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Abstract
Definite Clause Grammars (DCGs) are a convenient way to specify possibly non-context-free
grammars for natural and formal languages. They can be used to progressively build a parse tree as
grammar rules are applied by providing an extra argument in the DCG rule’s head. In the simplest
way, this is a structure that contains the name of the used nonterminal. This extension of a DCG
has been proposed for natural language processing in the past and can be done automatically in
Prolog using term expansion.

We extend this approach by a meta-nonterminal to specify optional and sequences of nonterminals,
as these structures are common in grammars for formal, domain-specific languages. We specify
a term expansion that represents these sequences as lists while preserving the grammar’s ability
to be used both for parsing and serialising, i.e. to create a parse tree by a given source code and
vice-versa. We show that this mechanism can be used to lift grammars specified in extended
Backus–Naur form (EBNF) to generate parse trees. As a case study, we present a parser for the
Prolog programming language itself based only on the grammars given in the ISO Prolog standard
which produces corresponding parse trees.
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1 Introduction

The Logic Programming language Prolog has a long history in natural language parsing, and
so have Definite Clause Grammars (DCGs). Since its introduction by Alain Colmerauer in the
early 1970s [6], Prolog has been developed with a focus on natural language processing (NLP).
This led to Metamorphosis Grammars [5] in 1978, a first framework based on first-order
logic to parse French. Its rewriting rule mechanism led to the development of DCGs in
1980 [11]. Unlike the established extended Backus–Naur form (EBNF), DCGs come with
logical variables and brought all of Prolog’s built-in capabilities to drive the parsing process,
they could therefore also be used to describe non-context-free grammars.
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7:2 Definite Clause Grammars with Parse Trees: Extension for Prolog

Besides their use for natural languages, DCGs are the means of choice for parsing and
serialising formal languages and data exchange formats in Prolog. For instance, Swi-Prolog’s
library(http/html_write), which is used to parse and generate HTML fragments, relies
on DCGs. A new application to describe formal languages using DCGs arose with the
introduction of quasi-quotations [16] in Swi-Prolog. This feature allows the embedding of any
external domain-specific language (DSL) directly within Prolog code. For instance, Nogatz et
al. used this approach with quasi-quotations to add support for GraphQL to Swi-Prolog [9].
The DSL is parsed by a DCG at compile time and replaced by the generated parse tree. It is
likely that the embedding of external DSLs in Prolog will become even more popular with
the integration of quasi-quotations, increasing the need for a mechanism that creates the
corresponding Prolog term for the embedded string based on the DSL’s grammar.

The remainder of the paper is organised as follows. In Section 2, we introduce the
working with grammars in Prolog. As most formal languages are specified in EBNF, we
compare this notation with DCGs, Prolog’s de-facto standard for grammars. Our proposed
modified term expansion is introduced in Section 3. As an example application, we present
in Section 4 a parser for Prolog source code which uses a generative grammar that is based
on the definitions in the ISO Prolog standard. In Section 5, we present existing extensions to
the DCG formalism and argue about the relative merits of this approach when compared to
others. Finally, we conclude with a summary and outlook of future applications in Section 6.

2 Grammars in Prolog

In this section, we first shortly introduce the extended Backus–Naur form, which is the
de-facto standard to describe formal languages, including ISO Prolog. We then present the
syntax and semantics of DCGs in Prolog as well as their usage and translation in Swi-Prolog.

2.1 Extended Backus–Naur Form
EBNF is a notation to formally describe grammars with production rules. The list of EBNF
rules consists of nonterminals and symbols (terminals). Symbols are typically alphanumeric
characters, punctuation marks, etc., specified in quotation marks.

Each rule has three parts: a left-hand side (LHS) of just a single nonterminal, a right-hand
side (RHS) consisting of nonterminals and symbols, and the = symbol, which separates the
two sides and reads as “is defined as”. The elements of the RHS either describe an ordered
sequence (denoted by commas ,) or alternative choices (denoted by vertical bars |, with a
smaller precedence than the ordered sequence). Repetitions are enclosed by curly brackets
{ . . . }, optional nonterminals by square brackets [ . . . ], and comments by brackets of the
form (∗ . . . ∗).

As a motivational example in this paper, we consider in Figure 1 an extract of the ISO
Prolog standard that specifies the syntax of a variable token [1, Sec. 6]. A Prolog variable
is either the anonymous variable given by the underscore character, or a named variable
which has to start with an underscore character or capital letter. For instance, “_” is the
anonymous variable, and “_a” and “A” are named variables. The comments refer to the
sections of the ISO Prolog standard where the nonterminals are defined.

