsect = ∅ then
14: αsections ← false
15: else
16: ρnext ← ρnext ∪ ρsect
17: end if
18: end for
19: if αsections = false then
20: ρnext ← ρnext ∪ ρcall
21: end if
22: else
23: ρnext ← ρcall
24: end if
25: return ρnext
26: end function

Algorithm 7 Visible Current Successor Preemptions
1: function vis curr succ pps(ςcurr, ςstart, ρ, ρnext)
2: αsections ← true
3: ρcall ← ∅
4: ρprev ← ∅
5: ρnext ← vis succ pps sect(ςcurr, ςstart, ρnext)
6: if ρnext 6= ∅ then
7: ρcall ← ρcall ∪ ρnext
8: end if
9: if ςcurr 6= ςend then

10: for ςprev ∈ ςsucc(ςcurr) do
11: ρsect ←
12: vis succ pps sect(ςprev, ςend, ρ, ρcall)
13: if ρsect = ∅ then
14: αsections ← false
15: else
16: ρprev ← ρprev ∪ ρsect
17: end if
18: end for
19: if αsections = false then
20: ρprev ← ρprev ∪ ρcall
21: end if
22: else
23: ρprev ← ρcall
24: end if
25: return ρprev
26: end function

One challenge interdependent CRPD presents (that independent CRPD does not) is the preemption cost

cannot be determined when the preemption solutions for basic blocks are processed using production rule

P1 since the successor preemption is not known. Interdependent CRPD costs may only be determined for

preemption pairs in contrast to independent CRPD, a function of a single preemption location only.



100

Algorithm 8 Visible Predecessor Preemptions
1: function vis pred pps(β, ρ)
2: Solution block CFG β, preemption solution ρ
3: ρprev ← ∅
4: ςstart ← β.startSection
5: ςend ← β.endSection
6: ρvis ←vis curr pred pps(ςend, ςstart, ρ, ρprev)
7: return ρvis
8: end function

Algorithm 9 Visible Successor Preemptions
1: function vis succ pps(β, ρ)
2: Solution CFG block β, preemption solution ρ
3: ρnext ← ∅
4: ςstart ← β.startSection
5: ςend ← β.endSection
6: ρvis ←vis curr succ pps(ςend, ςstart, ρ, ρnext)
7: return ρvis
8: end function

This means we have to determine the maximum preemption cost for pairs of solutions that are combi-

ned as higher-level block structures are processed. To accomplish this, we must have a way of determining

the set of preemption points that are visible externally to adjacent solutions in order to compute the max-

imum preemption cost of the combined solutions. A preemption point has external visibility to adjacent

blocks if there exists a path from the starting or ending section block to the preemption point with no

intervening preemption points encountered. Determining the visible preemption points while combining

preemption solutions adds an O(Ni) factor to the algorithm for the current block.

Algorithm 8 illustrates the method of computing the visible predecessor preemption points for an ex-

isting solution. For the visible predecessor preemption points, we start with the ending section of the

block and work our way backwards towards the starting section of the block. As we move backward,

the preemption points encountered replace those in the current set if all sections have preemption points.

If not, then the existing preemption points are still visible and copied to the preemption set for the next

iteration. This is shown in Algorithm 6. For each section block processed, the first successor preemption

point encountered moving from right to left is added to the preemption point set as shown in Algorithm

4. Computing the visible successor preemption points works in an identically symmetric way using three

similar algorithms.

Algorithm 9 illustrates the method of computing the visible successor preemption points for an exis-

ting solution. For the visible successor preemption points, we start with the starting section of the block

and work our way forwards towards the ending section of the block. As we move forward, the preemption

points encountered replace those in the current set if all sections have preemption points. If not, then the

existing preemption points are still visible and copied to the preemption set for the next iteration. This

is shown in Algorithm 7. For each section block processed, the first predecessor preemption point en-

countered moving from left to right is added to the preemption point set as shown in Algorithm 5. For

convenience, Table 5 summarizes the terminology presented in this section.
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Term Description
a Current conditional section index

αsections All sections containing preemptions
δlefti Left most basic block of the current block
δrighti Right most basic block of the current block
G Production rules grammar

L(G) Textual language recognized by grammar G
ζpred Predecessor non-preemptive execution
ζsucc Successor non-preemptive execution

MaxIter Maximum number of loop iterations
ρi Preemptions for task τi

ρAi (GAi , ζpred, ζsucc) Preemptions for single subgraph GAi solution
ρcall Visible section preemptions
ρnext Visible successor preemptions
ρpredi Visible predecessor preemptions concept

ρpredi (GAi , ζpred, ζsucc) Visible predecessor preemptions for single subgraph GAi solution
ρprev Visible predecessor preemptions
ρsect Visible section preemptions
ρsucci Visible successor preemptions concept

ρsucci (GAi , ζpred, ζsucc) Visible successor preemptions for single subgraph GAi solution
ρvis Visible predecessor/successor preemptions
r Number of blocks in conditional
s Current graph solution index variable

ςcurr Current linear section variable
ςend Current graph ending linear section variable
ςnext Next linear section variable

ςpred(ςcurr) Predecessor sections of section ςcurr
ςstart Current graph starting linear section variable

ςsucc(ςcurr) Successor sections of section ςcurr
t Current graph solution index variable
u Current graph solution index variable

Φi(Gi, ρi) WCET + preemption cost for task τi graph Gi
ΦA
i (GAi , ζpred, ζsucc) WCET + preemption cost for single subgraph GAi preemption solution

Table 5: Preemption Placement Terminology
Evaluation

Our conditional PPP algorithm will be evaluated using two methods: 1) characterization and measure-

ment of preemption costs using real-time application code, and 2) a breakdown utilization schedulability

comparison of various PPP and fully preemptive CRPD algorithms. Each PPP algorithm evaluated either

uses an independent or interdependent CRPD cost model.

Preemption Cost Characterization

Our study will utilize a subset of real-time tasks from the Malardalen University (MRTC) WCET

benchmark suite [51] for comparing various PPP algorithms. The task code was compiled using the GCC
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MIPS Cross Compiler for MIPS series processors with separate instruction and data 1KB direct-mapped

caches with a line size of 32 bytes with 32 cache blocks. Tasks are scheduled using Earliest Deadline First

(EDF) scheduling. Our method also supports fixed priority scheduling (FPS).

The compiled real-time task code was processed by the Heptane Static WCET analysis tool [34].

Heptane is used to determine the set of section blocks, the section block WCETs, the CFG structure, and

the cache state at each instruction by analyzing the program executable. The analysis results are then

imported into a Java benchmark parser program, designed to generate the task code grammar used by

our conditional PPP algorithm. To accomplish this, high level programming constructs such as loops,

conditionals, functions, and block statements must be recognized from the low-level compilation output.

Once the benchmark CFG structure has been constructed, the results of the Heptane cache state analy-

sis are imported and used to compute the instruction and data UCBs (ΥI(δ
j
i ) and ΥD(δji ) respectively) at

each program location. These sets are then used to compute the shared LCBs, along with the interdepen-

dent preemption cost matrix.

The intersection of the cache state snapshots from δji to δki are used to calculate shared LCBs. Shared

LCBs represent the set of cache lines whose contents remain un-evicted after execution of basic blocks

{δj+1
i , δj+2

i , ..., δki }. As such, shared LCBs will continue to be present in the cache prior to the execution

of basic block δk+1
i . Thus, a safe upper bound on the LCBs shared between each basic block pair can be

represented by the set of unchanged cache lines. The following equation below formalizes this computation

where the instruction cache snapshots are denoted ΥI(δ
j
i ) and the data cache snapshots denoted ΥD(δji ).

