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Abstract
Python has a growing community of users, especially in the AI and ML fields. Yet, Computational
Processing of Portuguese in this programming language is limited, in both available tools and
results. This paper describes NLPyPort, a NLP pipeline in Python, primarily based on NLTK, and
focused on Portuguese. It is mostly assembled from pre-existent resources or their adaptations, but
improves over the performance of existing alternatives in Python, namely in the tasks of tokenization,
PoS tagging, lemmatization and NER.
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1 Introduction

Nowadays, the amount of information that can be accessed is virtually infinite, and we may
have every answer that is known by mankind at the palm of our hand. Yet, we often seem
to be unable to find, understand or use it for other purposes. This happens because most
information is presented with a fair amount of what can be considered noise – for instance,
utterances or contextualization text that are not always relevant – and in text format, which
forces us to read large blocks of text to get simple answers.

Natural Language Processing (NLP) addresses such issues. It comprises tasks that range
from tokenization to Named Entity Recognition (NER), and applications such as Information
Retrieval (IR), Information Extraction (IE) and Automatic Summarization.

Computational systems that deal with human language are complex, and have improved
over time, but, in many respects, are still somewhat sub-optimal. Furthermore, results
are generally worse when we consider languages other than English, such as Portuguese,
because there are many more researchers working on and, thus, more tools developed for
English. This worsens with language specificity, which may stop an otherwise global system
for performing every NLP task in the same way for English and Portuguese.
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18:2 Improving NLTK for Processing Portuguese

In order to get better outcomes in NLP, we looked at the foundations of such systems – the
set of NLP tools that process information. A typical NLP toolkit is formed by several modules
that operate in a pipeline – that is, one module usually feeds the next and more information
is added in each stage. Some of the baseline modules include tokenization, Part-of-Speech
(PoS) Tagging, Lemmatization, Syntactic Parsing, and Named Entity Recognition (NER)

Several toolkits provide the previous tools. However, for Portuguese, there are only a few,
and, to the best of our knowledge, none with a full pipeline (e.g., including lemmatization) in
Python. Due to its growing use in the Artificial Intelligence and Data Processing fields, and
its ease of use, many are using Python – as such, we chose it as the programming language of
the pipeline to assemble. Therefore, the first steps were to understand which NLP pipelines
already exist and how they could be improved.

Our main reference for the process was the NLPPort toolkit [14], also focused on improving
the processing of Portuguese in OpenNLP [9], a toolkit in Java. Given that we were using
Python, some experiments were performed, leading us to select NLTK [1] as the base pipeline,
on top of which improvements were to be done or new modules plugged. Despite covering
the Portuguese language, results with NLTK are limited and far from perfect. Following
the approach of NLPPort, a post-processing step was added to NLTK’s tokenizer to handle
clitics and contractions. Further, in opposition to the default model for Portuguese, the
NLTK PoS tagger was trained in manually annotated corpora. Based on the outputs of the
tokenizer and the PoS tagger, a lemmatizer was developed, once again inspired by NLPPort.
In NLTK, such a module was unavailable for Portuguese. Lastly, a Conditional Random
Fields (CRF) NER tool was trained and added, towards easier training and better results in
identifying named entities. These changes allowed for a better processing of Portuguese text.
As we show, using NLPyPort, rather than the default NLTK pipeline, leads to more reliable
results in the baseline tasks, which should have a positive impact on higher level tasks and
applications. Although one option would be to make contributions directly to NLTK, for
the time being, we chose to adapt it to our needs by wrapping NLTK and adding features:
testing different models for already existing modules and changing or adding other modules.

The remaining of the paper is organized as follows. Section 2 briefly analyses and compares
some of the existing toolkits. Section 3 describes how the pipeline was assembled, explaining
what was changed from existent elements and what was created from scratch. Section 4
presents the results of testing the new pipeline and the comparison of these to previously
existing results. Finally, Section 5 presents the conclusion extracted from our results and
explain how the pipeline can be further improved in the future.

2 Related Work

There is already a handful of NLP tools and toolkits, some of which freely available for
use, and supporting Portuguese. Without getting into much detail, we believe the following
toolkits should be considered peers to the pipeline we are developing, and therefore with
results that we should aim to obtain.

In Java, one of the most known, is the OpenNLP toolkit, and from which a more use-ready
version for Portuguese was assembled – the NLPPort toolkit. Another well-known Java-
based toolkit is the Stanford CoreNLP [7], which does not support Portuguese out-of-the-box,
but has enough resources for training models of any language.
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In Python, there are two main alternatives: spaCy2 whose utilization was considered (see
Section 3); and the aforementioned NLTK [1], upon which the current pipeline is developed.