2.2 Syntax of DCGs
DCGs are not yet part of the ISO Prolog standard [1], but are under consideration for
inclusion in the future [2]. Nevertheless, as of today DCGs are supported by all major Prolog
implementations, including Swi-Prolog [14].
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variable token = anonymous variable (∗ 6.4.3 ∗)
| named variable (∗ 6.4.3 ∗) ;

anonymous variable = variable indicator char (∗ 6.4.3 ∗) ;
named variable = variable indicator char (∗ 6.4.3 ∗),

alphanumeric char (∗ 6.5.2 ∗),
{ alphanumeric char (∗ 6.5.2 ∗) }

| capital letter char (∗ 6.5.2 ∗),
{ alphanumeric char (∗ 6.5.2 ∗) } ;

variable indicator char = underscore char (∗ 6.5.2 ∗) ;
underscore char = ”_” ;

capital letter char = ”A” | ”B” | ”C” | . . . ;
alphanumeric char = . . .

Figure 1 EBNF rules for a variable token in Prolog.

In its simplest form to just specify context-free grammars, DCGs are very similar to
EBNF. Again, a DCG is a list of grammar rules, consisting of a LHS and a RHS. Instead
of =, the Prolog operator -->/2 is used in between.1 For compatibility with EBNF, the
vertical bar |/2 can be used to denote alternatives, but Prolog’s traditional disjunction ;/2
is also supported.

Compared to EBNF, DCGs provide three major extensions, resulting in the ability to
describe possibly non-context-free grammars:

Arguments in the LHS. In contrast to EBNF, the nonterminal on the LHS of a DCG is
allowed to have any number of arguments of any type. Since it is common in Prolog to
use the same variables for input and output, these additional arguments can also be used
to describe the corresponding parse tree, that either is used as input while serialising or
gets generated while parsing.
Complex control structures in the RHS. Besides the conjunction ,/2 and the disjunction
|/2 and ;/2, the Prolog control structures for If-Then/-Else ->/2 and not \+/1 can be
used to express relationships between items in the RHS. Parentheses (...) and Prolog’s
cut operator !/0 can be used as usual. In addition, any Prolog code can be embedded by
using curly brackets {...}.
Pushback arguments. DCGs allow the definition of rules in the form
“H, P --> B1, ..., Bn”, with P being a list of terminals that are prepended to the
parsed list after successfully evaluating the grammar’s body [2]. As we do not use it in
our application, it is mentioned here only for completeness.

The arguments in the LHS are also often used together with embedded Prolog code in
the RHS to condition the application of a rule or alternative by some provided options. For
instance, as of version 7.3.27 Swi-Prolog provides a flag var_prefix [15, Sec. 2.16.1] that

1 In the rest of this paper, we will use the notation A/N to denote a Prolog operator with the name A and
an arity of N. In contrast, a nonterminal A with N arguments is denoted by A//N.
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restricts the syntax of variables. Given var_prefix(true), only variables starting with the
underscore character are allowed, i.e. identifiers starting with a capital letter denote atoms.2

We can reproduce this behaviour by extending the DCG’s named_variable LHS by the
argument Flags and put the condition to check for var_prefix(false) in front of the
nonterminals on the RHS:

1 named_variable(Flags) -->
2 { option(var_prefix(false), Flags) },
3 capital_letter_char , ...

As usually in Prolog, comments are written as /* . . . */. Unlike EBNF, DCG provides
no pre-defined syntax neither for optional nonterminals nor repetitions.

2.3 EBNF as an Internal DSL in Prolog
EBNF and DCG are already very similar in their syntax. In fact, the example of Figure 1
can be embedded directly into Prolog with only minor modifications:

– Nonterminals in DCGs must be valid Prolog atoms, so included whitespaces have to be
replaced, e.g., by underscore characters.

– Comments are written as /* . . . */ instead of (* . . . *).3
– The very last rule have to end with a dot “.”.

Because Swi-Prolog and YAP allow the definition of the block operators []/1 and {}/1 [15,
Sec. 5.3.3], this slightly modified EBNF is already valid Prolog syntax. However, to not
confuse them with Prolog’s list notation and DCG’s embedded Prolog code, we write optional
elements as ?c instead of [ c ], and sequences as *c instead of { c }, with ?/1 and */1
defined as prefix operators.

