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The gastrointestinal tract hosts the largest collection of commensal microbes in the

body. Infections at this site can cause significant perturbations in the microbiota, known

as dysbiosis, that facilitate the expansion of pathobionts, and can elicit inappropriate

immune responses that impair the intestinal barrier function. Dysbiosis typically occurs

during intestinal infection with Toxoplasma gondii. Host resistance to T. gondii depends

on a potent Th1 response. In addition, a Th17 response is also elicited. How Th17

cells contribute to the host response to T. gondii remains unclear. Here we show that

class I-restricted T cell-associated molecule (CRTAM) expression on T cells is required

for an optimal IL-17 production during T. gondii infection. Moreover, that the lack of

IL-17, results in increased immunopathology caused by an impaired antimicrobial peptide

production and bacterial translocation from the intestinal lumen to the mesenteric lymph

nodes and spleen.

Keywords: mucosal immunity, T cells, interleukin 17, Toxoplasma gondii, CRTAM

INTRODUCTION

The gastrointestinal tract hosts the largest collection of commensal microbes in the body, which
impact host metabolism as well as development and regulation of the immune system (1).
Pathogenic infections at this site can cause significant perturbations in the microbiota, known as
dysbiosis, that facilitate the expansion of pathobionts, elicit inappropriate metabolic and immune
responses, and damage the barrier function of the intestine, ultimately causing pathology (2–5).
This condition typically occurs during intestinal infection by Toxoplasma gondii (T. gondii), a
widespread protozoan parasite of animals that also infects humans through the ingestion of oocysts
contaminating water or food, or consumption of undercooked meat harboring tissue cysts (6).
Host resistance to T. gondii depends on a potent IL-12-dependent IFN-γ response, which is largely
mediated by Th1 cells (7–10). However, following oral infection with tissue cysts, the Th1-induced
IFN-γ response to T. gondii destroys Paneth cells and blunts their capacity to produce antimicrobial
peptides (AMPs), thereby impeding control of invasive Enterobacteriaceae (11–15).

In addition to triggering the IL-12-Th1-IFN-γ axis, oral infection by T. gondii also elicits a
Th17 response. How Th17 cells contribute to the host response to T. gondii remains unclear. In
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two studies, abrogation of IL-17 signaling in Il17ra−/− and
Il17a−/− mice resulted in increased susceptibility to T. gondii
infection (16, 17). However, another study reported that
Il17ra−/− mice as well as B6 mice treated with a blocking anti-
IL-17A antibody are more resistant to T. gondii infection (18).
Finally, infection with a high dose of T. gondii cysts induced
gut immunopathology independent of IL-17, but dependent on
IL-22 (19).

We previously found that Th17 response to T. gondii depends
on the cell surface molecule class I-restricted T cell-associated
molecule (CRTAM) (20). CRTAM was originally described on
activated CD8+ T cells and NK cells (21). It binds cell adhesion
molecule 1 (CADM1), which is expressed on many myeloid and
epithelial cells (22–27). We found that CRTAM is also expressed
on intestinal intraepithelial CD4+ T cells upon activation.
Moreover, we observed that Crtam−/− and Cadm1−/− mice had
a selective defect in Th17 compared to wild-type (WT) mice
during infection with the type II T. gondii strain Prugnaud (Pru),
which is relatively non-pathogenic. However, they developed an
effective Th1 response and cleared gut infection as effectively
as WT mice (20). Thus, Th17 deficiency had no obvious
consequences in this model of infection.

Here we challenged Crtam−/− mice with an oral inoculation
of tissue cysts of the type II ME49 strain of T. gondii, which
is more pathogenic than the Pru strain we used previously,
despite sharing the same genotype (28). Consistent with our
previous study, Crtam−/− mice controlled intestinal infection;
they developed an effective Th1 response, but their Th17
response was impaired. Despite being able to control infection,
Crtam−/− mice suffered more pathology and many succumbed
following infection. Remarkably, certain AMPs that are known
to be induced by IL-17 including S100A8, S100A9, and beta
defensins, were drastically reduced in the intestines of Crtam−/−

mice. As a result, mice lacking CRTAM were unable to control T.
gondii-induced dysbiosis and subsequent bacterial translocation
to the mesenteric lymph nodes and spleen. Paneth cell-derived
AMPs, such as alpha defensins, were not affected, suggesting
that control of T. gondii-induced dysbiosis requires a broad
spectrum of AMPs. Although IL-17-producing CD4+ T cells
were less abundant in Crtam−/− mice than in WT mice, CD4+

T cells expressing RAR related orphan receptor t (Rorγt),
the master transcription factor driving Th17, were equally
represented; this suggests that CRTAM is required for terminal
maturation of Th17 and acquisition of effector function rather
than for Th17 lineage commitment. We conclude that CRTAM
enables an optimal Th17 host response to pathogenic parasitic
infections that is required for controlling dysbiosis and bacterial
translocation associated with infection.

