
Non-Malleable Extractors and Non-Malleable
Codes: Partially Optimal Constructions
Xin Li
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
http://www.cs.jhu.edu/~lixints/
lixints@cs.jhu.edu

Abstract
The recent line of study on randomness extractors has been a great success, resulting in exciting new
techniques, new connections, and breakthroughs to long standing open problems in several seemingly
different topics. These include seeded non-malleable extractors, privacy amplification protocols with
an active adversary, independent source extractors (and explicit Ramsey graphs), and non-malleable
codes in the split state model. Previously, the best constructions are given in [54]: seeded non-
malleable extractors with seed length and entropy requirement O(logn+ log(1/ε) log log(1/ε)) for
error ε; two-round privacy amplification protocols with optimal entropy loss for security parameter
up to Ω(k/ log k), where k is the entropy of the shared weak source; two-source extractors for entropy
O(logn log logn); and non-malleable codes in the 2-split state model with rate Ω(1/ logn). However,
in all cases there is still a gap to optimum and the motivation to close this gap remains strong.

In this paper, we introduce a set of new techniques to further push the frontier in the above
questions. Our techniques lead to improvements in all of the above questions, and in several cases
partially optimal constructions. This is in contrast to all previous work, which only obtain close to
optimal constructions. Specifically, we obtain:
1. A seeded non-malleable extractor with seed length O(logn) + log1+o(1)(1/ε) and entropy re-

quirement O(log logn+ log(1/ε)), where the entropy requirement is asymptotically optimal by a
recent result of Gur and Shinkar [40];

2. A two-round privacy amplification protocol with optimal entropy loss for security parameter up
to Ω(k), which solves the privacy amplification problem completely;1

3. A two-source extractor for entropy O(log n log log n
log log log n

), which also gives an explicit Ramsey graph

on N vertices with no clique or independent set of size (logN)O(log log logN
log log log logN); and

4. The first explicit non-malleable code in the 2-split state model with constant rate, which has been
a major goal in the study of non-malleable codes for quite some time. One small caveat is that
the error of this code is only (an arbitrarily small) constant, but we can also achieve negligible
error with rate Ω(log log logn/ log logn), which already improves the rate in [54] exponentially.

We believe our new techniques can help to eventually obtain completely optimal constructions in
the above questions, and may have applications in other settings.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors

Keywords and phrases extractor, non-malleable, privacy, codes

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.28

Funding Xin Li: Supported by NSF award CCF-1617713.

1 Except for the communication complexity, which is of secondary concern to this problem.

© Xin Li;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 28; pp. 28:1–28:49

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cs.jhu.edu/~lixints/
mailto:lixints@cs.jhu.edu
https://doi.org/10.4230/LIPIcs.CCC.2019.28
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Partially Optimal Non-Malleable Extractors and Codes

1 Introduction

The study of randomness extractors has been a central line of research in the area of
pseudorandomness, where the goal is to understand how to use randomness more efficiently
in computation. As fundamental objects in this area, randomness extractors are functions
that transform imperfect random sources into nearly uniform random bits. Their original
motivation is to bridge the gap between the uniform random bits required in standard
applications (such as in randomized algorithms, distributed computing, and cryptography),
and practical random sources which are almost always biased (either because of natural
noise or adversarial information leakage). However the study of these objects has led to
applications far beyond this motivation, in several different fields of computer science and
combinatorics (e.g., coding theory, graph theory, and complexity theory).

The inputs to a randomness extractor are usually imperfect randomness, modeled by the
notion of general weak random sources with a certain amount of entropy.

I Definition 1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

An extensively studied model of randomness extractors is the so called seeded extractors,
introduced by Nisan and Zuckerman [60]. The inputs to a seeded extractor are a general
weak random source and a short independent uniform random seed. The random seed is
necessary here since it is well known that no deterministic extractor with one general weak
source as input can exist. Such extractors have wide applications in computer science.

I Definition 2 (Seeded Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-
extractor if for every source X with min-entropy k and independent Y which is uniform
on {0, 1}d,

|Ext(X,Y)− Um| ≤ ε.

If in addition we have |(Ext(X,Y), Y)−(Um, Y)| ≤ ε then we say it is a strong (k, ε)-extractor.

Through a long line of research, we now have explicit constructions of seeded extractors
with almost optimal parameters (e.g., [55, 41, 33, 32]). In the last decade or so, the focus has
shifted to several different but related models of randomness extractors, including seedless
extractors and non-malleable extractors. The study of these topics has also been quite
fruitful, leading to breakthroughs to several long standing open problems.

1.1 Seedless extractors
As the name suggests, a seedless extractor uses no uniform seed, and the only inputs are
weak random sources. Here, again we have two different cases. In the first case, one puts
additional restrictions on a single weak random source in order to allow possible extraction,
thus obtaining deterministic extractors for special classes of (structured) sources. In the
second case, the sources are still general weak random sources, but the extractor needs to
use more than one sources. To make extraction possible, one typically assumes the input
sources to the extractor are independent, and this kind of extractors are sometimes called
independent source extractors.

X. Li 28:3

Since the pioneering work of Chor and Goldreich [19], the study of independent source
extractors has gained significant attention due to their close connections to explicit Ramsey
graphs, and their applications in distributed computing and cryptography with general
weak random sources [43, 42]. The goal here is to give explicit constructions that match the
probabilistic bound: an extractor for just two independent (n, k) sources with k ≥ logn+O(1)
that outputs Ω(k) bits with exponentially small (in k) error. Note that an explicit two-source
extractor for such entropy (even with one bit output and constant error) will give an (strongly)
explicit Ramsey graph on N vertices with no clique or independent set of size O(logN),
solving an open problem proposed by Erdős [37] in his seminal paper that inaugurated the
probabilistic method.

While early progress on this problem has been quite slow, with the best known construction
in almost 20 years only able to handle two independent (n, k) sources with k > n/2 [19],
since 2004 there has been a long line of work [4, 5, 62, 10, 61, 6, 46, 48, 50, 49, 52, 20,
16, 53, 26, 13, 21, 8, 24, 54] introducing exciting new techniques to this problem. This
line of work greatly improved the situation and led to a series of breakthroughs. Now
we have three source extractors for entropy k ≥ polylog(n) that output Ω(k) bits with
exponentially small error [52, 7], two-source extractors for entropy k ≥ polylog(n) that
output Ω(k) bits with polynomially small error [16, 53, 57], and two-source extractors for
entropy k ≥ O(logn log logn) that output one bit with any constant error [54]. This also
gives an explicit Ramsey graph on N vertices with no clique or independent set of size
(logN)O(log log logN). Interestingly and somewhat surprisingly, the most recent progress
which brought the entropy requirement close to optimal, has mainly benefited from the
study of another kind of extractors, the so called non-malleable extractors, which we now
describe below.

1.2 Non-malleable extractors

Non-malleable extractors are strengthening of standard extractors, where one requires that
the output is close to uniform even given the output of the extractor on tampered inputs.

