
Robust Phoneme Recognition with Little Data
Christopher Dane Shulby
Institute of Mathematical and Computer Sciences – University of Sao Paulo, Brazil
Samsung SIDI Institute, São Paulo, Brazil
www.nilc.icmc.usp.br
c.shulby@icmc.usp.br

Martha Dais Ferreira
Institute of Mathematical and Computer Sciences – University of Sao Paulo, Brazil
daismf@icmc.usp.br

Rodrigo F. de Mello
Institute of Mathematical and Computer Sciences – University of Sao Paulo, Brazil
mello@icmc.usp.br

Sandra Maria Aluisio
Institute of Mathematical and Computer Sciences – University of Sao Paulo, Brazil
sandra@icmc.usp.br

Abstract
A common belief in the community is that deep learning requires large datasets to be effective. We
show that with careful parameter selection, deep feature extraction can be applied even to small
datasets.We also explore exactly how much data is necessary to guarantee learning by convergence
analysis and calculating the shattering coefficient for the algorithms used. Another problem is that
state-of-the-art results are rarely reproducible because they use proprietary datasets, pretrained
networks and/or weight initializations from other larger networks. We present a two-fold novelty
for this situation where a carefully designed CNN architecture, together with a knowledge-driven
classifier achieves nearly state-of-the-art phoneme recognition results with absolutely no pretraining
or external weight initialization. We also beat the best replication study of the state of the art with
a 28% FER. More importantly, we are able to achieve transparent, reproducible frame-level accuracy
and, additionally, perform a convergence analysis to show the generalization capacity of the model
providing statistical evidence that our results are not obtained by chance. Furthermore, we show
how algorithms with strong learning guarantees can not only benefit from raw data extraction but
contribute with more robust results.

2012 ACM Subject Classification Computing methodologies → Speech recognition

Keywords and phrases feature extraction, acoustic modeling, phoneme recognition, statistical
learning theory

Digital Object Identifier 10.4230/OASIcs.SLATE.2019.4

Acknowledgements We would like to thank our NILC colleagues for their input and support. A
great thanks goes to CEMAI. It was only possible to run these experiments thanks to the Euler
super-computer cluster at the ICMC – University of Sao Paulo.

1 Introduction

Acoustic modeling, or the statistical representation of speech signals, is essential for parametric
ASR (Automatic Speech Recognition). Generally PER (Phone Error Rate) or FER (Frame
Error Rate) are used to measure model performance. FER is a more exact metric, since
it shows exactly what the acoustic model is capable of and PER is more interesting for
applications because in the end, this is the goal of the acoustic model. Still, some kind of
PER smoothing technique is inevitably used. For the field of ASR, large companies have been
positive on one hand, as they have matured the technology into production ready algorithms

© Christopher Dane Shulby, Martha Dais Ferreira, Rodrigo F. de Mello, and Sandra Maria Aluisio;
licensed under Creative Commons License CC-BY

8th Symposium on Languages, Applications and Technologies (SLATE 2019).
Editors: Ricardo Rodrigues, Jan Janoušek, Luís Ferreira, Luísa Coheur, Fernando Batista, and Hugo Gonçalo
Oliveira; Article No. 4; pp. 4:1–4:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-9637-9657
www.nilc.icmc.usp.br
mailto:c.shulby@icmc.usp.br
https://orcid.org/0000-0002-3078-9634
mailto:daismf@icmc.usp.br
https://orcid.org/0000-0001-9144-8270
mailto:mello@icmc.usp.br
https://orcid.org/0000-0001-5108-2630
mailto:sandra@icmc.usp.br
https://doi.org/10.4230/OASIcs.SLATE.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Robust Phoneme Recognition