LCB(δji , δ
k
i ) ⊆

k⋂
m=j+1

[
ΥI(δ

m
i ) ∪ΥD(δmi )

]
(91)

Availability

The following tools and data sets may be used to verify and reproduce our work. The MIPS GCC

cross compiler and the Heptane static worst-case execution time tool are freely available. The research

community may reproduce and leverage our work via the developed programs and analyzed data archived

at GitHub [23].

Results

The results are presented as an illustration of the potential benefit of our proposed method, utilizing

pairs of preemptions to determine costs, over methods that consider only the maximum CRPD at a parti-

cular preemption point (e.g., [14] and [58]). In terms of LCB computation this implies that the maximum
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LCB value over all subsequent program points must be used as the CRPD cost:

max{LCB(δji , δ
k
i ) | δji � δki } (92)

The interdependent CRPD approach, representing CRPD cost for pairs of preemptions, is illustrated

in the following graphs. The graph lines shown characterize the minimum and maximum shared LCBs

between program points. The x-axis represents the first program preemption point, denoted δji . The y-axis

measures the shared LCB count with the secondary program point, denoted δki , annotated at each graph

point as shown. The first graph shown in Figure 65 characterizes the instruction cache CRPD costs for

the FFT benchmark program. Each point on both curves plots the minimum or maximum CRPD value

for the first preemption point given by the x-axis, and the next preemption point annotated on the graph.

At program point δ1i , the minimum CRPD value is coupled with program point δ8i having a shared LCB

count of 175 whereas the single-valued CRPD computation method finds 250 shared LCBs coupled at pro-

gram point δ5i . Comparison of the dual-valued interdependent CRPD with the single-valued independent
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Figure 65: FFT Instruction Cache.

CRPD methods can be visualized by comparing the vertical distance between the minimum and maximum

CRPD curves of Figures 65 through 70. The maximum CRPD cost at any program location represents a

mandatory safe value for any single-valued independent CRPD approach. In contrast, our interdependent

CRPD method offers the potential minimum value reported on the solid line. The benefit provided in

considering location aware interdependent CRPD cost is captured by the difference between the minimum
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Figure 66: Recursion Data Cache.

and maximum CRPD cost curves fueling the improved performance of our conditional PPP algorithm.

The variability in the minimum and maximum CRPD costs further exemplifies the benefits as illustrated

in the second and third graphs, representing the lms benchmark task instruction cache in Figure 67 and

the cover benchmark task instruction cache in Figure 69 respectively. In this paper, we have presented

the variability witnessed in the instruction cache graphs, as the conditional CFG structure emphasizes the

instruction cache effect on CRPD. Maximum and minimum instruction and data cache costs for the other

MRTC tasks exhibit similar variability.
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Figure 67: LMS Instruction Cache.
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Figure 69: Cover Instruction Cache.

Review of the instruction and data cache graphs led to some notable observations. The maximum

and minimum LCBs converged towards the end of each tasks CFG due to the decreasing CFG structure

remaining thereby reducing the LCB count variability. Downward spikes are well aligned with task block

boundaries, such as loops, conditionals, and functions. Early upward trends result from task initialization

code. The separation between the two curves illustrates the accuracy improvement of our interdepen-

dent CRPD method versus independent CRPD methods. The interdependent CRPD costs for each graph

are identical to the independent CRPD costs at the edges which coincide with the end of the task code.

Our proposed PPP algorithm utilizes the more accurate interdependent CRPD cost leading to substantial
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Figure 70: ADPCM Data Cache.

schedulability improvements.

Breakdown Utilization

Now that the reduced task preemption overhead benefits of the more precise interdependent CRPD

cost model has been presented, we turn our attention to the benefits in task set schedulability. To evaluate

task set schedulability, breakdown utilization performance was compared for several PPP algorithms on

selected MRTC benchmark [51] tasks. The goal of breakdown utilization analysis [47] is to determine the

utilization at which a task set becomes un-schedulable. The PPP algorithms compared in our study include

the BEPP algorithm [14], our linear PPP (LEPP) algorithm [25], the PEPP conditional algorithm [58], and

our proposed conditional PPP algorithm (CEPP). We compare these PPP algorithms against several fully

preemptive CRPD approaches that have been integrated into task set response time analysis, namely JCR,

ECB Only, UCB Only, ECB Union, UCB Union, ECB Union Multi Set, and UCB Union Multi Set [7].

The detailed steps of our iterative schedulability algorithm integrated with our conditional PPP algo-

rithm are described in Algorithm 10. Task set utilization, given by U , is controlled by setting each tasks

deadline and period to Di = Ti = u · CNPi . The constant, u, is binary search incremented in small steps

until the task set becomes schedulable. Then u is binary search decremented in small steps until the task

set becomes un-schedulable, resulting in the breakdown utilization UB . ForBEPP and PEPP , the max-

imum shared LCB counts previously obtained form the independent CRPD input. Lastly, for LEPP and

CEPP , the explicit shared LCB counts previously obtained comprise the interdependent CRPD input for

our linear and conditional explicit PPP algorithms. The remaining input variables required by the break-
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down utilization algorithm are CNPi and BRT . CNPi was computed as the maximum number of cycles to

complete task execution non-preemptively. During each run of the breakdown utilization study, the BRT

parameter is swept from 1 ns to 640 ns per MIPS processor family performance.

Algorithm 10 Breakdown Utilization Evaluation Algorithm
1: Start with a task system that may or may not be feasible.
2: Assume the CRPD of the task system is initially zero.
3: repeat
4: Run the Iterative Schedulability and PPP Algorithm
5: if the task system is feasible/schedulable then
6: Increase U by decreasing Ti values via binary search.
7: else
8: Decrease U by increasing Ti values via binary search.
9: end if

10: until the utilization change is less than some tolerance.
11: The breakdown utilization is given by U.

Due to compiler optimizations, we had to post-process the MRTC tasks to apply our grammar. Post

processing was required when the compiler generated non-structured assembly code not conforming to

our grammar G. This task consisted of transforming the assembly code into an equivalent structured form.

Ideally, an automated tool would exist for this step; however, such a tool is beyond the scope of this paper

due to the explicit compiler-level detail required. For this paper, we manually post-processed the following

MRTC tasks: simple, bs, fibcall, lcdnum, sqrt, qurt, insertsort, ns, ud, crc, expint, jfdctint, matmult, and

bsort100 [23].

Using the completed MRTC tasks, the breakdown utilization comparison between various PPP met-

hods is summarized in Figure 71. The breakdown utilization results indicate that the CEPP (resp.

LEPP ) algorithm dominates the PEPP (resp. BEPP ) algorithm primarily due to the benefits of

interdependent versus independent CRPD. Both the CEPP and PEPP algorithms dominate LEPP

and BEPP algorithms due to the enhanced granularity of the conditional CFGs, offering more possi-

ble preemptions than the linear CFGs. As expected, the breakdown utilization values converge for each

distinct graph structure (e.g. linear, conditional) as cache-overhead becomes negligible for small BRT

values. The conditional methods converge, and the linear methods converge. Specifically, the size of the

individual blocks in the linear approaches are higher and hence are less schedulable than the finer grained

conditional approaches. The performance of the CRPD response time analysis methods is generally ham-

pered into two respects, namely, 1) they take a coarser view accounting for an entire task of UCBs and

ECBs on every preemption, and 2) the number of higher priority task preemptions in the response time of
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Figure 71: Breakdown Utilization Comparison.

preempted tasks is not limited in accordance with the inherent slack in the system. The ECB Union Multi

Set and UCB Union Multi Set approaches improve the pessimism in terms of the number of preemptions

as compared to the other CRPD methods, however the system slack is not considered. Improvements are

also realized in the accounting of UCBs and ECBs, however, they are encumbered by the pessimism of the

task view of UCBs and ECBs.