As of Swi-Prolog version 7, text enclosed in double quotes is read as objects of type
string. Using the Prolog directive :- set_prolog_flag(double_quotes, chars). this can
be changed, so that double-quoted text is read as a list of characters. As a result, terminals
in DCGs can be written as strings enclosed in double quotes as in EBNF.

Prolog provides a mechanism to rewrite Prolog code at compilation time, similar to
macros in other programming languages. This is called term expansion. When loading code
into Swi-Prolog, its compiler calls the predicate expand_term/2 on each term read from the
input. As part of it, term_expansion/2 is executed to apply user-defined term expansions
first. With term expansion, EBNF can be translated into normal DCG notation at compile
time. For instance, the single EBNF rule underscore_char = ”_” gets replaced by the
following Prolog fact:

1 user:term_expansion(A = B, [A --> B]).

With similar expansions for “|” (alternatives), “; ” (rule endings), “?” (optional ele-
ments), and “ ∗ ” (sequences), EBNF becomes an internal DSL in Prolog. As a result,
grammars of formal languages provided as EBNF can be directly used in Prolog, resulting in
executable parsers.

2 This has been introduced for compatibility with Prolog by BIM. It has proven to be useful for defining
internal domain-specific languages in Prolog that require identifiers to start with an uppercase letters,
e.g., for RDF.

3 Note that ehe term (* . . . *) is valid Prolog syntax when */1 is defined as both a prefix and postfix
operator, since every Prolog term is allowed to be bracketed. However, this would require a comma in
front of the comment, since a bracketed term is only allowed as an argument.
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2.4 Procedural Semantics of DCGs and its Implementation
Essentially, the DCG notation is only syntactic sugar for writing Prolog predicates that
operate on difference lists. In most Prolog implementations, DCGs are translated into
normal Prolog code at compilation time using term expansion and the pre-defined pre-
dicate dcg_translate_rule/2. It adds the two arguments which are normally hidden by
the DCG notation.

For instance, consider the definition of the second alternative for named variables of
Figure 1 that describes a named variable beginning with a capital letter. It is only allowed
for the var_prefix flag set to false (cf. Section 2.2). Using appropriate term expansions
as presented in Section 2.3, the equivalent DCG is as follows:

1 named_variable(Flags) -->
2 { option(var_prefix(false), Flags) },
3 capital_letter_char , /* 6.5.2 */
4 *alphanumeric_char. /* 6.5.2 */

For every nonterminal A//N, two additional arguments S and R are added, resulting in a
Prolog predicate A/(N+2) with S = [C|R], and C the list of symbols consumed by the rule’s
body. Every body item operates on the result of the previous one. If there is embedded Prolog
code given in curly brackets, it is inserted at the specified position. I.e., the aforementioned
DCG for named_variable//1 gets expanded to the Prolog predicate named_variable/3:

1 named_variable(Flags , A, C) :-
2 option(var_prefix(false), Flags),
3 capital_letter_char(A, B),
4 *( alphanumeric_char , B, C).

The generated Prolog predicates can be directly used. For instance, the following call
consumes all possible prefixes of the string “Abc.D” that are valid named variables and
returns the rest:

1 ?- Flags =[ var_prefix(false)], L="Abc.D", named_variable(Flags ,L,R).
2 R = "bc.D" ; % first solution
3 R = "c.D" ; % second solution
4 R = ".D" . % last solution because "." is no alphanumeric character

Prolog backtracks over the three possibilities for the sequence of alphanumeric_char//0,
beginning with the empty string. Following Prolog’s SLD resolution mechanism, the rules
are tried in their order of appearance. With Prolog’s backtracking mechanism, multiple rules
with compatible LHSs will be tried. For the rest of the paper, we assume a basic knowledge
of these two fundamentals of Prolog.

3 Modified Term Expansion for Parse Tree Generation

The practical benefits of the DCG presented in Section 2.4 are very limited – the grammar
can only be used to check if a given string can be parsed by the grammar. Even generating
all allowed variable names is narrow, because Prolog’s SLD resolution first backtracks over
the sequence of alphanumeric_char//0, i.e. it generates the possible variable names in the
order of “Aa”, “Aaa”, “Aaaa” instead of “Aa”, “Ab”, “Ac”.