and increased the access to machine learning libraries like never before, but negative when it
comes to publishing reproducible work. Often proprietary databases are used to train for
benchmark results as in [6, 12] and PER or FER is rarely given. One of our principal objectives
has been to be as transparent as possible and establish metrics for fair comparison of acoustic
models. We also show that deep learning techniques, combined with careful engineering can
be useful even for non-big-data scenarios, especially in the case of raw feature extraction
(completely statistical-based). In this article, we experiment with context windows to better
understand the performance of the model with respect to phonemic context and then, we
demonstrate the robustness of the model with the learning guarantees provided by the Vapnik
Chervonenkis (VC) theory [23]. It is important to accurately model acoustic properties so
that errors do not propagate to other models. Reliable phoneme-level error detection is still
a great need for automatic pronunciation training. This is not trivial, since acoustic models
are still quite far from perfect and most ASR pipelines rely on pronunciation models (and
sometimes language models) to overcome these deficiencies. In general, there is not an equal
share of the wealth of data resources and the majority of the world’s languages have not
benefited from deep speech technology for a number of reasons: i) they require thousands of
hours of transcribed/annotated data [17]; ii) they require a respectable infrastructure with
large scale GPU-computing and often take weeks or months to train [5]; and iii) they do
not offer solid learning guarantees [26]. More specifically, the amount of training data is a
limiting factor and for more robust applications the amount of training data could grow
exponentially with augmentation techniques like MCT (Multi-conditional Training) [13].
Secondly, infrastructures which can adequately support this type of training exists in very few
university laboratories and is mostly limited to the private sector. Lastly, these vastly trained
models which have been long suspected and shown by [26] to be great data memorizers, but
poor generalizers and difficult to scale in real world applications, even in the best conditions.
In this paper, we focus on reproducible results, showing that raw feature extraction can
still be used for SotA (State of the Art) ASR in low-resource training environments, where
careful parameter selection and good architecture choices can compensate for a deficit in
data. We chose to use a CNN (Convolutional Neural Network) as the feature extractor for
this work, because of raw feature extraction via convolution and dimension reduction by max
pooling. Since human experts are capable of recognizing phonemes in a spectrogram given
the concentration of visual formants, it seems reasonable to ask this of a computer vision
algorithm which was inspired by a mammalian visual cortex. This is why we chose to treat
this as an image processing problem, instead of a more classical signal processing approach
which would use the Discrete Fourier Transforms directly. In Section 3, we describe the
TIMIT database used in our experiments, the preprocessing steps taken for images used in the
CNN feature extractor and the architecture proposed for the experiments. The experiments,
results and discussions are presented in Section 4 followed by the convergence analysis in
Section 5. Finally we will make our concluding remarks in argument for reproducible and
robust acoustic models in Section 6.

2 Related Work

The CNN has proven to be useful for phoneme recognition. [1] proposed a hybrid CNN-
HMM model using local filtering and max-pooling in the frequency domain where a strong
benchmark of 21.6% PER is established. Their network is also pretrained on 18 hours
of Google voice search data. [18] explore the optimal CNN architecture presenting the
best results with large corpora (300-400 hours). While the results are promising for SotA

C.D. Shulby, M.D. Ferreira, R. F. de Mello, and S.M. Aluisio 4:3

applications using a CNN, both of these strategies require a great deal of resources to train
and can be difficult for comparison by other researchers without access to these datasets
or pre-trained weights. One can assume that some pre-processing on the images and data
smoothing was used to generate PER. It is also likely a pronunciation and possibly language
model was used after the acoustic model’s posterior probabilities were generated, but these
details are not clarified in those works. FER could be useful and is not given in most SotA
papers like [16, 2, 18, 1, 11, 21]

Table 1 shows the SotA results we were able to compile, which use both FER and PER
metrics. In the table, each study is listed with the method used, whether the paper provides
sufficient information to reproduce it exactly (REP? - short for reproducible) and the PER
and FER. Studies without both PER and FER were not included in the table.

Table 1 SotA Results using PER and FER as metrics.

