
Optimal Separation and Strong Direct Sum for
Randomized Query Complexity
Eric Blais
University of Waterloo, ON, Canada
eric.blais@uwaterloo.ca

Joshua Brody
Swarthmore College, PA, USA
brody@cs.swarthmore.edu

Abstract
We establish two results regarding the query complexity of bounded-error randomized algorithms.
Bounded-error separation theorem. There exists a total function f : {0, 1}n → {0, 1} whose ε-error

randomized query complexity satisfies Rε(f) = Ω(R(f) · log 1
ε
).

Strong direct sum theorem. For every function f and every k ≥ 2, the randomized query complexity
of computing k instances of f simultaneously satisfies Rε(fk) = Θ(k · R ε

k
(f)).

As a consequence of our two main results, we obtain an optimal superlinear direct-sum-type theorem
for randomized query complexity: there exists a function f for which R(fk) = Θ(k log k ·R(f)). This
answers an open question of Drucker (2012). Combining this result with the query-to-communication
complexity lifting theorem of Göös, Pitassi, and Watson (2017), this also shows that there is
a total function whose public-coin randomized communication complexity satisfies Rcc(fk) =
Θ(k log k · Rcc(f)), answering a question of Feder, Kushilevitz, Naor, and Nisan (1995).

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory of
computation → Oracles and decision trees

Keywords and phrases Decision trees, query complexity, communication complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.29

Acknowledgements The first author thanks Alexander Belov and Shalev Ben-David for enlightening
discussions and helpful suggestions. The second author thanks Peter Winkler for insightful discussions.
Both authors wish to thank the anonymous referees for valuable feedback and for the reference
to [26].

1 Introduction

We consider two fundamental questions related to the query complexity of functions in the
bounded-error randomized setting: how the randomized query complexity of total functions
scales with the allowable error ε (the separation problem), and how the query complexity of
computing k instances of a function scales with the complexity of computing only 1 instance
of the same function (the direct sum problem). Standard folklore arguments give upper
bounds on how much the randomized query complexity can depend on ε and on k in these
two problems; the results described below show that these well-known upper bounds are
tight in general.

A randomized algorithm A computes a function f : Xn → {0, 1} over a finite set Xn
with error ε ≥ 0 if for every input x ∈ Xn, the algorithm outputs the value f(x) with
probability at least 1− ε. The query cost of A is the maximum number of coordinates of x
that it queries, with the maximum taken over both the choice of input x and the internal
randomness of A. The ε-error (worst-case) randomized query complexity of f (also known
as the randomized decision tree complexity of f) is the minimum query complexity of an

© Eric Blais and Joshua Brody;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eric.blais@uwaterloo.ca
mailto:brody@cs.swarthmore.edu
https://doi.org/10.4230/LIPIcs.CCC.2019.29
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Optimal Separation and Strong Direct Sum for Randomized Query Complexity

algorithm A that computes f with error at most ε. We denote this complexity by Rε(f),
and we write R(f) := R 1

3
(f) to denote the 1

3 -error randomized query complexity of f .
Another natural measure for the query cost of a randomized algorithm A is the expected

number of coordinates of an input x that it queries. Taking the maximum expected number
of coordinates queried by A over all inputs yields the average query cost of A. The minimum
average query complexity of an algorithm A that computes a function f with error at most
ε is the average ε-error query complexity of f , which we denote by Rε(f). We again write
R(f) := R 1

3
(f). Note that R0(f) corresponds to the standard notion of zero-error randomized

query complexity of f .

1.1 Our Results
Bounded-Error Separation Theorem for Query Complexity

One of the first tricks that one learns in the study of randomized algorithm is success
amplification: it is possible to cheaply reduce the error of a randomized algorithm from 1

3
to any ε > 0 by running the algorithm O(log 1

ε) times and outputting the most frequent
answer. In the context of randomized query complexity, this means that for every function
f : {0, 1}n → {0, 1},

Rε(f) = O
(
R(f) · log 1

ε

)
. (1)

When considering partial functions, it is easy to see that the success amplification trick is
optimal, as there are partial functions for which this relationship is tight (see Section 2.2).
However, in the case of total functions, for many natural functions such as the majority
function, parity function, dictator function, etc., the stronger bound Rε(f) = O

(
R(f)

)
holds

and until now it was not known whether the bound in (1) is tight for any total function. In
fact, even separations between zero-error and 1

3 -error randomized query complexity were
not known until very recently, when Ambainis et al. [2] showed that there exists a total
function f for which R0(f) = Ω̃(R(f)2). Similarly, other separations between randomized
query complexity and other measures of complexity have also only been established very
recently [23, 1, 3, 4, 2].

In this work, we give the first separation within the bounded-error randomized query
complexity setting. Our separation shows that the bound in (1) is optimal in general.

I Theorem 1. For infinitely many values of n and every 2−(n
logn)1/3

< ε ≤ 1
3 , there exists a

total function f : {0, 1}n → {0, 1} with randomized query complexity

Rε(f) = Ω
(
R(f) · log 1

ε

)
.

Note that by the trivial relation Rε(f) ≤ Rε(f) between average and worst-case ran-
domized query complexity, Theorem 1 implies the existence of a function f for which
Rε(f) ≥ Ω

(
R(f) · log 1

ε

)
and Rε(f) ≥ Ω

(
R(f) · log 1

ε

)
, giving optimal separations in both the

worst-case randomized query complexity and average query complexity settings.

Strong Direct Sum Theorem

The direct sum problem asks how the cost of computing a function f scales with the number
k of instances of the function that we need to compute. This problem has received a
considerable amount of attention in the context of query complexity [18, 7, 24, 25, 19, 8, 13],
communication complexity [20, 14, 11, 5, 21, 6], and beyond.

E. Blais and J. Brody 29:3

Given a function f : {0, 1}n → {0, 1} and a parameter k ≥ 2, define fk : {0, 1}n·k →
{0, 1}k by setting fk(x(1), . . . , x(k)) =

(
f(x(1)), . . . , f(x(k))

)
. A simple union bound argument

shows that the randomized query complexity of fk is bounded above by

Rε(fk) = O
(
k ·R ε

k
(f)
)

(2)

since we can run a randomized algorithm A that computes f with error at most ε
k on

each of the k instances. An analogous upper bound holds in the average query complexity
setting as well.

Jain, Klauck, and Santha [19] first considered the problem of showing a direct sum
theorem for randomized query complexity. They showed that for every function f and for
small enough constant δ > 0, Rε(fk) ≥ δ2k · R ε

1−δ+δ(f). Note that in this inequality, the
allowable error on the right-hand side of the equation is larger than the ε error parameter, in
contrast to the upper bound where it is (much) smaller. Ben-David and Kothari [8] obtained
an improved direct sum theorem holds, showing that Rε(fk) ≥ k · Rε(f) holds for every
function. This result is formally stronger since it implies the Jain–Klauck–Santha bound,
but it also does not show that the error parameter on the right-hand-side of the inequality
needs to be smaller than ε, as it is in the upper bound (2).