I Definition 3 (Tampering Funtion). For any function f : S → S, We say f has no fixed
points if f(s) 6= s for all s ∈ S. For any n > 0, let Fn denote the set of all functions
f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering functions.

Depending on what the tampering function acts on, we also have different models of
non-malleable extractors. If the tampering acts on the seed of a seeded extractor, such
extractors are called seeded non-malleable extractors, originally introduced by Dodis and
Wichs [30].

I Definition 4. A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a seeded non-malleable
extractor for min-entropy k and error ε if the following holds: If X is an (n, k) source and
A : {0, 1}d → {0, 1}d is an arbitrary tampering function with no fixed points, then

|snmExt(X,Ud) ◦ snmExt(X,A(Ud)) ◦ Ud − Um ◦ snmExt(X,A(Ud)) ◦ Ud| < ε

where Um is independent of Ud and X.

If the tampering acts on the sources of an independent source extractor, then we have
seedless non-malleable extractors, originally introduced by Cheraghchi and Guruswami [18].

CCC 2019

28:4 Partially Optimal Non-Malleable Extractors and Codes

I Definition 5. A function nmExt : ({0, 1}n)C → {0, 1}m is a (k, ε)-seedless non-malleable
extractor for C independent sources, if it satisfies the following property: Let X1, · · · , XC be
C independent (n, k) sources, and f1, · · · , fC : {0, 1}n → {0, 1}n be C arbitrary tampering
functions such that there exists an fi with no fixed points,2 then

|nmExt(X1, · · · , XC)◦nmExt(f1(X1), · · · , fC(X2))−Um◦nmExt(f1(X1), · · · , fC(X2))| < ε.

Seeded non-malleable extractors and privacy amplification

Seeded non-malleable extractors were introduced by Dodis and Wichs [30], to study the
basic problem of privacy amplification [9]. Consider the situation where two parties with
local (non-shared) uniform random bits try to convert a shared secret weak random source X
into shared secret uniform random bits. They do this by communicating through a channel,
which is watched by an adversary with unlimited computational power. Standard strong
seeded extractors provide very efficient protocols for a passive adversary (i.e., can only see
the messages but cannot change them), but fail for an active adversary (i.e., can arbitrarily
change, delete and reorder messages). In the latter case, which is the focus of this paper, the
main goal is to design a protocol that uses as few number of interactions as possible, and
achieves a shared uniform random string R which has entropy loss (the difference between
the length of the output and H∞(X)) as small as possible. Such a protocol is defined with a
security parameter s, which means the probability that an active adversary can successfully
make the two parties output two different strings without being detected is at most 2−s. On
the other hand, if the adversary remains passive, then the two parties should achieve a shared
secret string that is 2−s-close to uniform. We refer the reader to [29] for a formal definition.

A long line of work has been devoted to this problem [56, 27, 30, 63, 44, 11, 29, 25, 47,
48, 51, 12, 22, 23, 13, 21, 24, 54]. It is known that one round protocol can only exist when
the entropy rate of X is bigger than 1/2, and the protocol has to incur a large entropy loss.
When the entropy rate of X is smaller than 1/2, [30] showed that any protocol has to take
at least two rounds with entropy loss at least Ω(s). Achieving a two-round protocol with
entropy loss O(s) for all possible security parameters s is thus the holy grail of this problem
(note that s can be at most Ω(k) where k = H∞(X)).

While early works on this problem used various techniques, in [30], Dodis and Wichs
introduced a major tool, the seeded non-malleable extractor defined above. They showed
that two-round privacy amplification protocols with optimal entropy loss can be constructed
using explicit seeded non-malleable extractors. Furthermore, non-malleable extractors exist
when k > 2m+ 2 log(1/ε) + log d+ 6 and d > log(n− k+ 1) + 2 log(1/ε) + 5. Since then, the
study of non-malleable extractors has seen significant progress starting from the first explicit
construction in [29], with further connections to independent source extractors established
in [48, 50, 16]. Previous to this work, the best known seeded non-malleable extractor is
due to the author [54], which works for entropy k ≥ O(logn + log(1/ε) log log(1/ε)) and
has seed length d = O(logn + log(1/ε) log log(1/ε)). Although close to optimal, the extra
O(log log(1/ε)) factor in the entropy requirement implies that by using this extractor, one
can only get two-round privacy amplification protocols with optimal entropy loss for security
parameter up to s = Ω(k/ log k). This still falls short of achieving the holy grail, and may be
problematic for some applications. For example, even if the shared weak source has slightly
super-logarithmic entropy, the error of the protocol can still be sub-polynomially large; while

2 The original definition of seedless non-malleable independent source extractors in [18] allows fixed points,
but the two definitions are equivalent up to a small loss in parameters. See Section 7 for details.

X. Li 28:5

ideally one can hope to get negligible error, which is important for other cryptographic
applications based on this. The only previous protocol that can achieve security parameter up
to s = Ω(k) is the work of [11], which has entropy loss O(logn+ s) but also uses O(logn+ s)
rounds of interactions, much larger than 2. This also results in a total communication
complexity of O((logn+ s)2) and requires the two parties’ local random bits to be at least
this long.

Seedless non-malleable extractors and non-malleable codes

Seedless non-malleable extractors were first introduced by Cheraghchi and Guruswami [18] to
study non-malleable codes [36], a generalization of standard error correcting codes to handle
a much larger class of attacks. Informally, a non-malleable code is defined w.r.t. a specific
family of tampering functions F . The code consists of a randomized encoding function E
and a deterministic decoding function D, such that for any f ∈ F , if a codeword E(x) is
modified into f(E(x)), then the decoded message x′ = D(f(E(x))) is either the original
message x or a completely unrelated message. The formal definition is given in Section 7. In
[36], Dziembowski et. al showed that such codes can be used generally in tamper-resilient
cryptography to protect the memory of a device.

Even with such generalization, non-malleable codes still cannot exist if F is completely
unrestricted. However, they do exist for many broad families of tampering functions. One of
the most studied families of tampering functions is the so called t-split-state model. Here,
a k-bit message x is encoded into a codeword with t parts y1, · · · , yt, each of length n. An
adversary can then arbitrarily tamper with each yi independently. In this case, the rate of
the code is defined as k/(tn).

This model arises naturally in many applications, typically when different parts of memory
are used to store different parts of y1, · · · , yt. Such a code can also be viewed as a kind of
“non-malleable secret sharing scheme”. The case of t = 2 is the most useful and interesting
setting, since t = 1 corresponds to the case where F is unrestricted. Again, there has been a
lot of previous work on non-malleable codes in this model. In this paper we will focus on the
information theoretic setting.

Dziembowski et. al [36] first proved the existence of non-malleable codes in the split-state
model. Cheraghchi and Guruswami [17] showed that the optimal rate of such codes in the
2-split-state model is 1/2. Since then a major goal is to construct explicit non-malleable
codes in the 2-split-state model with constant rate. The first construction appears in [34],
with later improvements in [3, 2, 1], but all constructions only achieve rate n−Ω(1).