Ref Method REP? PER FER
[10] DBLSTM-RNN N 17.7 27.9
[20] CNN + CTC N 29.4 22.1
[22] DLSTM-RNN Y 25.4 29.4

In 2013, [10] benchmarked the TIMIT corpus at 17.7% PER and 27.88% FER. This
DBLSTM-RNN (Bidirectional Long Short-Term Memory-Recurrent Neural Network) in-
cluded 3 Hidden layers with 250 units in each and pre-trained (from a larger dataset) CTC
(Connectionist Temporal Classification) finite state transducers. The 50 speaker development
set was used for fine-tuning and early stopping as well as a biphone language model for
predictions. Interestingly, [22] did make a best-effort attempt to reproduce the network by
[10]. The main difference was that a DLSTM instead of a DBLSTM is used. The author
explains that this was because of the lack of availability of a Bi-directional LSTM within
the TensorFlow library (as a project scope setting). Still, he does use a three layer LSTM
network with 250 hidden units. The author used the openly available default initialization
from TensorFlow based on [25], since the data from [10] was not available. His network used
a mini-batch size of 6 sub-sequences of 20 frames and applied dropout regularization. The
final results of this reproducible network were 29.43% FER and 25.36% PER. The FER
results are quite comparable to [10] but the PER is much higher. This is probably due to
the bi-phone language model. It also seems like the pretraining was rather similar (using
the TensorFlow default) to the database that was used in the previous studies by [9] and
[10]. As far as FER is concerned, the best work is [20], beating the mark set by [10]. This
technical report is interesting since it uses a CNN as well with CTC and achieves a FER of
22.1% but does not break the mark for PER. While the authors do not offer any evidence for
the generalization capacity, they do explain their training philosophy as stated in the article:
“we train until the model begin[s] to overfit on the training set and the dev accuracy begins
to fall. Much of the training is done on SAIL’s Deep clusters, which uses nVidia GTX780
GPUs”. The network with the best performance was the 25 frame windowed 128-256-384-384
CNN followed by 1024-512 dense layers. This means that the network is very large and
likely makes use of a lot of data. They also do not give the hyper-parameters used in their
CNN and explain that they used their own pretrained language model for predictions and a
pretrained RNN-CTC from some dataset (also not described). Since none of these resources
are made available, this study is unfortunately not reproducible either.

SLATE 2019

4:4 Robust Phoneme Recognition

3 Dataset, Features and Architecture

3.1 Dataset and Feature Extraction
We used the TIMIT Corpus. This corpus was used because it has been an industry benchmark
for decades and is a small (ca. 5 hours) dataset which is phonetically balanced for English.
As suggested in [14], we collapsed the phone set into 39 monophones. We did not; however,
train the 61 phone set before collapsing so as not to dilute the training samples. To be
consistent with other works, we also removed silence frames from the final predictions for
FER and PER. We extracted the features from spectrogram images which we preprocessed
with sox, from Hann windows of 25ms with a stride of 10ms. The spectrogram of each 25ms
window has 5x128 color pixels according to the sox color palete. This means that each pixel
in time direction corresponds to 5ms (200 pixels per second) and 128 frequency points are
taken in the frequency direction (DFT size of 254). Afterwards, we searched for the best
kernels to adequately represent our dataset, as explained in subsection 3.2.

Figure 1 Spectrogram illustrating 25ms Hann windows with a stride of 10ms.

3.2 Architecture
3.2.1 CNN Feature Extractor
Our parameters network architecture, was estimated using an approach based on False
Nearest Neighbors (FNN) proposed by [8]. This technique estimates the kernel sizes to best
represent data patterns and found the most aggressive pooling layers to lower the dimensions
of our feature maps since these would then be passed on to a SVM (Support Vector Machine).
This method was used to generate the best five configurations and from those options, we
chose the simplest configurations which was decided by using the one which presented the
largest masks with the fewest neurons. The final parameters used were 3 Convolutional layers:
1. 36 units, kernel=15× 2; 2. 31 units, kernel=15× 1 + max-pooling=3× 3, stride=2× 2; 3.
15 units, kernel=8× 1 + max-pooling=3× 3, stride=2× 2. ReLU activation was applied
due to its widespread adoption in literature. We used a batch size of 128, a learning rate of
0.01 and trained over 31 epochs. The convolutional network required 8 hours using a single
Titan-X GPU and 32GB of RAM. In the SVM, we augmented the context while skipping
some frames. The defining principle in our frame skipping is that we left the two adjacent
frames (1 right, 1 left) always intact, believing that these frames are the most important