Among other toolkits that support Portuguese, in other programming languages, it is
worth mentioning Freeling [11], developed in C++, and LinguaKit [5], developed in Perl.

3 The NLPyPort Pipeline

When choosing the base pipeline, several aspects were considered. First, due to the afore-
mentioned reasons, our goal was to develop a pipeline in the Python programming language.
This limited the choice of tools to NLTK and spaCy. In order to choose between them, some
shallow testing was made to determine which tool was better-suited for the purpose, i.e.,
which was easier to use, change and adapt. We came to the conclusion that, even though
spaCy is more friendly from a user perspective, as it allows to process text through the whole
pipeline with a single function, NLTK allowed for a better manipulation of each stage of the
pipeline, individually, making the changes more obvious.

For this reason, NLPyPort is based on the NLTK toolkit, with some layers and modules
added. NLTK already provides a series of resources that can be used for Portuguese. It
has a generic tokenizer, a PoS tagger trained on the “Floresta Sintá(c)tica” [3] corpus, and
a general Named Entity Recognizer. With these, the base results were obtained and then
changes were made, towards better results. Changes are described in detail in the following
subsections. Briefly, a layer was added to the tokenizer, the PoS tagger was re-trained, and a
lemmatizer was implemented based on LemPort. Lastly, a new NER, based on a CRF, was
trained and integrated in the pipeline. The assembled pipeline will provide the user all the
results specified, but can be changed to output only the desired data from a given task.

To illustrate the results of NLPyPort, Fig. 1 depicts the output of the initial pipeline,
respectively for the simple NLTK and the NLPyPort pipeline, for the sentence: “O António
Costa deu um passeio no Porto.”

Token PoS
O, art
António, prop
Costa, nprop
deu, v-fin
um, art
passeio, n
no, adp
Porto, nprop
. punc

Token Lemma PoS Entities
O, o, art, O
António, antónio, prop, B-PESSOA
Costa, costa, nprop, I-PESSOA
deu, dar, v-fin, O
um, um, art, O
passeio, passeio, n, O
em, em, prp, O
o, o, art, O
Porto, porto, n, B-LOCAL
. ., punc, O

Figure 1 Output of simple NLTK (left) and of the NLPyPort pipeline (right).

3.1 Improving the Tokenizer
One of the critical elements of any pipeline is the tokenizer. It is responsible for splitting
text into the smallest units that represent information – tokens. Since this is, for most cases,
the starting point of NLP, its errors will propagate throughout the whole pipeline and thus
impact performance. For this reason, it is essential to get the best possible results out of it.

2 https://spacy.io
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We first need to understand where tokenization may fail for the specific language, or
where it could be better handled, towards more useful outputs. Upon exploring NLTK,
we concluded that many of the errors obtained were due to language specific elements not
handled properly; this was expected because NLTK’s tokenizer is operating in a language-
independent manner. The main problem found was not splitting tokens of two distinct types,
clitics and contractions, which, depending on the application, results in loss of information.

A clitic is a word form generated by joining and concatenating, by means of an hyphen,
a verb and a personal pronoun into a single word – for instance, “[eu] comprei-o” 7→ “[eu]
comprei ele” (I have bought it). A correct separation will allow for the PoS tagger to better
identify the verb and the personal pronoun as such. A contraction is generated when a
preposition and a pronoun are joined and concatenated into a single word – for instance,
“na” 7→ “em a” (in the). Similarly to the clitics, proper separation into two words should
improve PoS tagging.

The implementation of these modules was rather simple, mainly because the most work-
intensive part had already been done – the creation of lists of clitics and contractions. These
were part of NLPPort, and available in a standard XML format, which allowed their easy
integration in Python. In order to apply these, the default NLTK’s tokenizer is used and
both lists are checked to find word matches with any of the known contractions or clitics.
Such cases are changed to the expanded from, replacing the original word by simpler words.

3.2 Improving the PoS tagger

As mentioned earlier, improving tokenization would improve PoS tagging. This happens
because most PoS tagging approaches are based on models for automatic sequence labelling.
So, when both clitics and contractions are not handled, both new tokens (e.g., lo, no) and
PoS tags for these (e.g., ADP instead of PREP+DET) are introduced, with a negative
impact on the generalization power of the tagger. Not to mention that some of those tokens
may increase ambiguity (e.g., “nos” can either be the clitic for “a nós” or the contraction of
the preposition “em” with the determinant “os”).

NLTK provides a few different models for PoS tagging, one of which is based on Maximum
Entropy. In theory, it can learn from any PoS tagged text and it is language independent.
Yet, the quality of the training text used is a determinant factor in the results. Its base
implementation uses not only the current word, but also some of the previous and of the
following words. In fact, it is not limited to words and uses other features, such as PoS tags,
if available. This means that, even if there was no change in the current word, the fact that
the previous word had been split into two other words with two other tags will influence the
tag of the current word.

