
Tracing Naming Semantics in Unit Tests of
Popular Github Android Projects
Matej Madeja
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,
Technical University of Košice, Slovakia
https://madeja.github.io/
matej.madeja@tuke.sk

Jaroslav Porubän
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,
Technical University of Košice, Slovakia
jaroslav.poruban@tuke.sk

Abstract
The tests are so closely linked to the source code that we consider them up-to-date documentation.
Developers are aware of recommended naming conventions and other best practices that should
be used to write tests. In this paper we focus on how the developers test in practice and what
conventions they use. For the analysis 5 very popular Android projects from Github were selected.
The results show that 49 % of tests contain full and 76 % of tests contain a partial unit under test
(UUT) method name in their name. Further, there was observed that UUT was only rarely tested
by multiple test classes and thus in cases when the tester wanted to distinguish the way he or she
worked with the tested object. The analysis of this paper shows that the word “test” in the test title
is not a reliable metric for identifying the test. Apart from assertions, the developers use statements
like verify, try-catch and throw exception to verify the correctness of UUT functionality. At
the same time it was found out that the test titles contained keywords which could lead to the
identification of UUT, use case of test or data used for test. It was also found out that the words
in the test title were very often found in its body and in a smaller amount in UUT body which
indicated the use of similar vocabulary in tests and UUT.

2012 ACM Subject Classification Software and its engineering → Semantics; Software and its
engineering → Software testing and debugging; Software and its engineering → Software reverse
engineering; Software and its engineering → Maintaining software

Keywords and phrases unit tests, android, real testing practices, unit tests, program comprehension

Digital Object Identifier 10.4230/OASIcs.SLATE.2019.3

Acknowledgements This work was supported by project VEGA No. 1/0762/19: Interactive pattern-
driven language development.

1 Introduction

Antoniol et al. in [1] argue that a programmer trying to understand an existing system or its
code usually goes beyond documentation that is written in a natural language. There are
several resources within the documentation, such as document of requirements, user manuals,
maintenance book, system manual, etc. These forms of documentation, mostly expressed in
a natural language, can facilitate interaction between the system (its source code) and the
programmer. The problem with these documents is that each change of source code mostly
requires a documentation change as well.

Demeyer et al. [4] indicate that the best reflection of the source code are tests which must
remain consistent with the source code during the whole product maintenance. Thanks to
that developers can use tests as always up-to-date documentation. Requirements, depending
on the development approach, affect the source code and tests in parallel. Test driven

© Matej Madeja and Jaroslav Porubän;
licensed under Creative Commons License CC-BY

8th Symposium on Languages, Applications and Technologies (SLATE 2019).
Editors: Ricardo Rodrigues, Jan Janoušek, Luís Ferreira, Luísa Coheur, Fernando Batista, and Hugo Gonçalo
Oliveira; Article No. 3; pp. 3:1–3:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-8197-1962
https://madeja.github.io/
mailto:matej.madeja@tuke.sk
mailto:jaroslav.poruban@tuke.sk
https://doi.org/10.4230/OASIcs.SLATE.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 Tracing Naming Semantics in Unit Tests of Popular Github Android Projects

development (TDD) [2] drives the development by building tests according to the requirements
and the master (production) code is produced according to tests developed in the first step.
In a behavioral driven development (BDD) is the production source code programmed as
first and the tests are implemented in addition. Therefore, the requirements are expressed in
a particular production or test code.

From the cooperation with companies in our geographical area, during building a testing
environment for Android courses [8], we found out that tests are often used to understand the
source code by developers engaged in a project. When tests are considered as a source code
documentation, the programmer expresses his/her mental model in the source code of the
test, and later, another programmer can comprehend the expected functionality from that
code. This opens up the possibility to improve the program comprehension through tests.

If a programmer uses tests to understand the application functionality, this process can
be very tedious as it is necessary to manually create relations between the test and the
production code in programmer’s head. If these relations can be formed in the programmer’s
head, we can assume that creation of these relations could be automated with possibility
to enrich the source code, e.g. using comments. Today there are not information about
real testing practices used by developers in practice and without this knowledge no one is
able to expect how can the test code looks like. There are recommendations, e.g. naming
conventions or test smells, whose try to unify the testing process in different projects but
the developer can ignore following these conventions. Therefore, the aim of this paper is
to found out semantics of vocabulary used in unit tests, which should support program
comprehension in the future, especially with focus on open-source Android projects from the
GitLab platform. Authors answer the following research questions in this paper:

RQ1: Can a test method or a test class be clearly distinguished by using the word “test” in
its name?

