
University of Maryland Technical Report UMIACS-TR-2019-01, July 2019.

Design and Evaluation of Monolithic Computers
Implemented Using Crossbar ReRAM

Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Shang Li, Luyi Kang,
Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob, and Donald Yeung

University of Maryland and Crossbar Incorporated

ABSTRACT
A monolithic computer is an emerging architecture in which
a multicore CPU and a high-capacity main memory sys-
tem are all integrated in a single die. We believe such ar-
chitectures will be possible in the near future due to non-
volatile memory technology, such as the resistive random ac-
cess memory, or ReRAM, from Crossbar Incorporated. Cross-
bar’s ReRAM can be fabricated in a standard CMOS logic
process, allowing it to be integrated into a CPU’s die. The
ReRAM cells are manufactured in between metal wires and
do not employ per-cell access transistors, leaving the bulk of
the base silicon area vacant. This means that a CPU can be
monolithically integrated directly underneath the ReRAM
memory, allowing the cores to have massively parallel ac-
cess to the main memory.

This paper presents the characteristics of Crossbar’s Re-
RAM technology, informing architects on how ReRAM can
enable monolithic computers. Then, it develops a CPU and
memory system architecture around those characteristics, es-
pecially to exploit the unprecedented memory-level paral-
lelism. The architecture employs a tiled CPU, and incorpo-
rates memory controllers into every compute tile that sup-
port a variable access granularity to enable high scalabil-
ity. Lastly, the paper conducts an experimental evaluation of
monolithic computers on graph kernels and streaming com-
putations. Our results show that compared to a DRAM-
based tiled CPU, a monolithic computer achieves 4.7x higher
performance on the graph kernels, and achieves roughly par-
ity on the streaming computations. Given a future 7nm tech-
nology node, a monolithic computer could outperform the
conventional system by 66% for the streaming computations.

1. INTRODUCTION
In the post-Moore era, computer architects will no longer
be able to rely on technology scaling. Instead, they will
need to look for new technologies to continue fueling ar-
chitectural innovation. This paper explores one such possi-
bility: monolithic computers. A monolithic computer relies
on new logic-memory integration technology to fabricate a
CPU and a high-capacity main memory system all on a sin-
gle die. Compared to conventional package-level integration
involving multiple dies—e.g., stacking DRAM dies on top
of a logic layer or integrating DRAM and CPU dies over
a silicon interposer—a monolithic computer achieves much
higher integration of the CPU and memory system.

Whereas package-level integration can support thousands
of wires between the CPU and main memory, monolithic in-

tegration will be able to support millions of wires, providing
a much wider main memory interface than is currently pos-
sible. This will enable architects to deliver greater mem-
ory parallelism and bandwidth to data-intensive computa-
tions, and achieve superior bandwidth-per-watt. In addition,
monolithic computers will reduce the physical distance that
memory requests will need to travel. Because all memory
requests can stay on the CPU die, there won’t be a need to
cross the silicon interposer, or worse, to traverse the system
motherboard. This locality benefit can provide significant
additional improvements in power efficiency.

Monolithic computers do not exist yet, but some research-
ers believe emerging non-volatile memories will change that
in the future [1, 2]. Aly et al [1] argue that spin-transfer
torque magnetic RAM (STT-MRAM) or resistive RAM (Re-
RAM) are such enabling memory technologies. Unlike con-
ventional DRAM which requires special memory fabrication
processes, STT-MRAM and ReRAM can be fabricated in a
standard CMOS logic process. Hence, they have the poten-
tial to be integrated into a CPU’s die.

The main hurdle, though, is identifying a suitable integra-
tion technology. Fine-grained 3D monolithic integration [1,
2] has been proposed as a possible solution, one that assumes
a process technology in which multiple planar layers of sil-
icon can be fabricated monolithically in 3D. This would al-
low compute logic and non-volatile memory to be integrated
in alternating planar layers. While this results in extremely
high logic and memory densities, unfortunately, it requires
advanced process technology that is still at the developmen-
tal stages in research labs.

In our work, we assume a much simpler integration ap-
proach that exploits non-volatile memories with 3D cross-
point architectures. In crosspoint memories–examples in-
clude Intel’s Optane [3] as well as the ReRAM technology
from Crossbar Incorporated [4]–the memory cells are fabri-
cated in between metal wires of a CMOS logic process, i.e. at
the intersection of wires laid out perpendicularly in adjacent
metal layers. Rather than isolate individual cells using ac-
cess transistors, crosspoint arrays provide inter-cell isolation
via selector devices integrated with the memory cells. So,
there are no transistors within the core of the crosspoint ar-
rays. Instead, the bulk of the silicon area underneath the
memory are free for implementing non-memory circuits.

It is well known that such crosspoint memories can be
layered on top of compute logic during back-end of line
(BEOL) processing, for example in the top metal layers of a
CPU’s die. Although there are no per-cell transistors, some
peripheral logic is still needed at each crosspoint array for

access circuitry (decoders and sense amplifiers). These ac-
cess circuits will impinge upon the CPU, but the majority
of the die’s area is still available for CPU logic. This will
permit a large amount of memory (memory exists across the
entire CPU die) to be fabricated extremely close to the cores
(the memory sits directly on top of the cores). And, it uses
standard CMOS logic processing that widely exists today.

This paper investigates computer architectures that will
be enabled by monolithically integrated crosspoint memo-
ries, and evaluates their potential performance benefits. To
do so, we assume a particular memory technology, Cross-
bar’s ReRAM, and develop an architecture around its spe-
cific features. One of the key features driving our design
is massive parallelism in the integrated ReRAM. Crossbar’s
ReRAM is extremely dense; and, it relies on current-based
sensing that limits the extent of wordlines and bitlines within
individual sub-arrays. This means the ReRAM sub-arrays
are quite small. Hence, there can be a very large number
of them, 10s of thousands, integrated into a CPU’s die, with
each providing an independent and parallel access point.

At the same time, ReRAM also exhibits a fine access gran-
ularity. Not only does current-based sensing make ReRAM
sub-arrays small, it also limits the number of bits that can
be sensed simultaneously. For example, each ReRAM sub-
array may provide only 4 bits of data per access. So, mul-
tiple sub-arrays must be grouped together and accessed as
a bank to provide larger access sizes. Since there is a fixed
number of sub-arrays that can fit on a CPU die, there exists
a tradeoff between granularity and parallelism: a coarser ac-
cess granularity results in lower memory parallelism while a
finer access granularity increases memory parallelism.

We propose to integrate a large number of memory con-
trollers across the CPU die to support the massive memory
parallelism in monolithically integrated ReRAM. The archi-
tecture we envision has up to 400 controllers. To maximize
parallelism, we form banks that support the finest access
granularity of interest to the CPU, which we assume to be
8 bytes. At 8-byte granularity, we estimate there will be
16,000 to 64,000 banks across the CPU die. Notice, there
are 1–4 million wires emanating from these banks, eventu-
ally connecting to the controllers. Such an extremely parallel
memory interface is possible given the monolithic integra-
tion of the controllers with main memory.

The fine-grained banks in our architecture will support
programs with irregular memory access patterns very effec-
tively. However, we must not overlook regular computations
(e.g., streaming) which prefer coarse-grained data transfers
to amortize data movement overheads. We propose support-
ing a coarser granularity at the controllers by simply activat-
ing multiple fine-grain banks together to fetch at cache-block
granularity whenever memory accesses exhibit spatial local-
ity. While this does not reduce overheads at the bank level,
it can increase efficiency upstream in the on-chip network
and processor caches. Even when fetching 64-byte cache
blocks, the on-die ReRAM can sustain 2,000–8,000 simul-
taneous requests, still quite a lot of parallelism.