Cheraghchi and Guruswami [18] found a way to construct non-malleable codes in the
t-split state model using non-malleable t-source extractors. Chattopadhyay and Zuckerman
[15] constructed the first seedless non-malleable extractor, which works for 10 independent
sources with entropy (1− γ)n, and consequently they obtained a constant rate non-malleable
code in the 10-split-state model. Subsequently, constructions of non-malleable two source
extractors appeared in [12] and [54]. Both constructions work for min-entropy k = (1− γ)n,
and the former gives a non-malleable code in the 2-split state model with rate n−Ω(1) while
the latter achieves rate Ω(1

logn). Very recently, a work by Kanukurthi et. al [45] achieved
constant rate in the 4-split state model, and another one by Gupta et. al [39] achieved
constant rate in the 3-split state model, but the best construction in the 2-split state model
still only achieves rate Ω(1

logn) [54].
As can be seen from the above discussions, extensive past research has established strong

connections among these different topics, and provided solutions close to optimal. However,
there still remains a gap and the motivation to close this gap remains strong.

CCC 2019

28:6 Partially Optimal Non-Malleable Extractors and Codes

We also remark about the curious coincidences of some parameters here and the para-
meters in the literature of constructing unconditional pseudorandom generators for small
space computation, another central line of research in the area of pseudorandomness. The
holy grail in this case is to construct a logspace explicit pseudorandom generator (a function
that stretches a short uniform random seed into a long string that looks random) which
fools logspace computation with seed length O(log(n/ε)) and error ε. Such a construction
would imply that randomness does not add any more power in logspace computation. Al-
though for general logspace computation the best known pseudorandom generator remains
Nisan’s generator [59] which needs seed length O(logn log(n/ε)), recently there have been
several works achieving near optimal seed length for restricted cases. For example, Meka
et al. [58] constructed a pseudorandom generator for width-3 branching programs with
seed length O(log(n/ε)poly log log(n/ε)) +O(logn log(1/ε)), and Doron et al. [31] construc-
ted a pseudorandom generator for constant depth read once formulas with seed length
O(log(n/ε)poly log log(n/ε)), improving a previous similar result for depth 2 read-once for-
mulas by Gopalan et al. [38]. The extra poly log log(1/ε) dependence on error ε is quite
similar to the previously best known non-malleable extractors, and in the case of constant
or polynomially small error the seed length becomes lognpoly log logn, which is again quite
similar to the entropy requirement of the previously best known two-source extractors.

The high level reason for these coincidences is that all constructions use some recursive
steps (e.g., for O(log logn) steps), where in each step one needs to use say O(logn) independent
random bits, and thus the total entropy requirement becomes at least Ω(logn log logn).
Circumventing this barrier needs new techniques and can lead to improved or potentially
optimal constructions, which is of great interests. In this sense, the results in this paper
are the first kind to break this barrier, and we believe that the set of new techniques we
introduce can lead to further improvements and potentially optimal constructions.

1.3 Our Results
In this paper we achieve improvements in all the questions discussed in the context of
extractors, and in several cases partially optimal constructions. In contrast, all previous
works only obtain close to optimal constructions. Our first theorem gives explicit seeded
non-malleable extractors with optimal entropy requirement.

I Theorem 6. There exists a constant C > 1 such that for any constant a ∈ N ,a ≥ ∈,
any n, k ∈ N and any 0 < ε < 1 with k ≥ C(log logn + a log(1/ε)), there is an explicit
construction of a strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m

with d = O(logn) + log(1/ε)2O(a(log log(1/ε))
1
a) and m = Ω(k).

Note that this theorem provides a trade-off between the entropy requirement and the seed
length. For example, if we take a = 2, then the entropy requirement is O(log logn+ log(1/ε))
while the seed length is O(logn) + 2O(

√
log log(1/ε)) log(1/ε) = O(logn) + log1+o(1)(1/ε). By

a recent result of Gur and Shinkar [40], the entropy requirement in our construction is
asymptotically optimal. We can also achieve smaller seed length while requiring slightly
larger entropy.

I Theorem 7. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε <

1 with k ≥ C(log logn + log(1/ε) log log log(1/ε)), there is an explicit construction of a
strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m with d = O(logn+
log(1/ε)(log log(1/ε))2)3 and m = Ω(k).

3 The exponent 2 can be reduced to be arbitrarily close to log 3.

X. Li 28:7

Combined with the protocol in [30], we have the following theorem.

I Theorem 8. There exists a constant 0 < α < 1 such that for any n, k ∈ N , there is an
explicit two-round privacy amplification protocol in the presence of an active adversary that
achieves (1) any security parameter s ≤ αk, entropy loss O(log logn+ s) and communication
complexity O(logn) + s2O(a(log s)

1
a) for any constant integer a ≥ 2, or (2) any security

parameter s ≤ αk/ log log k, entropy loss O(log logn + s) and communication complexity
O(logn+ s log2 s).

Our two-round protocol can achieve optimal entropy loss for security parameter up to
s = Ω(k), thus achieving the holy grail of this problem. Compared to the O(logn+ s)-round
protocol in [11], our protocol also has better dependence on n and significantly better
communication complexity.

We remark that the O(log logn) term is also the best possible (up to constant) if one
wants to apply the two-round protocol in [30]. This is because the output of the non-malleable
extractor is used as the key for a message authentication code (MAC) that authenticates the
seed of a strong seeded extractor with security parameter s. Since the seed of the extractor
uses at least Ω(logn) bits, the MAC requires a key of length at least log logn+ s. See [30]
for more details.

I Remark 9. In Theorem 6 and Theorem 7, the dependence on error ε in the seed length and
the entropy requirement can be switched. For example, in Theorem 6, we can also achieve
k ≥ C log logn+ log(1/ε)2C·a(log log(1/ε))

1
a and d = O(logn+ a log(1/ε)), i.e., we can achieve

asymptotically optimal parameters in either the seed length or the entropy requirement, but
not in both.

We also have the following non-malleable two-source extractor and seeded non-malleable
extractor.

I Theorem 10. There exists a constant 0 < γ < 1 and a non-malleable two-source extractor
for (n, (1− γ)n) sources with error 2−Ω(n log logn/ logn) and output length Ω(n).

I Theorem 11. There is a constant C > 0 such that for any ε > 0 and n, k ∈ N with
k ≥ C(log logn+ log(1/ε) log log(1/ε)

log log log(1/ε)), there is an explicit strong seeded non-malleable extractor
for (n, k) sources with seed length d = O(logn + log(1/ε) log log(1/ε)

log log log(1/ε)), error ε and output
length Ω(k).

Combined with the techniques in [8], we obtain the following theorems.

I Theorem 12. For every constant ε > 0, there exists a constant C > 1 and an explicit two
source extractor Ext : ({0, 1}n)2 → {0, 1} for entropy k ≥ C logn log logn

log log logn with error ε.

I Corollary 13. For every large enough integer N there exists a (strongly) explicit construction
of a K-Ramsey graph on N vertices with K = (logN)O(log log logN

log log log logN).