C.D. Shulby, M.D. Ferreira, R. F. de Mello, and S.M. Aluisio 4:5

ones. After the three middle frames, we skipped every other frame until we reached the
extremity of the window. For example if we have 11 overlaping frames (25ms/step of 10
ms) of context, we would only train the first, third, fifth, sixth, seventh, ninth and eleventh
frames, considering the sixth as the central frame. This would be considered 1 instance for
training and the next instances would follow the 10ms step size for the next frame until
the end of the audio (the first and last 10 full seconds are padded with zeros). The full
pipeline can be seen in Figure 2. We found that frame skipping greatly reduces the number
of features with very little impact on results as later explained in section 4.

conv. layer
36 units (15 x 2)

conv. layer
31 units (15 x 1)

max-pooling layer
3 x 3 (stride 2 x 2)

conv. layer
15 units (8 x 1)

max-pooling layer
3 x 3 (stride 2 x 2)

feature vector
38 units (29 x 1)

SVM SVMSVM

SVM
voting (4×)

...

CNN
FEATURE EXTRACTOR

HMM
LABELER

HIERACHICAL TREE
SVM

obstuents silence sonorants

SPECTOGRAMS
audio

text

PER
SMOOTHING

/p/

Figure 2 CNN-HTSVM architecture defined for the experiments.

3.2.2 HTSVM Classifier

The SVM parameters were found empirically after several experiments. The selected kernel
for final experiments was a 4th order polynomial kernel with coef0 = 1 (as a non-homogeneous
kernel) and a cost C = 10, 000. The interested reader can find more details about the exact
architecture of the hierarchical tree structure in [19]. One of the biggest issues of the TIMIT
dataset is that it is not balanced with respect to its classes. For example: in the training set,
the phoneme /k/ appears in 60, 433 frames, whereas /g/ is found in only 17, 727. In order
to build a robust system, it is important to learn this phonemic distinction and minimize
the influence of probability in the training set. We were able to deal with this by using the
SMOTE [4] data augmentation technique. In order to obtain PER, the classified frames were
converted to phonemes by taking the mode of all of the SVM classifications for each HMM
boundary generated in the labeler.

4 Experiments and Results

We ran two types of experiments in this paper. The first experiments were designed to
demonstrate the cost/benefit of window skipping and can be seen in Table 2. An asterisk
symbol in the number of frames column denotes that window-skipping was used and in the
classifier column indicates that stochastic gradient descent (SGD) was used, otherwise the
solver was Adam. Once we completed the MLP (Multi-Layer Perceptron) experiments, we
ran selected experiments with the SVM.

SLATE 2019

4:6 Robust Phoneme Recognition

Table 2 Experiments on CNN features with window-widening.

Frames Classifier FER PER F1

1 MLP 0.49 0.54 0.36
3 MLP 0.45 0.50 0.41
5 MLP 0.43 0.48 0.45
7 MLP 0.41 0.45 0.48
9 MLP 0.40 0.44 0.49
11 MLP 0.39 0.43 0.51
11* MLP 0.39 0.43 0.50
11* MLP w/SGD 0.38 0.42 0.51
13 MLP 0.39 0.42 0.51
15* MLP w/SGD 0.37 0.40 0.52
19 MLP w/SGD 0.37 0.39 0.52
1 SVM 0.42 0.47 0.44
3 SVM 0.41 0.45 0.48