We show that the bound in (2) is tight in the average-case query complexity model.

I Theorem 2. For every function f : {0, 1}n → {0, 1}, every k ≥ 2, and every 0 ≤ ε ≤ 1
20 ,

Rε(fk) = Ω
(
k · R ε

k
(f)
)
.

We establish Theorem 2 by proving a corresponding strong direct sum theorem in the
distributional setting, as we discuss in more details in Section 1.3. It remains open to
determine whether a similar strong direct sum theorem holds in the worst-case randomized
query complexity model. However, in that setting Shaltiel [25] has shown that a proof of such
a direct sum theorem can’t be obtained via a corresponding theorem in the distributional
setting, as a counterexample shows that direct sum theorems do not hold in this setting
in general.

1.2 Applications
Superlinear Direct-Sum-Type Theorem for Query Complexity

Combining (1) and (2), we obtain a bound on the cost of computing k instances of a
function f with bounded (constant) error and the cost of computing a single instance of the
same function:

R(fk) = O
(
k log k · R(f)

)
. (3)

Drucker [13, Open problem 2] asked if the superlinear dependence on k in (3) is necessary
for any total function f . Theorems 1 and 2 give a positive answer to this question.

I Corollary 3. There exists a total function f : {0, 1}n → {0, 1} such that for all 1 ≤ k ≤
2(n

logn)1/3
,

R(fk) = Θ
(
k log k · R(f)

)
.

Note that Corollary 3 stands in contrast to the quantum query complexity setting, where
such a superlinear dependence on k is not required [10].

CCC 2019

29:4 Optimal Separation and Strong Direct Sum for Randomized Query Complexity

Superlinear Direct-Sum-Type Theorem for Communication Complexity

Let Rcc(f) denote the minimum amount of communication required of a public-coin ran-
domized protocol that computes a function f : {0, 1}m × {0, 1}n → {0, 1} with error at most
1
3 . As in the query complexity model, the communication complexity of the function fk is
bounded above by

Rcc(fk) = O
(
k log k · Rcc(f)

)
. (4)

Feder, Kushilevitz, Naor, and Nisan [14] showed that this upper bound is not tight in general,
as the equality function satisfies Rcc(Eqk) = O

(
k · Rcc(Eq)

)
.1 They then asked whether

Rcc(fk) = O(k · Rcc(f)) holds for all functions or not [14, Open problem 2 in §7].
In the last few years, there has been much work on related direct sum questions. Molinaro,

Woodruff, and Yaroslavtsev [21, 22] showed that in the one-way communication complexity
model, the equality function does satisfy the superlinear direct sum bound Rcc,→(Eqk) =
Θ
(
k log k · Rcc,→(Eq)

)
. In the two-way communication complexity model that we consider,

Barak, Braverman, Chen, and Rao [6] showed that every function f satisfies the direct sum
R(fk) = Ω̃

(√
k R(f)

)
, and this bound remains the state of the art as far as we know. Using

the connection between information complexity and amortized communication complexity
of Braverman and Rao [9], Ganor, Kol, and Raz [15] also showed that there is a partial
function whose distributional communication complexity is exponentially larger than its
amortized distributional communication complexity, showing that a tight direct sum theorem
cannot hold in general in this setting. None of these results, however, answer Feder et al.’s
original question.

Corollary 3 combined with the randomized query-to-communication lifting theorem of
Göös, Pitassi, and Watson [17] answers Feder et al.’s question by showing that there is a
function f for which the bound in (4) is tight.

I Corollary 4. There is a constant c > 0 and a total function f : {0, 1}n × {0, 1}n → {0, 1}
such that for all 1 ≤ k ≤ 2nc ,

Rcc(fk) = Θ
(
k log k · Rcc(f)

)
.

1.3 Proof Overviews
Bounded-Error Separation Theorem

The proof of Theorem 1 is established by following the general approach used to great effect by
Ambainis et al. [2]: first, identify a partial function f for which the query complexity separation
holds, then design a variant of the Göös–Pitassi–Watson (GPW) pointer function [16] that
“embeds” the partial function into a total function and preserves the same separation.

The first step in this plan is accomplished by observing that the partial gap identity
function GapID : {0, 1}m → {0, 1, ∗} defined by

GapID(x) =


1 if |x| = 0,
0 if |x| = bm2 c,
∗ otherwise

satisfies Rε(GapID) = Θ
(
R(GapID) · log 1

ε

)
for every ε ≥ 2−m.

1 In fact, Feder et al. showed that the private-coin randomized communication complexity of Eq satisfies
the stronger relation Rcc,priv(Eqk) = o

(
k · Rcc,priv(Eq)

)
; their construction also directly establishes

the result stated in the main text.

E. Blais and J. Brody 29:5

Ambainis et al. [2] also used (essentially) the same gap identity function to establish
the separation R0(f) = Ω̃

(
R(f)2). In constructing a GPW pointer function analogue of the

GapID function, however, Ambainis et al. lose a few logarithmic factors: their construction
shows that there exists a total function f : {0, 1}n → {0, 1} with ε-error randomized
query complexity that satisfies Rε(f) = O(

√
n log2 n log 1

ε) and Rε(f) = Ω(
√
n log 1

ε). The
polylogarithmic gap between those two bounds is not particularly important when comparing
this query complexity to the zero-error randomized query complexity R0(f) = Ω̃(n) of the
same function, but it makes it impossible to obtain any separation at all between R(f) and
Rε(f) whenever ε = Ω(n− logn). To prove Theorem 1, we need a new variant of the GPW
pointer function whose analysis avoids any gap that is a non-constant function of n.

At a high-level, GPW pointer functions are constructed by defining an n×m array of cells,
whose values are taken from some (typically fairly large) alphabet Σ. The first logarithmic
gap in Ambainis et al.’s upper and lower bounds occurs because the upper bound is measured
in terms of the number of bits queried by the algorithm while the lower bound is in terms of
the number of cells queried by an algorithm. To eliminate this gap, we must either reduce the
size of the alphabet from |Σ| = O(logn) to a constant size or modify the analysis so that both
the upper and lower bounds are in terms of bit-query complexity. We do the latter, using the
notion of resilient functions [12] to show that an algorithm must query a constant fraction
of the bits of a cell to learn anything about the contents of that cell. Resilient functions
were introduced by Chor et al. [12], who gave an essentially optimal construction using basic
linear algebra and the probabilistic method. Sherstov recently created a gadget [26] resilient
to approximate polynomial degree. This gadget is both similar in construction to [12] and
in motivation to our work; it too removes some loss due to function inputs coming from
large alphabets.