Our result gives the first two-source extractor for entropy o(logn log logn) and the first
explicit K-Ramsey graph on N vertices with K = (logN)o(log log logN). For non-malleable
codes in the 2-split state model, we have the following theorem.

I Theorem 14. There are constants 0 < η, µ < 1 such that for any n ∈ N and 2−
µn

logn ≤ ε ≤ η
there exists an explicit non-malleable code in the 2-split-state model with block length 2n, rate
Ω(log log log(1/ε)

log log(1/ε)) and error ε.

CCC 2019

28:8 Partially Optimal Non-Malleable Extractors and Codes

Note that if we choose ε = 2−c for some constant c > 1, then we get a non-malleable
code with rate Ω(log log c

log c) and error 2−c. This gives the first construction of an explicit
non-malleable code in the 2-split-state model with constant rate. Note that the error can be
arbitrarily small, and the dependence of the rate on the error is pretty good. For example,
even if one wants to achieve error 2−2100 , which is more than enough for any practical
application, the rate is on the order of 1/16. On the other hand, if we choose ε = 2−polylog(n),
then we get a non-malleable code with negligible error and rate Ω(log log logn

log logn), which already
improves the rate in [54] exponentially.

We can also achieve close to exponentially small error with an improved rate.

I Theorem 15. For any n ∈ N there exists a non-malleable code with efficient encoder-
/decoder in the 2-split-state model with block length 2n, rate Ω(log logn/ logn) and error
ε = 2−Ω(n log logn/ logn).

1.4 Overview of The Constructions and Techniques

We demonstrate our techniques here by an informal overview of our constructions. Throughout
this section we will be mainly interested in the dependence of various parameters (e.g., seed
length, entropy requirement) on the error ε, since this makes the presentation cleaner. The
dependence on n comes from the alternating extraction between the seed and the source, thus
the seed needs to have an O(logn) term while the source only needs an O(log logn) term.

All recent constructions of non-malleable extractors essentially follow the same high level
sketch: first obtain a small advice on L = O(log(1/ε)) bits such that with probability 1− ε,
the advice is different from its tampered version. Then, a correlation breaker with advice
(informally introduced in [12] and formally defined in [22]) is used to obtain the final output.
A correlation breaker with advice is a function AdvCB : X × Y × α→ V where X,Y are two
independent sources (in the case of a seeded non-malleable extractor, Y can be viewed as
the seed), such that if the advice α is not equal to its tampered version α′, then the output
AdvCB(X,Y, α) is close to uniform conditioned on the tampered version AdvCB(X ′, Y ′, α′).
There are several constructions of correlation breakers, and the goal is to minimize the
entropy requirement of X and Y . Previously, the most efficient construction is based on
a non-malleable independence preserving merger (NIPM for short, introduced in [26] and
generalized in [13]) in [54], which achieves entropy requirement O(logL log(1/ε)) using a
recursive structure. As discussed before, improving this needs new techniques, and our main
new idea is the following:

Idea 1: Instead of using fresh randomness, we borrow techniques from pseudorandom
generators for small space computation [59, 60] to recycle the randomness in each step of
the independence preserving merger. In this sense, we construct pseudorandom independence
preserving mergers.

Using this idea, we can improve the entropy requirement of X and Y in two different
settings. In the asymmetric case, one of them can be optimal while the other is larger,
e.g., one can be O(log(1/ε)) and the other is 2O(

√
logL) log(1/ε). This is good for seeded

non-malleable extractors and privacy amplification protocols. In the symmetric case which is
needed for two-source extractors, one can reduce the entropy requirement of both X and Y
to O(logL

log logL log(1/ε)).

X. Li 28:9

Turning to achieving constant rate non-malleable codes, our main new idea is the following:

Idea 2: In the connection between non-malleable codes and non-malleable two-source ex-
tractors found by Cheraghchi and Guruswami [18], the way of dealing with errors is too
coarse. For most recent constructions of non-malleable two-source extractors, one can actually
separate two different kinds of error, where one kind is relevant and the other is irrelevant.

We now discuss both ideas in more details. We start with Idea 1 and first briefly
recall the construction of the merger in [54]. The NIPM takes an L ×m random matrix
V with m = O(log(1/ε)) with the property that one row in the matrix is uniform given
the corresponding row in its tampered version4 (this can be obtained from the advice and
inputs), and does the following. Suppose the matrix V is a deterministic function of the
source X, then we first generate ` = logL random variables (Y1, · · · , Y`) from Y , such that
each Yi is close to uniform given the previous random variables and their tampered versions
(i.e., (Y1, Y

′
1 , · · · , Yi−1, Y

′
i−1)). We call this property the look-ahead property. Next, we run

a simple merger for ` iterations, with each iteration using a new Yi to merge every two
consecutive rows in V , thus decreasing the number of rows by a factor of 2. We output the
final matrix V which has one row.

Let’s turn to the entropy requirement. In this construction each Yi needs to have at least
Ω(log(1/ε)) bits in order to ensure the error is at most ε, thus it is clear that Y needs to
have entropy at least Ω(` log(1/ε)) = Ω(log(1/ε) log log(1/ε)). However, it turns out that X
also needs to have such entropy, for the following two reasons. First, in each iteration after
we apply the simple merger, the length of each row in the matrix decreases by a constant
factor (due to the entropy loss of any seeded extractor). Thus we cannot afford to just repeat
the process for ` times since that would require the original row in V (and hence X) to have
entropy at least polylog(1/ε). Instead, we again create ` random variables (X1, · · · , X`) from
X with the look-ahead property, and in each iteration after merging we use each row of the
matrix to extract from a new Xi (using a standard seeded extractor, and possibly after first
extracting from another new Yi), to restore the length of the rows in the matrix. We need
the look-ahead property in (X1, · · · , X`) and (Y1, · · · , Y`) so that after each iteration we can
fix the previously used random variables and maintain the independence of X and Y , as well
as the fact that the matrix is a deterministic function of X. Each Xi again needs at least
Ω(log(1/ε)) bits so this puts a lower bound on the entropy of X.

Second, in order to prepare the random variables (Y1, · · · , Y`), we in fact run an alternating
extraction protocol between (part of) X and Y . This protocol lasts 2` rounds between X
and Y , and in each round either X or Y needs to spend Ω(log(1/ε)) random bits. This again
puts a lower bound of Ω(` log(1/ε)) on the entropy of X.

We remark that the above description is slightly different from the standard definition of
an NIPM, where the only input besides the matrix V is Y . Indeed, in [54] it was presented
as a correlation breaker. However, these two objects are actually similar, and for this paper
it is more convenient to consider NIPMs with an additional input X, which is independent
of Y but may be correlated with V . We will use this notion here and formally define it
in Section 4.

Improved merger construction

To break the above barriers, our key observation is that we can recycle the entropy in X,
similar in sprit to what has been done in previous constructions of pseudorandom generators
for small space computation [59, 60]. Indeed, the random variables (X1, · · · , X`) can be

4 Sometimes we also require the other rows to be uniform, in order to make the construction simpler.
This is the case of this paper, but we ignore the issue here for simplicity and clarity.