In addition to the memory system, Crossbar’s ReRAM
also affects our design of the CPU. Besides massive par-
allelism, another key feature of ReRAM is higher access
latency. Unfortunately, ReRAM is currently not as fast as

DRAM, exhibiting latencies in the 100s of nanoseconds. The
CPU must be able to tolerate these latencies by exploiting
the available memory parallelism. We employ tiled proces-
sors [5, 6] to accomplish this. Our CPU consists of many
cores interconnected by a scalable point-to-point on-chip net-
work, with support for multithreading and SIMD vector units
in each core. In particular, we leverage recent SIMD ISAs,
such as Intel AVX-512 [7], that support wide scatter-gather
memory operations. Scatter-gather can efficiently generate a
large number of fine-grained requests to the memory system,
which is a good match to the on-die ReRAM.

Despite having multiple cores, multi-threading, and wide
SIMD, we find that fully exploiting all of the parallelism in
the integrated ReRAM memory system is challenging. In
particular, popular tiled CPUs, like Intel’s Knights Land-
ing (KNL) [8], do not exhibit enough parallelism. To scale
up, our tiled CPU eschews some of the general-purpose fea-
tures of CPUs like KNL. First, we use smaller in-order cores
to enable higher core and thread counts, at the expense of
single-thread performance. We envision having up to 400
cores supporting 2000 simultaneous threads. And second,
we adopt a simple two-level cache hierarchy, omitting cache
coherence to save on the large coherence directories that
would be needed for 100s of cores. In that regard, our archi-
tecture resembles a tiled accelerator [9] more than a general-
purpose multicore.

Tiled processors also provide a natural way to combine the
memory and CPU architectures. Existing tiled CPUs employ
off-chip memory systems, such as HBM DRAM, and pro-
vide memory access through a small number of controllers
at the periphery of the on-chip network. As mentioned ear-
lier, we foresee having a much larger number of controllers.
We propose to incorporate the controllers into the compute
tiles themselves, making them first-class citizens on the net-
work on-par with the cores. Currently, we assume a single
controller per tile, but different core-to-controller ratios are
possible. This allows the controllers to scale with the com-
pute tiles, much like in classical distributed shared memory
(DSM) machines [10, 11, 12]. But now, the DSM nodes–
including their main memories–are all integrated monolithi-
cally, eliminating chip crossings entirely.

The rest of this paper elaborates on our monolithic com-
puter ideas outlined above. Specifically, we make the fol-
lowing contributions:

• We present Crossbar’s ReRAM memory technology,
describing its density, latency, integration with CPU
logic, and potential for massive memory parallelism.
While technology driven, the discussion is meant to in-
form architects on how Crossbar ReRAM could enable
monolithic computers.

• We develop a CPU and memory system architecture
that can effectively exploit the ReRAM’s memory-level
parallelism. The architecture employs a large tiled CPU
with wide SIMD instructions, and incorporates mem-
ory controllers into every compute tile. It also supports
a variable access granularity to maximize the ReRAM
bank-level parallelism that is exposed to the CPU.

• Finally, we conduct an evaluation of monolithic com-
puters on graph kernels and streaming computations.

Figure 1: Crossbar ReRAM cell & close-up of the array

Figure 2: Monolothic CPU implementation with Cross-
bar ReRAM array above; Large portion of unblocked
silicon area beneath the ReRAM bitcell array is available
for general CMOS circuits

Compared to a DRAM-based tiled CPU, a monolithic
computer achieves 4.7x higher performance on the graph
kernels, and achieves roughly parity on the streaming
computations. Given a future 7nm technology node,
a monolithic computer could outperform the conven-
tional system by 66% for streaming computations.

Sections 2–5 address these three contributions. Then, the
paper concludes in Section 6.

2. CROSSBAR RERAM TECHNOLOGY
Crossbar ReRAM is a type of resistive memory cell [13] that
can be operated and fabricated without per-cell access tran-
sistors. As shown in Figure 1, the cell elements lie between
perpendicular wires, in an array that is fabricated up in the
metal stack, in the back-end of line (BEOL). Because no per-
cell access transistor is used, the silicon space beneath the
memory array is not needed for access transistors, as it is in
most memory-cell technologies, which means that the space
beneath the array is actually empty, as shown in Figure 2.
In fact, up to 75% of the area immediately under the array
(the exact proportion depends on the array’s organization) is
empty and can be used for logic circuits having nothing to do
with the array’s operation. This presents a significant oppor-
tunity for integration, as one could use that empty space for
core logic and SRAM caches. This is the fundamental inte-
gration technology for monolithic computers that we exploit
in our work.

Figure 3: (a) 1S1R ReRAM bitcell cross-section showing
Top Electrode (TE), Resistive element: Metallic Switch
(MS), Selector device: Superlinear Threshold Layer
(STL), and Bottom Electrodes (BE) (b) Crossbar array
bias scheme, with selected cell circled

2.1 ReRAM Physical Characteristics
The Crossbar ReRAM bitcell is based on the creation of
metallic filaments in a silicon-based switching medium for
the resistive element [4, 14, 15]. Figure 3(a) shows the
cross section of the 1S1R (1 selector per 1 resistive ele-
ment) bitcell used. The design of the Crossbar bitcell en-
ables a reliable memory operation without an access transis-
tor. A proprietary FAST Superlinear Threshold Layer (STL)
enables high selectivity (>106-1010) and fast access times.
This selector device is integrated with the resistive element
to form the metallic switch (MS) layer for the bitcell as
shown in Figure 1, sandwiched between the bottom elec-
trode (BE) and the top electrode (TE). A voltage above a
threshold (> VT H) is required to select the cell to perform
a read or write operation. For programming, a much higher
voltage (>VPRG) is applied to enable the formation or reset-
ting of the metallic nano-filaments.

Figure 3(b) shows the bias scheme of the crossbar mem-
ory array for selection. All wordlines and bitlines are held
at V/2, while the selected cell’s wordline and bitline are bi-
ased to have a difference of V across it. The high selectivity
of the selector device ensures minimal sneak path current on
unselected cells on the same bitline–which have a potential
of V/2 across their cells–thus permitting large arrays (2K x
2K cells is possible). But wordline drive current limitations
bounds the number of bits that can be sensed in parallel to a
small number, such as 8 bits per ReRAM sub-array layer.

Table 1 summarizes the key performance metrics of Cross-
bar’s ReRAM array. Crossbar has successfully fabricated 2-
and 4-layer stack memories, and is in the process of fabri-
cating the 8-layer stack memory shown in Figure 1. Based
on prior success, Crossbar predicts the feasiblity of 100GB
to 200GB of ReRAM memory at 16nm on a 400mm2 chip.
Moreover, Crossbar expects their ReRAM to scale to 7nm
in the foreseeable future, which would enable many 100s of
GBs on a single die.

2.2 ReRAM Integration with Logic
When the ReRAM memory circuits are placed alongside
other blocks, the peripheral circuits would be realized as
blocked areas. In traditional digital implementation flow,
we can think of these as placement blockage areas on which
standard cells cannot be placed. For this study, we have cho-
sen to use a 26% memory to periphery area ratio, as used

Table 1: Crossbar 1S1R ReRAM Memory Parameters
Key Parameter Performance
Bitcell area for two-layer stack 4F2

Read Latency 200-700 ns
Write Latency ≈ twice read latency
Cell Leakage 0.1 nA/cell
Program Energy 10-100 pJ/cell
Endurance > 105 – 108 cycles
Retention > 7-10 years
Scaling Potential < 10 nm
Ron/Roff ratio 100
Selectivity (∆I @VR, VR/2) > 106 - 1010

Figure 4: Top-down view of via tap points from ReRAM
metal layer to connect to ReRAM periphery circuits.
Staggered via tap points allows for a routing channel for
signals to feedthrough across blocked region.

by Crossbar for their 2-layer memory stack. This blocked
region is denoted by the "L" shape in Figure 2.