For practical use, the application of the grammar shall generate the corresponding parse
tree on-the-fly. In the field of natural language processing, it has been proposed to extend the
DCG’s LHS by an additional argument that holds the parse tree. Following the ideas proposed
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by Abramson and Dahl [3], the additional parse tree argument for a DCG rule H --> B is a
term of the form H(T), with H being the name of the rule’s head without arguments, and T a
term whose structure depends on the rule’s body B. This way, named_variable//1 becomes
named_variable//2:

1 named_variable(Flags , named_variable(T1 ,T2)) -->
2 { option(var_prefix(false), Flags) },
3 capital_letter_char(T1), *( alphanumeric_char , T2).

This construction method is generic because the additional parse tree argument is
constructed based only on the LHS’s nonterminal symbol and the structure of the grammar
rule’s RHS. The extension of an existing DCG can therefore be done automatically at compile
time using term expansion.

As part of our contribution, we provide a Swi-Prolog package library(dcg4pt) (“DCG for
parse trees”) which defines a predicate dcg4pt_rule_to_dcg_rule/2 that takes a DCG as
its first argument and returns an equivalent DCG where the nonterminals have been extended
by an additional parse tree argument. The library is listed in Swi-Prolog’s package list
at http://www.swi-prolog.org/pack/list?p=dcg4pt. Its source code is published under
MIT License at https://github.com/fnogatz/dcg4pt. It can be used to get the extended
version of every DCG rule at first, and translate the result afterwards using Prolog’s built-in
predicate dcg_translate_rule/2 as introduced in Section 2.4:

1 :- use_module(library(dcg4pt)).
2 user:term_expansion(H --> B, Rule) :-
3 dcg4pt_rule_to_dcg_rule(H --> B, DCG),
4 dcg_translate_rule(DCG , Rule).

3.1 Handling of Optionals and Sequences of Nonterminals
Grammars for formal languages often make great use of optional and sequences of nonterminals.
For instance, the nonterminal named variable of Figure 1 allows any number of alphanumeric
characters, including zero. Another typical use case is the whitespace for indentation in
programming languages; newline and whitespace characters can be set arbitrarily and even
include comments. This is different from the previous applications in the field of natural
language processing as in [3]. There, the number of nonterminals in a grammar rule’s RHS is
known in advance. As a result, the parse tree argument can have a fixed number of children.
E.g., the parse tree is represented as np(Name) for a noun phrase that is simply a name; or
np(Det,Noun,Rel) for a noun phrase that consists of a determiner, noun, and relative clause.

However, when working with optionals and sequences, the number of children is not
limited. It is therefore desirable to use a list if there is a conjunction, optional, or sequence
on a grammar rule’s RHS. The DCG for named_variable//2 should therefore produce a
parse tree of the form named_variable([T1|T2]), with T1 being the parse tree generated
by capital_letter_char//1, and T2 the (possibly empty) list of parse trees each generated
by alphanumeric_char//1 in the sequence.

This follows the ideas of the library of [12], which also introduces additional control
structures for parsing sequences, such as sequence(Mode,. . . ), that further make the code
more compact, readable and declarative, where Mode can be one of ’*’, ’**’, ’+’, and ’?’.
The previous library is the basis of our current implementation of library(dcg4pt). It is
available in the Declare package at http://www1.pub.informatik.uni-wuerzburg.de/
databases/ddbase/ and has been used in an application of DCGs to language processing

http://www.swi-prolog.org/pack/list?p=dcg4pt
https://github.com/fnogatz/dcg4pt
http://www1.pub.informatik.uni-wuerzburg.de/databases/ddbase/
http://www1.pub.informatik.uni-wuerzburg.de/databases/ddbase/
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for electronic dictionaries in linguistics by Seipel et al. [12], and represents the parse trees
in an Xml term for Prolog. Instead of using sequence/2, library(dcgt4pt) defines the
prefix operators ?/1 (optional element), +/1 (non-empty sequence), and */1 (possibly
empty sequence).

3.2 Term Expansion Scheme
The general formation principles of library(dcg4pt) depending on the body of a DCG rule are
presented in Table 1. The parse tree is always added as the very last argument, i.e. for a
rule’s LHS of h(some), the head of the generated DCG rule becomes h(some, h(. . . )).

Table 1 Formation principles to construct the parse tree for a DCG rule “h –-> Body”.

DCG Body Example DCG Extended by Parse Tree Argument

Terminal h --> "_". h(h(’_’)) --> "_".

Nonterminal h --> a. h(h(A)) --> a(A).