We also compared the various preemption placement algorithms against the corresponding fixed pri-

ority (FP) preemption threshold scheduling (FPTS) methods, namely, ECB Only, UCB Only Multi Set,

ECB Union Multi Set, and UCB Union Multi Set [18, 19] as shown in Figure 72. Here we compare all

CRPD methods directly without any further task layout improvements using simulated annealing. Compa-

red to the traditional CRPD approaches, the corresponding FPTS methods realize substantial improvement

due to 1) reduced preemption exposure to higher priority tasks, and 2) reduced job execution time frame

known as the hold time where higher priority tasks may preempt. However, FPTS shares a similar trait

in its pessimistic task view of UCBs and ECBs thereby limiting performance. For convenience, Table 6

summarizes the terminology presented in this section.

Term Description
ΥD(δmi ) Data cache snapshot at basic block δmi
ΥI(δ

m
i ) Instruction cache snapshot at basic block δmi

Table 6: Evaluation Terminology
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Figure 72: FPTS Breakdown Utilization Comparison.

Summary

In this work, we presented a conditional PPP algorithm using a more precise interdependent CRPD

metric. By extending the interdependent CRPD cost to conditional CFG structures, further reductions

in task preemption overhead were realized, leading to substantial schedulability improvements. These

improvements were achieved by integrating our conditional interdependent CRPD PPP algorithm with

algorithms from well-established task set schedulability theory. Our iterative schedulability algorithm

demonstrates the convergence of selecting preemptions balanced by the task maximum non-preemptive

execution region constraint Qi. Our experiments demonstrated improved schedulability on real-time code

using interdependent CRPD.

In future work, we plan to 1) extend the breakdown utilization analysis to the remaining MRTC bench-

mark tasks, 2) perform a timing analysis of various PPP algorithms, 3) add support for non-inline functi-

ons, 4) add support for goto statements, 5) extend the CRPD techniques described here to set-associative

caches, and 6) conduct an in-depth case study on commercial real-time code.
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CHAPTER 7 INTEGRATING PREEMPTION THRESHOLDS WITH
LIMITED PREEMPTION SCHEDULING

In Chapter 6, we introduced innovative methods for computing accurate CRPD, integrating the en-

hanced CRPD with EDF schedulability analysis, and placing optimal preemption points to ensure taskset

schedulability for conditional control flow graphs in uniprocessor systems. In this chapter, we present our

research for integrating limited preemption scheduling with preemption threshold scheduling by combi-

ning preemption placement with optimal threshold assignment.

Introduction

The utility of real-time system computations depends on two important properties, correctness and

timeliness. The timeliness property (the subject of schedulability analysis) is concerned with ensuring

real-time task computations are completed within required deadlines. Designers of real-time systems must

choose the scheduling paradigm that will ultimately determine if the real-time task set will meet its time-

liness objectives. The available choices are 1) non-preemptive scheduling, 2) fully preemptive scheduling,

and 3) limited preemption scheduling. Non-preemptive scheduling suffers from blocking of high priority

tasks and fully preemptive scheduling suffers from substantial preemption overhead (up to 44% [55–57]

of a tasks WCET) each approach degrading task set schedulability. Limited preemption scheduling at-

tempts to 1) reduce blocking by limiting the number of allowed preemptions, maximizing non-preemptive

task execution and 2) reduce preemption overhead via non-preemptive regions. Regardless of the chosen

scheduling paradigm, effective schedulability analysis of real-time task sets mandates accurate WCET and

CRPD estimates. The recognized benefits of limited preemption scheduling have motivated recent work

on PPP algorithms. In a complimentary fashion, preemption threshold scheduling assigns preemption

thresholds allowing tasks to execute non-preemptively where feasible. The two methods take advantage

of inherent task set execution slack to enhance schedulability. The primary difference arises in the non-

preemptive granularity. Limited preemption scheduling divides each task into non-preemptive chunks

whereas preemption threshold scheduling facilitates non-preemptive execution at the task level.

The importance of CRPD in schedulability analysis stems from it comprising the majority of preemp-

tion overhead. CRPD occurs when a task denoted τi is preempted by one or more higher priority tasks

denoted τk. The execution of high priority tasks results in the eviction of cache memory blocks that must

be subsequently reloaded when task τi resumes execution. Two primary models of CRPD computation

exist, 1) the independent CRPD cost model, and 2) the interdependent CRPD cost model. The vast majo-

rity of CRPD research falls under the independent CRPD model. Here, costs are solely a function of the

preemption location under consideration. Since the next preemption may occur at any forward point in the
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task code, independent CRPD methods must conservatively utilize the next code location corresponding to

the maximum CRPD cost. The interdependent CRPD cost model, however, overcomes this limitation by

considering and computing costs between each pair of task code locations thereby achieving more accu-

racy. A key factor in scheduling decisions, CRPD cost accuracy is of paramount importance to preemption

placement, optimal threshold assignment, and schedulability algorithms.

PPP algorithms select preemption points for each task to 1) minimize the overall task WCET, and 2)

ensure the execution time between adjacent preemptions is limited by the maximum non-preemptive re-

gion execution time. The maximum non-preemptive region execution time, denoted Qi, is determined via

task set schedulability analysis. The motivation behind our work is the potential benefits of preemption

threshold scheduling can be integrated with existing PPP algorithms to further enhance task set sche-

dulability. Our approach effectively integrates limited preemption scheduling via preemption placement

with preemption threshold scheduling via optimal preemption threshold assignment resulting in improved

schedulability. The benefits of our approach will be illustrated in a case study employing synthetically

generated real-time tasks.

Schedulability Analysis

In this section, analysis of FP [72], and PTS [18, 19] limited preemption scheduling, summarizes

the computation of the maximum non-preemptive region parameter Qi supporting conditional and linear

preemption point placement algorithms.

The goal of schedulability analysis is to determine whether a taskset is schedulable under the worst-

case task activation pattern for a particular scheduling paradigm. The worst-case activation pattern for

task τi, known as the critical instant, results in the maximum response time. Earlier work [43] proved the

critical instant for each task coincides with the synchronous activation of the task with all higher priority

tasks where all jobs released immediately in accordance with the minimum inter arrival time.

Limited Preemption FP Scheduling

For limited preemption FP scheduling the set of higher priority tasks is represented by:

k ∈ hp(i) = {k | πk > πi} (93)

where πj represents the assigned nominal priority for task τj . To facilitate the schedulability analysis

for FP limited preemption scheduling, the request bound function [42] RBF (t) is used to examine the



112

maximum cumulative execution request in an interval of length t generated by jobs of τi.

RBFi(t) =
⌈ t
Ti

⌉
(CNPi + γi) (94)

where γi denotes the preemption cost due to preemption by higher priority tasks hp(i) during execution of

task τi. Starting with the critical instant, the cumulative execution request in an interval t for task τi and

all higher priority FP tasks is given by:

Wi(t) =
∑

j∈i,hp(i)

RBFj(t) (95)

One way to look at this limited preemption FP schedulability constraint is to characterize the amount of

blocking tolerance βi that a task τi can withstand while meeting its deadlines.