CCC 2019

28:10 Partially Optimal Non-Malleable Extractors and Codes

replaced by the original source X, as long as we have slightly more (e.g., 2`) Yi’s and they
satisfy the look ahead property. To achieve this we crucially use the property that the NIPM
only needs one row of V to be uniform given the corresponding row in its tampered version,
and does not care about the dependence among the rows of V (they can have arbitrary
dependence). Consider a particular iteration i in which we have just finished applying the
simple merger. We can first fix all random variables {Yj} that have been used so far, and
conditioned on this fixing we know that X and Y are still independent, and the matrix V is
a deterministic function of X, which is independent of all random variables obtained from
Y . To restore the length of each row in V , we use each row of V to first extract O(log(1/ε))
bits from Yj+1, and then extract back from the original source X. Note that we only need
to consider each row separately (since we don’t care about the dependence among them).
Assume row h in V has the property that Vh is uniform given V ′h (the tampered version).
Since each random variable only has O(log(1/ε)) bits, as long as the entropy of X is c log(1/ε)
for a large enough constant c > 1, we can argue that conditioned on the fixing of (Vh, V ′h),
X still has entropy at least some O(log(1/ε)). On the other hand since Vh is uniform given
V ′h, their corresponding outputs after extracting from (Yj+1, Y

′
j+1) will also preserve this

independence; and conditioned on the fixing of (Vh, V ′h), these outputs are deterministic
functions of (Y, Y ′), which are independent of (X,X ′). Thus they can be used to extract
back from (X,X ′) and preserve the independence. By standard properties of a strong seeded
extractor, this holds even conditioned on the fixing of (Yj+1, Y

′
j+1). Note that conditioned

on the further fixing of (Yj+1, Y
′
j+1), the new matrix is again a deterministic function of X,

thus we can go into the next iteration. Therefore, by recycling the entropy in X, altogether
we only need X to have entropy some O(log(1/ε)). In each iteration we use two new Yi’s so
we need roughly 2` such random variables.

However, we still need to address the second problem, where we need to generate the
random variables (Y1, · · · , Y2`). The old way to generate them by using an alternating
extraction protocol requires entropy roughly O(` log(1/ε)) from X. To solve this problem, we
develop a new approach that requires much less entropy from X. For simplicity assume that
Y is uniform, we first take 2` slices Y i from Y , where Y i has size (2i − 1)d for some d =
O(log(1/ε)). This ensures that even conditioned on the fixing of (Y 1, Y ′1, · · · , Y i−1, Y ′i−1),
the (average) conditional min-entropy of Yi is at least (2i − 1)d− 2 · (2i−1 − 1)d = d. Then,
we can take O(log(1/ε)) uniform bits obtained from X, and use the same bits to extract Yi
from Y i for every i. As long as we use a strong seeded extractor here, we are guaranteed
that (Y1, · · · , Y2`) satisfy the look-ahead property; and moreover conditioned on the fixing
of the O(log(1/ε)) bits from X, we have that (Y1, · · · , Y2`) is a deterministic function of
Y . Note here again we only require entropy O(log(1/ε)) from X, and together with the
approach described above this gives us a non-malleable extractor where X can have entropy
O(log(1/ε)). However Y will need to have entropy at least 22`O(log(1/ε)) = O(log3(1/ε)).

To improve the entropy requirement of Y , we note that in the above approach, we only
used part of X once to help obtaining the {Y i}. Thus we have to use larger and larger slices
of Y which actually waste some entropy. Instead, we can use several parts of X, each with
O(log(1/ε)) uniform bits. For example, suppose that we have obtained X1 and X2, where
each is uniform on some O(log(1/ε)) bits and X2 is uniform even conditioned on the fixing
of (X1, X ′1). We can now take some t slices {Y i} of Y , each of length (2i − 1) · 2d for some
parameters t, d. We first use X1 to extract from each Y i and obtain d uniform bits. Note that
conditioned on the fixing of (X1, X ′1), these t random variables already satisfy the look-ahead
property. Now for each of these d bits obtained from Y i, we can apply the same process,
i.e., we take some t slices of these d bits, each of length (2i − 1) ·O(log(1/ε)) and then use

X. Li 28:11

X2 to extract from each of them. This way we obtain t2 random variables {Yi} that satisfy
the look-ahead property. We can thus choose t2 = 2` which means t = O(

√
`). The entropy

requirement of Y is roughly (2t− 1) · (2t− 1)O(log(1/ε)) = O(22t log(1/ε)) = 2O(
√
`) log(1/ε),

while the entropy requirement for X is 2 · O(log(1/ε)) + O(log(1/ε)) = O(log(1/ε)). This
significantly improves the entropy requirement of Y .

We can repeat the previous process and use some a parts (X1, · · · , Xa) obtained from
X. As long as a is a constant, X only needs entropy O(a log(1/ε)) = O(log(1/ε)), while
the entropy requirement of Y is reduced to 2O(a`

1
a) log(1/ε) = 2O(alog log(1/ε)

1
a) log(1/ε). To

prepare the a parts of X, we perform an initial alternating extraction between X and
Y , which only needs entropy O(a log(1/ε)) from either of them. This gives Theorem 6. In
the extreme case, we can try to minimize the entropy requirement of Y by first creating
log `+1 = log log log(1/ε)+O(1) Xi’s, and in each step using a new Xi to double the number
of Yi’s. This can be done by using the same Xi to do an alternating extraction of two rounds
with each Yi in parallel. Thus after log ` + 1 steps we obtain (Y1, · · · , Y2`). Now X needs
to have entropy O(log(1/ε) log log log(1/ε)). Ideally, we would want to claim that Y needs
entropy O(log(1/ε) log log(1/ε)), but due to technical reasons we can only show that this
works as long as Y has entropy O(log(1/ε)(log log(1/ε))2).

The balanced case

In the above discussion, the entropy requirement for X and Y is unbalanced, in the sense that
one of them can be quite small, while the other is relatively large. For applications to two-
source extractors and non-malleable codes, we need a balanced entropy requirement. Upon
first look it does not seem that our new techniques can achieve any improvement in this case,
since we are still merging two rows of the matrix V in each step, and for this merging we need at
least Ω(log(1/ε)) fresh random bits. Note that we need ` = logL = log log(1/ε) steps to finish
the merging, thus it seems the total entropy requirement is at least Ω(log(1/ε) log log(1/ε)).

Our key observation here is that we can again apply the idea of recycling entropy.
Specifically, let us choose a parameter t ∈ N and we merge every t rows in the matrix V at
each step, using some merger that we have developed above. For example, we can choose
the merger which for merging t rows, requires X to have entropy O(log(1/ε)) and Y to have
entropy 2O(

√
log t) log(1/ε). This will take us logL

log t steps to finish merging, and we will do it
in the following way. First, we create s = O(logL

log t) random variables X1, · · · , Xs that satisfy
the look-ahead property. Then, in each step of the merging, we will use a new Xj . The Xj ’s
can be prepared by taking a small slice of both X and Y and do an alternating extraction
protocol with O(s) rounds, which consumes entropy O(s log(1/ε)) = O(logL

log t log(1/ε)) from
both X and Y . However, in each step of the merging, we will not use fresh entropy from Y ,
but will recycle the entropy in Y . Note that by doing this, we are recycling the entropy in
both X and Y . The recycling in X is done within each step of applying the small merger,
while the recycling in Y is done between these steps.