11* SVM 0.30 0.33 0.61
19* SVM 0.28 0.32 0.63

The second set of experiments were designed to compare our algorithm with the SotA.
Here we compare our results to the replication study done by [22], our attempted replication
of the famous CNN from [1] (without any pre-training or language model) and the traditional
GMM-HMM as a baseline classifier which is generally used for classification on small datasets.
As a traditional baseline, we used one of the most popular ASR toolkits for a database the
size of TIMIT, the HTK toolkit. A triphone HTK model with 31 Guassians was trained
on the same TIMIT training set used in our method and recognition was performed on
the test set with a zero-gram language model and only the individual monophones as the
pronunciation model in order to obtain only the posterior values from the acoustic model.
We used 31 Gaussian components because this number is one which we have found useful in
the past. It is higher than what is recommended by the voxforge tutorial [15], which uses 15
and is similar to the models used by Keith Vertanen [24], where he uses a maximum of 32 for
the Wall Street Journal and TIMIT datasets together. The model was trained using MFCC
0DANZ acoustic features, where 0 uses the zeroth cepstral coefficient, D=delta coefficients,
A=delta delta acceleration coefficients, N=absolute energy suppression and Z=zero mean
normalization. The predictions were then segmented in the same fashion as the proposed
method with 25ms sliding windows and a step of 10ms. In the case of the CNN replication,
we used the closest parameters possible to those given in [1] as follows: conv layer 1: 1, 000
units, kernel size = 8× 8; max-pooling 1: 5× 5 / 2× 2; conv layer 2: 1, 000 units, kernel
size=8× 8; max-pooling 2: 5× 5 / 2× 2, flattened into a 512 unit dense layer and softmax.
This created a feature map with 4,224,000 dimensions. The first 15 epochs were trained with
a learning rate of 0.08 and the last 10 with 0.002. A batch size of 128 and 11 frames for
context and ReLu activation were used. One adaptation should be pointed out: the 6× 6
max-pooling layer created negative divisions (due to an unknown pre-processing step) so
as a conservative measure, we used the maximum possible which was 5× 5. The network
overfit the data quickly to 87% accuracy after the first 15 iterations. We used the same
HMM labeler for all experiments and all other default parameters in the CNN were kept the
same. Table 3 presents the FER, PER and F1 scores of the experiments.

C.D. Shulby, M.D. Ferreira, R. F. de Mello, and S.M. Aluisio 4:7

Table 3 F1 Scores in Frames, Frame Error Rates and Phone Error Rates for each model.

Study Classifier FER PER F1

This work GMM- 0.76 0.75 0.16
Baseline HMM
This work HMM- 0.58 0.52 0.31
Rep.[1] CNN
[22] DLSTM 0.29 0.25 n/a
Rep.[10] RNN
This work CNN- 0.28 0.32 0.63

HTSVM

It should be pointed out that the poor performance of the HMM-CNN was expected on
such a small dataset. The network was built to be trained using the weights already aquired
from the larger private dataset used in that study. Also, the poor performance of the vanilla
GMM-HMM model can be explained since the tied-state probabilities are highly dependent
on the pronunciation and language models used in the traditional decoder which we did
not use here. Our purpose was simply to show that this method does not perform well in
frame-wise classification, even though it is widely used for speech-recognition tasks with
small datasets. On the other hand the replication studies can be compared and show that
when the proper tools are used, excellent results can be achieved, even when large amounts
of data are not available.

Independent of the models accuracy, it is also important to understand what sort of errors
the models are actually committing. Table 4 lists the 15 most frequent errors committed
by each system, including the true values, predicted values and the confusion percentage.
The GMM-HMM systems are known to produce rather jumbled posterior values since they
typically rely on providing a ranking to the pronunciation model where these issues are
normally solved. Still, this is not an adequate approach for phoneme recognition.

Table 4 Most Frequent FER Confusion percentages.

GMM-HMM CNN-MLP CNN-HTSVM

True Pred Conf (%) True Pred Conf (%) True Pred Conf (%)

s z 33.14 s f 21.48 s z 15.16
ih uw 16.00 ih ae 16.23 ay ae 39.64
t ch 17.58 iy ae 14.99 ao aa 26.58
er r 32.46 z f 28.01 r er 18.84
ao l 28.00 ay ae 24.59 sh s 26.01
iy y 14.23 eh ae 25.46 aa ae 16.07
s sh 10.09 aa ae 20.96 ah ae 14.79
ae t 14.32 er ae 14.32 t s 7.61
ih z 10.07 k t 13.22 iy ih 6.48
w ao 45.52 ey ae 25.29 er r 7.64

Here one can see that the findings in studies like [3] can be confirmed that the SVM does
get confused when phonemes are very similar. Still, this may be caused by the transcription
of the 8 dialects where some sounds, especially vowel sounds can have some overlap. One