RQ2: Does the test title (test method name) contain name of the unit under test (UUT)? Is
one UUT tested by multiple test classes?

RQ3: Do words used in the test title clearly describe the status of the application before,
during and after the test?

RQ4: Is it possible to evaluate the comprehension of the test body analyzing its statements?
RQ5: Does exist a relation between the test title and test body or UUT body?

In section 2 recommended naming conventions and bad smells with focus on tests are
described. Section 3 describes the process of projects selection for analysis, data collection,
case study results and possible threads to validity. In section 4 related work is presented,
section 5 describes the future research directions and in section 6 results conclusions are
pointed out.

2 Best practices of writing tests

To make tests more reliable and effective many authors tried to define practices that help
maintain the test code. In the following sections we briefly describe them with focus on our
case study.

2.1 Naming conventions
In the listing 1 is an example of a simple test for the MyUnit class by recommendations
of Beck and Gamma [3]. Authors write about the basic test writing conventions, e.g. for
Java programs is expected that one test class tests only one UUT and the test title should
consist of the name of the UUT and the word Test at the end (e.g. MyUnitTest). This way

M.Madeja and J. Porubän 3:3

we can clearly assume which production class will be tested. An integrated development
environment (IDE), e.g. Android Studio1, usually automatically offers the test title in the
form of described convention, so we can assume that such naming as common.

Listing 1 Example of test class writing practices in JUnit.
pub l i c c l a s s MyUnitTest {

@Test
pub l i c void testConcatenate () {

MyUnit myUnit = new MyUnit () ;
S t r ing r e s u l t = myUnit . concatenate (" one " , " two ") ;
a s s e r tEqua l s (" onetwo " , r e s u l t) ;

}
}

Beck and Gamma also recommend to include the word test as first in the test title to
distinguish a test method from a tested method. At the same time, the test title should
include the name of the UUT from the production code, e.g. test with title testConcatenate
will test the concatenate method. Fixtures may also be used in the tests class and this
way we can clearly distinguish fixtures with test method. When generating tests using the
Android Studio IDE, the names of the generated test methods are identical to the test class
methods and without word “test” in it, but it is still possible to clearly identify the method
(e.g. by @Test annotation).

However, with the described method of test naming an issue can occur if a developer
would like to test one UUT by several tests. Meszaros in his book [9] also mentions testing
single UUT by multiple test, where he also describes how to name them, e.g. in the form of
use case or test data. An example of such tests are shown in the listing 2.

Listing 2 Use case or data information the in test method name.
pub l i c void testAddWithoutExtraParam (){

i n t r e s = (new MyUnit ()) . add (2 , 8) ;
as ser tThat (r e s) . isEqualTo (1 0) ;

}

pub l i c void testAddWithDouble (){
i n t r e s = (new MyUnit ()) . add (2 . 8 8 , 7 . 12 , t rue) ;
as ser tThat (r e s) . isEqualTo (1 0) ;

}

2.2 Test smells
The concept of smells in the source code was introduced by Fowler et al. [5] and it refers to
the bad design and implementation of the source code which subsequently exacerbates its
sustainability. Van Deursen et al. [13] on the basis of the findings of Fowler et al., define the
smells for tests. For example, tests should not be dependent on external services, external
data sources, should be unambiguous, etc. In this article authors focus on one of the smells
called Assert Roulette, i.e. one test should contain only one assert method call. Otherwise,
if an unsuccessful assertion in the test occurs it is difficult identify the error and it also
aggravates the comprehension. In the listing 3 can be seen an example of mentioned test
smell where assert statement is used multiple times and if the test fails by an assert, it will
be difficult to identify the cause.

1 https://developer.android.com/studio

SLATE 2019

https://developer.android.com/studio

3:4 Tracing Naming Semantics in Unit Tests of Popular Github Android Projects

Listing 3 Assert Roulette test smell.
pub l i c void t e s tF l i gh tMi l e ag e () {

F l i gh t newFlight = new Fl i gh t (val idFl ightNumber) ;

// v e r i f y cons t ruc ted ob j e c t
a s s e r tEqua l s (val idFlightNumber , newFlight . number) ;
a s s e r tEqua l s (" " , newFlight . a i r l i n eCode) ;
a s s e r tNu l l (newFlight . a i r l i n e) ;

// setup mi leage and a s s e r t
newFlight . s e tMi l eage (1122) ;
a s s e r tEqua l s (expectedKi lometres , newFlight . getMileageAsKm ()) ;

}

3 Case study

Based on the recommendations in the section 2 we decided to find out how developers write
tests in practice, focusing exclusively on unit tests in popular open-source Android projects.
In the following sections realized case study is described.