The default NLTK PoS tagging model for Portuguese is learned from the “Floresta
Sintá(c)tica” corpus [3]. Even though it contains a large number of annotated documents,
not all were manually reviewed. So, in order to improve the PoS tagging model, we decided
to use only “Bosque”, a smaller, but manually annotated subset of “Floresta Sintá(c)tica”.
The reasoning behind this is that a manually annotated resource is less likely to have errors,
and thus a system that learns from it should do its job better. In addition to “Bosque”, the
PoS tagger was also trained with the “Mac-Morpho” [2] corpus, this too manually annotated,
yielding a combined number of 35 PoS tags.
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3.3 Integrating a Lemmatizer
In order to normalize text, NLTK includes the RSLP stemmer for Portuguese [10]. This tool
is based on the removal of suffixes from Portuguese words and, while it may be worth for
some text mining tasks, the result is often not an existing word. An alternative would be a
lemmatizer that transforms words in their dictionary form, thus easing their linking with
lexicons or other resources. However, NLTK does not include a Portuguese lemmatizer.

Due to its wide range of applications, we chose to implement a Portuguese lemmatizer
and added it to the pipeline. The code and design for this module was largely inspired in
LemPort, a part of NLPPort. This allowed for using the same resources as LemPort,
and apply them exactly in the same situations.

The lemmatizer is defined by two modules: the first relies on a lexicon; the second is a
set of predefined hierarchical rules that will perform transformations on the token, in case
there is no match with lexicon words.

For the first module, the process is straightforward: each word with a valid tag is searched
on LABEL morphology lexicon [13]. If the lexicon contains the word, its lemma is retrieved
and the lemmatization process ends. If, on the other hand, the word is not in lexicon, rules
corresponding to the tag are applied and repeated until there is a match against the lexicon.
This process must be repeated after each rule is applied, as there are words that must go
through multiple normalizations – for instance, gender and number. If no rules match the
word and it is not found in the lexicon, it is assumed to be already in its lemmatized form.

It is also important to note that each word may have a ranking, used when there is more
than one lemmatization possibility. This ranking was determined by the word’s frequency in
the frequency lists of the AC/DC project [15].

The second module is based on a hierarchical set of rules, that are applied if no match
was found in the lexicon. In order to make the correct lemmatization, a set of handcrafted
rules perform it in a progressive order. This way, some normalizations are always made
before others, which allows for a reduction of the rules on the following normalizations. To
better understand this, lets take the example of a noun of feminine gender and plural form.
If we applied gender normalization before number normalization, the result would not match
an existing lemma. By executing the number normalization first, we only need the masculine
form of the noun (if applicable). Considering this simplification, the following order of rules
was defined: (1) Manner (adverb) normalization; (2) Number normalization; (3) Superlative
normalization; (4) Augmentative normalization; (5) Diminutive normalization; (6) Gender
normalization; (7) Verb normalization (for regular and irregular verbs).

To illustrate this, lets consider the word “certinhas”. It will first be processed by the
number normalizer (“certinhas” 7→ “certinha”), then the diminutive normalizer (“certinha”
7→ “certa”), and lastly the gender normalizer (“certa” 7→ “certo”). The final lemmatized
form would be the much simple word “certo”.

3.4 Adding a new Named Entity Recognizer
The most recent addition to the pipeline was a Named Entity Recognizer (NER) module.
The default NLTK’s NER tool offers many challenges when training on a new model or a
different set of categories. There is no way to train it out-of-the-box. Even if the user can
understand how to do it, they need to previously know for which entity categories it is being
trained, and cannot get them from the training data. For this reason, we considered an
alternative and ready-to-use NER module, with easier training, while maintaining or even
improving the baseline NLTK’s results. The NER tags utilize were those of the Second
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HAREM collection[4]. The integrated NER module is based on CRFsuite, an implementation
of Conditional Random Fields (CRF) [6], which, in a not so distant past, have been used for
NER with relative success. Although originally available by Naoaki Okazaki [8], we used a
wrapper for the scikit-learn toolkit3, easier to train and test than NLTK NER module.

Entities were identified with the BIO notation. This is a way to indicate if a token is the
beginning (B), inside (I), or outside (O) of an entity. This letter is then followed by the type
of entity. An example of this can be seen in Figure 1.

4 Measuring Improvements

We recall that our goal was to achieve better results on the processing of the Portuguese
language, using Python. So, in order to quantify the improvement over NLTK, we compared
our results to the base results of using NLTK out-of-the-box.