The ReRAM memory developed by Crossbar is CMOS
compatible and back-end of line (BEOL) stackable, and it is
organized so that the bitcells are stacked on higher metal lay-
ers. Because the peripheral area must allow for connection
to the ReRAM layers, there will be restriction of the gen-
eral interconnect routing over these blocked regions. The
connections are depicted as via tap points in Figure 4. By
staggering the position of the via tap points to each of the
ReRAM wordlines, a feed-through path can be accommo-
dated. This is critical when the blocked peripheral region is
embedded with another block, that would likely need a lim-
ited number of interconnections signals across the region. In
our study (Section 3.1.1), we found that the area penalty is
extremely high when such interconnects are not allowed.

2.3 ReRAM Latency
While resistive RAMs are, in general, significantly faster
than flash-based memories (hundreds of nanoseconds vs. hun-
dreds of microseconds), they are still not as fast as DRAM
(tens of nanoseconds), which calls into question their pro-
posed use as main memory. There are two potential trade-
offs and one mitigating factor that we consider:

1. The actual latency of an array is highly dependent on
its physical dimensions and organization. That is, the
length of the wires matters, because one must drive
that length of metal, and the number of cells per wire

Delay
(usec)

0.1

0.2 0.3 0.3
0.5

0.7
1.2

2.2

1 32 64 128 256 512 1K 2K
0

1

10

Die Area
(mm2)

1

10

100

Sub-Array Size

Figure 5: Trade-off between density (left-side y-axis: the
die area required for the desired array capacity) and
read latency (right-side y-axis: microseconds), vs. num-
ber of cells per bitline (x-axis)

matters, because it adds significantly to the capacitive
effects. Figure 5 shows the relationship between the
efficiency of the ReRAM array’s organization and its
read access time for an existing memory fabricated at
Crossbar in a 28nm process. One can see the trade-
off between the array’s efficiency and its latency. To
wit, putting more cells on the bitline (x-axis) leads to a
denser array (lower value on the left-side y-axis) but a
longer latency (higher value on the right-side y-axis).

2. The latency for a cell depends on its expected lifetime.
That is, like many other nonvolatile cell technologies,
one can trade off the expected longevity of data stored
in the cell for reduced access times, both for write op-
erations and read operations. Long latencies in non-
volatile memory technologies are coupled to the de-
sired longevity of the data: one expectes nonvolatile
memories to hold their data for decades. However, if
the expectation is reduced to, say, minutes or hours, as
would be the case were the technology to be used for
main memory, then one can reduce the programming
and read times significantly. We predict a redesign
of Crossbar’s current memory to tradeoff longevity for
lower access time could result in read latencies of 200-
700ns (Table 1), rather than 1-2+ usec, for the most
area efficient (right-most) arrays in Figure 5.

3. One mitigating factor is that, while DRAM latency is
indeed tens of nanoseconds, in all practical scenarios
(i.e., access by multiple processor cores through a typ-
ical memory controller), the real, observed latency of
the DRAM-based memory system is in fact hundreds
of nanoseconds or more. This is as true today, even
for high-performance DRAMs, as it was over a decade
ago [16, 17]. So, to match the actual main-memory la-
tency seen by software, one need only provide memory
latencies in the low hundreds of nanoseconds. This is
indeed possible with ReRAM, because with sufficient
parallelism, one can reduce the queueing delays to a
small fraction of the overall memory delay.

While read latency is a critical parameter for most applica-
tions, high write latencies also impact the overall system
performance. For ReRAM, due to its non-volatile nature,
high write-energy is required to modify the data stored in the

ReRAM array. As indicated in Table 1, we expect write la-
tency for ReRAM to be roughly twice the read latency, mak-
ing writes 10-100x more costly than on DRAM-based main
memory systems. Write buffers can mask much of the la-
tency from writes, but the long occupany of banks can cause
contention and in turn delay reads.

2.4 ReRAM Sub-Array Parallelism
One of the key features of ReRAM technology is the poten-
tial for massive memory-level parallelism due to the large
number of ReRAM sub-arrays that can be integrated on a
CPU’s die. To gauge the amount of parallelism, we con-
sider an existing 8GB memory from Crossbar implemented
using 2-stack ReRAM. Assuming 2K × 2K sub-arrays (i.e.,
the most area-efficient configuration in Figure 5), this mem-
ory contains 8,192 separate sub-arrays. In a 400 mm2 die at
16nm, there would be 8 such memories if the entire die were
completely covered with ReRAM (an overly optimistic as-
sumption which we will address in Section 3). This memory
chip would contain 65,536 sub-arrays, each with its own ac-
cess circuits, and thus, the ability to provide an independent
access point. Assuming scaling down to 7nm, we could ex-
pect about a 4x increase in density, resulting in 256K sub-
arrays on a single die.

In addition, stacked ReRAM layers can support even more
memory parallelism as the ReRAM cells from different lay-
ers could be sensed in parallel. Because adjacent ReRAM
layers share wires, not every layer can be accessed inde-
pendently. But, it could be possible to simultaneously ac-
cess every other layer. (This would increase the complexity
of the access circuits, and would add area overhead on top
of the analyses from Sections 2.2 and 2.3. So, it comes at
some cost.) In an 8-stack crosspoint array, the ReRAM lay-
ers could provide another 4x in memory parallelism. This
would yield 256K independent access points at 16nm, and
1M independent access points at 7nm.

Not all of these access points will be exposed to the CPU,
in part, because the natural access size of ReRAM is too
fine-grained. As discussed in Section 2.1, each crosspoint
array only allows sensing a small number of bits per access,
e.g. 8 bits (per ReRAM layer). To increase the access granu-
larity, multiple sub-arrays must be grouped together and ac-
cessed as a bank; hence, the bank-level parallelism would be
less than the total number of independent sub-arrays. Sec-
tion 3 will discuss the amount of bank-level parallelism the
CPU can see. Nevertheless, this analysis suggests integrated
ReRAM has the potential to support massive levels of mem-
ory parallelism.

3. CPU AND MEMORY ARCHITECTURE
In this section, we develop an integrated CPU and main mem-
ory architecture around the specific features of Crossbar’s
ReRAM technology from Section 2. The main goal for the
architecture is to support a large amount of parallelism in
order to fully utilize the massive number of sub-arrays in
the on-die ReRAM discussed in Section 2.4. Supporting
as much parallelism as possible will also help tolerate the
ReRAM’s high access latency as discussed in Section 2.3.

Figure 6 illustrates the overall architecture. The starting
point for the architecture is a tiled CPU consisting of a large

Monolithic ReRAM - CPU Die

Compute tiles

 Core

L1

Router Memory
Controller

ReRAM
Memory

 SIMD
units

L2 Slice

Figure 6: Tile-based monolithic computer.

number of compute tiles. Each compute tile contains a sim-
ple in-order core, a private L1 cache, and an L2 cache slice.
All of the L2 slices form a physically distributed, but log-
ically shared, last-level cache. ReRAM memory cells are
implemented over all of the compute tiles in BEOL metal
layers, with access circuits integrated into the CPU’s logic
as discussed in Section 2.2.

The main distinguishing feature of the architecture is how
the memory controllers (MCs) are incorporated into the tiled
CPU. In conventional tiled CPUs, the memory system is off
chip, and access to it is provided through MCs that are sit-
uated at the periphery of the network-on-chip (NOC). This
means there are typically much fewer MCs compared to the
number of compute tiles or cores. So, traffic to off-chip
memory necessarily constricts as it funnels through the small
number of MCs, leading to contention and queueing delays.
As has been shown in previous work, queueing delays ac-
count for the lion’s share of what is perceived to be “DRAM
latency” in real systems [16].

In contrast, our proposed architecture has a much larger
number of MCs that are distributed across the entire CPU
die. A natural arrangement is to have one MC per compute
tile, as shown in Figure 6. This puts the MCs on par with the
cores and caches, instead of relegating them to the edges of
the NOC. It provides scalability and eliminates the constric-
tion of memory traffic at the MCs, mitigating the queueing
delays that can occur in conventional architectures.