The second logarithmic gap in Ambainis et al.’s construction occurs because the location
of the “special” cells that an algorithm seeks to discover in the GPW pointer function can
be found by following a binary tree structure; the upper bound accounts for the logn cell
queries an algorithm requires to follow this structure while the lower bound holds even if an
algorithm finds these special cells in a single query. We bypass this problematic issue with a
simple but powerful observation: in our setting, once we use resilient functions to encode the
contents of each cell, there is no longer any requirement to keep the size |Σ| of the alphabet
for each cell in the GPW pointer function to be polylogarithmic in n and so we can include
a lot more information in each cell without affecting the query complexity gap. We use this
flexibility to replace pointers to the root of a binary tree structure with direct pointers to all
the special cells in its leaves.

The details of the proof of Theorem 1 are presented in Section 2.

Strong Direct Sum Theorem

Our proof of the strong direct sum theorem proceeds by establishing an analogous result
in the setting of distributional query complexity. The ε-error distributional complexity of
f : {0, 1}n → {0, 1} with respect to the distribution µ on {0, 1}n, denoted by Dµ

ε (f), is
the minimum query complexity of a deterministic algorithm that computes the value f(x)
correctly with probability at least 1− ε when x is drawn from µ.

The distributional complexity approach is also the one used in prior work on direct sum
theorems for query complexity [19, 8]. The challenge with this approach, however, is that a
strong direct sum theorem for distributional query complexity does not hold in general, as
Shaltiel [25] demonstrated (see also §4 in [13]): there exists a function f and a distribution
µ on f ’s domain for which Dµk

ε (fk) = O
(
εkDµ

ε (f)
)
.

CCC 2019

29:6 Optimal Separation and Strong Direct Sum for Randomized Query Complexity

A similar barrier to strong direct sum theorems exists in the communication complexity
setting. Molinaro, Woodruff, and Yaroslavstev [21, 22] bypassed this barrier by considering
randomized protocols that are allowed to abort with some bounded probability. They were
then able to show that the information complexity of such communication protocols (in both
the one-way and two-way communication models) satisfies a strong direct sum property.

Following an analogous approach, we consider randomized algorithms that are allowed
to abort (or, equivalently, to output some value ⊥ that corresponds to “don’t know”) with
some probability at most δ. The ε-error, δ-abort randomized query complexity of a function
f is denoted by Rδ,ε(f). With a natural extension of Yao’s minimax principle, we can obtain
bounds on this randomized query complexity by considering the corresponding ε-error, δ-abort
distributional complexity Dµ

δ,ε(f) of a function f , which is the minimum query complexity of
deterministic algorithms must err with probability at most ε and abort with probability at
most δ when inputs are drawn from the distribution µ. We show that a strong direct sum
theorem does hold in this setting.

I Lemma 5. There exists a constant c such that for every function f : {0, 1}n → {0, 1},
every distribution µ on {0, 1}n, and every 0 ≤ δ, ε ≤ 1

40 ,

Dµk

δ,ε(f
k) = Ω

(
k ·Dµ

1
3 ,
c·ε
k

(f)
)
.

The proof of Theorem 2 is then obtained from this lemma by showing that an analogue
of Yao’s minimax principle holds for algorithms that can both err and abort. The full details
of the proofs of Lemma 5 and Theorem 2 are presented in Section 3.

2 Bounded-Error Separation Theorem

We complete the proof of Theorem 1 in this section. In Section 2.1, we first define the
pointer function PtrFcn at the heart of the proof. In Sections 2.2–2.4, we establish a lower
bound on the query complexity of the PtrFcn function via reductions from the GapID
function, and in Section 2.5, we provide a matching upper bound on this query complexity.
We complete the proof of Theorem 1 in Section 2.6 by combining these results with the use
of resilient functions.

2.1 Pointer Function
The total function at the heart of the proof of Theorem 1 is a variant of the Göös–Pitassi–
Watson pointer function PtrFcn that we define below. Let [n] denote the set {1, . . . , n}.

Define Γ = {0, 1} × ([n] ∪ {⊥})m × ([m] ∪ {⊥}) to be the set of symbols σ that encode a
value that we denote by value(σ), m row pointers that we denote by row1(σ), . . . ,rowm(σ),
and one column pointer that we denote col(σ).

The function PtrFcn : Γn×m → {0, 1} is defined as follows. First, we represent an
input x ∈ Γn×m as an n×m grid of cells. We say that a column j∗ ∈ [m] is special for x if
value(xi,j∗) = 1 for every 1 ≤ i ≤ n. Then PtrFcn(x) = 1 if and only if

There is a unique column j∗ that is special for x;
Within the special column j∗, there is a unique cell i∗ called the special cell;
rowj(xi,j∗) = ⊥ for all i 6= i∗ and all j 6= j∗;
For all j 6= j∗, let ij : = rowj(xi∗,j∗). Then, we have

value(xij ,j) = 0 (i.e., all cells pointed to by the special cell have value 0)
|{j 6= j∗ : col(xij ,j) = j∗ ∧ rowj∗(xij ,j) = i∗}| = bm−1

2 c (i.e., half the cells pointed
to by the special cell point back to the special cell)

E. Blais and J. Brody 29:7

We call the cells (ij , j) linked cells; linked cells that point back to the special cell are
good. In summary, PtrFcn(x) = 1 if (i) there is a special column, (ii) within the special
column, there is a special cell, (iii) all cells in the special column that are not the special cell
have rowj(xi,j∗) = ⊥ for all j 6= j∗, (iv) each linked cell has value 0, and (v) exactly half of
the linked cells are good.

The following simple claim will be useful in obtaining the query complexity lower bound
for PtrFcn.

B Claim 6. Let A be an ε-error randomized algorithm for PtrFcn. Let z ∈ PtrFcn−1(1),
and let (i∗, j∗) be the special cell of z. Then A(z) probes (i∗, j∗) with probability at least
1− 2ε.

Proof. Let z̄ be the same input as z except that value(i∗, j∗) = 0. Then PtrFcn(z) 6=
PtrFcn(z̄) but z, z̄ differ only on the special cell. Whenever A doesn’t probe the special
cell, it must output the same value for z and z̄, so it errs on either z or z̄. By the error
guarantee of A and a union bound, the probability that A doesn’t probe cell (i∗, j∗) is at
most 2ε. C

2.2 Lower Bound on the Query Complexity of GapID
We begin the proof of Theorem 1 by establishing a (simple, asymptotically optimal) lower
bound on the average query complexity of the GapID function.

I Lemma 7. For every m ≥ 2 and every ε < 1
2 , Rε(GapID) = Ω

(
min{log 1

ε ,m}
)
.