RESULTS

T. gondii Infection Causes Marked
Intestinal Pathology in Crtam−/− Mice
Given our previous observation that CRTAM has a limited
impact on the response to a non-pathogenic strain of T. gondii,
we wanted to re-examine CRTAM function in the context

of intestinal infection by the more pathogenic ME49 strain.
Crtam−/− and WT mice were infected orally with 10 cysts of
T. gondii ME49, which is capable of causing death at higher
inoculum. This line of ME49 also expresses luciferase and
therefore can be visualized by bioluminescence imaging of the
whole mouse (29). Crtam−/− mice lost more weight and more
of them died following infection (Figures 1A,B), although not
statistically significant, Crtam−/− mice show a trend to control
parasite replication better than WT (Figure 1C). Histological
analysis of the intestine revealed that Crtam−/− mice had more
ileal pathology than did WT mice after infection with T. gondii;
Crtam−/− mice displayed loss of epithelial integrity, mucosal
and submucosal edema, altered villus architecture, and moderate
inflammatory infiltrates (Figures 1D,E), the colon was equally
affected in WT and Crtam−/− mice (Figure 1E; Figure S1). We
conclude that the cause of increased lethality in Crtam−/− mice
is exacerbated pathology rather than uncontrolled infection.

CRTAM Deficiency Impairs the Th17
Response to T. gondii
We next sought to investigate the mechanisms by which CRTAM
counteracts intestinal pathology. No significant differences were
observed in the frequencies of CD4+ T cells producing IFN-γ and
IL-22 that were present within intraepithelial (IEL) and lamina
propria (LPL) lymphocytes isolated from the small intestine of
WT and Crtam−/− mice after infection with T. gondii; however,
considerably fewer CD4+ T cells producing IL-17 were detected
in Crtam−/− mice (Figures 2A–C). Moreover, cytokine profiles
of the ilea of WT and Crtam−/− mice after infection with T.
gondii confirmed a strong reduction in the abundance of IL-17A
and IL-17F mRNAs in Crtam−/− mice, while the amounts of
IFN-γ, IL-22, and IL-10 mRNAs were not significantly different
between WT and Crtam−/− strains. Together, these results
suggest that CD4+ T cells require CRTAM in order to produce
IL-17 during T. gondii infection.

Lack of CRTAM Curtails the Production of
AMPs That Restrain the Microbiota
Given that the dysbiosis incurred during infection with T.
gondii has previously been attributed to IFN-γ-induced death
of Paneth cells and consequent loss of AMPs that results in an
increase of Enterobacteriaceae (11), we assessed expression of
various AMPs in the ilea of Crtam−/− and WT mice infected
with ME49. Significantly less S100a8, S100a9, Regenerating islet-
derived 3 gamma (Reg3g) and Defensin beta 3 (Defb3) mRNA
was detected in Crtam−/− mice than in WT mice at day 5
post-T. gondii infection. In contrast, Defensin alpha 1 and alpha
2 were equally expressed (Figure 3A). 16S rRNA sequencing
analysis further showed that although naïve WT and Crtam−/−

mice had a similar microbiome (Figures 3B–D; Table S1), an
increase in Enterobacteriales (Figure 3C; Table S1) in particular
γ-proteobacteria (Figure S2) was observed in infected Crtam−/−

mice compared to WT (Figure 3B). Moreover, more bacteria
were present in mesenteric lymph nodes and spleens from
Crtam−/− mice than in those from WT mice at day 8 post-
infection (Figures 3E,F), suggesting that this partial defect in
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FIGURE 1 | Crtam−/− mice are more susceptible to pathology during T. gondii infection. WT and Crtam−/− mice were infected orally with 10 cysts of T. gondii strain

ME49, uninfected mice were used as control. (A) Survival (B) weight loss, and (C) parasite burden were analyzed at the indicated time points. (D) Representative

sections of ileum stained with hematoxylin and eosin and (E) histological score in naïve mice and at day 8 post-infection. Symbols and bars in (A,B,E) represent

means, error bars represent SEM. Symbols in (C) represent single mice. Data are representative of two independent experiments (n = 4–5). Statistical analysis was

performed using Student’s t-test or Log-rank Mantel-Cox test for survival curves (*p < 0.05; ***p < 0.001).