βi = max
t∈A|t<Di

{
t−

∑
j∈hp(i),i

RBFj(t)
}

(96)

where A = {mTj ,m ∈ N, 1 ≤ j < n}. We can also characterize the blocking factor Bi each task τi

experiences which is given by:

Bi = max
l∈lp(i)

{qmaxl } (97)

where the set of lower priority tasks lp(i) is given by:

l ∈ lp(i) = {l | πl < πi} (98)

Characterized by the non-preemptive regions inherent to limited preemption scheduling, the analysis must

take into account the longest NP region in the lower priority tasks. The maximum NP region in task τi is

given by:

qmaxi ≤ Qi = min
h∈hp(i)

βh (99)

Limited Preemption Threshold Scheduling

For PTS scheduling, the set of higher priority tasks is represented by two different conditions: 1) when

a job completes, and the scheduler must select the next task job to execute, and 2) when a higher priority

task preempts an existing task during its execution at the end of a non-preemptive region (NPR). The first

condition is given by Equation 93. The second condition is given by:

k ∈ ht(i) = {k | θk > πi} (100)
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In PTS, the tasks that may preempt task τi have a nominal priority θk exceeding the computed preemption

threshold πi. Higher priority tasks that can block task τi are those that cannot be preempted by τi due to

preemption threshold assignments is given by:

bh(i) = hp(i) \ ht(i) (101)

The set of lower priority tasks that may block task τi in cases where they are activated just before task τi

is given by:

bl(i) = lp(i) \ lt(i) (102)

where the set of lower priority tasks task τi can preempt is given by:

l ∈ lt(i) = {l | θl < πi} (103)

To facilitate the schedulability analysis for PTS scheduling, the request bound function [42] RBF (t) is

also used to examine the maximum cumulative execution request in an interval of length t generated by

jobs of τi per Equation 94. Starting with the critical instant, the cumulative execution request in an interval

t for task τi and all higher priority ht(i), higher priority blocking bh(i) and lower priority blocking bl(i)

FPTS tasks is given by:

Wi(t) =
∑

j∈ht(i),bh(i),i

RBFj(t) + max
l∈bl(i)

RBFl(t) (104)

Like FP scheduling, we can look at this limited preemption PTS schedulability constraint by characterizing

the amount of blocking tolerance βi that a task τi can withstand while meeting its deadlines.

βi = max
t∈A|t<Di

{
t−

∑
j∈ht(i),bh(i),i

RBFj(t)− max
l∈bl(i)

RBFl(t)
}

(105)

whereA is identical to the FP scheduling expression. We can also characterize the blocking factorBi each

task τi experiences which is given by:

Bi = max( max
l∈lp(i)

{qmaxl }, max
b∈bl(i)

{RBFb(t)}) (106)

Characterized by the non-preemptive regions inherent to limited preemption scheduling, the analysis must

take into account the longest NP region in the lower priority tasks. The maximum NP region in task τi is
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given by:

qmaxi ≤ Qi = min
h∈ht(i)

βh (107)

Limited Preemption Scheduling Analysis

Since the lowest priority task τm is subjected to no blocking, by convention we have Bm = 0. We

can use the schedulability analysis derived for floating non-preemptive regions [15] to establish task set

schedulability in each case:

Wi(t) +Bi ≤ t, ∀ t ∈ mTi, m ∈ N (108)

With suitable expressions for βi introduced, we can express the task set limited preemption schedulability

constraint for FP, and PTS scheduling as summarized in Theorem 11 [14].

Theorem 11. A task set τ is schedulable with limited preemption scheduling if, ∀i | 1 ≤ i ≤ n,

Bi ≤ βi (109)

We can restate the taskset schedulability constraint in terms of the maximum non-preemptive region para-

meter Qi via Theorem 12 [14].

Theorem 12. A task set τ is schedulable with limited preemption scheduling if, ∀i | 1 < i ≤ n,

qmaxi ≤ Qi (110)

In summary, each task is permitted to execute non-preemptively for a maximum amount of time denoted

by Qi thereby ensuring taskset schedulability as long as preemption points are placed such that all non-

preemptive regions are less than or equal to Qi.

Preemption Placement Objective

Using the series-parallel graph structure, the objective of any preemption placement algorithm is to

select a single set of effective preemption points ρi that minimizes the WCET+CRPD of each task whose

real-time conditional code is given by graph Gi, subject to the constraint that all non-preemptive regions

must be less than or equal to the maximum allowable non-preemptive region parameter Qi. This objective

is formally stated as:

Preemption Placement Objective:

Given a real-time conditional flow graph Gi ∈ L(G), an independent or interdependent CRPD cost

function ξi(δxi , δ
y
i ) and WCET bji for each basic block, find a set of Effective Preemption Points (EPPs)
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ρi ⊆ E that minimizes the cost function:

Φi(Gi, ρi)
def
= max

p∈Pi(Gi,δsi ,δei )
[
∑
δxi ∈p

bxi +
∑

(δx
i
,δ
y
i
)∈p,ρi

δxi ≺pδ
y
i

ξi(δ
x
i , δ

y
i )] (111)

subject to the constraint ∀p ∈ Pi(Gi, δsi , δei ), δwi ∈ ρi,∃e
u,v
i = (δui , δ

v
i ), ex,yi = (δxi , δ

y
i )where eu,vi , ex,yi ∈

ρi ::

[
∑
δw
i

∈p
δui �pδwi �pδxi

bwi + ξi(δ
u
i , δ

x
i )] ≤ Qi (112)

The cost function Φi(Gi, ρi) evaluates to the maximum cost across all paths p through the task code.

Response Time Analysis

In this section, response time analysis of FP [72], and PTS [18, 19] limited preemption scheduling,

summarizes the computation of the worst-case response time of tasks under each scheduling paradigm.

Response time analysis is used in the PTS optimal threshold assignment algorithm and in checking tas-

kset schedulability as a means of comparing the various scheduling methods in our evaluation. In each

subsection, we begin by computing the time period associated with the worst-case task activation pattern,

known as the level-i active period, for each task τi in the task set τ . For limited preemption FP threshold

scheduling, the worst-case activation pattern occurs when all higher priority tasks are activated coincident

with the activation of task τi with the activation of the blocking task with the largest execution cost just

prior to that of task τi. We subsequently compute the worst-case starting and finishing times in accordance

with the scheduling algorithm. Finally, the worst-case response time is the maximum difference between

the finish time Fi,k any of the k jobs in the level-i active period and the absolute deadline of the kth job.

Limited Preemption FP Scheduling

For limited preemption FP scheduling, the level-i active period is given by:

Li =
∑

j∈hep(i)

Ej(Li) · Φj(Gj , ρj) + max
l∈lp(i)

Ql (113)

where the maxl∈lp(j)Ql represents the worst-case blocking experienced by task τi inherent to limited

preemption scheduling and the term Ej(t) is given by:

Ej(t) = dt/Tje (114)
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The start time Si,k of the kth job of task τi is given by:

Si,k = k ·
[
Φi(Gi, ρi) + max

l∈lp(i)
Ql

]
+
∑

j∈hp(i)

Ej(Si,k) · Φj(Gj , ρj) (115)

The finish time Fi,k of the kth job of task τi is given by:

Fi,k = Si,k +
[
Φi(Gi, ρi) + max

l∈lp(i)
Ql

]
+
∑

j∈hp(i)

(Ej(Fi,k)− Ej(Si,k)) · Φj(Gj , ρj) (116)

The worst-case response time Ri of task τi is given by:

Ri = max
k∈Ei(Li)

(Fi,k − kTi) (117)

Limited Preemption FP Threshold Scheduling

For limited preemption FP threshold scheduling, the level-i active period is given by:

Li =
∑

j∈hep(i)

Ej(Li) · Φj(Gj , ρj) + max
(

max
l∈lt(i)

Ql, max
b∈bl(i)

Φb(Gb, ρb)
)

(118)

where bl(i) represents the set of tasks that may block task τi which for limited preemption threshold

scheduling is given by Equation 102 and where lt(i) is given by Equation 103. For limited preemption

threshold scheduling, the start time Si,k of the kth job of task τi is given by:

Si,k = k · Φi(Gi, ρi) + max
(

max
l∈lt(i)

Ql, max
b∈bl(i)

Φb(Gb, ρb)
)

+
∑

j∈hp(i)

Ej(Si,k) · Φj(Gj , ρj) (119)

The finish time Fi,k of the kth job of task τi is given by:

Fi,k = Si,k + Φi(Gi, ρi) +
∑

j∈ht(i)

(Ej(Fi,k)− Ej(Si,k)) · Φj(Gj , ρj) (120)

The worst-case response time Ri of task τi is given by Equation 117.