Proof. Fix any ε ≥ 2− 2
3m. We will show that Rε(GapID) = Ω

(
log 1

ε

)
. This suffices to

complete the proof of the theorem since it implies that for any ε < 2− 2
3m, Rε(GapID) ≥

R
2− 2

3m
(GapID) = Ω(m).

Let A be a randomized algorithm that computes GapID with error probability at most ε.
Let Q ⊆ [m] be a random variable that denotes the set of coordinates queried by A, and let
ξ := ξ(Q, x) denote the event that each coordinate of the input x queried by the algorithm
has the value 0. Note that when the event ξ(Q, x) occurs, A has the same behavior on input
x as it does on the input 0m. Since GapID(0m) = 1 and A has error probability at most ε,
this means that for every input x ∈ {0, 1}m,

Pr[A(x) = 0 ∧ ξ] = Pr[A(0m) = 0 ∧ ξ] ≤ Pr[A(0m) = 0] ≤ ε

and so Pr[A(x) = 1] ≥ Pr[A(x) = 1 ∧ ξ] ≥ Pr[ξ]− ε.
Define µ to be the uniform distribution on all inputs x ∈ {0, 1}m with |x| = m/2. To err

with probability at most ε on those inputs, the algorithm A must satisfy Pr [A(x) = 1] ≤ ε
for every x in the support of µ. Combining this upper bound with the previous lower bound,
we therefore have that

Pr
x∼µ,Q

[ξ]− ε ≤ E
x∼µ

[
Pr[A(x) = 1]

]
≤ ε =⇒ Pr

x∼µ,Q
[ξ] ≤ 2ε. (5)

For any value 1 ≤ q ≤ m
3 ,

Pr
x∼µ,Q

[
ξ
∣∣ |Q| = q

]
=
(
m−q
m/2

)(
m
m/2
) =

m
2 (m2 − 1) · · · (m2 − q + 1)
m(m− 1) · · · (m− q + 1)

>

(m
2 − q
m− q

)q
>

(
1
2 −

q

2(m− q)

)q
≥ 4−q.

CCC 2019

29:8 Optimal Separation and Strong Direct Sum for Randomized Query Complexity

Therefore,

Pr
x∼µ,Q

[
ξ
∣∣ |Q| ≤ 1

2 log 1
4ε
]
> 4− 1

2 log 1
4ε = 4ε.

Combining this inequality with (5), we obtain

2ε ≥ Pr
x∼µ,Q

[ξ] ≥ Pr
[
|Q| ≤ 1

2 log 1
4ε
]
· Pr
x∼µ,Q

[
ξ
∣∣ |Q| ≤ 1

2 log 1
4ε
]
> Pr

[
|Q| ≤ 1

2 log 1
4ε
]
· 4ε.

Rearranging the inequality yields Pr
[
|Q| ≤ 1

2 log 1
4ε
]
< 1

2 and so the average query complexity
of A is bounded below by

E
[
|Q|
]
> 1

2 log 1
4ε · Pr

[
|Q| > 1

2 log 1
4ε
]
> 1

4 log 1
4ε . J

2.3 Lower Bound on the Query Complexity of BlueRed
We wish to relate the average query complexity of PtrFcn to that of the GapID function.
We do this by relating both query complexities to that of another partial function that we
call BlueRed.

Let Σ : ={black,blue,red}, and call a symbol colored if it is not black. The input
is an n ×m grid of entries from Σ, with the promise that each column contains a unique
colored entry, and either all colored entries are red, or half the colored entries are blue.
Formally, we define BlueRed : Σn×m → {0, 1, ∗} as follows:

BlueRed(x) =


1 if each column has 1 colored entry & all colored entries are red,
0 if each column has 1 colored entry & exactly bm2 c entries are blue,
∗ otherwise.

The following reduction shows that the average query complexity of BlueRed is Θ(n) times
as large as that of the GapID function.

I Lemma 8. For every ε > 0, Rε(BlueRed) ≥ n
4 · Rε(GapID).

Proof. Fix any algorithm A that computes BlueRed with error at most ε and has expected
query cost c = Rε(BlueRed). We will use A to construct an algorithm B that computes
GapID with error at most ε and expected cost 4c/n.

Given an input x ∈ {0, 1}m, the algorithm B constructs an instance of the BlueRed
problem in the following way. First, it generates indices i1, . . . , im ∈ [n] independently and
uniformly at random. Then it defines

yi,j =


red if i = ij and xj = 0,
blue if i = ij and xj = 1,
black if i 6= ij .

Finally, the algorithm B emulates the algorithm A on input y, querying the value of xj
whenever A queries the bit (ij , j) for some j ≤ m. This construction guarantees that B
computes GapID with error at most ε; its query complexity corresponds to the number of
red or blue entries that are queried by A.

Let Q ⊆ [n] × [m] be the random variable that denotes the set of indices queried by
A, and let C ⊆ [m] denote the set of columns whose red or blue entry is queried by A.
Without loss of generality, we may assume that A does not query any entry of a column

E. Blais and J. Brody 29:9

after it finds the colored entry within that column. We partition C into two sets Cearly and
Clate, where Cearly denotes the set of columns whose colored entry is found within the first n

2
queries to that column and Clate denotes the set of columns whose colored entry was found
with more than n

2 queries to that column. Let X1, X2, . . . , X|Q| be indicator variables where
Xk = 1 if and only if the kth query (i, j) made by A is red or blue and is one of the first
n
2 queries to column j. Since each value ij is drawn uniformly at random from [n], each of
these indicator variables has expected value E[Xk] ≤ 2

n . Therefore,

E
[
|Cearly|

]
= E

∑
i≤|Q|

Xi

 ≤ 2
n

E
[
|Q|
]
.

Furthermore, by definition at least n2 queries are made to each column in Clate so the expected
size of this set is bounded by E

[
|Clate|

]
≤ 2

n E
[
|Q|
]
and

E
[
|C|
]

= E
[
|Cearly|

]
+ E

[
|Clate|

]
≤ 4
n

E
[
|Q|
]
.

Thus, the expected query cost of B is at most 4
n ·Rε(BlueRed), as we wanted to show. J

2.4 Lower Bound on the Query Complexity of PtrFcn
I Lemma 9. For every 0 ≤ ε ≤ 1

4 , Rε(PtrFcn) ≥ R2ε(BlueRed).
Proof. Let A be a randomized algorithm that computes PtrFcn with error at most ε and
expected query cost q := Rε(PtrFcn). We use A to construct a randomized algorithm B
that computes BlueRed with the same cost and error at most 2ε.