3.1 Method
The decision to use open-source Android projects for the case study was done especially for
ability to compare results with user interface (UI) tests in the future. Authors think that
UI tests can suitably complement the source code with the real use cases that are normally
done by end users. However, in this case study analysis of UI tests is not important because
we would like to focus on the context of the test title with the name of UUT and the bodies
of both (production and test methods). UI tests are mostly associated with the source code
only by UI elements identifiers, so analysis of an UI test meaning will need to be evaluated
in relation with the entire production class or multiple classes which are called during the
test execution. According to test pyramid [10] concept, we can expect unit, integration and
UI tests in Android projects.

3.1.1 Projects selection
According to Pham et al. [11] we can expect presence of tests in popular projects. That’s the
reason for selection the most popular Android projects on Github. Open-source projects take
advantage of developing software in a transparent environment which motivates developers
to produce quality source code because their code is often reviewed by project owner or
other developers. This is the reason why developers in a transparent environment use coding
conventions more often.

We selected projects from 3 different blogs (DZone2, Aritra’s Musings3, MyBridge4)
devoted to the Android open-source popular projects. By merging all 3 sources we received
a total of 52 projects. Projects were ranked by popularity using Github API5, i.e. by the
number of project stars. Because the relations between the test and the UUT have been
done manually the projects sample was limited to the 5 most popular projects.

2 https://dzone.com/articles/amazing-open-source-android-apps-written-in-java
3 https://blog. aritraroy.in/20-awesome-open-source-android-apps-to-boost-your-

development-skills-b62832cffafa4
4 https://medium.mybridge.co/38-amazing-android-open-source-apps-java-1a62b7034c40
5 https://developer.github.com/v3/

https://dzone.com/articles/amazing-open-source-android-apps-written-in-java
https://blog. aritraroy.in/20-awesome-open-source-android-apps-to-boost-your-development-skills-b62832cffafa4
https://blog. aritraroy.in/20-awesome-open-source-android-apps-to-boost-your-development-skills-b62832cffafa4
https://medium.mybridge.co/38-amazing-android-open -source-apps-java-1a62b7034c40
https://developer.github.com/v3/

M.Madeja and J. Porubän 3:5

3.1.2 Data collection
Firstly a manual semantic analysis has been carried out. For each project we tried to
comprehend the test, identify the UUT and create a relation between them. We analyzed
617 tests in total. Detailed statistics can be seen in the table 1. Full dataset is available
at Github6.

Table 1 General stats of manually analyzed data for particular project.

Position Project Production
classes

Production
methods

Test
classes

Test
methods

1 Shadowsocks client 6 7 6 8
2 iosched 16 40 16 77
3 Android-CleanArchitecture 17 22 17 29
4 Plaid 37 71 39 180
5 ExoPlayer 49 98 53 323

SUM 125 238 131 617

The relations between the tests and a particular UUT were created using a simple web
application in a relational database to have related units (UUT and test) prepared for
keyword comparison between the test title and other source code (method body of the test
and the UUT). Analysis of a test included the following steps:

1. Comprehension of the test and production code functionality to exactly identify the UUT.
2. Saving the test method body, its name and the class name in which it is located.
3. Saving the UUT method body, its name and the class name in which it is located.
4. Creation of the found relation between the UUT and the test.

The entire data collection lasted 120 hours. Initially it was planned to use the Rompaey’s
and Demeyer’s approach [12] which claims that UUT identification is possible by catching
the last method call before the assert. However, this solution has proved to be ambiguous
because multiple assert calls in a single test suggested several target classes. Another problem
was the fact that the last called method was not always the right UUT. In listing 4 there is a
specific example from our data collection where the toString method is not the target of
test but the fromReader is the right one. That is the reason why relations between collected
data have been done manually.

Listing 4 The last called method is not always the target method for a test.
expected = Acl () . fromReader (INPUT1 . reader ()) . t oS t r i ng () ;
a s s e r tEqua l s (expected , " t e s t i n g s t r i n g ") ;

Some of the tests tested several UUT at once as a result of assert roulette test smell. In
this case multiple relations with the production code have been created. If the test contained
multiple calls of the assert method, the number of calls have been recorded, too, to evaluate
the average occurrence of assertions in the test. Also the assertions placed within a help
method have been included. If the assert was in the loop the number of its execution has
been calculated depending on the test data.