Furthermore, each MC receives memory requests on local
L2 slice cache misses. The MC services such cache miss
requests from the local ReRAM banks integrated above the
compute tile to which the MC belongs. Hence, associating
MCs with compute tiles allows each L2 slice to cache data
from the physically closest ReRAM banks, thus localizing
all communication between the L2 cache and the memory
sub-system. The only long-haul communication occurs on
L1 misses that need to access a remote L2 slice. But even
then, the communication still stays on-chip.

3.1 ReRAM Banks
The numerous memory controllers in our architecture consti-
tute one part of the solution for providing massive memory
parallelism. The other major part are the ReRAM sub-arrays
discussed in Section 2.4. The actual amount of memory par-
allelism the CPU will see depends on the number of sub-

arrays that can be integrated into a CPU’s die as well as the
number of independent banks these sub-arrays are used to
form. The following addresses both issues in greater depth.

3.1.1 Sub-Array Area Efficiency
In Section 2.4, we estimated the number of sub-arrays that
could fit on a large CPU-sized die, but this estimate opti-
mistically assumed that the ReRAM covers the entire CPU.
The problem is that each ReRAM sub-array contains periph-
eral circuits (Figure 2) and present routing obstructions (Fig-
ure 4) that negatively impact the physical layout of the CPU
with which it is integrated. So, in addition to the area for the
peripheral circuits (about 26%), there is another area over-
head incurred in the layout of the CPU itself. This CPU area
overhead becomes more severe as the ReRAM sub-arrays
are more densely packed. Thus, in practice, it is prohibitive
to have 100% of the CPU die covered with ReRAM.

We conducted a study to quantify what fraction of the
CPU die could be covered with ReRAM, and what cost to
the CPU area would be incurred as a result. Our experi-
ments integrate a standard-cell based synthesized RISC pro-
cessor with ReRAM crossbar memory circuits. Specifically,
the Berkeley VSCALE, which is a single-issue in-order 3-
stage integer RISC-V processor, was used for the study. Be-
cause the baseline processor is quite small, we increased its
size by scaling the datapath up to 256 bits.

We used the open-source NCSU FreePDK 45nm process
design kit and the Nangate open source digital library for
the 45nm process node. This design kit and library provides
support for the Synopsys Design Compiler and Cadence En-
counter. Synopsys Design Compiler is used for the synthesis
step of the tool flow, and Cadence Encounter is used for the
Automatic Place and Route (APR) step of the flow to pro-
duce a final GDSII layout.

To mimic the integration constraints from Section 2.2, two
types of blockage layers are indicated in the Cadence En-
counter setting. The first is for the placement blockage to
prevent standard cells from being placed, and the second is
routing blockage for the specific metal layers to limit rout-
ing. We mimic the restricted metal routing described pre-
viously by blocking metal layers 1–8 and allowing for the
APR tool to route through the blocked region using metal 9
and 10. (The ReRAM memory layers are assumed to be in
metal layers 11 and above).

For the placement blockage, we assume each sub-array’s
access circuits are situated along two edges of the sub-array,
forming an “L” shape, as shown in Figure 2. We also assume
the unit of replication for the ReRAM is four sub-arrays ar-
ranged in a 2×2 cluster, with rotations of 0◦, 90◦, 180◦,
and 270◦, such that the peripheral circuits form a “cross”
shape. This configuration allows for the peripheral block-
age regions to be abutted with each other, resulting in a con-
tiguous placement blockage region. At 45nm, and assuming
2K×2K bit ReRAM sub-arrays, each 2×2 ReRAM cluster
occupies 109µm×109µm. For our experiment, we assumed
four such clusters are integrated into the CPU’s logic. The
question, then, is what is the optimal spacing between the
cluster such that the CPU area overhead is minimized?

We iteratively tried different inter-cluster spacings to find
the optimal separation. Figure 7 shows the layout of the best

Figure 7: Four 2×2 ReRAM clusters integrated with a
256-bit RISC-V Processor.

configuration from our experiments. In the figure, the four
instances of the 2×2 ReRAM clusters are clearly visible;
the random logic underneath and surrounding these clusters
are the placed and routed cells for the VSCALE processor.
We found that an inter-cluster spacing of between 100µm
to 150µm in both X and Y dimensions results in the lowest
CPU area overhead. As Figure 7 shows, this allows about
50% of the CPU area to be covered with ReRAM. For this
ReRAM density, the CPU area impact is a 20% increase.

Our area study only considers the impact of the ReRAM
on CPU logic circuits, but CPUs also have cache memory.
We envision that individual SRAM sub-arrays could be in-
tegrated underneath each ReRAM sub-array. This would re-
quire coordinating the selection of the SRAM sub-array size
with the ReRAM sub-array size. While we believe this is
feasible, we leave its evaluation for future work.

From this study, we conclude roughly half of the ReRAM
sub-arrays that were estimated in Section 2.4 to fit over an
entire CPU die could be feasibly integrated. In other words,
on a 400 mm2 die at 16nm, there are 32K sub-arrays (with
128K independent access points) on the CPU die. And, for
the same die size at 7nm, there are 128K sub-arrays (with
512K independent access points).

3.1.2 Access Granularity vs. Number of Banks
As discussed in Section 2.4, individual ReRAM sub-arrays
only provide a few bits per access. Multiple sub-arrays must
be grouped into banks so as to provide a more useful data
access granularity. Given that there is a fixed number of
ReRAM sub-arrays on the CPU die, this gives rise to a trade-
off between the access granularity supported and the number
of banks (and hence, parallelism) available to the CPU.

To maximize bank-level parallelism, we support the finest
access granularity of practical interest to the CPU, which we
assume to be 8 bytes. Given 8-stack sub-arrays that can each
provide 4 bytes of data per access (8 bits across 4 ReRAM
layers), we would need two sub-arrays to implement each
bank. On a 16nm technology node, we could thus implement

16,000 banks in total out of the 32K sub-arrays referenced
in Section 3.1.1. And, on a 7nm technology node, we could
implement 64,000 total banks out of the 128K sub-arrays
referenced in Section 3.1.1.

As our results in Section 5 will show, supporting an 8-byte
access granularity (along with massive parallelism) will ben-
efit data-intensive computations with sparse memory access
patterns. Doing so in an efficient manner has been extremely
challenging for conventional DRAM-based systems, but it
comes naturally to monolithic computers given ReRAM’s
fine-grain sub-arrays.

That said, it is important to not overlook regular access
patterns (e.g., streaming) that prefer larger data transfers to
amortize data movement overheads. We propose to sup-
port a coarser granularity at the controllers by simply acti-
vating multiple fine-grain banks together to fetch a cache-
block whenever memory accesses are expected to exhibit
spatial locality. While this does not reduce overheads at the
bank level, it can increase efficiency upstream in the NOC
and processor caches. Assuming 64-byte cache blocks, we
would need to activate 8 banks together for such coarse-
grained fetches. These cache-block-sized fetches would in-
cur an 8-fold decrease in the number of simultaneous re-
quests that the memory system could support.

3.2 Parallelism vs. Locality
As mentioned earlier, the massive number of banks in our ar-
chitecture will help tolerate the higher ReRAM access laten-
cies. The degree of latency tolerance is maximized when the
CPU’s accesses are spread evenly across all the banks. Bank
conflicts are especially costly in our architecture since they
serialize accesses whose latencies are high to begin with. To
reduce bank conflicts, we employ an interleaved memory ad-
dressing scheme. In particular, we interleave cache blocks
across compute tiles, with adjacent cache blocks mapped
to adjacent tiles (i.e., the tile ID is chosen from the lowest
bits of the memory block address). Within a tile, we inter-
leave cache blocks across banks, with spatially closest cache
blocks mapped to adjacent banks (i.e., the bank ID is chosen
from the next lowest bits of the memory block address).