Let x be an input for BlueRed. Each time A queries a cell, B queries the corresponding
entry in x. If the entry in x is black, then B returns 〈1,⊥, . . . ,⊥〉. If the entry in x is
red, then B returns 〈0,⊥, . . . ,⊥〉. Finally, if the entry of x is blue, then B terminates
the emulation and returns 0. If A reaches the end of the emulation without having been
terminated, B outputs the same result as A.

The query complexity of B is at most that of A. It remains to show that B errs with
probability at most 2ε. There are two cases to consider.

The first case is when x ∈ BlueRed−1(1). Then x maps directly to an input z ∈
PtrFcn−1(0) and hence B errs with probability at most ε on x.

The second case is when x ∈ BlueRed−1(0). Let z be an arbitrary 1-input for PtrFcn
such that (i) zi,j = 〈1,⊥, . . . ,⊥〉 whenever xi,j = black, (ii) zi,j = 〈0,⊥, . . . ,⊥〉 whenever
xi,j = red, and (iii) the special entry and good entries of z correspond to blue entries of x.
It might not be possible to completely emulate A on input z without knowing the exact set
of blue entries. However, B doesn’t need to fully emulate A – it only needs to know how
to map black and red entries. Once a blue entry is probed, B halts and outputs 0. In
this way, we claim that B on input x probes the same cells as A on input z until it halts.
Therefore its output is the same as A(z) unless A(z) probes the special cell or a good cell.
Moreover, in this case, B outputs correctly with certainty. Thus, by Claim 6, the error of B
is at most

Pr[B errs] ≤ Pr[B probes no blue cells] ≤ Pr[A doesn’t probe special cell] ≤ 2ε . J

2.5 Upper Bound on the Query Complexity of PtrFcn
The proof of Theorem 1 also requires a tight upper bound on the (worst-case) randomized
query complexity of PtrFcn. This argument is straightforward, and similar to the analysis
of Ambainis et al. [2] for their analogous pointer function.

CCC 2019

29:10 Optimal Separation and Strong Direct Sum for Randomized Query Complexity

Algorithm 1: PtrFcnSolver(x).
S ← [m];
T ← a random subset of [m] of size |T | = log 1

ε ;
for each cell (i, j) in a column in T do

if value(xi,j) = 0 ∧ col(xi,j) ∈ S then
j∗ ← col(xi,j);
i∗ ← rowj∗(xi,j);
valid← True;
while |S| > 1 ∧ valid do

`← any column in S \ {j∗};
if value(xrow`(xi∗,j∗),`) = 0 then

S ← S \ {`};
else

valid← False;
if |S| = 1 then

break;
if |S| = 1 then

fix j ∈ S. return 1 if (i) column j is special, (ii) there is a special cell within
column j, (iii) all cells linked by the special cell have value 0, and (iv) half of
linked cells point back to the special cell.

return 0

I Lemma 10. Rε(PtrFcn) = O(n log 1
ε +m).

Proof. The algorithm that computes the PtrFcn function is described in Algorithm 1. In
this algorithm, the set S corresponds to the set of potential special columns. The query
complexity of PtrFcnSolver follows from the fact that each iteration of the inner while loop
either eliminates one of the columns from the set S of candidates or one of the n log 1

ε cells
in the columns in T . The final check of the (lone remaining) potential special column at the
end of the algorithm examines at most n+m cells.

Whenever the PtrFcnSolver returns the value 1, then it in fact has observed a certificate
that PtrFcn(x) = 1 so the algorithm has perfect soundness.

Conversely, suppose PtrFcn(x) = 1. Exactly half of the columns are good, so T contains
such a cell with probability at least 1 − (1/2)log(1/ε) = 1 − ε. Now, consider the for loop
iteration when the first good cell (i, j) is selected. Since (i, j) is a good cell, it points back to
the special cell, which in turn points to a linked cell in all columns except the special column.
For any remaining j′ 6= j ∈ S, PtrFcn(x) probes the linked cell in column j′, verifies the
value equals 0, and removes it from S. In this way, the remaining columns in S save the
special column are eliminated. Once we reduce S to a single remaining candidate, we can
probe all cells in this column and all linked cells using n+m queries to verify that indeed
PtrFcn(x) = 1. J

2.6 Completing the Proof of Theorem 1
The last ingredient that we need to complete the proof of Theorem 1 is the concept of resilient
functions [12].

I Definition 11. The function φ : {0, 1}n → {0, 1}m is t-resilient for some 1 ≤ t < n if for
any set S ⊆ [n] of |S| ≤ t coordinates and any assignment of values for the inputs {xi}i∈S,
when the values {xi}i∈[n]\S are set uniformly at random then φ(x) is uniformly distributed
in {0, 1}m.

E. Blais and J. Brody 29:11

We use the following existence result on resilient functions that was established by Chor
et al. [12].

I Theorem 12 (Chor et al. [12]). For every large enough n, there is a function φ : {0, 1}n →
{0, 1}m that is n

3 -resilient and satisfies m ≥ 0.08n.

We use resilient functions to bound the query complexity of functions via the following
lemma.

I Lemma 13. Fix a finite set X of cardinality |X | = 2` for some integer ` ≥ 1 and let
φ : {0, 1}N → X be an N

3 -resilient function. Then for every function f : Xm → {0, 1} and
every ε ≥ 0,

Rε(f ◦ φ) = Θ(N · Rε(f)) and Rε(f ◦ φ) = Θ(N · Rε(f)).

Proof. The upper bounds follow immediately from the observation that if A is a randomized
algorithm that computes f with ε-error, then we can define a algorithm B that computes
f ◦ φ with the same error by simulating A and querying the N bits to observe the value φ(x)
to return to each query.

For the lower bounds, let A be a randomized algorithm that computes f ◦ φ with error at
most ε. We define an algorithm B for computing f that simulates A in the following way.
For the first N

3 queries to a cell, B answers the queries with uniformly random variables in
{0, 1}. On a query to the (N3 + 1)-th bit of a cell, B queries the value v of the corresponding
cell in x. It then draws a value z in φ−1(v) uniformly at random among all values that agree
with the N

3 bits output so far. The current query and all further queries to bits of that cell
are then answered using z. Once A terminates, B returns A’s output and terminates as well.

The correctness of B follows directly from the correctness of A. Furthermore, on any input
for which A makes q queries, B makes at most q/(N/3) queries since N/3 distinct queries of
A are required for each query that B eventually makes to x. Thus both the average-case
and worst-case query complexities of B are bounded by 3/N times the corresponding query
complexities of A. J

We are now ready to complete the proof of the separation theorem.

Proof of Theorem 1. Fix m = n = 2` − 1 for any integer ` ≥ 1 so that |Γ| = 2`(2`−1)+`+1 is
a power of 2. Fix a C

3 -resilient function φ : {0, 1}C → Γ for some C ≤ 12.5 log |Γ| and define
the function EncFcn = PtrFcn ◦ φ. By Lemmas 13 and 10,

Rε(EncFcn) = O
(
C(n log 1

ε +m)
)

= O
(
Cn log 1

ε

)
.