Conjunction h --> a , b. h(h(R0)) -->

{ R0 = [A|R1] }, a(A),

{ R1 = [B] }, b(B).

Disjunction h --> a | b. h(h(R0)) -->

{ R0 = A }, a(A) ;

{ R0 = B }, b(B).

Embedded h --> a, { p }. h(h(A)) --> a(A), { p }.

Prolog Embedded Prolog is ignored for the parse tree generation.

Sequence h --> *a. h(h(R)) --> sequence(’*’,a,R).

or Optional And similar for the prefix operators +/1 and ?/1.

R is a list.

In sequence//3, we distinguish whether the DCG is called with
bound or unbound arguments.

Note that the embedded Prolog code for variable unifications presented in Table 1 is
needed to support complex RHSs with combinations of all these structures. For instance, a
rule “h --> a, *b, c” should not be translated into:

1 h(h([A,Bs,C])) --> a(A), sequence(’*’,b,Bs), c(C).

Because sequence//3 describes a list Bs, the generated parse tree for h//1 would otherwise
contain a list of lists. Instead, the following extended DCG is generated by library(dcg4pt):

1 h(h(R0)) -->
2 { R0=[A|R1] }, a(A),
3 sequence(’*’, b, Bs), { append(Bs, R2, R1) },
4 { R2=[C] }, c(C).

With no b//1 being present in the sequence, the resulting parse tree for h//1 is just h([A,C]).
Using this compilation scheme, the extended DCG is capable to generate all pos-

sible combinations of strings and corresponding parse trees. For instance, in Listing 1,
variable_token/3 is used to parse an input of “_a”. Using backtracking, it returns two
solutions. First, only the first symbol “_” is consumed, because it represents the anonymous
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variable; the remainder “a” of the string is bound to the third argument. As a second
solution, the string is parsed as a named variable.

Listing 1 Usage example for the generated variable_token/3 with the input string "_a".
1 ?- variable_token(T, "_a", R).
2 % first solution , consuming only "_":
3 R = "a", T = variable_token(anonymous_variable(
4 variable_indicator_char(underscore_char(’_’)))) ;
5 % second solution , consuming the whole string "_a":
6 R = "", T = variable_token(named_variable ([
7 variable_indicator_char(underscore_char(’_’)),
8 alphanumeric_char(alpha_char(letter_char(
9 small_letter_char(a) ))) ])) .

3.3 Support for Parsing and Serialising
The aim of library(dcg4pt)’s term expansion scheme is to create a modified DCG that
expresses a relation between the string and parse tree. In particular, the generated Pro-
log program can also be used “in reverse” to a normal parser, i.e. to serialise a string
by a given parse tree. For this purpose it has to be ensured that the term expansion
scheme presented in Section 3.2 uses only Prolog predicates that are pure, i.e. they can be
used no matter which of the arguments are bound. For instance, the aforementioned rule
“h --> a, *b, c” could also be expanded to use Prolog’s built-in predicate flatten/2. It
calculates a flattened list from a list of lists and therefore also avoids the use of nested lists.
However, flatten(+ListOfLists,-FlattenedList) can not be used the other way around.
As a result, the generated extendend DCG can only be used to parse a given string and
return the corresponding parse tree; serialising a given parse tree back to the corresponding
string is not possible.

Note that this is an improvement on the previous implementations of [7] and [12]. In
addition, because of possibly left-recursive rules, or rules that consume resp. produce no
symbols, the expanded rules have to behave differently depending on whether they are
called with bound or unbound arguments. For instance, consider the rules that describe
a variable as presented in Listing 2: it is a variable_token optionally prepended by layout
characters. layout_text_sequence succeeds for any non-empty sequence of whitespace, tab,
or newline characters.

Listing 2 Grammar rules for the nonterminal variable in Prolog.
1 variable = ?layout_text_sequence , variable_token ;
2 layout_text_sequence = layout_text , *layout_text ;
3 layout_text = layout_char | comment ;
4 layout_char = space_char | horizontal_tab_char | new_line_char .