SLATE 2019

4:8 Robust Phoneme Recognition

observation between the SVM and MLP classifiers is that the MLP makes more erratic errors.
Since the SVM is governed by a decision boundary function and the MLP is a probability of
an argmax function, this makes sense. Even though the same CNN features were extracted,
it seems that the MLP was more likely to develop a “trash” category where when in doubt it
goes with a “more probable” class. In the example of /ae/, it was correctly classified 60%
of the time so it became a go-to class when in doubt. In the case of /f/, the phoneme was
classified correctly in 85% of the instances, so other fricatives were more likely to be classified
as /f/ as well. The GMM-HMM is notoriously unsuccessful on the phoneme level which is
why HMM-based engines use tied states to calculate the cost of substitutions to find the
correct transcription in the pronunciation model. What is most evident is that often when it
errs, it fails badly. The MLP is also not the most graceful failure, where the SVM is more
robust in that its errors are more reasonable as pointed out in [3].

5 Convergence analysis

We believe that it is important to present statistical evidence that results are not found by
chance. To save space, all formulas referred to in this section can be found below and are
numbered for easy reference:

P

(
sup
f∈F
|R(f)−Remp(f)| ≥ ε

)
≤ δ (1)

δ = 2N (F , 2n)e−nε
2/4 (2)

R(f) ≤ Remp(f) +
√

4/n(log(2N (F , n))− log(δ)) (3)

R(f) ≤ Remp(f) +
√
c/n(R2/ρ2 − log(1/δ)) (4)

s(n) = (198.4n2 − 2574.8n+ 6744.3)36

+(150.6n2 − 2000.9n+ 5386.5)31

+(89.3n2 − 1200.5n+ 3304.4)15

lim
n→∞

log{s(n)}
n

≈ 0, (5)

R(f) ≤ 0.28 +√
4/n(3, 332, 5672/173, 869, 0502 − log(1/δ)) (6)

SLT (Statistical Learning Theory) provides theoretical support for such convergence
proofs in terms of how supervised learning algorithms generalize examples. The empirical risk
minimization [23] defines the main principle of SLT. As seen in equation 1, that formulation
intends to bound the divergence ε between the empirical risk Remp, i.e., the error measured
in a sample, and the expected risk R(f), i.e., the expected error while assessing the joint
probability distribution of examples and their respective classes, as the sample size n tends
towards infinity. In the same equation, f refers to some classifier, and F is the space of
admissible functions provided by some supervised algorithm, a.k.a. the algorithm bias as
described in [23] and [7]. Additionally, Vapnik proved a bound for supervised learning
algorithms considering the shattering coefficient N (F , 2n). Such a coefficient is a measure
function to compute the complexity of the algorithm bias, i.e., the cardinality of functions
contained in the space F that produce different classification outputs, provided a sample size

C.D. Shulby, M.D. Ferreira, R. F. de Mello, and S.M. Aluisio 4:9

n. Throughout our formulation, we employ the generalization bound defined in equation 3
to ensure that the expected risk is bounded by the empirical risk plus an additional term
associated with the shattering coefficient and some probability δ. In the case of the SVM, the
same bound is formulated as shown in equation 4, in which c is some constant, R corresponds
to the dataset radius, and ρ represents the maximal margin. In this context, we assessed
our CNN and SVM to understand the sample size they require to ensure learning in the
context of speech recognition, allowing to estimate their expected risk value over unseen
examples. Now, we proceed by computing the generalization bound for the CNN (equation 3).
Considering δ = 0.05, which represents a probability of 0.95 (i.e., 95%) to ensure that the
empirical risk Remp(f) is a good estimator for the expected risk R(f), meaning the error
results measured for our classifier indeed work on unseen examples. The convergence curve
(CC) obtained from the same equation is shown in Figure 3. Observe that our CNN requires
at least 985, 128 examples to converge, while we had in practice 1, 447, 869 examples in
training set.

Figure 3 CC, from eq. 5. Figure 4 CC, from eq. 6.