In particular, setting ε = 1
3 we obtain R(EncFcn) = O(Cn).

Using Lemma 13, 9, and 8, we obtain the chain of inequalities

Rε(EncFcn) = Ω
(
C · Rε(PtrFcn)

)
= Ω

(
C · R2ε(BlueRed)

)
= Ω

(
Cn · R2ε(GapID)

)
.

By Lemma 7, when ε > 2−m = 2−n this implies that

Rε(EncFcn) = Ω
(
Cn log 1

ε

)
= Ω

(
log 1

ε · R(EncFcn)
)
.

Theorem 1 is obtained by noting that EncFcn is a function on N = O(mn|Γ|) = O(n3 logn)
variables. J

CCC 2019

29:12 Optimal Separation and Strong Direct Sum for Randomized Query Complexity

3 Strong Direct Sum Theorem

We establish Theorem 2 by proving a corresponding direct sum result in the distribu-
tional model and applying a Yao minimax principle for algorithms that err and abort with
bounded probability.

We introduce the model of algorithms that can abort in Section 3.1, where we also relate
this model to the average query complexity setting of randomized algorithms and establish a
Yao minimax principle. In Section 3.2, we establish the main technical result, a strong direct
sum theorem for distributional complexity. We complete the proof of Theorem 2 itself in
Section 3.3 and the proofs of Corollaries 3 and 4 are completed in Section 3.4.

3.1 Algorithms That Can Abort
We consider randomized algorithms that are allowed to err and abort. In this setting, an
algorithm outputs ⊥ instead of giving a valid output when it chooses to abort. Let Dµ

δ,ε(f)
and Rδ,ε(f) denote the distributional and randomized query complexities of f when the
algorithm aborts with probablity at most δ and errs with probability at most ε.

Randomized query complexity in the setting where algorithms can abort with constant
probability δ is asymptotically equivalent to the average randomized query complexity.

I Proposition 14. For every function f : {0, 1}n → {0, 1}, every 0 ≤ ε < 1
2 and every

0 < δ < 1,

δ · Rδ,ε(f) ≤ Rε(f) ≤ 1
1−δ · Rδ,(1−δ)ε(f).

Proof. For the first inequality, let A be a randomized algorithm that computes f with ε
error and has expected query complexity q. Let B be the randomized algorithm B that
simulates A except that whenever A tries to make more than q/δ queries, it aborts. The
algorithm B also computes f with error at most ε, and it has worst-case query complexity
q/δ. Furthermore, by Markov’s inequality, B aborts with probability at most δ.

For the second inequality, let B be a randomized algorithm with query complexity q that
computes f with error probability at most (1− δ)ε and abort probability at most δ. Let A
be the randomized algorithm that simulates B until that algorithm does not abort, then
outputs the same value. The error probability of B conditioned on it not aborting is at most
(1−δ)ε

1−δ = ε, so the algorithm A also errs with probability at most ε, and its expected query
complexity is q(1 + δ + δ2 + · · ·) = q

1−δ . J

Yao’s minimax principle can be adapted for the setting of algorithms that abort as follows.

I Lemma 15. For any α, β > 0 such that α+ β ≤ 1, we have

max
µ

Dµ
δ/α,ε/β(f) ≤ Rδ,ε(f) ≤ max

µ
Dµ
αδ,βε(f).

Proof. We handle the initial inequality (i.e., the easy direction) first. Fix a q-query random-
ized algorithm A achieving Rδ,ε(f). By the guarantee of A, we have that for any input x, A
aborts with probability at most δ and errs with probabiltiy at most ε. Let 1δ(x) and 1ε(x)
be indicator variables for the events that A aborts on x and A errs on x respectively. Then,
we have ER[1δ(x)] ≤ δ and similarly ER[1ε(x)] ≤ ε when the expectation is taken over the
randomness R of the algorithm A. Next, fix any input distribution µ and let X ∼ µ. It
follows that

E
R

[
E
X

[1δ(X)]
]

= E
X

[
E
R

[1δ(X)]
]
≤ δ and E

R

[
E
X

[1ε(X)]
]

= E
X

[
E
R

[1ε(X)]
]
≤ ε.

E. Blais and J. Brody 29:13

Using Markov’s inequality twice, we have

Pr
R

[
E
X

[1δ(X)] > δ/α
]
< α and Pr

R

[
E
X

[1ε(X)] > ε/β
]
< β.

By a union bound, there exists a setting of the random stringR such that both E[1δ(X)] ≤ δ/α
and E[1ε(X)] ≤ ε/β. Fixing this R gives a q-query deterministic algorithm that aborts with
probability at most δ/α and errs with probability at most ε/β, hence Dµ

δ/α,ε/β(f) ≤ Rδ,ε(f).
For the second inequality, let c : = maxµ Dµ

αδ,βε(f). Consider a two-player, zero-sum game
where player 1 selects a c-query deterministic algortihm A for f , player 2 selects an input
x, and player 1 is paid −ε if A(x) aborts, −δ if A(x) errs, and 0 otherwise. Note that
each mixed strategy for player 1 corresponds to a randomized algorithm and each mixed
strategy for player 2 corresponds to an input distribution µ. By our choice of c, it follows
that for any mixed strategy for player 2, player 1 can obtain payoff −ε(αδ)− δ(βε) ≥ −εδ.
By the minimax theorem, it follows that there is a mixed strategy for player 1 (i.e., a
c-query randomized algorithm A) that provides the same payoff for every choice of player
2. Finally, note that A aborts with probability at most δ and errs with probability at most
ε; otherwise, the payoff would be less than −εδ ≤ −εδ(α + β). We’ve shown a c-query
randomized algorithm that aborts w/probability at most δ and errs w/probability at most ε,
hence Rδ,ε(f) ≤ c = maxµ Dµ

αδ,βε(f). J

3.2 Strong Direct Sum for Distributional Complexity
We prove a slightly more precise variant of Lemma 5.

I Lemma 16. For every function f : {0, 1}n → {0, 1}, every distribution µ on {0, 1}n, and
every 0 ≤ δ, ε ≤ 1

4 ,

Dµk

δ,ε(f
k) = Ω

(
k ·Dµ

1
10 +4δ+4ε, 48ε

k

(f)
)
.