6 https://github.com/madeja/android-tests-semantics

SLATE 2019

https://github.com/madeja/android-tests-semantics

3:6 Tracing Naming Semantics in Unit Tests of Popular Github Android Projects

This case study would like to find out if the words included in the test title occur in the
test or UUT body. It is considered only the first level of the code (means only main bodies
of UUT and test have been saved). E.g. if the UUT named myMethod calls in its body an
external method externalMethod, the body of the external method externalMethod is not
included for test title words analysis. An exception was a case if the UUT body contained a
call to a single foreign or parent method (such as in the listing 5, the constuctor method
with three parameters would be used). Following rules have been used for saving the method
body for the analysis:

from the production code the method body with the highest semantic value for the tested
functionality,
from the test code body of the particular test method.

The highest semantic value was determined by the the observer comparison of UUT and
test body, i.e. which UUT accurately implements tested functionality.

Listing 5 For keyword analysis is used method with real method statements.
pub l i c func t i on cons tuc to r (i n t param1 , i n t param2){

t h i s (param1 , param2 , t rue) ;
}

pub l i c func t i on cons tuc to r (i n t param1 , i n t param2 , boolean param3){
// r e a l method statements

}

3.2 Results
RQ1 is focused on the ability to clearly identify the test or test class. All test classes from
analysis included “test” word in the class name, so we could always clearly identify a test class
by its name. The word “test” in the test method title was found in 384 of 617 tests so in most
cases is possible to use the method name to determine test. The name of the test method
is also influenced by JUnit framework which annotates tests using @Test annotation so it
is possible to identify a unit test using the annotation. However, the use of the word “test”
may be an appropriate habit for other languages in which the code can not be annotated.

At the same time, there was observed the relation between the word “test” and the full
name of the UUT in the test title. If word “test” is placed at the beginning of the test title
then it expresses meaning: “test of something”. E.g. in the test called testReadMethod
a man would be able to predict that it is a test of read method. Even 124 tests included
the UUT name immediately after word “test” so this metric can partially help with UUT
identification.

B Claim 1. It is possible to exactly identify test class in Android projects by searching
for “test” word in the test class name. Unit tests written in JUnit are annotated by @Test
annotation, nevertheless the general naming convention of using word “test” in test title was
found in 62% of tests.

To answer the RQ2 it was tried to look for the occurrence of words of UUT method
name in the test title. As can be seen in the table 2, in the 303 tests (49%) the full name of
the UUT was found in the test title, so it was possible to precisely identify the UUT. If the
name of the test is composed of multiple UUT names using the last called method before
assert [12] is possible to identify the UUT more precisely. This way is possible to help the
developer to comprehend the meaning and the purpose of the test.

M.Madeja and J. Porubän 3:7

Table 2 The occurrence of the UUT method name in the test method name.

Name of prod method name included in test method name
fully included partially included*
yes no 0 w 1 w 2 w 3 w 4 w 5 w 6 w 7 w
303 314 168 191 170 87 10 11 1 2

SUM 472

*) w = word/words;

Looking for the partial UUT name in the test title we can get at least a partial link
between them. For example, for the UUT with name onRemoveClicked was the test title
testRemoveReservation. As can be seen, the use case of the test is to remove the reservation.
If the method is in the Reservation class than we can exactly create the relation between the
test and the UUT. The name of each UUT was divided by the Java camel case conventions
(e.g. camelCaseMethod produces 3 words: camel, case, method). Since the use of snake case
convention has been observed in some tests (such as snake_case_method) this convention
was also accepted. In the table 2 we can see that in 472 tests the partial UUT name was
found in the test title, which makes 76% of the analyzed tests.

Developers test a class by 2 or more test cases very rarely. Only 3% of all UUT were tested
by 2 different test classes. This occurred only in the ExoPlayer project where the tested object
was in the first class tested directly and in the second class with impact of the various callbacks.
For example, if there was a test class TsExtractorTest and TsExtractorSeekTest, their
meaning was as follows:

TsExtractorTest - tests of the basic functionality of the object.
TsExtractorSeekTest - test of the object during expected changes using callbacks.

B Claim 2. Unambiguous UUT identification based on the test title can be performed on
approximately half of the tests in Android projects and in about 76% of tests is possible to
predict the UUT at least partially. An UUT is typically tested by one test class, rarely it is
tested by multiple test classes for easier understanding of tested object manipulation.

To answer the RQ3 manual grouping of the frequently occurring words in test names has
been carried out. Words used in test title can affect the reader’s comprehension. The table 3
contains a complete list of all the keywords found that can help with automation of test code
meaning. By the nature the developer tries to name the test in the way which helps him or
her quickly identify the cause of test failure in the future. When a keyword is found in the
test name it is possible to assume the content of the data contained in the test title and use
them to produce complete sentences in natural language based on predefined templates.