We can employ another result from Vapnik to prove that our CNN converges. Equa-
tion 5 simplifies the previous equation and considers only the most relevant term to
prove learning convergence. Notice that as the term logCNN(n)

n approaches zero, term√
4/n(log(2CNN(n))− log(0.05)) goes to zero, remaining the empirical risk as an assessment

measure of the learning performance. Next, the SVM is also analyzed considering equation 4.
In this case, we have an accuracy of 0.72 leading to v(f) = 1− accuracy = 1− 0.72 = 0.28,
R = 3, 332, 567 (the radius we estimated for the whole dataset), and ρ = 173, 869, 050 as the
maximal margin found. Consequently, the generalization bound for our SVM is defined in
equation 6. Also, considering δ = 0.05 as before, and c = 4 as taken in the default formulation
(Equation 3), Figure 4 illustrates the convergence curve obtained for the SVM. Notice our
SVM requires at least 11, 981 examples to converge, while we had in practice 1, 447, 869
examples in the training set. Based on [7], we conclude the convergence analysis for our
CNN and SVM, ensuring learning in the context of speech recognition.

6 Conclusion

In this paper, we have focused on a feature extraction approach from two biases: 1.) a
domain bias where we took great care in preprocessing the data in a way which would
minimally preserve the most important acoustic information; and 2.) a statistical learning

SLATE 2019

4:10 Robust Phoneme Recognition

bias where we checked in every step that we had the most simple approach which would
guarantee learning and would lead to the least complex hypothesis space possible. This
work shows that even without pretraining or fine-tuning, we achieve better FER results than
the SotA replication by [22] and we are not so far from the reported SotA which cannot
be faithfully reproduced [10, 20] and better than our reproduction tests of the CNN by [1].
Large networks like these cannot generalize well for small datasets without pretraining or
heavy regularization as we can see a large difference in the training and test scores as well as
the F-measure. As for our CNN, we would like to point out that although the best results
were obtained with 19 frames, we believe that 11 frames seems to be the most cost-effective
number, since larger configurations demand a much larger number of feature maps and offer
only little improvement. The multiple max-pooling layers were great facilitators for the
window widening technique since without this dimension reduction the SVM would have
been prohibitive to train and even the MLP would have been very difficult on our laboratory
work-station. Therefore, while more layers in the CNN architecture do not seem necessary
for better feature extraction, they can help reduce dimensionality which aids in classification.
We show that careful parameter selection and attention to supervised learning guarantees
are essential for building robust models with little data. We also believe that the results
from the convergence analysis further evidences the robustness of this strategy and show
that with enough examples we are able to guarantee learning. Without this guarantee, it is
possible that the results could have been obtained by chance. We hope that this work will
inspire others to seek statistical evidence to support their models and that they will describe
them in a way which can be reproduced.

7 Future Work

For future work, it would be interesting to test our method on other datasets, especially
those with accented speech, noisy speech and different recording conditions, since we believe
that the CNN features could be robust enough to deal with them.

It would also be interesting to see what effect more data has on the classifier to see how
well this method performs when data is not so limited. Of course, this would also mean
devising strategies to train more data with a SVM, which would need to employ sample
reduction techniques.

References
1 Ossama Abdel-Hamid, Abdel-Rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong

Yu. Convolutional neural networks for speech recognition. IEEE/ACM Transactions on audio,
speech, and language processing, 22(10):1533–1545, 2014.

2 Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn. Applying
convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In
2012 IEEE international conference on Acoustics, speech and signal processing (ICASSP),
pages 4277–4280. IEEE, 2012.

3 Rimah Amami and Noureddine Ellouze. Study of phonemes confusions in hierarchical automatic
phoneme recognition system. arXiv preprint, 2015. arXiv:1508.01718.

4 Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–
357, 2002.

5 Xie Chen, Adam Eversole, Gang Li, Dong Yu, and Frank Seide. Pipelined Back-Propagation
for Context-Dependent Deep Neural Networks. In Interspeech, pages 26–29, 2012.

http://arxiv.org/abs/1508.01718

C.D. Shulby, M.D. Ferreira, R. F. de Mello, and S.M. Aluisio 4:11

6 Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen, Zhifeng
Chen, Anjuli Kannan, Ron J Weiss, Kanishka Rao, Katya Gonina, et al. State-of-the-art speech
recognition with sequence-to-sequence models. arXiv preprint, 2017. arXiv:1712.01769.