AMPs is sufficient to allow breach of the barrier and bacterial
translocation, which may contribute to the death of Crtam−/−

mice. Remarkably, S100A8, S100A9, and Defb3 are primarily
induced by IL-17, whereas defensin alpha 1 and alpha 2 are
chiefly produced by Paneth cells. Our results suggest that
the Th17 response to pathogenic challenge with T. gondii
prevents dysbiosis by inducing AMPs for the containment of
commensal bacteria.

IL-17 Prevents Bacterial Translocation
During T. gondii Infection
To validate the importance of IL-17 for the production of AMPs
and control of bacterial translocation during T. gondii infection,
WT mice were treated with either anti-IL-17A and anti-IL-17F
blocking antibodies or an isotype control and infected with 10
cysts ofT. gondiiME49 (Figure 4). Mice that received the anti-IL-
17 antibodies expressed less AMPmRNA and had more bacterial
translocation to the mesenteric lymph nodes, confirming that IL-
17 is essential for preventing dysbiosis. Of note, bacteria were not
found in the spleens of mice treated with the anti-IL-17 blocking

antibodies, suggesting that other cytokines or chemokines may
contribute to barrier protection.

CRTAM Engagement Is Required for
Terminal Differentiation of Th17
Th17 differentiation is a multi-step process that requires
induction of the master Th17 transcription factor Rorγt in naïve
CD4+ T cells (30, 31), followed by maturation of Rorγt+CD4+

T cells into IL-17 secreting cells, which depends on exposure
to cytokines, such as IL-23 (32). To understand when CRTAM
is required during Th17 development, we assessed expression
of Rorγt in lamina propria CD4+ T cells during T. gondii
infection in WT and Crtam−/− mice. Rorγt+ T cells were
present at similar frequencies in WT and Crtam−/− mice
(Figures 5A,B), indicating that CRTAM is dispensable for Th17
lineage specification.

Since the effector function of Rorγt+CD4+ T cells is
controlled by a subset of regulatory T cells that express both
Forkhead box p3 (Foxp3) and Rorγt and suppress intestinal
inflammation (33, 34), we asked whether lack of CRTAM
facilitates the development of Foxp3+Rorγt+ T cells. However,
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FIGURE 2 | CRTAM deficiency results in an impaired IL-17 production by T cells. WT and Crtam−/− mice were infected orally with 10 cysts of T. gondii strain ME49.

Frequencies of (A) intraepithelial and (B) lamina propria IFN-γ, IL-17, and IL-22 producing CD4+ T cells were analyzed at days 5 and 8 post-infection. (C) Expression

of Ifng, Il17a, Il17f, Il22, and Il10 in the ileum of infected mice analyzed by quantitative PCR at days 5, and 8 post-infection. Bars represent means, error bars represent

SEM. Data are representative of two independent experiments (n = 4). Statistical analysis was performed using Student’s t-test (*p < 0.05; **p < 0.01; ***p < 0.001).

we didn’t see an increase in Foxp3+Rorγt+T cells in Crtam−/−

mice (Figures 5A,C). These results suggest that CRTAMdoes not
impact modulation of Th17 through Treg induction.

DISCUSSION

Host control of T. gondii infection has been shown to rely on a
strong Th1 response (6, 7). Our study demonstrates that the Th17
response is important for host survival to intestinal infection
by a more pathogenic type II strain of T. gondii. By secreting
IL-17, Th17 support the production of AMPs, that prevents the
dysbiosis and bacterial translocation associated with pathogenic
infection. How Th17 response impacts oral infection by T. gondii
has been controversial. While some studies have reported a
protective role for IL-17 signaling during T. gondii infection
(16, 17), other studies have found that IL-17 can either promote
or is irrelevant for immunopathology (18, 19). We postulate that
these discrepancies may be due to differences in the T. gondii
strains used and doses administered in each study, or differences
in the microbiota of the mice used. The ability of the various
strains used to disrupt themicrobiota and the susceptibility of the
microbiota to perturbations induced by T. gondii clearly have a
great impact; because the microbiota in genetically identical mice
varies enormously in different mouse facilities, replicating any of
these studies is challenging.