Implementation

In this section, we present the integration of limited preemption FP scheduling with FP preemption

threshold scheduling. The integration consists of an iterative algorithm combining preemption placement

with optimal threshold assignment.

High-Level Overview

Limited preemption scheduling and preemption threshold scheduling are complimentary in that they

use the execution time slack inherent in the task set τ to permit tasks to execute non-preemptively. Limi-

ted preemption scheduling accomplishes this via a task parameter Qi specifying task τi’s maximum non-
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preemptive execution time within which the task set τ remains schedulable. In essence, limited preemption

scheduling divides each task τi into a sequence of non-preemptive execution regions bounded by Qi. In

preemption threshold scheduling, preemption thresholds are adjusted for circumstances where the execu-

tion slack of task τi can completely subsume the execution time of task τb while still meeting its deadline,

the preemption threshold of task τb is adjusted upwards to prevent it from being preempted by task τi. Each

method attempts to introduce non-preemptive execution into a task set τ commensurate with its real-time

execution characteristics. One of the primary differences in these two methods is the level of granularity

at which the non-preemptive regions are established. Limited preemption scheduling divides each task

into non-preemptive regions or chunks whereas preemption threshold scheduling permits non-preemptive

execution at the task level.

Preemption Placement and OTA Integration

In this section, we present an algorithm that integrates preemption placement with optimal threshold

assignment as summarized in Algorithm 11.

Algorithm 11 Integrated Preemption Placement With OTA

1: Input Task set τ = τ1, ..., τn with {Vi, Ei, C
NP
i , Ti, Di, πi} ∀τi ∈ τ .

2: Output Task set schedulable, ρi ⊆ Ei, and Θ ∈ Π, ∀τi ∈ τ .
3:
4: for all τi ∈ τ do
5: θi ← π1;
6: Qi ← CNP

i ;
7: Ci ← CNP

i ;
8: ρi ← ∅;
9: end for

10: for τi ← [τ1, ..., τn] do
11: Compute Li using Equation 121;
12: Compute βi using Equations 122, 123;
13: if βi < 0 then
14: return unschedulable;
15: end if
16: for ∀τl with l ∈ lp(i) do
17: if Ql > βi or Cl > βi then
18: θl ← πi+1;
19: Ql ← min(Ql, βi);
20: ρl ← Perform task τl preemption placement
21: using Ql and the set hep(i) as preempting tasks;
22: Cl ← Φl(Gl, ρl);
23: end if
24: end for
25: end for
26: return schedulable;
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We use a slightly modified version of Equation 118 to compute the level-i active period term Li given by:

Li =
∑

j∈hep(i)

Ej(Li) · Φj(Gj , ρj) + max
(

max
b∈bl(i)

Cb, max
l∈lt(i)

Ql
)

(121)

We also use a slightly modified version of Equation 106 to compute the task τi blocking tolerance βi term

as given by:

βi =
dLi
Ti
e−1

min
k=0

{βki } (122)

where the term βki is given by:

βki = max
t∈[kTi,kTi+Di]

{
t−

∑
j∈hep(i)

RBFj(t)
}

(123)

The algorithm begins by initializing the variables θi, Qi, Ci, and ρi. We start with setting each task’s

preemption threshold θi to the highest priority with the default state resulting in each task executing non-

preemptively (line 6). Consistent with the non-preemptive execution defaults, we initialize the variables

Qi and Ci to be the task non-preemptive execution time CNPi (lines 7,8). Lastly we initialize the task

preemption solution ρi to be empty set (line 9). At a high level, we process each task in the task set,

computing the level-i active period Li and the blocking tolerance βi (lines 13,14). If the blocking tolerance

is less than zero, we return the task as un-schedulable (lines 16-18). Next we analyze the potential blocking

introduced by all lower priority tasks (line 20). If either the maximum non-preemptive region parameter

Ql or the WCET+CRPD variable Cl exceeds the blocking tolerance of task τi (line 21), then we set the

maximum preemption threshold θl such that task τl cannot block task τi (line 22). We also constrain the

maximum non-preemptive region Ql of task τl to the blocking tolerance βi of task τi (line 23). With the

modified maximum non-preemptive region parameter Ql, we perform preemption point placement using

Ql and Θ with the set hep(i) as the preempting tasks (lines 25,26). Following preemption placement,

we update the WCET+CRPD variable Cl with the computed preemption placement costs (line 28). Once

each task has been considered along with analyzing the potential blocking introduced by lower priority

tasks, we return schedulable (line 33). A proof of correctness and discussion of our integrated preemption

placement and maximum threshold assignment is given in the following subsection.

Integrated PP/OTA Algorithm Proof of Correctness

In this section, we prove the correctness of the integrated preemption placement and maximum preemp-

tion threshold assignment algorithm as detailed in Algorithm 11.
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Theorem 13. Given a schedulable task set τ , the task set is schedulable with limited preemption scheduling

if ∀i | 1 ≤ i ≤ n,

Ql ≤ βi ∀ l ∈ lp(i) (124)

Proof. The proof is by direct argument. Using the result of Theorem 109, we have:

Bi ≤ βi ∀i | 1 ≤ i ≤ n (125)

Substituting Equation 106 for Bi, we have:

max( max
l∈lp(i)

{qmaxl }, max
b∈bl(i)

{RBFb(t)}) ≤ βi (126)

Substituting Equation 107 for qmaxl , and simplifying the RBF term with Cb, we have:

max( max
l∈lp(i)

{Ql}, max
b∈bl(i)

{Cb}) ≤ βi (127)

The first term represents blocking via limited preemption scheduling with the second term representing

blocking via non-preemptive execution. We can reduce the constraint to the limited preemption scheduling

case since Ql ≤ Cl. Therefore, we have:

Ql ≤ βi ∀l ∈ lp(i) (128)

Thus, proving the schedulability constraint.

We use the schedulability constraint to prove the correctness of Algorithm 11.

Theorem 14. Given a schedulable task set τ , Algorithm 11 assigns the maximum non-preemptive region

set Q and maximum preemption threshold set Θ to tasks achieving schedulability if such an assignment

exists.

Proof. The proof is by induction.

Basis: We start with the highest priority task τ1. Being the highest priority task, τ1 executes completely

non-preemptively and its schedulability can be evaluated using the expression CNPi ≤ Di or βi ≥ 0. If the

condition βi ≤ 0 is true, we return unschedulable (lines 16-18). Otherwise, βi has the computed execution

slack or blocking tolerance with both Q1 and C1 set to the non-preemptive execution time CNPi .