During the analysis it has been noticed that observer comprehended the test easier when
the “_” character was used in the title. This character has been used as a delimiter of
the semantics, e.g. between the data used in the test and the expected test result. If the
delimiter was not part of the test then the readability of the method name was worse and
many times there was no clear intention in the test title. For example, the test named
testPeekFullyAtEndThenReadEndOfInput may have two meanings:

indicates the entire use case that is a prerequisite to perform the test
or the test verifies whether during PeekFullyAtEnd call the end of input read occurs.

From the test body it is possible to determine the expected behavior but using the
delimiter in the test title makes the meaning straightforward. The meaning of some keywords
affects the use of other keywords in front of it. As can be seen in the table 3 the most

SLATE 2019

3:8 Tracing Naming Semantics in Unit Tests of Popular Github Android Projects

common occurrence was for when and with keywords. It means that it is possible to read
the test prerequisites and data used for testing from the test title quite often.

B Claim 3. Developers in test titles often describe the use case of the test, the testing data
or the expected result. Occurrence of keywords test, testShould, when, after, if, then,
with, is, has and return/returns in the test can enable to detect the UUT state before,
during and after the test execution, as well as the data used for the test.

Answering the RQ4 should evaluate the quality of the tests and find out whether the
control flow statements are used in the body of test. In the table 4 we can see that 4 different
test evaluation approaches were used in the tests. The quality of a test case can be defined as
the ability to detect a source code defect. Developer should be able to comprehend the cause
of the failure from assertion message. Most often the assert statement was used but in 200
tests this command was used multiple times. In case of test failure the error identification is
unclear (assert roulette test smell). We counted assertions with and without loops for every
test separately. If there was used a loop in the test we calculated the number of assertions
according to loop iterations counted from the amount of testing data. We had one big data
test that executed assert statement 3,794,020 times. In general the following statements
are used for test evaluation:
1. assert – classical approach,
2. verify – to verify calling the correct method on the object after an action,
3. try–catch – to verify whether right exception has been thrown,
4. exception throw – if an exception is thrown, test failed.

In the case of a multiple exception throw occurrence in a test it would not be considered
as test smell because exceptions could be uniquely identified by an exception message.

According to the best practices for testing [9] developers should avoid loops and con-
sequently other control flow statements of particular programming language because these
statements create an unstable and obscure test full of smells. In the table 5 we can see the
usage of these statements in tests which negatively affect the simplicity of test comprehension
and the test failure identification. As we can see, the average assertion count with loops is
6,155, most likely due to the above mentioned big data test, but 30 tests contained more
than 10 assertions in the body in total.

B Claim 4. Developers often (in our study 46%) create tests that contain multiple verification
of UUT which worsen exact and quick identification of UUT. This state directly affects the
use of control flow statements in the test body where occurrence of the assert roulette test
smell is very high.

In order to find out how much information we can find from the test method name in
the UUT or test body (RQ5) we created a 20% distribution of words included in test title
covered by UUT or test body (see figure 1). Even 94% of the tests contain more than 20% of
the test title words in the test body and 57% covers more than 60% of words. The coverage
of words from the test title in the UUT body was a little bit worse but not negligible. In 64%
of all tests titles was the coverage of corresponding UUT bodies greater than 20% indicating
that the test title meaning use similar vocabulary as test which can help to establish the
relationship between the source code and the test.

B Claim 5. The words included in test title are used mainly in the test body and partly in
the corresponding UUT body. Based on the similar vocabulary it is possible to combine the
semantic of method calls in the tests and the UUT.

M.Madeja and J. Porubän 3:9

Ta
bl
e
3
O
bs
er
ve
d
ke
yw

or
ds

w
hi
ch

ca
n
be

us
ed

to
un

iq
ue

ly
id
en
tif
y
th
e
pu

rp
os
e
of

th
e
te
st

fr
om

its
na

m
e.

K
ey

w
or

d
T

es
t

m
et

ho
d

ex
am

pl
e*

Se
m

an
ti

c
O

cc
ur

re
nc

e

te
st

te
st
R
ea
d

w
ha

t
is

te
st
ed

or
pa

rt
ic
ul
ar

ac
tio

n
on

ob
je
ct

(u
se

ca
se
)

37
0

te
st
Sh

ou
ld

te
st

Sh
ou

ld
Fa

ilW
he
nE

xe
cu
te
W

ith
N
ul
lO

bs
er
ve
r

ex
pe

ct
ed

te
st

re
su
lt

or
be

ha
vi
ou

r
2

w
he

n
w

he
nN

oI
nt
er
va
lsT

ri
gg
er
ed
_
th
en

M
ap

Fn
_
is
O
nl
yC

al
le
dO

nc
e

de
sc
rip

tio
n
of

te
st

pr
er
eq
ui
si
te

(d
at
a
or

us
e
ca
se
)