Now, consider a particular step i in the merging. Since we are using a new Xj in each step,
we can fix all previous Xj ’s that have been used and their tampered versions. Conditioned
on this fixing, the matrix V obtained so far (and the tampered version V ′) is a deterministic
function of Y , therefore independent of X. We now want to claim that conditioned on the
random variable (V, V ′), Y still has high entropy. If this is true then we can take a new Xj+1
and apply a strong seeded extractor to Y using Xj+1 as the seed, and the extracted random
bits (which are deterministic functions of Y conditioned on the fixing of Xj+1) can be used
for merging in the next step. Also note that to apply the merger, we can take yet another

CCC 2019

28:12 Partially Optimal Non-Malleable Extractors and Codes

new Xj+2 and use each row of V to extract from Xj+2 and create a matrix W . Conditioned
on the fixing of (V, V ′), we have that (W,W ′) is a deterministic function of (X,X ′) and
therefore independent of (Y, Y ′). Moreover the independence between corresponding rows
in (V, V ′) is preserved in (W,W ′) (i.e., there is also a row in W that is uniform given the
corresponding row in W ′). Thus now we can indeed apply the merger again to W and the
extracted random bits from Y , possibly together with a new Xj+3. Again, this is similar in
spirit to what has been done in previous constructions of pseudorandom generators for small
space computation [59, 60].

The above idea indeed works, except for the following subtle point: in the first several
steps of merging, the matrix V can have many rows and the size of V can be larger than
the entropy of Y , unless Y has entropy Ω(log2(1/ε)). Thus conditioning on (V, V ′) may
cause Y to lose all entropy. To get around this, we again use the fact that we only need
one row in V to be independent of the corresponding row in V ′ (call this the good row),
and does not care about the dependence between different rows. Thus in each step, we
only need to condition on the fixing of the t rows that we are merging (and their tampered
versions). This ensures that if originally there is a good row in these t rows, then after
merging the output is also a good row in the new matrix. Thus, we only need the entropy of
Y to be O(t log(1/ε)) + 2O(

√
log t) log(1/ε) +O(logL

log t log(1/ε)) = O(t log(1/ε) + logL
log t log(1/ε))

since we will maintain the length of each row in V to be O(log(1/ε)). Now by choosing
t = logL

log logL , both X and Y only need entropy O(logL
log logL log(1/ε)) = O(log(1/ε) log log(1/ε)

log log log(1/ε)). By
the connections in [54, 8, 18], this dependence gives Theorem 10, 11, 12 and 15.

Non-malleable codes

To further improve the rate of non-malleable codes in the 2-split state model, we re-examine
the connection between non-malleable codes and non-malleable two-source extractors found
by Cheraghchi and Guruswami [18]. They showed that given a non-malleable two-source
extractor with error ε and output length m, the uniform sampling of the pre-image of any
given output gives an encoding of a non-malleable code in the 2-split state model with
error roughly 2mε. This blow up of error comes from the conditioning on the event that
the output of the extractor is a given string in {0, 1}m, which roughly has probability 2−m.
Therefore, one needs m < log(1/ε), and thus the error of the extractor puts a limit on the
rate of the code.

To break this barrier, we note that all recent constructions of non-malleable two-source
extractors [12, 54] follow a very special framework. As mentioned before, these constructions
first obtain an advice α̃ such that with probability 1− ε1 we have α̃ 6= α̃′, where α̃′ is the
tampered version. Then, using a correlation breaker with advice one obtains the output.
This part has error ε2, and the final error of the extractor is ε1 + ε2.

In all previous work, this error is treated as a whole, but our key observation here is that
these two errors ε1 and ε2 can actually be treated separately. More specifically, the error
that matters most for the rate of the code is actually ε2, not ε1. Intuitively, this is because
the event α̃ 6= α̃′ is determined by a set of random variables that have small size compared
to the length of X and Y . Thus even conditioned on the fixing of these random variables,
X and Y still have plenty of entropy, which implies that the output of the extractor is still
ε2-close to uniform. Thus, as long as ε2 is small, the output of the extractor is roughly
independent of the event α̃ 6= α̃′. Therefore, conditioned on any given output of the extractor,
the event α̃ 6= α̃′ still happens with probability roughly 1 − ε1 and we won’t be paying
a price of 2mε1 here. Once this event happens, the correlation breaker ensures that the
extractor is non-malleable with error ε2, and we can use a similar argument as in [18] to get
a non-malleable code with error roughly 2mε2. Thus the total error of the non-malleable
code is roughly ε1 + 2mε2. Now, we just need m < log(1/ε2).

X. Li 28:13

We can now play with the two parameters ε1, ε2. The advice length L is Ω(log(1/ε1)) and
we need to supply entropy O(logL

log logL log(1/ε2)) by using our improved correlation breaker.
If we can achieve L = Θ(log(1/ε1)) then one can see that if we choose ε1 to be any constant,
then we can set ε2 = 2−Ω(n) and also m = Ω(n), thus we get a constant rate non-malleable
code. If we set ε1 = 2−polylog(n) then we can set ε2 = 2−Ω(n log log logn

log logn) and thus we get rate
Ω(log log logn

log logn).
A technical issue here is how to achieve L = Θ(log(1/ε1)) for any ε1. In [12, 54], the

advice is obtained by using some random seed R to sample from an asymptotically good
encoding of X,Y , and concatenating the sampled symbols with R. This puts a lower bound
of logn on L, since we need at least this number of bits to sample from a string of length
n. However this is not good enough to achieve constant rate. Our idea around this is to
use repeated sampling. To illustrate the idea, suppose for example that we have obtained
an advice V such that V 6= V ′ with probability 1 − 1/poly(n) and V has length O(logn).
We now use another piece of independent random bits R1 of length O(log logn) to sample
O(log logn) bits from an asymptotically good encoding of V , and obtain a new advice V1 by
concatenating R1 with the sample bits. This ensures that V1 6= V ′1 happens with probability
1− 1/polylog(n) conditioned on V 6= V ′, and the length of V1 is now O(log logn). We repeat
this process until we get the desired error ε1 (e.g., a constant) and the advice length is
now L = Θ(log(1/ε1)). Note that the total error is still O(ε1), the total number of random
bits needed is small, and the process terminates in roughly log∗ n steps. To prepare the
independent random bits used in repeated sampling, we first take a small slice of X and Y
and do an alternating extraction with roughly log∗ n steps, which guarantees the bits used
for sampling in later steps are independent of the previous ones and their tampered versions.
Finally, some extra work are needed here to take care of the issue of fixed points, which is
more subtle than [18] since now we are treating the two errors ε1 and ε2 separately.