Induction: For each task τi, assuming the previous i − 1 tasks {τ1, τ2, ..., τi−1} are schedulable, each

iteration of the outer loop, results in a schedulable task set {τ1, τ2, ..., τi}. If the task set is schedulable,

then Algorithm 11 assigns Ql and θl ∀l ∈ lep(i) such that {τ1, τ2, ..., τi} is schedulable. For each lower
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priority task τl, the inner loop evaluates the extent to which τl can execute non-preemptively with respect

to task τi. Two non-preemptive execution possibilities exist: 1) execute completely non-preemptively if

(Cl ≤ βi), or 2) execute in limited preemption fashion (Ql ≤ βi). As required to maintain schedulability,

if either parameter Ql or Cl exceeds task τi blocking tolerance βi, then we must execute using limited

preemption scheduling only. We adjust Ql if needed to ensure task τl blocking imposed on task τi is

bounded by βi (line 23). The θi is correspondingly adjusted to a level where task τi must be able to

preempt task τl. Revisions to Ql and θl are followed by computation of a new preemption solution (lines

25,26). Otherwise if Ql and Cl are already bounded by task τi blocking tolerance βi, then no adjustments

are made and task τl may execute completely non-preemptively with respect to task τi. Thus, with each

iteration of the outer loop, the task set {τ1, τ2, ..., τi} remains schedulable with the assigned maximum

non-preemptive region set Q and maximum preemption threshold set Θ, if such an assignment exists.

Evaluation

Our integrated PPP/OTA algorithm will be evaluated using the following method, namely the average

preemption cost swept across the range of system utilization, and 2) the weighted schedulability ratio as a

function of cache utilization.

Task Set Generation

Our study will utilize synthetically generated task sets of linear CFGs along with task execution para-

meters for comparing various linear PPP algorithms against those augmented with our integrated PPP/OTA

algorithm. Each experiment generates 1000 different task sets. Target task utilization is swept in accor-

dance with the breakdown utilization algorithm. The number of tasks is randomly selected using a uniform

distribution in the interval [8, 15]. The number of basic blocks in each task is randomly selected using a

uniform distribution in the interval [20, 200]. The number of instructions in each basic block is randomly

selected using a uniform distribution in the interval [10, 100]. The WCET of each basic block is randomly

selecting using a gaussian distribution with µ = 200 and σ = 10. The absolute value of all genera-

ted WCET values are used. Our system employs a separate instruction and data direct mapped caches

containing NC = 1024 cache blocks with a total cache utilization UC = 4. The cache block size s is

randomly generated using a uniform distribution selected from the set {8, 16, 32, 64, 128} bytes. The total

cache memory size is given by the expression NC · s. The total number of task set ECBs is given by

NC · UC = 4096. Individual task cache utilization UCi is generated via the UUniFast algorithm [16].

Tasks occupy contiguous memory ordered from highest priority to lowest priority. Individual instruction

ECBs are determined from the generated memory layout. Individual data ECBs are generated via a two-

pronged approach. Within each basic block, a median RAM memory location MA is generated using a
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uniform distribution over the RAM memory space. The RAM memory accessed by each instruction is

generated using a gaussian distribution with µ = MA and σ = 512 bytes. Task data UCBs have a targeted

overlap of 40% with its data ECBs. Task periods Ti are generated using a uniform distribution in the in-

terval [10, 1000] mS. Arbitrary task deadlines Di are generated using a uniform distribution in the interval

[(Ci+Ti)/2, 4Ti]. Individual task utilization are generated via the UUniFast algorithm [16]. Nominal task

priorities Π are assigned in descending order commensurate with a Deadline Monotonic policy.

Availability

The research community may reproduce and leverage our work via the developed programs and ana-

lyzed data archived at GitHub [23].

Results

The results are presented as an illustration of the potential benefit of our integrated PPP/OTA algorithm

combining limited preemption scheduling with preemption threshold scheduling, in comparison to existing

limited preemption methods.

System Utilization Schedulability

In this section, we study the performance of limited preemption scheduling using preemption pla-

cement only as a baseline, as compared to preemption placement integrated with preemption threshold

scheduling via optimal threshold assignment. We perform a breakdown utilization comparison between

the two approaches along with a comparison of the average preemption cost swept across the system utili-

zation range for schedulable task sets. By comparing these two methods we illustrate the superiority of the

integrated preemption placement/preemption threshold scheduling algorithm versus limited preemption

scheduling via preemption placement only. Figure 73 illustrates the breakdown utilization comparison.

The limited preemption scheduling via preemption placement is denoted as LEPP whereas the integrated

preemption placement/preemption threshold scheduling method is denoted as LEPPOTA.



122

Figure 73: Breakdown Utilization Comparison.

For large block reload times, the integrated preemption placement/preemption threshold scheduling algo-

rithm dominates the preemption placement only algorithm. This trend is also seen in Figure 74.

Figure 74: Average Preemption Cost Comparison.

The ability of the integrated approach to adjust the preemption thresholds to permit tasks to execute non-

preemptively where possible has further benefits in reduced preemption placement costs. As expected,

both methods converge as the block reload time approaches zero.
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Summary

In this work, we presented an algorithm that integrates limited preemption scheduling via conditi-

onal preemption placement with preemption threshold scheduling via optimal preemption threshold as-

signment. Our experiments demonstrated the schedulability dominance of the integrated approach over

existing preemption placement algorithms. In future work, we plan to evaluate this integrated approach on

a wider range of linear and conditional real-time programs.
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CHAPTER 8 FUTURE WORK
In this chapter, we discuss the portion of the research that has not been completed. As we explained

in the previous chapters, our goal is to develop a generalized schedulability framework supporting the

hard-real-time system design process for the limited preemption task execution model. This framework

addresses taskset schedulability determination for real-time systems with physical, hardware and timing

challenges. So far, we have completed a subset of our main research and proposed a new CRPD metric,

called loaded cache blocks (LCB) which accurately characterizes the CRPD a real-time task may be sub-

jected to due to the preemptive execution of higher priority tasks. We showed how to integrate our new

LCB metric into our newly developed algorithms that automatically place preemption points supporting

linear control flow graphs (CFGs) for limited preemption scheduling applications. Finally, towards the

end of our defense, we complete the generalized schedulability framework that will ensure that hard-real-

time tasksets will be schedulable at design time. In the next section, we discuss the remaining work to be

completed.

Future Work

While significant progress has been made in preemption placement supporting limited preemption

scheduling in recent years, there are several open problems that remain to be solved in order to permit

limited preemption scheduling using PPP algorithms to migrate into industry applications supporting the

development cyber-physical systems. A few of these open problems are summarized below.

Interdependent CRPD for Set Associative Caches with Preemption Placement

We extend our LCB metric to handle the complexity of N-way set associative caches. In this design,

the chosen cache replacement policy significantly impacts the algorithms needed to compute a safe bound

or the CRPD. While algorithms exist to compute CRPD for set associative caches, we will specifically

address the problem of computing interdependent CRPD for the purposes of eventual preemption point

placement. The challenge this work presents is to design the LCB metric in such a manner as to apply

to the broadest range of cache replacement policies as possible. Cache replacement policies under consi-

deration are the algorithms covered in Chapter 3. Cache replacement policies not fitting into the broader

framework will require custom extensions to provide the requisite data needed by the preemption pla-

cement algorithm. Previous work focused on direct mapped cache designs, thereby engendering a need

to extend the benefits of limited preemption scheduling models to hard-real-time systems employing N-

way set associative cache designs. We will evaluate the applicability or suitability of these algorithms to

the various cache replacement policies in use today. Lastly, we integrate our revised LCB metric with
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preemption point placement algorithms applicable to both linear and arbitrary control flow graphs.

Real-Time Systems Computational Framework

We implement a real time systems computational framework integrating our CRPD computation algo-

rithms with existing tools supporting WCET analysis. Subcomponents of this framework include WCET

analysis, CRPD analysis, preemption point placement, and schedulability analysis. Figure 75 illustrates a

high-level diagram of the various analysis steps, their input data, and output data to give an idea of what

is envisioned. Blocks with a red accent denote existing tools, while blocks with a blue accent denote our

contributions. WCET analysis tools analyze program structure computing the worst-case execution time

Figure 75: Real-Time Systems Computational Framework.

of each instruction or basic block. CRPD analysis tools analyze program structure computing the set of

useful cache blocks thereby determining the potential impact task preemption has at each basic block.