82

af
te
r

te
st
Se

ek
B
ac
kA

ft
er
R
ea
di
ng

A
he
ad

de
sc
rip

tio
n
of

te
st

pr
er
eq
ui
si
te

(d
at
a
or

us
e
ca
se
)

15

if
te
st
D
ow

nl
oa
dL

ic
en

se
Fa

ils
If
N
ul
lIn

itD
at
a

de
sc
rip

tio
n
of

te
st

pr
er
eq
ui
si
te

(d
at
a
or

us
e
ca
se
)

9

th
en

w
he

nN
oI
nt
er
va
ls
Tr

ig
ge
re
d_

th
en

M
ap

Fn
_
is
O
nl
yC

al
le
dO

nc
e

ex
pe

ct
ed

re
su
lt

af
te
r
co
nd

iti
on

m
et

(if
oc
cu
rr
ed

im
m
ed

ia
te
ly

af
te
r
“w

he
n”

)
3

te
st
St
ar
ts
In
0M

in
ut
es
_

th
en

H
as
N
ul
lT
im

eU
nt
ilS

ta
rt

ex
pe

ct
ed

re
su
lt

af
te
r
co
nd

iti
on

m
et

(if
oc
cu
rr
ed

im
m
ed

ia
te
ly

af
te
r
“t
es
t”

an
d
“_

”
oc
cu
rr
ed

be
fo
re
)*
*

3

te
st
Pe

ek
Fu

lly
A
tE

nd
T

he
nR

ea
dE

nd
O
fI
np

ut
co
ns
eq
ue

nc
e
of

m
et
ho

d
ca
lls

in
te
st

(if
oc
cu
rr
ed

im
m
id
ia
te
ly

af
te
r
“t
es
t”
)

2

w
ith

co
m
m
en
t_

w
it

hN
oC

om
m
en

ts
de

sc
rip

tio
n
of

us
ed

da
ta

fo
r
te
st

85
is

w
he

nN
oI
nt
er
va
ls
Tr

ig
ge
re
d_

th
en

M
ap

Fn
_

is
O
nl
yC

al
led

O
nc
e

ex
pe

ct
ed

re
su
lt

or
ob

je
ct

st
at
e

21

ha
s

te
st
Sk

ip
In
A
lte

rn
at
in
gT

es
tS
ig
na

l_
ha

sC
or
re
ct
O
ut
pu

tA
nd

Sk
ip
pe
dF

ra
m
eC

ou
nt
s

ex
pe

ct
ed

re
su
lt

or
ob

je
ct

st
at
e

(a
t
th
e
be

gi
ni
ng

of
na

m
e

or
ex
ac
tly

af
te
r
“_

”)
3

re
tu
rn
/r
et
ur
ns

te
st
R
ea
dD

ur
at
io
n_

re
tu

rn
sC

or
re
ct
D
ur
at
io
n

ex
pe

ct
ed

re
su
lt

or
ob

je
ct

st
at
e

40

*
B
ol
d
te
xt

sh
ow

s
th
e
ke
yw

or
d,

ita
lic

te
xt

ob
je
ct

to
w
hi
ch

th
e
ke
yw

or
d
re
fe
rs
.

**
“_

”
=⇒

se
m
an

tic
de

lim
ite

r
be

tw
ee
n
U
U
T
,i
np

ut
da

ta
,u

se
ca
se

et
c.
,u

se
d
in

32
2
te
st
s
of

an
al
yz
ed

da
ta
.

SLATE 2019

3:10 Tracing Naming Semantics in Unit Tests of Popular Github Android Projects

Table 4 Statements used for test result evaluation.

Statement/evaluation of test failure
assert

(with loops)
assert

(without loops)
verify try-catch exception

throw
Tests using
particular statement 542 542 77 42 13

Tests using multiple
same statements 249 249 26 4 0

Average per test 6155.79 2.16 0.194 0.076 0.021

Table 5 Java language control flow statements used in test methods’ bodies.

Statement

for foreach
(enhanced for)

while if switch

Tests using particular statement 16 7 9 8 0

3.3 Threads to validity
In the performed case study 5 very popular Android projects have been analyzed whose do
not include all projects in the world. Therefore, it is possible that the results and claims may
not be accurate and adaptable for other projects. With focus on the Android platform the
results may be affected by the naming conventions of the selected platform which considerably
influence the naming of the methods in the production code or the final implementation. At
the same time, the case study was focused on open-source projects that may have a different
nature and quality compared to proprietary projects that we did not have access to. The
source of the projects was the Github platform. Other collaborative tools can have a different
impact on the motivation to write quality code which could also affect the results.