Organization. The rest of the paper is organized as follows. We give some preliminaries
in Section 2, and define alternating extraction in Section 3. We present independence
preserving mergers in Section 4, correlation breakers in Section 5, non-malleable extractors
in Section 6, and non-malleable codes in Section 7. Finally we conclude with some open
problems in Section 8.

2 Preliminaries

We often use capital letters for random variables and corresponding small letters for their
instantiations. Let |S| denote the cardinality of the set S. For ` a positive integer, U` denotes
the uniform distribution on {0, 1}`. When used as a component in a vector, each U` is
assumed independent of the other components. When we have adversarial tampering, we use
letters with prime to denote the tampered version of random variables. All logarithms are to
the base 2.

2.1 Probability Distributions
I Definition 16 (statistical distance). Let W and Z be two distributions on a set S. Their
statistical distance (variation distance) is

∆(W,Z) =: max
T⊆S

(|W (T)− Z(T)|) = 1
2
∑
s∈S
|W (s)− Z(s)|.

CCC 2019

28:14 Partially Optimal Non-Malleable Extractors and Codes

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a
set S and a function h : S → T , let h(D) denote the distribution on T induced by choosing
x according to D and outputting h(x).

I Lemma 17. For any function α and two random variables A,B, we have ∆(α(A), α(B)) ≤
∆(A,B).

2.2 Average Conditional Min Entropy
I Definition 18. The average conditional min-entropy is defined as

H̃∞(X|W) = − log
(

Ew←W
[
max
x

Pr[X = x|W = w]
])

= − log
(

Ew←W
[
2−H∞(X|W=w)

])
.

I Lemma 19 ([28]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W)− s] ≥ 1− 2−s.

I Lemma 20 ([28]). If a random variable B has at most 2` possible values, then H̃∞(A|B) ≥
H∞(A)− `.

2.3 Prerequisites from Previous Work
Sometimes it is convenient to talk about average case seeded extractors, where the source X
has average conditional min-entropy H̃∞(X|Z) ≥ k and the output of the extractor should
be uniform given Z as well. The following lemma is proved in [28].

I Lemma 21 ([28]). For any δ > 0, if Ext is a (k, ε) extractor then it is also a (k+log(1/δ), ε+
δ) average case extractor.

For a strong seeded extractor with optimal parameters, we use the following extractor
constructed in [41].

I Theorem 22 ([41]). For every constant α > 0, there exists a constant β > 0 such that for
all positive integers n, k and any ε > 2−βk, there is an explicit construction of a strong (k, ε)-
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(logn+ log(1/ε)) and m ≥ (1− α)k.
The same statement also holds for a strong average case extractor.

I Theorem 23 ([19]). For every 0 < m < n there is an explicit two-source extractor
IP : {0, 1}n × {0, 1}n → {0, 1}m based on the inner product function, such that if X,Y are
two independent (n, k1) and (n, k2) sources respectively, then

(IP(X,Y), X) ≈ε (Um, X) and (IP(X,Y), Y) ≈ε (Um, Y),

where ε = 2−
k1+k2−n−m−1

2 .

The following standard lemma about conditional min-entropy is implicit in [60] and
explicit in [56].

I Lemma 24 ([56]). Let X and Y be random variables and let Y denote the range of Y .
Then for all ε > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1
ε

)]
≥ 1− ε.

We also need the following lemma.

I Lemma 25. [49] Let (X,Y) be a joint distribution such that X has range X and Y has
range Y. Assume that there is another random variable X ′ with the same range as X such that
|X −X ′| = ε. Then there exists a joint distribution (X ′, Y) such that |(X,Y)− (X ′, Y)| = ε.

X. Li 28:15

3 Alternating Extraction

Our constructions use the following alternating extraction protocol as a key ingredient.
Alternating extraction was first introduced in [35], and has now become an important tool in
constructions related to extractors.

Quentin: Q,S1 Wendy: X

S1
S1

−−−−−−−−−−−−−−→
R1

←−−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2

−−−−−−−−−−−−−−→
R2

←−−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·

S` = Extq(Q,R`−1)
S`

−−−−−−−−−−−−−−→

R` = Extw(X,S`)

Figure 1 Alternating Extraction.

I Definition 26 (Alternating Extraction). Assume that we have two parties, Quentin and
Wendy. Quentin has a source Q, Wendy has a source W . Also assume that Quentin has a
uniform random seed S1 (which may be correlated with Q). Suppose that (Q,S1) is kept secret
from Wendy and W is kept secret from Quentin. Let Extq, Extw be strong seeded extractors
with optimal parameters, such as that in Theorem 22. Let r, s be two integer parameters for
the protocol. For some integer parameter ` > 0, the alternating extraction protocol is an
interactive process between Quentin and Wendy that runs in ` steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(W,S1). She
sends R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step R1, S2 each
outputs r and s bits respectively. In each subsequent step i, Quentin sends Si to Wendy,
Wendy computes Ri = Extw(W,Si). She replies Ri to Quentin and Quentin computes
Si+1 = Extq(Q,Ri). In step i, Ri, Si+1 each outputs r and s bits respectively. Therefore, this
process produces the following sequence:

S1, R1 = Extw(W,S1), S2 = Extq(Q,R1), · · · ,
S` = Extq(Q,R`−1), R` = Extw(W,S`).

The output of an alternating extraction protocol is often described as a look-ahead
extractor, defined as follows. Let Y = (Q,S1) be a seed, the look-ahead extractor is defined as

laExt(W,Y) = laExt(W, (Q,S1)) =: R1, · · · , R`.

The following lemma is a special case of Lemma 6.5 in [12].

I Lemma 27. Let W be an (nw, kw)-source and W ′ be a random variable on {0, 1}nw that is
arbitrarily correlated withW . Let Y = (Q,S1) such that Q is a (nq, kq)-source, S1 is a uniform
string on s bits, and Y ′ = (Q′, S′1) be a random variable arbitrarily correlated with Y , where Q′
and S′1 are random variables on nq bits and s bits respectively. Let Extq,Extw be strong seeded
extractors that extract s and r bits from sources with min-entropy k with error ε and seed
length d ≤ min{r, s}. Suppose (Y, Y ′) is independent of (W,W ′), kq > k+2(`−1)s+2 log(1

ε),

CCC 2019

28:16 Partially Optimal Non-Malleable Extractors and Codes

and kw > k + 2(`− 1)r + 2 log(1
ε). Let laExt be the look-ahead extractor defined above using

Extq,Extw, and (R1, · · · , R`) = laExt(W,Y), (R′1, · · · , R′`) = laExt(W ′, Y ′). Then for any
0 ≤ j ≤ `− 1, we have

(Y, Y ′, {R1, R
′
1, · · · , Rj , R′j}, Rj+1)

≈ε1(Y, Y ′, {R1, R
′
1, · · · , Rj , R′j}, Ur),

where ε1 = O(`ε).

4 Non-Malleable Independence Preserving Merger

We now describe the notion of non-malleable independence preserving merger, introduced in
[13] based on the notion of independence preserving merger introduced in [26].