It has been reported that T. gondii-induced dysbiosis depends
on the negative impact of IFN-γ produced by CD4+ T cells
on Paneth cells and their ability to produce certain AMPs (11).
Our study demonstrates that IL-17-induced AMPs contribute
to provide a broad umbrella of protection from dysbiosis that
is essential during pathogenic T. gondii infection; therefore a
reduced Th17 response during infection results in exacerbated

dysbiosis and pathology. Indeed, Crtam−/− mice had a very
selective reduction in AMPs induced by IL-17, but expressed
AMPs released by Paneth cells at normal levels. Given the
role of IL-17 in inducing the differentiation and recruitment
of neutrophils (35), we envision that Th17 could potentially
act by mobilizing a neutrophilic source of AMPs that, together
with Paneth cells, provides the broad spectrum of AMPs
required for preventing perturbation of microbiota, particularly
the expansion of Enterobacteriaceae. The relative impacts
of Paneth cell- and neutrophil-derived AMPs in preventing
dysbiosis may vary depending on the type and location of the
intestinal infection.

Our data support a role for CRTAM in intestinal Th17
responses, whereas Th1 and Th22 responses seem to be
relatively CRTAM-independent. This conclusion is consistent
with previous studies focusing on the impact of CRTAM on T
cell responses in various contexts (24, 36–38), though it does
not concur with the originally proposed role for CRTAM in
CD4+ T cell production of IL-22 and IFN-γ (39). Our study
further advances our understanding of the role of CRTAM in
Th17; clearly it is not required for the initial induction of
Rorγt in naïve CD4+ T cells, as Crtam−/− and WT mice have
similar percentages of intestinal Rorγt+CD4+ T cells. Rather,
CRTAM seems to enable IL-17 production by Th17 cells. Since
myeloid cells secrete IL-23 in response to changes in the intestinal
microbiota (40, 41) and express the CRTAM ligand CADM1 (26),
we speculate that CRTAM-CADM1 interactions may sustain the
exposure of Rorγt+CD4+ T cells to myeloid cells producing
IL-23, thereby promoting their final maturation into IL-17-
producing CD4+ T cells.

In conclusion, our study demonstrates that a protective
immune response against T. gondii must both effectively
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FIGURE 3 | Absence of CRTAM expression results in impaired antimicrobial peptide production. WT and Crtam−/− mice were infected orally with 10 cysts of T.

gondii strain ME49. (A) Expression of S100a8, S100a9, Defb3, Reg3g, Defa1, and Defa2 mRNA in the ilea of infected mice at days 0, 5, and 8 determined by

quantitative PCR. 16S rRNA sequencing of ileal lumen contents at day 0 or 8 days post-infection (D8). Data are mean bacterial changes at the (B) phyla or (C) order

level, and (D) principal coordinates analysis on weighted UniFrac distances (n = 4). Bacterial counts present in the (E) mesenteric lymph node and (F) spleen at day 8

post-infection. Bars represent means, error bars represent SEM. Data are representative of two independent experiments (n = 4–8). Statistical analysis was performed

using Student’s t-test (*p < 0.05; **p < 0.01; ***p < 0.001).

control invading pathogens through the Th1-IFN-γ axis
and prevent dysbiosis, barrier leakage and microbial
translocation through the Th17-AMP axis. Given that
oral infection of mice with T. gondii causes intestinal
inflammation and ileitis that resemble some aspects of
Crohn’s disease (42), our findings suggest that unbalanced
representation of CD4+ T cell subsets may have a decisive
impact in the onset and progression of human inflammatory
bowel disease.

MATERIALS AND METHODS

Mice
Crtam−/− and C57BL/6 mice were bred in a pathogen-free

facility at Washington University. Age and sex matched

animals were used throughout the experiments and were
co-housed from birth. All animal experiments were conducted

according to U.S.A. Public Health Service Policy of Humane

Care and Use of Laboratory Animals. All protocols were
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FIGURE 4 | IL-17 blockade curbs AMP production and augments bacterial translocation. WT mice were injected intraperitoneally with 350 µg of anti-IL-17A and

anti-IL-17F or an isotype control (I.C.) at days −1 and 5 and infected orally with 10 cysts of T. gondii strain ME49. (A) Expression of S100a8, S100a9, Defb3, and

Reg3g mRNA in the ilea of infected mice at day 8 determined by quantitative PCR. Bacterial counts present in the (B) mesenteric lymph node and (C) spleen at day 8

post-infection. Bars represent means, error bars represent SEM. Data are representative of two independent experiments (n = 4). Statistical analysis was performed

using Student’s t-test (*p<0.05).