The number of tests between projects was uneven as it is not possible to guarantee the
same number of tests in each project. In the future, it would be advisable to limit the
maximum number of tests per project so the coding style of a particular team code did not
affect the results in the undesirable way.

Because creation of relations between tests and the production code have been done
manually some faults could occurred while comprehending the source code and during creation
of relations between UUT and test. For more accurate relations between the analyzed data
it would be necessary to increase the number of observers in the study.

Analysis of the production code and tests was performed only at the first level of the
method call, i.e. only main bodies of the tests’ methods. Content and semantics of helper
methods and test fixtures have not been included in the analysis, so in case of RQ5 can be
meaning of the code hidden in other levels of method calls, too.

4 Related work

Kochhar et al. [7] conducted a case study on open-source Android projects in which authors
looked at understanding of testing culture in selected projects. They used F-droid7 as source
of open-source Android projects and they analyzed 600 projects in total. Authors conclude

7 https://f-droid.org/

https://f-droid.org/

M.Madeja and J. Porubän 3:11

Figure 1 Coverage of words from test method name in body of test or production code.

that many Android projects are poorly tested. They found out that only about 14% of the
apps contained test cases and only about 9% of the apps had executable test cases with
coverage above 40%. At the same time, they describe what testing tools developer use in
practice, however, developers often prefer to test their apps manually. In this paper we
analyze the general practices of writing unit tests in open-source Android projects, regardless
of the testing framework.

Gellenbeck and Cook [6] devoted their work to the influence of naming variables and
procedures on program comprehension. They claims that beacons, sets of key program
features, help developers to comprehend an unfamiliar program. The impact of procedure
naming on comprehension has been explored on the production code of binary search and
sorting procedures. Authors found out that both meaningful procedure and variable names
are severest as beacons to high-level comprehension. In this paper we look at naming methods
as well, but with respect to the UUT and the test body.

In [12] Rompuy and Demeyer describe the existing strategies for searching the UUT
from the test code. However, we have found out that these strategies could not be used
in our case study. Described strategies in [12] relatively inaccurately determine the UUT
because they depend on the particular structure of the test. By combining these strategies it
could be possible to identify the UUT more precisely which is a challenge for future research
in this area. The results from our case study complement their strategy based on naming
conventions with the real practices of writing tests which can improve the UUT identification.

Pham et al. [11] observed the behavior of developers and their motivation of making tests
in a transparent GitHub environment. They contacted 16,000 project developers from whom
they received 569 filled out questionnaires of Github members. They found several strategies
that software developers and managers can use to positively influence test behavior in their
projects. Authors report on the challenges and risks caused by this and suggests guidelines
for the promotion of a sustainable test culture in software development projects.

5 Future Work

In the future we would like to compare the results from unit tests with the semantic of UI
tests. Since UI tests have less connection to the production source code and they execute
functionality from a user perspective it is possible to assume that they will contain the
particular user stories that are expected during the real application use in production.

SLATE 2019

3:12 Tracing Naming Semantics in Unit Tests of Popular Github Android Projects

However, for analyzing UI tests we will have to track the calls during the program runtime
and in the real context of the device, so creating connections to the source code could be
more complicated.

We plan to create a more general overview of real testing practices in different programming
languages to maximize the generalization of results. We would like to identify the differences
in testing for different languages to find propose features for new IDE tools supporting
program comprehension which can have a great impact on the efficiency of creating and
maintaining the source code. Our results show that the tests contain many smells that have
a negative impact on the comprehension of the program. Based on these results, it is possible
to focus on warn the programmer about a test smell occurrence and navigating him/her in
better naming of test methods whose name can greatly improve the comprehension.

On the other hand, there exist other techniques that can be used to find semantic relations
between UUT and test. In the future it can also be analyzed acronyms, partial words or
synonyms to reach more accurate semantics. It is also appropriate to consider approaches
that improve program comprehension using code refactoring, e.g. renaming methods names
and other identifiers.

With exact determination the UUT from the test it will be possible to enrich the source
code with additional information obtained from tests, e.g. how many times the method is
tested and in which use cases it is used. If a developer changes the production code then it
is possible to notify the programmer that it is necessary to update a specific test that could
have been affected.