Proof. Let A be a deterministic algorithm with query complexity q that computes fk with
error probability at most ε and abort probability at most δ when the input x = (x(1), . . . , x(k))
is drawn from µk. Then conditioned on A not aborting, it outputs the correct value of fk
with probability at least 1− ε

1−δ ≥ 1− 2ε and

1− 2ε ≤ Pr
x∼µk

[
A(x) = fk(x)

∣∣ A(x) 6= ⊥
]

=
∏
i≤k

Pr
x∼µk

[
A(x)i = f(x(i))

∣∣∣ A(x)<i = fk(x)<i,A(x) 6= ⊥
]
.

This implies that at least 2
3k indices i ∈ [k] satisfy

Pr
x∼µk

[
A(x)i 6= f(x(i))

∣∣∣ A(x)<i = fk(x)<i,A(x) 6= ⊥
]
≤ 12ε

k
, (6)

otherwise the product in the product in the previous inequality would be less than (1 −
12ε/k)k/3 ≤ e−4ε < 1− 2ε, contradicting the lower bound on this product.

For each i ≤ k, let qi(x) denote the number of queries that A makes to x(i) on input x.
The query complexity of A guarantees that for each input x,

∑
i≤k qi(x) ≤ q. Therefore,∑

i≤k Ex∼µk [qi(x)] ≤ q and at least 2
3k indices i ∈ [k] satisfy

E
x∼µk

[qi(x)] ≤ 3q
k
. (7)

CCC 2019

29:14 Optimal Separation and Strong Direct Sum for Randomized Query Complexity

Thus, some index i∗ ∈ [k] satisfies both (6) and (7). Fix such an index i∗. For inputs y ∈ µk
and x ∈ µ, write y(i∗←x) := (y(1), . . . , y(i∗−1), x, y(i∗+1), . . . , y(k)) to be the input obtained
by replacing y(i∗) with x in y. With this notation, the two conditions (6) and (7) satisfied
by i∗ can be rewritten as

E
y∼µk

[
Pr
x∼µ

[
A(y(i∗←x))i∗ 6= f(x)

∣∣∣ A(y(i∗←x))<i∗ = fk(y(i∗←x))<i∗ ,A(y(i∗←x)) 6= ⊥
]]
≤ 12ε

k

and

E
y∼µk

[
E
x∼µ

[
qi∗(y(i∗←x))

]]
≤ 3q

k
.

The correctness of A also guarantees that

E
y∼µk

[
Pr
x∼µ

[
A(y(i∗←x)) = ⊥

]]
≤ δ

and

E
y∼µk

[
Pr
x∼µ

[
A(y(i∗←x))<i∗ 6= fk(y(i∗←x))<i∗)

∣∣∣ A(y(i∗←x)) 6= ⊥
]]
≤ ε.

Therefore, by Markov’s inequality, there exists an input z ∈ {0, 1}n×k such that

Pr
x∼µ

[
A(z(i∗←x)) = ⊥

]
≤ 4δ,

Pr
x∼µ

[
A(z(i∗←x))<i∗ 6= fk(z(i∗←x))<i∗

∣∣∣ A(z(i∗←x)) 6= ⊥
]
≤ 4ε,

Pr
x∼µ

[
A(z(i∗←x))i∗ 6= f(x)

∣∣∣ A(z(i∗←x))<i∗ = fk(z(i∗←x)),A(z(i∗←x)) 6= ⊥
]
≤ 48ε

k
, and

E
x∼µ

[
qi∗(z(i∗←x))

]
≤ 12q

k
.

Let A′ be the deterministic algorithm that computes f(x) by simulating A on the input
z(i∗←x) with two additions:
1. If A attempts to query more than 120q

k bits of x, A′ aborts, and
2. When A terminates, the algorithm A′ first verifies that the output generated by A satisfies
A(z(i∗←x))≤i∗ = fk(z(i∗←x)). If so A′ returns the value A(z(i∗←x))i∗ ; if not, A′ aborts.

The algorithm A′ has query complexity at most 120q
k and, by the conditions satisfied by z, it

aborts with probability at most 1
10 + 4δ + 4ε and errs with probability at most 48ε

k when
x ∼ µ. J

3.3 Proof of Theorem 2
We now complete the proof of Theorem 2. Fix δ = 1

40 . By Proposition 14 and the second
inequality of Lemma 15,

R 96ε
k

(f) ≤ 2 R 1
2 ,

48ε
k

(f) ≤ 2 R 1
5 +4δ+4ε, 48ε

k
(f) ≤ 2 max

µ
Dµ

1
10 +2δ+2ε, 24ε

k

(f).

Let µ∗ denote a distribution where the maximum is attained. By Lemma 16,

Dµ∗

1
10 +2δ+2ε, 24ε

k

(f) = O

(
1
k
·D(µ∗)k

δ
2 ,
ε
2

(fk)
)
.

E. Blais and J. Brody 29:15

Using the first inequality of Lemma 15 we then obtain

D(µ∗)k
δ
2 ,
ε
2

(fk) ≤ max
ν

Dν
δ
2 ,
ε
2
(fk) ≤ Rδ,ε(fk).

Combining these inequalities and applying Proposition 14 once more yields

R 96ε
k

(f) ≤ O
(1
k · Rδ,ε(fk)

)
≤ O

(1
k · Rε(fk)

)
.

Theorem 2 follows from the identity R ε
k

(f) = Θ
(
R 96ε

k
(f)
)
obtained from the standard success

amplification trick. J

3.4 Proof of Corollaries 3 and 4
Corollary 3 is obtained as a direct consequence of Theorems 1 and 2.

Proof of Corollary 3. The upper bound is via the universal bound (3). For the matching
lower bound, let f : {0, 1}n → {0, 1} be a function that satisfies the condition of Theorem 1.
By Theorem 2, the randomized communication complexity of fk satisfies

R(fk) ≥ R(fk) = Ω
(
k · R 1

3k
(f)
)

By Theorem 1,

R 1
3k

(f) = Ω
(
R(f) · log k

)
as long as k ≤ 2(n

logn)1/3
. Combining those inequalities yields R(fk) = Ω

(
k log k ·R(f)

)
, as

we wanted to show. J

The proof of Corollary 4 uses the following randomized query-to-communication lifting
theorem of Göös, Pitassi, and Watson [17].

I Theorem 17 (Göös, Pitassi, Watson). Define Indm : [m]×{0, 1}m → {0, 1} to be the index
function mapping (x, y) to yx and fix m = n256. For every f : {0, 1}n → {0, 1},

Rcc(f ◦ Indm) = R(f) ·Θ(logn)

and

Rcc(fk ◦ Indm) = R(fk) ·Θ(logn).

I Remark 18. The statement of Theorem 17 in [17] only mentions the first identity explicitly.
However, as discussed in their Section II, the theorem statement holds for functions with any
finite range.2 Therefore, the theorem holds for the function fk as well as f .