For a given string “ _a” (the string “_a” preceded by two whitespaces), the RHS of
layout_text_sequence should try to consume as many whitespace characters as possible to
avoid unnecessary backtracking. On the other hand, this greedy approach is undesirable when
both arguments are unbound, i.e. when generating all allowed strings with their corresponding
parse tree. In that case, the smallest possible string should be created at first. The four
combinations of an (un)bound string or parse tree are automatically handled by the DCGs
generated by our tool. For instance, in the definition of *//1 (resp. */4 after expansion
with the arguments for the parse tree, and the lists S and R) in Listing 3, we test whether



F. Nogatz, D. Seipel, and S. Abreu 7:9

the argument S is a variable. If so, we make use of sequence(’*’,_) that starts with the
smallest string, i.e. the empty list, whereas sequence(’**’,_) tries to consume as many
symbols as possible from the given argument S. Similar checks have been implemented for
the sequences ’?’ and ’+’, resulting in Prolog programs that can be used both for parsing
and serialising, based on a single grammar.

Listing 3 Implementation of the meta-predicate */4 to support sequences of nonterminals.
1 *(DCGBody , Tree , S, R) :-
2 \+ var(S), !,
3 sequence(’**’, DCGBody , Tree , S, R).
4 *(DCGBody , Tree , S, R) :-
5 var(S), !,
6 sequence(’*’, DCGBody , Tree , S, R).

4 Case Study: A Parser for Prolog

Quite often parsing is only a single step when working with formal languages. A common
use case is program transformations. These require to first parse the program based on a
grammar, then generate an abstract syntax tree, modify it, and serialise it again. With our
tool, the same language specification – i.e. the same code – can be used for the parsing and
serialising steps. They share a single data structure – the parse tree which was automatically
added by our tool’s modified term expansion –, and the resulting Prolog program can be
used in both directions without any modification. Compared to the common approach of
using a parser generator like ANTLR [10] instead, our library relieves the programmer from
the burden of keeping two tools, for parsing and serialising, in sync.

As a case study, we present the implementation of a grammar for Prolog programs. With
the help of our tool library(dcg4pt), the DCG is extended by a hidden argument to store
the parse tree. We will show how this generic parse tree can be modified and used by the
same grammar to produce a valid Prolog program again. It can be used in Swi-Prolog as
the package library(plammar).

The programming language Prolog is specified in the ISO Prolog standard [1]. While
most of the syntax is described using EBNF, the ISO standard also contains informally
specified requirements which cannot be expressed by context-free-grammars. For instance, it
provides grammar rules for the language’s tokens, but also states informally:

A token shall not be followed by characters such that concatenating the characters of
the token with these characters forms a valid token [...].

This requirement cannot be expressed by a context-free grammar. As the ISO standard
contains several similar requirements, parsing Prolog is a prime example for a realistic parser
based on DCGs.

Analysing the syntax of a programming language usually requires two phases: (i) the
lexical analysis, that converts a sequence of characters into a sequence of tokens, and (ii)
the parsing of the tokens in order to generate a structural representation. With DCGs it is
possible to write scannerless parsers that combine these two steps into a single grammar.
However, the ISO standard defines Prolog similarly: it first declares that a Prolog program
consists of Prolog terms that are a sequence of tokens, and later defines the grammars for
tokens and terms separately. Therefore, our implementation is also split into the two phases.
Both make use of grammars but work on lists of different types: the lexer handles the
program source code as a string and is presented in Section 4.1; the parser works with a

SLATE 2019



7:10 Definite Clause Grammars with Parse Trees: Extension for Prolog

list of tokens and is described in Section 4.2. An example on how to use this grammar for a
source-to-source transformation is presented in Section 4.3. In Section 4.4 we present the
integration of library(plammar) into a graphical interface to interactively explore a parse tree.

4.1 Lexical Analysis
The ISO standard specifies the syntax of Prolog in more than 200 EBNF grammar rules.
After having defined EBNF as an internal DSL as presented in Section 2.3, the grammar
rules can be directly used as a Prolog program.

The beginning of the DCGs as defined in the ISO standard is given in Listing 4. It
states that a term is a sequence of token. A token is one of name, variable, integer ,
float_number , etc.

Listing 4 Definition of tokens according to Sec. 6.4 of the ISO Prolog standard [2].
1 term = *token ; % sequence of token
2 token = name | variable | integer | float_number | ht_sep | open |
3 close | open_ct | double_quoted_list | comma | open_list |
4 close_list | open_curly | close_curly .

As presented in Section 3, these grammar rules are expanded so that they match the
corresponding parse tree. For token this is simply a structure token(I) with I one of
name(. . . ), variable(. . . ), and so on, because every element of the choice is a single
nonterminal. The EBNF in the ISO standard is deeply structured and thus creates very
verbose parse trees. For instance, consider the Prolog term that consists of just the named
variable “_a” as given as the second solution in Listing 1.