7 R. Fernandes de Mello, M. Dais Ferreira, and M. Antonelli Ponti. Providing theoretical
learning guarantees to Deep Learning Networks. ArXiv e-prints, 2017.

8 Martha Dais Ferreira, Deborah Cristina Correa, Luis Gustavo Nonato, and Rodrigo F de Mello.
Designing Architectures of Convolutional Neural Networks to Solve Practical Problems. 2017
Elesvier pre-print, 2017.

9 Alex Graves and Navdeep Jaitly. Towards End-To-End Speech Recognition with Recurrent
Neural Networks. In ICML, volume 14, pages 1764–1772, 2014.

10 Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recognition with
deep bidirectional LSTM. In Automatic Speech Recognition and Understanding (ASRU), 2013
IEEE Workshop on, pages 273–278. IEEE, 2013.

11 Awni Y Hannun, Andrew L Maas, Daniel Jurafsky, and Andrew Y Ng. First-pass large
vocabulary continuous speech recognition using bi-directional recurrent DNNs. arXiv preprint,
2014. arXiv:1408.2873.

12 Zhiheng Huang, Geoffrey Zweig, and Benoit Dumoulin. Cache based recurrent neural network
language model inference for first pass speech recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on, pages 6354–6358. IEEE, 2014.

13 Tae Yoon Kim, Chang Woo Han, Sangha Kim, Donghoon Ahn, Seokyeong Jeong, and
Jae Won Lee. Korean LVCSR system development for personal assistant service. In Consumer
Electronics (ICCE), 2016 IEEE International Conference on, pages 93–96. IEEE, 2016.

14 K-F Lee and H-W Hon. Speaker-independent phone recognition using hidden Markov models.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(11):1641–1648, 1989.

15 Ken MacLean. Tutorial: Create Acoustic Model - Manually, 2018. Accessed: 2018-03-
01. URL: http://www.voxforge.org/home/dev/acousticmodels/linux/create/htkjulius/
tutorial/triphones/step-10.

16 Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hinton. Acoustic modeling using deep
belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1):14–22,
2012.

17 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
ASR corpus based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE, 2015.

18 Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran.
Deep convolutional neural networks for LVCSR. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 8614–8618. IEEE, 2013.

19 Christopher Dane Shulby, Martha Dais Ferreira, Rodrigo F de Mello, and Sandra Maria Aluisio.
Acoustic Modeling Using a Shallow CNN-HTSVM Architecture. 2017 Brazilian Conference
on Intelligent Systems, pages 85–90, 2017.

20 William Song and Jim Cai. End-to-end deep neural network for automatic speech recognition.
Technical Report, 2015.

21 László Tóth. Phone recognition with hierarchical convolutional deep maxout networks.
EURASIP Journal on Audio, Speech, and Music Processing, 2015(1):25, 2015.

22 Timo van Niedek, Tom Heskes, and David van Leeuwen. Phonetic Classification in TensorFlow.
Bachelor’s Thesis, Radboud University, 2016.

23 Vladimir Vapnik. Statistical learning theory, volume 1. Wiley New York, 1998.
24 Keith Vertanen. HTK Acoustic Models, 2018. Accessed: 2018-03-01. URL: https://www.

keithv.com/software/htk/us/.
25 Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.

arXiv preprint, 2014. arXiv:1409.2329.
26 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-

ing deep learning requires rethinking generalization. arXiv preprint, 2016. arXiv:1611.03530.

SLATE 2019

http://arxiv.org/abs/1712.01769
http://arxiv.org/abs/1408.2873
http://www.voxforge.org/home/dev/acousticmodels/linux/create/htkjulius/tutorial/triphones/step-10
http://www.voxforge.org/home/dev/acousticmodels/linux/create/htkjulius/tutorial/triphones/step-10
https://www.keithv.com/software/htk/us/
https://www.keithv.com/software/htk/us/
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1611.03530

	Introduction
	Related Work
	Dataset, Features and Architecture
	 Dataset and Feature Extraction
	Architecture
	CNN Feature Extractor
	HTSVM Classifier

	Experiments and Results
	Convergence analysis
	Conclusion
	Future Work