This memory interleaving scheme sacrifices locality since
memory accesses will tend to spread across all of the com-
pute tiles and banks on the CPU die. But for a monolithic
computer, even the worst-case locality is still quite good.
Regardless of which bank we access, that memory access
is guaranteed to be satisfied on-die. For a conventional com-
puter, all memory accesses are guaranteed to travel off-die.

3.3 CPU Support
As eluded to earlier, the CPU must be able to generate a
large amount of memory parallelism commensurate with the
memory system. To do so, we eschew many of the general-
purpose features found in commercial tiled CPUs in favor of
scalability that is more in line with accelerators [9].

Specifically, we use simple in-order cores to allow for
higher core count at the expense of single-thread performance.
Each of our cores is multi-threaded, and switches between
its resident hardware threads on long-latency memory oper-
ations. As discussed above, Crossbar’s ReRAM can scale to
7nm. Given ReRAM’s good scaling characteristics, we as-

sume 400 in-order cores with 5-way multithreading per core
could fit on the CPU die. This allows for up to 2000 threads
to be resident in the CPU simultaneously. Our experiments
in Section 5 will also consider smaller thread counts, but this
is the maximum we simulate in our experiments.

In addition to support for thread-level parallelism (TLP),
each core also has vector units for executing SIMD instruc-
tions. The vector units not only support traditional SIMD
memory operations that fetch contiguous blocks of data from
memory, they also support scatter-gather memory operations
found in recent SIMD ISAs such as Intel’s Advanced Vector
Extensions 512 (AVX-512) [7]. Every word fetched during a
scatter or gather operation can be destined to a distinct mem-
ory location, which increases memory parallelism by a fac-
tor equal to the SIMD width. In particular, AVX-512 allows
for eight 8-byte accesses in a single scatter-gather operation.
Thus, across 2000 threads, our tiled CPU is capable of gen-
erating 16,000 8-byte memory requests, which matches the
number of ReRAM banks we expect at 16nm.

Besides TLP and SIMD, our CPU also employs mecha-
nisms in the cache hierarchy to support the access granular-
ity features of our memory architecture. As mentioned in
Section 3.1.2, our ReRAM memory system supports two ac-
cess granularities: a fine-grained 8-byte access, and a cache-
block-sized 64-byte access. We employ sectored caches [18,
19] in both the private L1s and the logically shared L2 slices
to handle variable fetch sizes. Each sector is 64 bytes, and is
filled entirely by a cache-block-sized memory access. Sec-
tors are split into 8 sub-blocks of 8 bytes each. Fine-grained
accesses only fill a single sub-block within a sector.

Supporting variable access granularity also requires de-
termining the best memory access size on a per cache-miss
basis. We adopt a very simple heuristic. If a cache miss is
triggered by a scatter-gather memory operation, we assume
the access pattern is sparse, and request a double word only.
(There may be multiple misses from the same scatter-gather
operation, but each only requests a double word). For all
other cache-miss triggering memory operations, we request
a full cache block. This simple approach works well for the
accelerator-like benchmarks evaluated in our study.

Lastly, a noteworthy aspect of our CPU lies in what it does
not support: cache coherence. We omit coherence on the
CPU’s private L1 caches to save on the large coherence di-
rectories that would be needed at 100s of cores. The lack
of cache coherence is in keeping with the massively parallel
accelerator-like nature of our design, and also helps to make
room for the CPU’s large core count.

4. EXPERIMENTAL METHODOLOGY

4.1 Simulator
We created an architecture-level simulator that models the
monolithic computer described in Section 3. Our approach
follows recent simulators of tiled CPUs capable of running
1000s of threads [20, 21, 22]. Like these previous simu-
lators, we use an Intel Pin-based front-end [23] to feed a
parallel instruction trace to a cycle-accurate back-end. The
main difference is that for the front-end, we employ Intel’s
Software Development Emulator (SDE) [24]. Intel SDE can
execute x86 binaries with 1000s of threads. But it can also

Cores (in-order, single-issue) 400
Threads per core 5
Clock rate 1 GHz
L1 Cache 32 KB, 4-way, 1 cycle
L2 Cache Slice 256 KB, 8-way, 5 cycles
Sector Size 64 bytes
Sub-Block Size 8 bytes
ReRAM memory controllers 400 (1 per tile)
ReRAM banks 16,000 (40 per tile)
ReRAM read latency 500 cycles, 200 cycles
ReRAM write latency 1000 cycles, 400 cycles
ReRAM access granularity 8 bytes
On-chip Network 20 x 20, 2D-Mesh
Network Channels 2 x 64 bytes

Table 2: Simulation parameters for the experiments.

emulate AVX-512 instructions, a feature that is absent from
existing simulators that we are aware of. This added capa-
bility allows us to further increase the CPU’s memory paral-
lelism with wide scatter-gather operations.

Our back-end receives the parallel instruction trace from
SDE, and performs cycle-accurate simulation of both the
CPU and on-die main memory system. Table 2 lists the sim-
ulation parameters which reflect the accelerator architecture
from Section 3: a tiled CPU with 400 in-order cores, each
with 5-way multi-threading. The front-end executes 2000
threads in SDE and maps them in groups of 5 onto the 400
back-end cores. (We also simulate smaller configurations
which will be discussed in Section 5). Each core has access
to a non-coherent private L1 cache backed by a distributed
logically shared L2 cache. All caches are sectored to allow
cache-miss fills at either 64-byte or 8-byte granularity. For
the main memory system, we assume a single memory con-
troller is integrated into every compute tile that is responsi-
ble for accessing the ReRAM directly over the tile. In to-
tal, there are 16,000 ReRAM banks split into 40 banks per
tile. We faithfully model all bank conflicts and queuing at
the controllers. Once a read request is issued to a bank, the
data is returned in 500 cycles. We also consider a more ag-
gressive 200-cycle read latency. Writes are assumed to take
twice as long as reads.

The compute tiles are interconnected via a 20 × 20 two-
dimensional mesh network. This NOC carries the traffic be-
tween the private L1s and the L2 slices on L1 cache misses.
It employs dimension-ordered routing and supports 2 vir-
tual channels (one for requests and one for replies), and is
deadlock free. We assume each channel between any pair of
NOC routers contains two uni-directional 64-byte point-to-
point connections, resulting in a network bisection of 20,480
wires. While this is quite wide, it is feasible given all the
routers are integrated on the same die.

In our study, we compare monolithic computers to tiled
CPUs with high-performance DRAM memory systems re-
sembling HBM DRAM. The DRAM memory system uses
8 memory controllers–4 at the corners and 4 in the mid-
dle of each edge of the NOC–that control 8 DRAM chan-
nels. (Some of our experiments vary the number of MCs
and channels which will be discussed in Section 5). We as-
sume 128 independent banks are distributed equally across
these 8 DRAM channels. At large thread counts, we find row
buffer hits are almost non-existent, so we assume a closed-
page policy. Under this assumption, each MC access incurs

Graph Kernels
All Pairs Shortest Path (apsp) scale = 22 1.3
Betweeness Centrality (bc) scale = 22 1.1
Connected Components (cc) scale = 22 2.2
Page Rank (pr) scale = 22 1.7
Single Source Shortest Path (sssp) scale = 22 1.4

Streaming Computations
daxpy 1.47B elements 1.3
K-Means Clustering (kmeans) 256K pts, 20 features 1.7
Nearest Neighbor (nn) 204.8M hurricanes 1.0
Needleman-Wunsch (nw) 32K x 32K 1.0
Pathfinder (pf) 15M cols, 100 rows 1.6

Table 3: Benchmark names, input sizes, and number of
instructions simulated (in billions).

a 32-cycle latency followed by 2 cycles of data transfer. All
DRAM accesses occur at cache-block granularity, which for
the baseline system is 128 bytes. The peak DRAM band-
width is 512 GB/sec. Lastly, because the DRAM MCs are
situated at the periphery of the NOC, each L2 slice must ad-
ditionally communicate with a remote MC on an L2 miss.