Proof of Corollary 4. By Corollary 3, there exists a function f : {0, 1}n → {0, 1} which
satisfies R(fk) = Θ(k log k · R(f)). Combining this result with Theorem 17, we obtain

Rcc((f ◦ Indm)k
)

= Rcc(fk ◦ Indm
)

= R(fk) ·Θ(logn)
= Θ(k log k · R(f) · logn)
= Θ(k log k) · Rcc(f ◦ Indm). J

2 In fact, their theorem also holds in even more general settings such as when f is a partial function or a
relation, for example.

CCC 2019

29:16 Optimal Separation and Strong Direct Sum for Randomized Query Complexity

References
1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity using

cheat sheets. In Proceedings 48th Annual ACM Symposium on Theory of Computing, pages
863–876, 2016.

2 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris
Smotrovs. Separations in query complexity based on pointer functions. Journal of the ACM,
64(5):32, 2017.

3 Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly optimal separations between
communication (or query) complexity and partitions. In Proceedings 31st Annual Conference
on Computational Complexity, page 4, 2016.

4 Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin Kothari,
Troy Lee, and Miklos Santha. Separations in communication complexity using cheat sheets
and information complexity. In Proceedings 57th Annual IEEE Symposium on Foundations of
Computer Science, pages 555–564, 2016.

5 Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information
statistics approach to data stream and communication complexity. Journal of Computer and
System Sciences, 68(4):702–732, 2004.

6 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to Compress Interactive Com-
munication. SIAM Journal on Computing, 42(3):1327–1363, 2013. doi:10.1137/100811969.

7 Yosi Ben-Asher and Ilan Newman. Decision Trees with AND, OR Queries. In Proceedings
10th Annual Structure in Complexity Theory Conference, pages 74–81, 1995. doi:10.1109/
SCT.1995.514729.

8 Shalev Ben-David and Robin Kothari. Randomized Query Complexity of Sabotaged and Com-
posed Functions. Theory of Computing, 14(1):1–27, 2018. doi:10.4086/toc.2018.v014a005.

9 Mark Braverman and Anup Rao. Information Equals Amortized Communication. IEEE
Transactions on Information Theory, 60(10):6058–6069, 2014.

10 Harry Buhrman, Ilan Newman, Hein Röhrig, and Ronald de Wolf. Robust Polynomials
and Quantum Algorithms. Theory Comput. Syst., 40(4):379–395, 2007. doi:10.1007/
s00224-006-1313-z.

11 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informational
Complexity and the Direct Sum Problem for Simultaneous Message Complexity. In Proceedings
42nd Annual IEEE Symposium on Foundations of Computer Science, pages 270–278, 2001.
doi:10.1109/SFCS.2001.959901.

12 Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and Roman
Smolensky. The Bit Extraction Problem or t-Resilient Functions. In Proceedings 26th
Annual IEEE Symposium on Foundations of Computer Science, pages 396–407, 1985. doi:
10.1109/SFCS.1985.55.

13 Andrew Drucker. Improved direct product theorems for randomized query complexity. Com-
putational Complexity, 21(2):197–244, 2012.

14 Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized Communication Com-
plexity. SIAM Journal on Computing, 24(4):736–750, 1995. doi:10.1137/S0097539792235864.

15 Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and communi-
cation. In Proceedings 55th Annual IEEE Symposium on Foundations of Computer Science,
pages 176–185, 2014.

16 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. In Proceedings 56th Annual IEEE Symposium on Foundations of Computer Science,
pages 1077–1088, 2015.

17 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-Communication Lifting for BPP.
In Proceedings 58th Annual IEEE Symposium on Foundations of Computer Science, 2017.

18 Russell Impagliazzo, Ran Raz, and Avi Wigderson. A Direct Product Theorem. In Proceedings
9th Annual Structure in Complexity Theory Conference, pages 88–96, 1994. doi:10.1109/SCT.
1994.315814.

https://doi.org/10.1137/100811969
https://doi.org/10.1109/SCT.1995.514729
https://doi.org/10.1109/SCT.1995.514729
https://doi.org/10.4086/toc.2018.v014a005
https://doi.org/10.1007/s00224-006-1313-z
https://doi.org/10.1007/s00224-006-1313-z
https://doi.org/10.1109/SFCS.2001.959901
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1137/S0097539792235864
https://doi.org/10.1109/SCT.1994.315814
https://doi.org/10.1109/SCT.1994.315814

E. Blais and J. Brody 29:17

19 Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for deterministic
and randomized decision tree complexity. Inf. Process. Lett., 110(20):893–897, 2010. doi:
10.1016/j.ipl.2010.07.020.

20 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds via
the direct sum in communication complexity. Computational Complexity, 5(3):191–204, 1995.

21 Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev. Beating the Direct Sum
Theorem in Communication Complexity with Implications for Sketching. In Proceedings
24th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1738–1756, 2013. doi:
10.1137/1.9781611973105.125.

22 Marco Molinaro, David P Woodruff, and Grigory Yaroslavtsev. Amplification of one-way infor-
mation complexity via codes and noise sensitivity. In Proceedings 42nd Annual International
Colloquium on Automata, Languages, and Programming, pages 960–972. Springer, 2015.

23 Sagnik Mukhopadhyay and Swagato Sanyal. Towards Better Separation between Deterministic
and Randomized Query Complexity. In Proceedings 35th Annual Foundations of Software
Technology and Theoretical Computer Science, pages 206–220, 2015.

24 Noam Nisan, Steven Rudich, and Michael E. Saks. Products and Help Bits in Decision Trees.
SIAM Journal on Computing, 28(3):1035–1050, 1999. doi:10.1137/S0097539795282444.

25 Ronen Shaltiel. Towards proving strong direct product theorems. Computational Complexity,
12(1-2):1–22, 2003.

26 Alexander Sherstov. The Power of Asymmetry in Constant-Depth Circuits. SIAM Journal on
Computing, 47(6):2362–2434, 2018. doi:10.1137/16M1064477.

CCC 2019

https://doi.org/10.1016/j.ipl.2010.07.020
https://doi.org/10.1016/j.ipl.2010.07.020
https://doi.org/10.1137/1.9781611973105.125
https://doi.org/10.1137/1.9781611973105.125
https://doi.org/10.1137/S0097539795282444
https://doi.org/10.1137/16M1064477

	Introduction
	Our Results
	Applications
	Proof Overviews

	Bounded-Error Separation Theorem
	Pointer Function
	Lower Bound on the Query Complexity of GapID
	Lower Bound on the Query Complexity of BlueRed
	Lower Bound on the Query Complexity of PtrFcn
	Upper Bound on the Query Complexity of PtrFcn
	Completing the Proof of Theorem 1

	Strong Direct Sum Theorem
	Algorithms That Can Abort
	Strong Direct Sum for Distributional Complexity
	Proof of Theorem 2
	Proof of Corollaries 3 and 4