The extended DCG for the nonterminal term describes a parse tree of the form term(I).
According to our modified term expansion, I is always a list of token(. . . ). This is exactly
the result one expects from a lexer.

As an example, we consider the implementation of the member/2 predicate in Prolog:
1 member(X,[X|_]).
2 member(X,[_|Xs]) :-
3 member(X,Xs).

member(?Elem,?List) is true, iff Elem is the List’s first element (fact in l. 1), or one
of the following (recursive rule in ll. 2). The tokenisation of the first line of this imple-
mentation is given in Listing 5. Our tool library(plammar) provides the Prolog predicate
prolog_tokens(?Source,?Tokens) that takes Prolog source code and generates the list of
tokens, and the other way around. For the member/1 fact it returns 11 tokens.

Listing 5 Tokenisation of “member(X,[X|_]).” as generated by library(plammar).
1 ?- use_module(library(plammar)). % load package
2 ?- prolog_tokens(string("member(X,[X|_])."), Tokens).
3 Tokens = [
4 name([ name_token(letter_digit_token ([ small_letter_char(m) ,...]))]),
5 open_ct(open_token(open_char(’(’)))),
6 variable ([ variable_token(named_variable ([ capital_letter_char(’X’)]))]),
7 comma ([ comma_token(comma_char(’,’))]),
8 open_list ([ open_list_token(open_list_char(’[’))]),
9 variable(/* as before for X */),

10 ht_sep ([ head_tail_separator_token(/* shortened */)]),
11 variable ([ variable_token(anonymous_variable(/* as in Listing 1 */))]),
12 close_list ([ close_list_token(close_list_char(’]’))]),
13 close ([ close_token(close_char(’)’)))]),
14 name([ name_token(graphic_token ([ graphic_token_char(graphic_char (.))]))
15 ]) ] .
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4.2 Parsing
DCGs are not only useful when working with strings. In general, they describe difference lists
over any type, and strings are just a special case, since in Prolog they are represented by a list
of characters. Thus, the grammar to process the list of tokens generated in the lexical analysis
can also be defined by an extended DCG. The ISO standard even specifies valid sequences
of tokens as EBNF, as well. For instance, the compound term member(X,[X|_]) is a valid
Prolog term: it is the sequence of an atom, the opening parenthesis, a list of arguments
(denoted by the nonterminal arg_list), and the closing parenthesis. The corresponding
grammar rule is presented in Listing 6. Here, elements given in brackets represent terminals,
i.e. the parse trees open_ct(. . . ) and close(. . . ) are elements in the list of tokens generated
by the lexer. Using our modified term expansion, this rule describes a parse tree of the form
term([atom(. . . ), open_ct(. . . ), arg_list(. . . ), close(. . . )]).

Listing 6 Definition of compound terms in functional notation according to Sec. 6.3.3 of the ISO
Prolog standard [2].

1 term (0) = atom , [ open_ct(_) ], arg_list , [ close(_) ] ;
2 atom = [ name(_) ] ;
3 arg_list = arg ;
4 arg_list = arg , [ comma(_) ], arg_list ;
5 arg = term(P), { P < 1000 } .

Note that parsing Prolog source code requires one to annotate all terms by their preced-
ence (called priority in the ISO standard). A compound term has the highest precedence
zero, which is specified in the argument of term. The nonterminal term therefore has a
higher arity than the term of Listing 4, making the two predicates distinguishable: our term
expansion creates a Prolog predicate term/4 for the former, and term/3 for the latter.

Given the definitions of Listing 6, the tokens returned by prolog_tokens/2 (cf. Listing 5)
are correctly recognised as a Prolog term in functional notation. The term consists of a
function symbol that is an atom – represented by the list element name(_) –, followed by the
opening parenthesis open_ct(_), the list of arguments arg_list, and the closing parenthesis
close(_). arg_list is a comma-separated list of terms with a precedence lower than 1000.
The token variable(_) is used as the first argument. The second argument given by
the tokens [open_list(_), variable(_), ht_sep(_), variable(_), close_list(_)]
denotes a list and is parsed by another grammar rule for term(0), which we do not present
in detail here.