4.2 Benchmarks
We drive our simulations using 10 benchmarks, which are
listed in Table 3. Half of our benchmarks are graph kernels,
while the other half are streaming computations. All but two
are from standard benchmark suites–either CRONO [25] for
the graph kernels or Rodinia [26] for the streaming compu-
tations. The exceptions are CC, which identifies connected
components using the Awerbuch-Shiloach [27] algorithm and
is part of a DARPA streaming graph challenge problem, and
daxpy, which computes y[i] = a ∗ x[i] + y[i]. Both CC and
daxpy were written by the authors.

All of the kernels were explicitly parallelized to create
threads for multiple cores. The threaded code was then vec-
torized by hand using AVX-512 intrinsics to generate SIMD
instructions for vector units. We found there is ample vector
parallelism in our benchmarks, leading to significant mem-
ory parallelism. Specifically, unit-stride array traversals oc-
cur in all of the benchmarks, and are opportunities for packed
vector load/store instructions. In the graph kernels, memory
indirection through adjacency or edge lists are ubiquitous,
and are opportunities for scatter-gather memory instructions.
(AVX-512 allows masking which can dynamically disable
portions of individual scatter-gather operations, thus sup-
porting traversal of variable numbers of edges). There are
also opportunities for scatter-gather in one of the streaming
benchmarks, NN. (We will discuss this in Section 5).

The second column of Table 3 specifies the inputs for each
benchmark. For the graph kernels, we created an input graph
using SSCA2 [28] which is based on the Recursive MATrix
(R-MAT) scale-free graph generator [29]. The number of
vertices in the generated graph is 222 (i.e., scale=22). The
input graph exhibits a power law degree distribution with
community structure, and resembles social network graphs.
For the Rodinia benchmarks, the input sizes in Table 3 are
scaled-up versions of the inputs provided with the bench-
marks [26]. This was necessary to accommodate the 2000
thread and 8-way SIMD parallelism used in our experiments.

We functionally execute the serial initialization portions
of each benchmark in SDE only, and then turn on the cycle-
accurate back-end during the parallel region. The last col-

umn of Table 3 reports the number of instructions (in bil-
lions) simulated in the parallel region. For cc, daxpy, nn, and
pf, these represent the entire parallel region. For the other 6
benchmarks, the instruction counts represent a portion of the
parallel region. All of the benchmarks exhibit the same be-
havior throughout the parallel region, with the exception of
cc (which is why it was one of the benchmarks run to com-
pletion). So, we expect the simulation windows for the 6
partially simulated benchmarks to be representative.

5. PERFORMANCE EVALUATION

5.1 Overall Results
Figure 8 presents our main performance results. The graph
kernels are shown on the left side of the figure, while the
streaming computations are shown on the right side. For
each benchmark, we plot the throughput achieved on a mono-
lithic computer with either 200ns or 500ns read latencies
(write latencies are double that), as well as the throughput
achieved on a conventional tiled CPU with a DRAM mem-
ory system. These are labeled ReRAM-200, ReRAM-500,
and DRAM, respectively, in Figure 8. Not only do we sim-
ulate the tiled CPU with 2000 threads specified in Table 2,
we also simulate tiled CPUs running 200, 400, and 1200
threads. For 400 and 1200 threads, we utilize all 400 cores,
but run with 1 and 3 threads (instead of 5 threads) per core.
For 200 threads, we utilize only half the cores–i.e., every
other core in a “checker pattern” across the 2D mesh. All
bars are normalized against the DRAM bars with 200 threads.

At 200 threads, the conventional tiled CPU outperforms
monolithic computers. Averaged across five streaming bench-
marks, DRAM throughput is 4.5x higher than ReRAM-500
throughput, and 2.3x higher than ReRAM-200 throughput.
The conventional tiled CPU’s advantage at 200 threads also
extends to the graph kernels. Averaged across five graph
kernels, DRAM throughput is 2.2x higher than ReRAM-
500 throughput. The only time when monolithic computers
come out on top at 200 threads is in the ReRAM-200 bars for
the graph kernels. With 200ns ReRAM, the graph kernels
achieve slightly higher throughput on the monolithic com-
puter, about 4%, compared to the conventional tiled CPU.

In these experiments, there is little to no contention in the
memory system (for both DRAM and ReRAM) because the
thread counts are not high enough to saturate the memory-
level parallelism. When contention is low, memory access
latency is the main determiner of performance. DRAM holds
a significant advantage over ReRAM in terms of access la-
tency, hence its superior performance at 200 threads.

But the situation changes as we increase thread count.
That change, though, is different for the graph kernels versus
the streaming computations. In the graph kernels, mono-
lithic computer performance increases dramatically as we
scale parallelism, far faster than the traditional tiled CPU’s
performance which appears almost flat-lined in comparison.
Even at 400 threads, the left side of Figure 8 shows mono-
lithic computers over-take the conventional tiled CPU in many
cases. At 2000 threads, the monolithic computer is far supe-
rior in all cases–up to 3.1x faster assuming 500ns ReRAM,
and up to 7.5x faster assuming 200ns ReRAM (for sssp). On
average, the monolithic computer’s throughput is 2.0x and

4.7x higher than the conventional tiled CPU assuming 500ns
and 200ns ReRAM, respectively, for the graph kernels.

The vast majority of cache misses for graphs is incurred
by indirect memory references that are supported through
scatter-gather operations. The combination of 2000 threads
and 8-way scatter-gather generates an enormous number of
sparse (8-byte) memory requests. The DRAM memory sys-
tem is incapable of handling this parallelism. It only has 128
banks, and worse, fetches 128-byte cache blocks on each
sparse request, consuming bandwidth to transfer mostly un-
used data. This leads to extreme contention at the DRAM’s
banks. In contrast, our monolithic computer uses the mech-
anisms from Sections 3.1.2 and 3.3 to adapt the access gran-
ularity, employing fine-grain fetches for the scatter-gather
memory requests. This opens up the maximum 16,000-way
bank-level parallelism to support the indirect memory refer-
ences. Despite the massive number of scatter-gather mem-
ory requests, the ReRAM-based memory system is capable
of keeping up without incurring significant bank contention.
This enables the highly scalable monolithic computer per-
formance visible in Figure 8 for the graph kernels.

Figure 9 further illustrates this difference in scalability.
The figure plots the average round-trip read latency–i.e., from
the time a read is initiated by a core until it returns from the
memory system–for the graph kernels from Figure 8. These
results show latency always increases as we scale thread
count. But there is a major difference between the mono-
lithic computer and the conventional tiled CPU. For the Re-
RAM-500 and ReRAM-200 bars, the increase is noticeable,
almost doubling in some cases from 200 to 2000 threads.
However, the increase for the DRAM bars grows much faster.
By 2000 threads, DRAM’s round-trip latency shoots up to
2137 cycles on average, and as much as 3972 cycles for sssp.
This is due to queueing and serialization at the DRAM con-
trollers. The queueing delays in the monolithic computer
are far smaller thanks to the ReRAM’s massive parallelism.
When including these queueing delays, DRAM’s overall la-
tency is much higher than ReRAM despite having a lower
baseline access latency, illustrating the point in Section 2.3.

For the streaming computations on the right side of Fig-
ure 8, monolithic computer performance also increases as
parallelism is scaled. But instead of surpassing the perfor-
mance of conventional tiled CPUs, as is the case for the
graph kernels, the monolithic computer simply approaches
it and at best achieves parity. (NN is an exception which
we will discuss shortly). Most of the streaming computa-
tions perform dense traversals of large linear arrays. Our
monolithic computer adapts the access granularity to support
these streaming memory operations, favoring large cache-
block accesses over the fine-grained fetches suited for the
graph kernels. This reduces the amount of memory paral-
lelism supported across the on-die ReRAM. Rather than re-
quest parallelism, the most important characteristic becomes
total data bandwidth, which makes DRAM much more com-
petitive with ReRAM.