6 Conclusion

This paper presents a case study on real practices of writing tests in open-source Android
projects. For the case study 5 very popular projects from the Github platform have been
selected and by manual data collection the relations between the test and the UUT were
created. We analyzed 617 tests in 131 test classes and 238 production methods in 125 classes.

There was examined the consistency of the words used in the title of the test and the
target UUT. The word was identified based on the Java camel case naming conventions. It
was found out that 76% of the tests contain at least the partial UUT name in the test title.
At the same time, we tried to identify whether the UUT is tested by only one test class and
if not why the developer creates multiple test classes for the same UUT. From the study we
claim that developers test an UUT with different test classes rarely and mostly use multiple
test classes to distinguish work with the object in the test.

According to the best practices the word “test” should be found in the test name for its
clear identification. It was found out that only 61% of the tests included word “test” in its
name. JUnit is mostly used for unit testing in Java projects which use @Test annotation to
denote test. This annotation practice influenced results of performed case study in way of the
“test” word occurrence in the test title. Developers in addition to the assert statement also
use verify, try-catch and throw exception to evaluate the success or failure of the test.
In the tests a high incidence of assert roulette test smell has been found which negatively
influences the clear identification of UUT. Control flow statements in the test bodies make
test difficult to comprehend and complicates creation of relations to the production code.

When creating tests developers use keywords and patterns which can help us to identify
the UUT or use case of the test. This work created a summary of all observed keywords
used by developers. Importance of individual keywords may depend on their position against
other keywords. There was also observed that despite the Java camel case writing convention
testers use the “_” character to separate semantically related data groups in the test title.

M.Madeja and J. Porubän 3:13

In the test title words coverage analysis in the UUT or test body we found out that 57%
of the tests had a coverage of more than 60% which means that a short description of the test
functionality can be often found in the test title, i.e. particular use case. When comparing
the words from the test title to the UUT, the coverage is smaller, but 64% of UUT bodies
covers more than 20% words of test title. From the above is possible to claim that the body
of the test and the body of the UUT method uses the similar vocabulary.

Despite the fact that this case study focused solely on open-source Android Github
projects, the results obtained in this paper can help to develop new and more reliable
methods of identifying UUT from the test. Achieving more accurate UUT identification can
help to enrich the production code with information from the tests in the future and it has
potential to improve the program comprehension.

References
1 G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering traceability links

between code and documentation. IEEE Transactions on Software Engineering, 28(10):970–983,
October 2002. doi:10.1109/TSE.2002.1041053.

2 Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.
3 Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java Report,

3(7):37–50, 1998.
4 Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-oriented reengineering patterns.

Elsevier, 2002.
5 M. Fowler, K. Beck, J.C. Shanklin, E. Gamma, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the Design of Existing Code. Addison-Wesley object technology series.
Addison-Wesley, 1999.

6 Edward M. Gellenbeck and Curtis R. Cook. An Investigation of Procedure and Variable
Names As Beacons During Program Comprehension. Technical report, Oregon State University,
Corvallis, OR, USA, 1991.

7 P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo. Understanding the
Test Automation Culture of App Developers. In 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pages 1–10, April 2015. doi:
10.1109/ICST.2015.7102609.

8 Matej Madeja and Jaroslav Porubän. Automated testing environment and assessment of
assignments for Android MOOC. Open Computer Science, 8(1):80–92, 2018.

9 Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education, 2007.
10 Godfrey Nolan. Agile Android. Apress, 2015.
11 R. Pham, L. Singer, O. Liskin, F. F. Filho, and K. Schneider. Creating a shared understanding

of testing culture on a social coding site. In 2013 35th International Conference on Software
Engineering (ICSE), pages 112–121, May 2013. doi:10.1109/ICSE.2013.6606557.

12 B. V. Rompaey and S. Demeyer. Establishing Traceability Links between Unit Test Cases
and Units under Test. In 2009 13th European Conference on Software Maintenance and
Reengineering, pages 209–218, March 2009. doi:10.1109/CSMR.2009.39.

13 Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. Refactoring test
code. In Proceedings of the 2nd international conference on extreme programming and flexible
processes in software engineering (XP2001), pages 92–95, 2001.

SLATE 2019

http://dx.doi.org/10.1109/TSE.2002.1041053
http://dx.doi.org/10.1109/ICST.2015.7102609
http://dx.doi.org/10.1109/ICST.2015.7102609
http://dx.doi.org/10.1109/ICSE.2013.6606557
http://dx.doi.org/10.1109/CSMR.2009.39

	Introduction
	Best practices of writing tests
	Naming conventions
	Test smells

	Case study
	Method
	Projects selection
	Data collection

	Results
	Threads to validity

	Related work
	Future Work
	Conclusion