4.3 Source-to-Source Transformation
The Prolog grammar provided in library(plammar) can be used for parsing and serialising. An
application would be code reformatting. For instance, let’s assume we want to automatically
add whitespace characters after every comma in the arg_list of a compound term. Given a
Prolog predicate transform_parse_tree/2, we can apply the source-to-source transforma-
tion by just combining the created term/3 and term/4 predicates, as they can be used in
both directions:

1 ?- term(term(ListOfTokens_1), Old , []), % lexical analysis
2 term(Prec , AST_1 , ListOfTokens_1 , []), % parsing
3 transform_parse_tree(AST_1 , AST_2), % transformation
4 term(Prec , AST_2 , ListOfTokens_2 , []), % serialise tokens
5 term(term(ListOfTokens_2), New , []). % serialise string

SLATE 2019
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In library(plammar), we provide Prolog predicates to ease the work with tokens, parse trees,
and abstract syntax trees: prolog_parsetree/2, parsetree_ast/2, and prolog_ast/2.
They have been developed with a focus on their usage as relations and can handle the input
of only the Prolog source code, only the tokens, parse tree, or abstract syntax tree, or both
arguments being unbound.

4.4 Integration into Graphical AST Explorer
As part of our contribution we integrated the Prolog parser library(plammar) into
https://astexplorer.net/, an open source web application that provides parsers for
several programming languages, including PHP, JavaScript, and SQL. Figure 2 presents the
graphical representation of the generated parse tree for the Prolog program that defines the
member/2 predicate.

Figure 2 Integration of the Prolog parser into https://astexplorer.net/.

5 Related Work

Since its introduction by A. Colmerauer, the logic programming language Prolog was
developed with a focus on natural language processing. This resulted in a first representation
of grammars as clauses of first-order logic in 1975 by Colmerauer [4, 5]. Definite Clause
Grammars were introduced by Pereira and Warren in 1980 [11]. As a usage example of
extra arguments in nonterminals, they manually extend rules that parse sentences by their
corresponding building structures – a term holding information about the applied rule and
its RHS elements.

This idea is adopted by Dahl and McCord in 1983 [7]. Their modifier structure grammars
extend a grammar with two additional arguments to obtain a meaning representation
(called semantic structure), and its corresponding syntactic structure in form of a parse tree.
Simultaneously and independently, restriction grammars were developed by Hirschman and

https://astexplorer.net/
https://astexplorer.net/
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Puder [8], which also automatically create parse trees. An overview of these approaches
is given in [3, Chapters 7–8], where the idea of hiding the parse tree argument from the
user is discussed.

The aforementioned approaches are focused on context-free grammars. In particular,
they do not make use of embedded Prolog on a rule’s RHS, and higher-order structures
like sequences. Although they expand grammar rules by an additional argument to store a
parse tree, its actual construction is not specified. Hence, we have observed that they do
not address the challenges that arise when grammar rules that consume resp. produce no
symbols are called with unbound arguments. This is a requirement for grammars that are to
be used for both parsing and serialising.

In [13], DCGs are again augmented with hidden additional arguments. Instead of
generating parse trees, they allow to define multiple accumulators, e.g., to calculate and
store the size of the consumed symbols. Accumulators are defined using Prolog predicates.
It might be possible to use this technique to define a hidden accumulator that creates the
corresponding parse tree, though to the best of our knowledge this has not yet been done.

6 Conclusion

The development of Definite Clause Grammars was long driven by a focus on natural
language processing. As of today, other techniques have gained popularity in this area. In
this paper, we emphasise the usefulness of DCGs for the work with formal languages, as
DCGs provide a unified mean to specify both a parser and serialiser. We took up again
the idea of extending DCGs by a hidden argument to store the corresponding parse tree,
and presented a generalised formation principle that supports optional and sequences of
nonterminals and provides optimisations depending on which arguments are bound. Our
tool can be used with any existing DCG, resulting in a generative grammar. It is published
as the Swi-Prolog package library(dcg4pt).4

As an example application, we implemented a generative grammar for Prolog source code,
bundled as library(plammar).5 Because Prolog’s syntax is defined by more than 200 grammar
rules in EBNF, we implemented EBNF as an internal domain-specific language for Prolog.
This enabled an easy adoption of the ISO Prolog standard with only minor modifications.

The tool for automatic parse tree generation will become useful for implementing external
domain-specific languages in Prolog, in particular using quasi-quotations. On the other
hand, there are several future applications for the Prolog parser: besides source-to-source
transformation for refactoring, it can be used for static source code analysis, e.g., to find all
predicates that are available only in some Prolog systems.
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