In fact, with 500ns ReRAM, our monolithic computer de-
livers a peak bandwidth of 256 GB/sec (16,000 banks × 8
bytes / 500ns), which is only half the peak bandwidth of the
DRAM memory system. With 200ns ReRAM, the mono-
lithic computer improves to 640 GB/sec. Unfortunately, these

Figure 8: Normalized throughput on monolithic computers with 200ns or 500ns read latencies, and on high-
performance DRAM. Results are shown for 200, 400, 1200, and 2000 threads.

Figure 9: Average round-trip latency for benchmarks
with fine-grain accesses.

data rates are only for reads. Because writes are twice as
slow, the effective data bandwidth can be considerably lower.
(Writes don’t usually stall the CPU, but they occupy banks
that can delay reads which do stall the CPU). As Figure 8
shows, monolithic computers are always slower than the con-
ventional tiled CPU on the streaming computations (though
it is close at 2000 threads with 200ns ReRAM). For stream-
ing benchmarks other than NN, the monolithic computer is
48.1% as fast as the tiled CPU for ReRAM-500, and almost
achieves parity with 94.5% of the performance for ReRAM-
200 at 2000 threads.

While the Rodinia benchmarks are dominated by dense
streaming computations, one exception is NN. Instead of
unit-stride array traversals, the main array in NN is traversed
with a large stride. In each 64-byte cache block that is fetched
during this traversal, only 16 bytes or 25% of the data is ref-
erenced. We used a gather memory operation to fetch this
sparse data precisely. This enables NN to achieve better per-
formance than the other streaming computations, though not
as good as the graph kernels. At 2000 threads, the ReRAM-
200 bars show a performance advantage of over 2.0x for
monolithic computers compared to the conventional tiled CPU.
Even for the ReRAM-500 bars, the monolithic computer al-
most matches the conventional tiled CPU.

Like the graph kernels, NN benefits from the higher par-
allelism that ReRAM affords sparse accesses. This is con-
firmed by the last set of bars in Figure 9 which show the
average access latency for NN on ReRAM is much better
than on DRAM, similar to the behavior in the graph kernels.
But NN is not as sparse as the graph kernels where each
cache block usually brings in only 8 bytes of useful data.
For DRAM that employs 128-byte cache blocks, this results
in a fetch efficiency of only 6.25% for graphs as compared

Figure 10: Performance gain from increasing the num-
ber of ReRAM banks from 16K to 64K.

to 25% for NN.

5.2 Technology Scaling Impact
In the monolithic computer experiments from Section 5.1,
we have assumed 16,000 ReRAM banks in the memory sys-
tem, which is our estimate for the 16nm technology node
(see Section 3.1.2). This is a lot of memory parallelism. But,
ReRAM is also highly scalable. In future technology nodes
(e.g., 7nm), it is conceivable to have up to 64,000 banks. An
important question is how might technology scaling impact
our performance results?

Figure 10 reports the throughput on a monolithic com-
puter when the number of ReRAM banks is increased to
64,000. For each benchmark, the scaled-up performance
is shown in the bars labeled ReRAM-64K, which are plot-
ted next to the baseline configuration in the bars labeled
ReRAM-16K. For all of the experiments, we run the bench-
marks with 2000 threads, and employ a read latency of 200ns
(and a write latency of 400ns). So, the ReRAM-16K bars in
Figure 10 are identical to the last set of ReRAM-200 bars
for each benchmark in Figure 8. All bars in Figure 10 are
normalized to the ReRAM-16K bars.

As Figure 10 shows, scaling up the number of ReRAM
banks has a positive impact on performance across the board.
The reason for the improvement, though, depends on the
type of benchmark. For the graph kernels, performance im-
proves primarily because of a reduction in bank conflicts.
Even though the baseline configuration provides 16,000 Re-
RAM banks, the tiled CPU we assume is capable of com-
pletely saturating all of these ReRAM banks, especially when
using scatter-gather memory operations. We find the scatter-
gather requests in the graph kernels are uncorrelated, so they
tend to spread across all of the banks. Nevertheless, the sheer

Figure 11: Performance with larger numbers of nar-
rower DRAM channels.

volume of memory requests means there still exists a signif-
icant probability for accesses to collide. The left half of Fig-
ure 10 confirms this: when the number of banks is increased
from 16,000 to 64,000, the graph kernels’ performance im-
proves by 40.8% on average.

In contrast, for the streaming computations, performance
improves primarily because of an increase in total memory
bandwidth. As described above, the peak read bandwidth
for the baseline configuration is 640 GB/s (and is lower with
writes factored in). When the number of banks increases to
64,000, this peak read bandwidth quadruples to over 2 TB/s.
The streaming computations running on our tiled CPU can-
not utilize this amount of memory bandwidth, so we don’t
expect performance to quadruple. As the right half of Fig-
ure 10 shows, the streaming computations exhibit a 57.6%
improvement in performance on the scaled-up configuration.
Compared to the DRAM bars in Figure 8, monolithic com-
puters can outperform conventional tiled CPUs by 66.0% on
the streaming computations if given 64,000 banks. Kmeans,
being less memory intensive, does not utilize all the band-
width in the 16,000 bank case, and therefore does not in-
crease in performance when the banks are scaled up.

5.3 DRAM Channel Scaling
In the conventional tiled CPU experiments from Section 5.1,
we have assumed a high-performance DRAM memory sys-
tem resembling HBM DRAM. Specifically, we modeled 8
memory controllers attached to 8 channels of DRAM die
stacks, each providing 128 bytes of data per memory request.
In HBM DRAM, however, the controllers are implemented
outside the DRAM die stacks, providing flexibility to have
different organizations. In particular, the internal DRAM
banks in the die stacks are narrower than the 128-byte in-
terface we assumed at the controllers. It is possible to have
a larger number of narrower channels, at the expense of hav-
ing more memory controllers. This provides greater request
parallelism and supports a finer access granularity, both of
which can benefit the graph kernels.

In addition to the baseline 8 × 128-byte channels, we also
simulated 16 × 64-byte channels (16 memory controllers at-
tached to 16 channels, each providing 64 bytes per memory
request), and 32 × 32-byte channels (32 memory controllers
attached to 32 channels, each providing 32 bytes per mem-
ory request). In each case, we changed the cache block size
to match the request size, but kept cache sizes the same. No-
tice, total memory bandwidth doesn’t change across all three
configurations (512 GB/s)–only request parallelism changes.

Figure 11 reports the performance of the different DRAM
configurations for the graph kernels. (The streaming com-
putations perform best on the baseline configuration, so we
omit those results). Four bars are plotted for each bench-
mark. The first set of bars, labeled DRAM, represent the
baseline 8 × 128-byte configuration and is identical to the
corresponding bars in Figure 8. The next two sets of bars,
labeled DRAM-16 and DRAM-32, represent the 16 × 64-
byte and 32 × 32-byte configurations, respectively. These
DRAM configurations are compared against our monolithic
computer, labeled ReRAM-200, which is identical to the
corresponding bars in Figure 8. All bars are normalized to
the DRAM bars with 200 threads.

As Figure 11 shows, the scalability of the conventional
tiled CPU running the graph kernels indeed improves as the
number of DRAM controllers increases. Although the 8-
controller bars are flat-lined, the DRAM-16 and DRAM-
32 bars continue to increase with thread count. By 2000
threads, on average, DRAM-16 is 1.9x better than the base-
line DRAM configuration while DRAM-32 is 2.5x better.
Nevertheless, our monolithic computer still exhibits better
scalability. At 2000 threads, we are still 2.6x better than
DRAM-16 and 87% better than DRAM-32, averaged across
the five graph kernels.