FIGURE 5 | Th17 lineage specification is CRTAM-independent. WT and Crtam−/− mice were infected orally with 10 cysts of T. gondii strain ME49. (A) Representative

flow cytometry plots showing percent of rorγt of CD4T cells and foxp3 and rorgt expression on CD4T cells. (B) frequencies of Rorγt+ T cells and (C) Rorγt+Foxp3+

T cells in the small intestinal lamina propria of infected mice at day 5. Bars represent means, error bars represent SEM. Data are representative of two independent

experiments (n = 3). Statistical analysis was performed using Student’s t-test.

approved by the Institutional Animal Care and Use
Committee (School of Medicine, Washington University in
St. Louis).

T. gondii Infection and Blocking Antibodies
The luciferase-expressing Me49-Luc type II T. gondii strain was
provided by Laura Knoll (29). Tissue cysts were obtained from
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the brains of infected mice. Experimental mice were infected
with 10 cysts of T. gondii Me49 orally. Weight was monitored
every 48 h for the first 20 days. Parasite burden was analyzed
by bioluminescence measurements. Mice were imaged every
48 h for 20 days by i.p. injection of 150mg of luciferin D
(Biosynth AG) per kg of body weight and using a Xenogen
IVIS 100 (Caliper Life Sciences). Data was analyzed with the
Living Image Software (Caliper Life Sciences) and is expressed in
relative light units. Blocking antibodies anti IL-17A (IL-17F) and
IgG1 isotype control were purchased from BioxCell. Mice were
injected intraperitoneally with 350 µg at day −1 and +5 of T.
gondii infection.

Tissue Histology and Histological Score
Small intestines from mice were obtained and the luminal
contents were flushed with cold PBS. The ileal portion was
fixed in formalin, longitudinally embedded in paraffin. Five
micrometer sections were cut and stained with hematoxylin
eosin. Tissue slides were deidentified and scored as previously
described (43). Briefly, sections were scored on three factors: (1)
lymphocytes infiltration (0, no infiltration, 1, some infiltration, 2,
massive infiltration in lamina propria, 3, massive infiltration in
lamina propria and muscle) (2) edema (0, no edema, 1, edema
<50µm, 2, edema between 50 and 100µM, 3, edema >100µm),
and (3) ulceration (0, no ulceration, 1, <10% epithelium
ulcerated, 2, between 10 and 20% epithelium ulcerated, 3, >20%
epithelium ulcerated). Histology was scored in a blinded fashion
and scores were totaled for a cumulative score between 0 and 9.

Tissue Isolation, Flow Cytometry, and Cell
Sorting
Small intestine intraepithelial lymphocytes (siIEL) and lamina
propria lymphocytes (siLPL) were prepared at day 5 and 8
post-infection as described by Lefrançois and Lycke (44). For
flow cytometry, the following fluorophore-labeled monoclonal
antibody (mAbs) were used: CD3 (145-2C11), CD8 (53–6.7)
from BD Biosciences; CD4 (GK1.5) from eBioscience; and
CD45 (30F11.1) from Biolegend. For intracellular stainings,
cells were stimulated with the Cell Activation cocktail without
brefeldin (Biolegend) for 4 h in the presence of Golgi Plug
(BD Biosciences). Surface staining was performed, followed by
fixation and permeabilization (BD Cytofix cytoperm Plus kit,
BD biosciences). The monoclonal antibodies IL-17A (eBio17B7)
from eBiosciences, IFN-γ (XMG1.2) and IL-22 from BD
Biosciences were used. For rorgT staining, surface staining was
performed, followed by fixation with the eBioscience foxp3
transcription factor buffer set (ebiosciences). The monoclonal
antibody anti-Rorγt (AFKJS-9) and foxp3 (FJK-16s) from
ebiosciences was used. Samples were processed in a FACSCantoII
(BD Biosciences) and analyzed with FlowJo Software (Flowjo
LLC). Flow cytometric cell sorting was performed using a
FACSAria II (BD Biosciences).