Preemption point placement algorithms utilize the computed WCET and CRPD values at each basic block

to determine optimal preemption point locations with the goal of minimizing preemption overhead for

hard-real-time tasksets. Schedulability analysis techniques analyze modified taskset characteristics with

the CRPD overhead considered to determine the amount of available scheduling slack key to determining

if a taskset is schedulable. The schedulability analysis serves as the input to preemption point placement

supporting linear and arbitrary control flow graphs. The output of schedulability analysis, the allowa-

ble scheduling slack, also known as the maximum non-preemptive region Qi, is a key parameter used in

our optimal preemption point placement algorithm. Each preemption point placement solution results in

new scheduling slack that affects preemption point placement during subsequent iterations. The algorithm
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converges when the selected preemption points no longer change or the slack reaches some minimum

threshold. In summary, our method uses an iterative approach to refine the preemption points of tasks

factoring in the updated scheduling slack until the chosen preemption points or scheduling slack no lon-

ger changes. The means to making these various tools usable for the hard-real-time systems designer is

the integration of the iterative schedulability analysis with interdependent CRPD based preemption point

placement. In this context, our work will implement the schedulability analysis for two commonly used

scheduling algorithms. These algorithms are the earliest deadline first (EDF) and fixed priority (FP). The

framework will be designed in such a manner to offer the ability to customize for future scheduling al-

gorithms supporting a flexible, open source software organization. The evaluation will demonstrate the

requisite function on the Malardalen Real Time Code (MRTC) task suite [51], deemed to be of suitable

size and complexity to support an initial tool feasibility assessment.

Real-Time Systems Computational Framework Case Study Evaluation

We utilize our newly developed real time systems computational framework to analyze a real time

systems application of suitable size and complexity. Subcomponents of this framework include WCET

analysis, CRPD analysis, preemption point placement, and schedulability analysis. The overall tool im-

provement focus is essentially a collection of graphical based methods for visualization and automated

back annotation of downstream scheduling design decisions onto real time code, as briefly described be-

low. Visualization of WCET analysis results would include numerical display of basic block worst-case

execution time annotated in the graphical representation of the control flow graph structure. Visualization

of CRPD analysis would take the form of a two-dimensional graph showing the CRPD cost assuming a

given basic block is selected as a preemption point. The hard-real-time systems designer would access

this information by selecting a specific edge in the control flow graph. Visual methods supporting back

annotation of real time code with the selected optimal preemption points will be implemented. Within

our graphical design framework, designers will have the option of selecting required preemption points

to augment the preemption point placement algorithms. The inherent challenge in this work is to design

the requisite information exchange between the various sub-components in such a way as to allow support

for new scheduling algorithms, cache replacement policies, and new taskset characteristics. Breakdown

utilization studies will illustrate for each task where the taskset schedulability breaks down so refactoring

of the design can readily occur in problematic software components. The evaluation of our real time sys-

tems computational framework will focus on a case study involving analysis of a real-time application of

moderate complexity deemed suitable in accordance with analysis time constraints.
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Non-Inline Function Support for Preemption Placement in Real-Time Program Code

One of the most significant limitations of existing preemption placement algorithms is they only pro-

vide support for inline functions, thereby excluding non-inline functions. One of the primary motivations

for working on this problem is the future commercial viability of limited preemption scheduling via in-

terdependent CRPD cost model, by extending the supported real-time task code constructs to non-inline

functions. To understand the context in which we solve for and obtain a single minimized preemption

solution for each function definition each having kj invocations in the real-time task code where j is the

function definition index consider the aggregate subgraph GFi shown in Figure 76.
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Figure 76: Function Definition Preemption Placement Problem

Each function invocation in the real-time task code consists of a function call subgraph GFCALLi , a

function definition subgraph GFUNCi , and a post function execution subgraph GBLKSi . To solve this

problem, we intuitively must compute the minimized function definition at the point where the preemption

solutions are available for each of the kj invocations in the subgraphs GFCALLi , GFUNCi , and GBLKSi .

Using the brute force approach where all (Qi + 1)2 preemption solutions for each of the k function invo-

cations are simultaneously iterated results in an intractably exponential time complexity O(kNiQ
2k
i ). To

visualize the complexity of computing a single preemption solution for each function definition, and to

demonstrate the feasibility of solving this problem, consider the following graphical depiction as shown in

Figure 77. The blue dots represent the function call GFCALLi subgraphs for each of the k invocations of
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Figure 77: Compute Function Definition Preemption Problem
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function f . Similarly, the yellow dots represent the post function execution GBLKSi subgraphs following

each of the k invocations of function f . Lastly, the red dot denotes one of the (Qi + 1)2 preemption

solutions stored for the function f definition subgraph GFUNCi . The side views depict separate vertices

for each of the (Qi + 1)2 preemption solutions stored in the GFCALLi and GBLKSi subgraphs respectively.

Incorporating support for non-inline functions to preemption placement algorithms will serve to extend

limited preemption scheduling to a wider class of real-time program code.

Since function invocations can occur anywhere in the task code, this creates challenges in the context

of the progression of in line production rules in our graph grammar G. With the objective of a single

preemption solution for each function definition subgraph GFUNCi , semantic processing of production

rules must be suspended at each function invocation until the subgraph solutions for all invocations are

available. To illustrate this concept, consider the following abstract parse tree shown in Figure 78.
 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 𝑐𝑎𝑙𝑙𝑠 

𝑛𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑙𝑠 

Figure 78: Parse Tree Function Invocations

Function calls are indicated by the filled red dots and the non-function calls are indicated by the hollow

dots. This example demonstrates the conditions for computing a single function definition preemption

solution does not coincide with the ordering of production rules. Figure 79 illustrates the parsing progress

limited due to the presence of function f calls in the task code.

 

𝑝𝑎𝑟𝑠𝑖𝑛𝑔 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 to be executed 

𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑, waiting for function f preemption solution 

Figure 79: Function Call Parsing Progress

The green dots denote subgraphs where the preemption solutions have been computed during parsing.

The red dots denote function call subgraphs where preemption solutions cannot be computed until the

corresponding function definition preemption solution has been computed. The yellow dots denote higher

level subgraphs whose preemption solutions are dependent on the function call preemption solutions. Once
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all the calls to function f have been encountered in the parse tree, we compute the minimized function f

definition preemption solution as shown in Figure 80.
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Figure 80: Function Call Preemption Solutions Computed

The green dots outlined in red denote the function call subgraphs where the preemption solutions have been

computed from the single function f preemption solution. Once these preemption solutions are available,

the remaining subgraph nodes whose preemption solution computations that were previously suspended

may now be processed as shown in Figure 81.
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Figure 81: Graph Parsing Completed

To accomplish this modified ordering of parsing semantics, we must store suspended productions in a FIFO

queue Q until the requisite function definition preemption solution dependencies have been resolved.

Goto Statement Support for Preemption Placement in Real-Time Program Code

Similar to the incorporation of non-inline function support in preemption placement algorithms, the

addition of support for goto statements would extend preemption placement to a profoundly broader set of

real-time program code. The complexity of goto statement support far exceeds that of non-inline functions

since the use of goto statements adds preemption placement dependencies between program constructs

in different locations. We envision the primary tenets of the proposed solution to non-inline functions to

be directly applicable to goto statements. Goto statements are ubiquitous in low level assembly code due

to compiler optimizations employed during the code generation phase. Because the grammar supporting

existing preemption placement algorithms is largely comprised of structured programming constructs, it is

necessary to semi-manually post process the generated assembly code to fit the inherent grammar limitati-
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ons. This post processing step is arduous, time consuming, and error prone regardless of whether manual

or automated methods are applied, thereby limiting the feasibility of preemption placement algorithms to

small applications. Thus, by integrating goto statement support into preemption placement algorithms, the

need for post processing of real-time program code would be eliminated.