5.4 Memory Capacity
It is important to note our experiments make assumptions
about memory capacity that heavily favor DRAM. In partic-
ular, we have not penalized DRAM for its much lower capac-
ity. While in-package DRAMs like HBM exhibit extremely
high memory bandwidths, they also have very low capaci-
ties, in the 16–32 GB range, whereas ReRAM can achieve
many 100s of GBs. Given larger inputs that don’t fit in high-
speed DRAM, a conventional tiled CPU would be forced to
access off-package DRAM (e.g., DDR4) at far lower band-
widths. If we were to perform those experiments, monolithic
computers would hold a much more significant performance
advantage over DRAM than what we report for the stream-
ing computations. And, the gains we report for the graph
kernels would also increase.

6. CONCLUSION
Researchers have forecasted the existence of monolithic

computers before [1, 2]. But to our knowledge, this pa-
per is the first to provide a detailed design of a monolithic
computer, and to perform a simulation-based evaluation of
its capabilities. We integrate Crossbar ReRAM over CPU
logic via BEOL processing steps in standard CMOS, en-
abling a large amount of main memory to be placed right
on top of the CPU’s cores. Our physical design study esti-
mates that half the CPU die could be feasibly covered with
ReRAM. This would enable a large number of ReRAM sub-
arrays to be integrated with the CPU, each providing a fine
access size. We propose to implement a variable granularity
memory system on top of these ReRAM sub-arrays that sup-
ports both a fine-grain 8-byte access (to maximize bank-level
parallelism for irregular access patterns) and a traditional
cache-block access (to efficiently support streaming access
patterns). To sustain the request rates that our memory sys-
tem can support, we investigate a tiled accelerator-like CPU

with simple in-order cores, multithreading, and wide SIMD
capable of scatter-gather memory operations. Our results
show that such a monolithic computer architecture can pro-
vide unprecedented performance on irregular computations
such as graph kernels, outperforming conventional DRAM-
based systems by 4.7x. Assuming a 16nm technology node,
monolithic computers will merely achieve parity with con-
ventional systems on streaming computations due to the high
memory bandwidths that DRAM can attain for regular mem-
ory access patterns. But at a 7nm technology node, our re-
sults show monolithic computers could outperform DRAM-
based systems by 66% on streaming computations.

7. REFERENCES
[1] M. M. S. Aly, M. Gao, G. Hills, C.-S. Lee, G. Pitner, M. M. Shulaker,

T. F. Wu, M. Asheghi, J. Bokor, F. Franchetti, K. E. Goodson,
C. Kozyrakis, I. Markov, K. Olukotun, L. Pileggi, E. Pop, J. Rabaey,
C. Re, H.-S. P. Wong, and S. Mitra, “Energy-Efficient Abundant-Data
Computing: The N3XT 1,000x,” Computer, December 2015.

[2] M. M. Shulaker, T. F. Wu, M. M. Sabry, H. Wei, H.-S. P. Wong, and
S. Mitra, “Monolithic 3D Integration: A Path from Concept to
Reality,” in Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition, 2015.

[3] Intel, “Intel Optane Technology.” 2017.

[4] Crossbar, “ReRAM Memory, Crossbar.” 2017.

[5] A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina, C.-C. Miao,
C. Ramey, and D. Wentzlaff, “Tile Processor: Embedded Multicore
for Networking and Multimedia,” in Proceedings of the 19th
Symposium on High Performance Chips, (Starford, CA, USA), 2007.

[6] Y. Hoskote, S. Vangal, S. Dighe, N. Borkar, and S. Borkar, “Teraflop
Prototype Processor with 80 Cores,” in Hot Chips, 2007.

[7] Intel, “AVX 512 Instruction Extensions,
http://software.intel.com/en-us/blogs/2013/avx-512-instructions.”
2017.

[8] Intel, “Intel Xeon Phi Product Family,
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-
detail.html.”
2014.

[9] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel: An
Architecture and Scalable Programming Interface for a 1000-core
Accelerator,” in Proceedings of the International Symposium on
Computer Architecture, (Austin, TX), pp. 140–151, June 2009.

[10] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT
Alewife Machine: Architecture and Performance,” in Proceedings of
the 22nd Annual International Symposium on Computer Architecture,
(Santa Margherita Ligure, Italy), pp. 2–13, ACM, June 1995.

[11] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz,
A. Gupta, M. Rosenblum, and J. Hennessy, “The Stanford FLASH
Multiprocessor,” in Proceedings of the 21st Annual International
Symposium on Computer Architecture, (Chicago, IL), IEEE, April
1994.

[12] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” in Proceedings of the 24th Annual International
Symposium on Computer Architecture, pp. 241–251, June 1997.

[13] L. O. Chua, “Memristor—the missing circuit element,” IEEE
Transactions on Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[14] S. H. Jo, K.-H. Kim, and W. Lu, “High-Density Cross-bar Arrays
Based on a Si Memristive System,” Nano Letters, 2009.

[15] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian,
“3D-stackable crossbar resistive memory based on Field Assisted
Superlinear Threshold (FAST) selector,” IEEE International
Elec-tron Devices Meeting, 2014.

[16] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, and
Disk. Morgain Kaufmann, 2007.

[17] P. Siegl, R. Buchty, and M. Berekovic, “A bandwidth accurate,
flexible and rapid simulating multi-hmc modelling tool,” in
Proceedings of the Third International Symposium on Memory
Systems, MEMSYS 2017, Washington, DC, USA, October 2-5, 2017,
pp. 71–82, ACM, Oct 2017.

[18] D. Burger, “Hardware Techniques to Improve the Performance of the
Processor/Memory Interface,” tech. rep., University of
Wisconsin-Madison, December 1998.

[19] S. Kumar and C. Wilkerson, “Exploiting Spatial Locality in Data
Caches using Spatial Footprints,” in Proceedings of the 25th
International Symposium on Computer Architecture, (Barcelona,
Spain), June 1998.

[20] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
Evaluation of High-Level Mechanistic Core Models,” ACM
Transactions on Architecture and Code Optimization, April 2014.

[21] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A Distributed Parallel
Simulator for Multicores,” in Proceedings of the 16th International
Symposium on High-Performance Computer Architecture, January
2010.

[22] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems,” in
Proceedings of the 40th International Symposium on Computer
Architecture, (Tel-Aviv, Israel), June 2013.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2005.

[24] Intel, “Intel Software Development Emulator,
http://software.intel.com/en-us/articles/intel-software-development-
emulator.”
2012.

[25] M. Ahmad, F. Jijaz, Q. Shi, and O. Khan, “CRONO: A Benchmark
Suite for Multithreaded Graph Algorithms Executing on Futuristic
Multicores,” in Proceedings of the 2015 IEEE International
Symposium on Workload Characterization, (Atlanta, GA), October
2015.

[26] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in Proceedings of the 2009 IEEE International
Symposium on Workload Characterization, (Austin, TX), October
2009.

[27] B. Awerbuch and Y. Shiloach, “New Connectivity and MSF
Algorithms for Ultracomputer and PRAM,” in Proceedings of the
International Conference on Parallel Processing, August 1983.

[28] D. A. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E. Loh,
K. Madduri, B. Mann, and T. Meuse, “HPCS Scalable Synthetic
Compact Applications #2 Graph Analysis.” August 2006.

[29] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recursive
Model for Graph Minig,” in Proceedings of the 2004 SIAM
International Conference on Data Mining, 2004.

	Introduction
	Crossbar ReRAM Technology
	ReRAM Physical Characteristics
	ReRAM Integration with Logic
	ReRAM Latency
	ReRAM Sub-Array Parallelism

	CPU and Memory Architecture
	ReRAM Banks
	Sub-Array Area Efficiency
	Access Granularity vs. Number of Banks

	Parallelism vs. Locality
	CPU Support

	Experimental Methodology
	Simulator
	Benchmarks

	Performance Evaluation
	Overall Results
	Technology Scaling Impact
	DRAM Channel Scaling
	Memory Capacity

	Conclusion
	References