Bacterial Counts in Tissue
Mesenteric lymph nodes and spleens from infected mice were
aseptically removed and homogenized in PBS in a Magnalyzer
(Roche; 5,000 rpm× 30 s). The homogenized organs were plated

in Luria Bertani (LB) agar and incubated at 37◦C for 48 h.
Colonies in the plates were counted and the colony forming units
per organ calculated.

Fecal DNA Extraction, Tissue RNA
Extraction, and Quantitative PCR
Fecal DNA was extracted using a QIAmp DNA Stool mini
kit and RNA was extracted from ileum samples with an
RNeasy Mini kit following manufacturer’s recommendations
(Qiagen). cDNA was synthesized from RNA with Superscript
III first-strand synthesis system for RT-PCR (Invitrogen). RNA
expression was analyzed by quantitative PCR using Universal
SYBR Green PCR Master Mix (Bio-Rad Laboratories) and an
ABI7000 (Applied Biosystems). The following oligonucleotides
were used: Il17a Fwd 5′-AGAGCTGCCCCTTCACTTTC-3′,
Il17a Rev 5′-TGGGGGTTTCTTAGGGGTCA-3′, Il17f Fwd 5′-
CTGGAGGATAACACTGTGAGAGT-3′, Il17f Rev 5′-TGCTG
AATGGCGACGGAGTTC-3′, Il22 Fwd 5′-GCTCAGCTCCTG
TCACATCA-3′, Il22 Rev 5′-AGCTTCTTCTCGCTCAGACG-
3′, ifng Fwd 5′-ACAATGAACGCTACACACTGCAT-3′, ifng
Rev 5′-TGGCAGTAACAGCCAGAAACA-3′, GADPH Fwd 5′-
ACGGCAAATTCAACGGCACAGTCA-3′, GAPDH Rev 5′-T
GGGGGCATCGGCAGAAGG-3′, Defa1 Fwd 5′-TCAAGAGG
CTGCAAAGGAAGAGAAC-3′, Defa1 Rev 5′-TGGTCTCCAT
GTTCAGCGACAGC-3′, Defa2 Fwd 5′-CCAGGCTGATCCTA
TCCAAA-3′, Defa2 Rev 5′-GTCCCATTCATGCGTTCTCT-3′,
Reg3g Fwd 5′-AACAGAGGTGGATGGGAGTG-3′, Reg3g Rev
5′-GGCCTTGAATTTGCAGACAT-3′, S100A8 Fwd 5′-GGAA
ATCACCATGCCCTCTA-3′, S100A8 Rev 5′-ATCACCATCC
GAAGGAACTC-3′, S100a9 Fwd 5′-GTCCAGGTCCTCCATG
ATGT-3′, S100a9 Rev 5′-TCAGACAAATGGTGGAAGCA-3′,
defb3 Fwd 5′-GTCTCCACCTGCAGCTTTTAG-3′, defb3 Rev 5′-
ACTGCCAATCTGACGAGTGTT-3′. The expression of target
mRNA was calculated and normalized to the expression of the
house keeping gene GAPDH using the 2(-11CT) method.
Relative abundance of γ-proteobacteria was analyzed by
quantitative PCR using Universal SYBR Green PCR Master
Mix (Bio-Rad Laboratories) and an ABI7000 (Applied
Biosystems). The following oligonucleotides were used: γ-
Proteobacteria 1080gF 5′-TCGTCAGCTCGTGTYGTGA-3′,
g-prot g1202R 5′-CGTAAGGGCCATGATG-3′, EUB1114
Fwd 5′-CGGCAACGAGCGCAACCC-3′, EUB1221 Rev 5′-
CCATTGTAGCACGTGTGTAGCC-3′. The relative abundance
of γ-proteobacteria was calculated to eubacteria using the
2(-11CT) method.

16S rRNA Sequencing and Analysis
16S rRNA gene sequencing of ileal lumen samples were processed
for DNA isolation using the QIAmp DNA Stool mini kit.
The V4 region of 16S rRNA gene was PCR-amplified using
barcoded primer described previously (45) and sequenced using
the Illumina MiSeq Platform (2 × 250–bp paired-end reads).
OTU picking was performed using UPARSE (usearch v.8.0.162)
(46), and taxonomy was assigned using the uclust method with
the Greengenes 13.8 database (QIIME v1.9) (47).
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Statistical Analyses
All analyses were performed with Prism 5.0 (GraphPad). Data
were analyzed with a non-paired Student’s t-test, survival data
was analyzed using Log-rank Mantel-Cox test a p < 0.05 was
considered significant.
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