Interdependent Probabilistic CRPD with Preemption Point Placement

We extend our LCB metric to handle the complexity of N-way set associative caches with random

cache replacement policy. In this design, the random cache replacement policy requires a probabilistic

approach to the analysis in order to compute a safe bound or the CRPD. In this probabilistic analysis,

we will specifically address the problem of computing interdependent CRPD for the purposes of eventual

preemption point placement. The challenge this work presents is the probabilistic nature the random cache

replacement policy engenders is the inherent non-deterministic behavior prominently affects the methods

for computing CRPD. Unlike previous methods, it is impossible to determine the exact cache contents at

any program location. It will be imperative that our research offers the hard-real-time systems designer

a statistical theoretical framework that will result in safe yet reasonably accurate CRPD metrics based on

sound probabilistic analysis methods. Lastly, we integrate our revised LCB metric with preemption point

placement algorithms applicable to both linear and arbitrary control flow graphs.

Real Time Systems Computational Framework

Our future objective is to make the capabilities of our real time systems computational framework

prototype available to companies developing cyber-physical systems. To accomplish this, it will be im-

perative that a robust, commercial tool implementation with suitable customer support must exist moving

forward. Opportunities to partner with existing WCET analysis tool vendors with the goal of incorporating

our research into their tools will be realized.

Multiprocessor Systems

Multiprocessor or multi-core CPUs are being ubiquitously used in cyber-physical systems to meet the

rapidly increasing computational complexity witnessed in many application domains today. Real-time

systems research pertaining to multiprocessor systems is highly active with the schedulability challenges

posed by task execution concurrency. Opportunities to extend our CRPD metric into a multiprocessor

concurrent execution environment will be explored.

Multi-Level Cache Analysis

Multi-level cache analysis addresses the complexity introduced by cache memory designs containing

more than one or multiple levels. Multi-level cache designs are primarily used in multiprocessor or multi-
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core CPUs to economically improve cache hit performance. Multi-level caches may employ disparate

inclusion properties that determine how cache block evictions at lower cache levels affect upper cache

levels. Opportunities to extend our CRPD metric into multi-level cache designs will be explored, proposed,

and validated.

Summary

Hard-real-time systems frequently subjected to various physical, hardware and timing constraints are

a growing research area. There are many emerging and growing career opportunities in cyber-physical

systems (CPS) design that require a broad understanding of a diverse set of real-time system concepts and

disciplines.
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CHAPTER 9 CONCLUSION
In this dissertation, we introduced a new CRPD metric, called loaded cache blocks (LCB) which accu-

rately characterizes the CRPD a real-time task may be subjected to due to the preemptive execution of

higher priority tasks. We showed how to integrate our new LCB metric into our newly developed al-

gorithms that automatically place preemption points supporting linear and conditional CFGs for limited

preemption scheduling applications. Essentially, this framework addresses taskset schedulability determi-

nation for real-time systems with physical, hardware, and timing challenges. Furthermore, our enhanced

algorithm was demonstrated to be optimal for linear CFGs in that if a feasible taskset schedule cannot

be constructed, then no feasible schedule exists by any known method utilizing a static Qi value. For

conditional CFGs, our proposed PPP algorithm was suboptimal due to the method of handling of preemp-

tion costs between successive block structures. Nonetheless, our conditional PPP algorithm demonstrated

superior performance as compared to existing schedulability approaches. Finally, our design and analy-

sis framework may be classified as limited preemption point placement and schedulability analysis for

hard-real-time systems.

As a proof of concept, we demonstrate the effectiveness of our approach via experiments using tasksets

from the MRTC WCET benchmark suite [51]. We show how to solve some of the issues and challenges

of designing predictable real-time systems that must guarantee hard deadlines. In our framework, the

system designer specifies the required deadlines that hard-real-time taskset must meet where the system

automatically adjusts the taskset preemption points to ensure taskset schedulability.

The impact of our work to the hard-real-time systems development community is to facilitate the mi-

gration of limited preemption scheduling from academia to mainstream cyber-physical systems applicati-

ons in industry. With respect to minimizing preemption overhead, limited preemption scheduling has been

shown to exhibit superior performance as compared to fully preemptive and non-preemptive scheduling in

hard-real-time tasksets. The benefit to cyber-physical systems (CPS) is improved utilization of hardware

resources via reduced overhead enabled by increasing the accuracy of CRPD computations and automa-

ting optimal preemption point placement. Furthermore, the future integration of WCET analysis, CRPD

analysis, schedulability analysis, and preemption point placement into a single unified real-time systems

computational framework will serve to reduce the overall system schedulability design time allowing real-

time system designers to focus on the more critical and important tasks of ensuring correct and robust

system operation. As new product features are added, the integrated real-time systems schedulability tools

will permit system designers to quickly redo the previous analysis to ensure the system remains schedula-

ble. Therefore, these improvements in CPU utilization and reduced design time will result in substantial
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cost reductions in CPS products thereby benefiting both system producers and consumers alike.
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Schedulability analysis for real-time systems has been the subject of prominent research over the past

several decades. One of the key foundations of schedulability analysis is an accurate worst case execution

time (WCET) for each task. In preemption based real-time systems, the CRPD can represent a significant

component (up to 44% as documented in research literature) of variability to overall task WCET. Several

methods have been employed to calculate CRPD with significant levels of pessimism that may result in a

task set erroneously declared as non-schedulable. Furthermore, they do not take into account that CRPD

cost is inherently a function of where preemptions actually occur. Our approach for computing CRPD via

loaded cache blocks (LCBs) is more accurate in the sense that cache state reflects which cache blocks and

the specific program locations where they are reloaded.

Limited preemption models attempt to minimize preemption overhead (CRPD) by reducing the num-

ber of allowed preemptions and/or allowing preemption at program locations where the CRPD effect is

minimized. These algorithms rely heavily on accurate CRPD measurements or estimation models in order

to identify an optimal set of preemption points. Our approach improves the effectiveness of limited opti-

mal preemption point placement algorithms by calculating the LCBs for each pair of adjacent preemptions

to more accurately model task WCET and maximize schedulability as compared to existing preemption

point placement approaches. We utilize dynamic programming technique to develop an optimal preemp-

tion point placement algorithm. Lastly, we will demonstrate, using a case study, improved task set sche-

dulability and optimal preemption point placement via our new LCB characterization.

We propose a new CRPD metric, called loaded cache blocks (LCB) which accurately characterizes

the CRPD a real-time task may be subjected to due to the preemptive execution of higher priority tasks.

We show how to integrate our new LCB metric into our newly developed algorithms that automatically

place preemption points supporting linear control flow graphs (CFGs) for limited preemption scheduling
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applications.

We extend the derivation of loaded cache blocks (LCB), that was proposed for linear control flow

graphs (CFGs) to arbitrary CFGs. We show how to integrate our revised LCB metric into our newly

developed algorithms that automatically place preemption points supporting arbitrary control flow graphs

(CFGs) for limited preemption scheduling applications.

For future work, we will verify the correctness of our framework through other measurable physical

and hardware constraints. Also, we plan to complete our work on developing a generalized framework

that can be seamlessly integrated into real-time schedulability analysis.
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