4.1 Improvements in Tokenization
To measure how much the tokenizer has improved, we used it to tokenize the documents in
the manually-reviewed Bosque corpus. Achieved results were compared to those obtained
with the original NLTK’s tokenizer. For both tokenizers, Table 1 reports on the proportion
of correct tokens over all the tokens in the corpus.

Table 1 Percentage of correct tokens.

Toolkits Tokenization Accuracy(%)
NLTK 83

NLPyPort 90

Numbers confirm that the changes made in the tokenization module lead to an improve-
ment of 7% over NLTK’s baseline. As mentioned earlier, this is due to the separation of
clitics and contraction. An example of this can be seen in Fig. 1, where the word “no” is
split into two simpler words: “no” 7→ “em o” .

4.2 Improvements in PoS tagging
To assess the second change in the pipeline, the PoS tagger was fed with the Bosque
tokenization, one per line. The previous tokens were then tagged and the result compared to
the tags in Bosque. Per token accuracy for both the original PoS tagging model of NLTK
and the Bosque trained NLPyPort PoS tagger are reported in Table 2.

Table 2 Percentage of correct tags.

Tookits PoS tagging(%)
NLTK 60

NLPyPort 86

Figures show significant improvements on PoS tagging after the changes made, namely of
26% over the base pipeline. We recall that this is due to training in different corpora.

3 https://github.com/TeamHG-Memex/sklearn-crfsuite

https://github.com/TeamHG-Memex/sklearn-crfsuite
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An example of PoS tagging can also be seen in Fig. 1. The word “no”, previously classified
as adp, is now split and its parts differently classified (no#adp 7→ em#prp + o#art).

4.3 Improvements in Tokenization followed by PoS tagging

Improvements over the original NLTK’s pipeline were confirmed for the tokenizer and the
PoS tagger, individually. Since each module feeds the next one, we can assume that these
improvements are also reflected on the pipeline. To test whether this is true, we compared
the results of tokenization followed by PoS tagging, using the original NLTK and using
NLPyPort. Table 3 shows the per-token accuracy of PoS tagging, after the improvements in
the tokenizer and in the PoS Tagger. Again, Bosque was used as our gold reference.

Table 3 Percentage of correct tags after Tokenization.

Tool PoS tagging after Tokenization(%)
NLTK 58

NLPyPort 82

Results show that there is a substantial improvement, of 24 points, when the new tokenizer
and PoS tagger are used together, one after the other, thus confirming the improvements
achieved with NLPyPort. Differences of these tasks against the original NLTK are also seen
in Figure 1.

With NLPyPort, complex tokens are now split into simpler tokens, and more of the tokens
are correctly classified. For example, we can see that there has been a division of the word
“no”, as defined earlier, into the to simpler forms “em” and “o”, which then leads to a better
classification of the tags. NLTK also fails to identify the punctuation in the sentence.

4.4 Improvements in NER

A study of Portuguese NER with NLTK has already been made [12], and the results obtained
were used as a base for our comparison. To ensure that the tests are fair, the same train and
test splits used to assess the default NLTK NER module were used for CRF NER, as well as
the testing approach – ten-fold cross-validation with 4 repeats on a BIO conversion4 of the
Second HAREM [4] golden collection, where named entities were manually annotated.

The metrics used for the comparison were Precision, Recall and F1-score, which were
compared to those presented by Pires [12]. The obtained results are reported in Table 4.

Table 4 Comparison of Precision, Recall and F-Measure of NLTK NER and CRF NER.

NER Precision(%) Recall(%) F-Measure(%)
Baseline 30.58 31.38 30.97
CRF 57.05±2.45 46.56±1.29 51.28±1.49

Results are far from perfect and some points below the 0.59 best F1 in Second HAREM [4].
Yet, this comparison confirmed that the CRF NER outperforms the default NLTK’s NER
for Portuguese, and has therefore been a worthwhile addition to the assembled pipeline.

4 For the NER datasets used, check https://github.com/arop/ner-re-pt/.
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18:8 Improving NLTK for Processing Portuguese

5 Conclusions and Future Work

We have presented NLPyPort, a new NLP pipeline implemented in Python and based
on NLTK, specifically focused on Portuguese processing, for which improvements were
achieved. The current version of NLPyPort is freely available from: https://github.com/
jdportugal/NLPyPort.

In the near future, we will keep with the continuous improvement of the different modules
of the pipeline and, similarly to NLPPort, we will add a feedback loop for sending the
identified entities to the PoS tagging module, hopefully leading to better results. Another
possible and needed addition to this pipeline is a more user friendly interface that allows
the user to change the pipeline as desired. Given their potential utility for more advanced
applications, we will also consider the addition of other modules, namely a phrase chunker
and a relation extractor.
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