I Definition 28. A (L, d′, ε)-NIPM : {0, 1}Lm × {0, 1}d → {0, 1}m1 satisfies the following
property. Suppose

X,X′ are random variables, each supported on boolean L×m matrices s.t for any i ∈ [L],
Xi = Um,
{Y,Y′} is independent of {X,X′}, s.t Y,Y′ are each supported on {0, 1}d and H∞(Y) >
d′,
there exists an h ∈ [L] such that (Xh,X′h) = (Um,X′h),

then

|(L, d′, ε)-NIPM(X,Y), (L, d′, ε)-NIPM(X′,Y′)
− Um1 , (L, d′, ε)-NIPM(X′,Y′)| 6 ε.

We have the following construction and theorem.
L-Alternating Extraction. We extend the previous alternating extraction protocol

by letting Quentin have access to L sources Q1, . . . , QL (instead of just Q) which have
the same length. Now in the i’th round of the protocol, he uses Qi to produce the r.v
Si = Extq(Qi, Ri). More formally, the following sequence of r.v’s is generated: S1, R1 =
Extw(W,S1), S2 = Extq(Q2, R1), . . . , RL−1 = Extw(W,S`−1), SL = Extq(QL, RL−1).

The NIPM is now constructed as follows. Let S1 be a slice of X1 with length O(log(d/ε)),
then run the L-alternating extraction described above with (Q1, . . . , QL) = (X1, . . . ,XL)
and W = Y. Finally output SL.

I Theorem 29 ([13]). There exists a constant c > 0 such that for all integers m, d, d′, L > 0
and any ε > 0, with m > 4cL log(d/ε), d′ > 4cL log(m/ε), the above construction NIPM :
({0, 1}m)` × {0, 1}d → {0, 1}m1 has output length m1 ≥ 0.2m, such that if the following
conditions hold:

X,X′ are random variables, each supported on boolean L×m matrices s.t for any i ∈ [L],
Xi = Um,
{Y,Y′} is independent of {X,X′}, s.t Y,Y′ are each supported on {0, 1}d and H∞(Y) >
d′,
there exists an h ∈ [L] such that (Xh,X′h) = (Um,X′h),

then

|NIPM(X,Y),NIPM(X′,Y′),Y,Y′ − Um1 ,NIPM(X′,Y′),Y,Y′| 6 Lε.

It is sometimes more convenient to consider NIPMs which use an additional source X in
the computation. We generalize the above definition as follows.

X. Li 28:17

I Definition 30. A (L, d, d′, ε)-NIPM : {0, 1}Lm ×{0, 1}d ×{0, 1}d′ → {0, 1}m1 satisfies the
following property. Suppose

V, V ′ are random variables, each supported on boolean L×m matrices s.t for any i ∈ [L],
Vi = Um,
there exists an h ∈ [L] such that (Vh, V ′h) = (Um, V ′h),
X,X′ are random variables, each supported on d bits, such that X is uniform conditioned
on (V, V ′),
(Y,Y′) is independent of (V, V ′,X,X′), s.t Y,Y′ are each supported on {0, 1}d′ and Y
is uniform,

If the function is an NIPM that is strong in Y then

|(L, d, d′, ε)-NIPM(V,X,Y), (L, d, d′, ε)-NIPM(V ′,X′,Y′),Y,Y′

− Um1 , (L, d, d′, ε)-NIPM(V ′,X′,Y′),Y,Y′| 6 ε.

If the function is an NIPM that is strong in X then

|(L, d, d′, ε)-NIPM(V,X,Y), (L, d, d′, ε)-NIPM(V ′,X′,Y′),X,X′

− Um1 , (L, d, d′, ε)-NIPM(V ′,X′,Y′),X,X′| 6 ε.

We will now use the above construction to give another NIPM, which recycles the entropy.
Specifically, we have the following construction.

I Construction 31. Asymmetric NIPM.
Inputs:
L,m, n, d ∈ N and an error parameter ε > 0 such that m ≥ c log(d/ε) and d ≥ c log(n/ε)
for some constant c > 1.
A random variable V supported on a boolean L×m matrix.
An (n, 6m) source X.
Random variables Y1, · · · ,Y` where ` = logL and each Yi is supported on {0, 1}d.

Output: a random variable W ∈ {0, 1}m.

Let V 0 = V . For i = 1 to logL do the following.
1. Take a slice Y1

i of Yi with length d/3. Merge every two rows of V i−1, using Y1
i and the

NIPM from Theorem 29. That is, for every j ≤ t/2 where t is the current number of
rows in V i−1 (initially t = L), compute V i−1

j = NIPM((V i−1
2j−1, V

i−1
2j),Y1

i).
2. For every j ≤ t/2, compute Yij = Ext1(Yi, V

i−1
j), where Ext1 is the extractor in The-

orem 22 and output d/4 bits.
3. For every i ≤ t/2, compute Ṽ i−1

j = Ext2(X,Yij), where Ext2 is the extractor in The-
orem 22 and output m bits.

4. Let V i with the concatenation of Ṽ i−1
j , j = 1, · · · , t/2. Note that the number of rows in

V i has decreased by a factor of 2.

Finally output W = V logL.

I Lemma 32. There is a constant c > 1 such that suppose we have the following random
variables:

V, V ′, each supported on a boolean L×m matrix s.t for any i ∈ [L], Vi = Um. In addition,
there exists an h ∈ [L] such that (Vh, V ′h) = (Um, V ′h).
X,X′ where X is an (n, 6m) source.

CCC 2019

28:18 Partially Optimal Non-Malleable Extractors and Codes

Random variables (Y1,Y′1), · · · , (Y`,Y′`) obtained from Y,Y′ deterministically, where
` = logL. These random variables satisfy the following look-ahead condition: ∀j < `, we
have

(Yj ,Y1,Y′1, · · · ,Yj−1,Y′j−1) = (Ud,Y1,Y′1, · · · ,Yj−1,Y′j−1).

In addition, (V, V ′,X,X′) is independent of (Y,Y′).
Let W be the output of the NIPM on (V,X,Y1, · · · ,Y`) and W′ be the output of the NIPM
on (V ′,X′,Y′1, · · · ,Y′`). Then

(W,W′,Y,Y′) ≈O(Lε) (Um,W′,Y,Y′).

Proof. We use induction to show the following claim.

B Claim 33. For every 0 ≤ i ≤ ` = logL, the following holds after step i.
V i, V ′i are each supported on boolean (t = L/2i) × m matrices s.t for any j ∈ [t],
(V ij ,Y,Y′) ≈εj (Um,Y,Y′). In addition, there exists an h ∈ [t] such that
(V ih , V ′ih ,Y,Y′) ≈εi (Um, V ′ih ,Y,Y′). Here εi is the error after step i which satisfies
that ε0 = 0 and εi+1 ≤ 2εi + 4ε.
Conditioned on the fixing of Y1,Y′1, · · · ,Yj ,Y′j , each of V i and V ′i is a deterministic
function of V, V ′,X,X′.

For the base case of i = 0, the claim clearly holds. Now assume that the claim holds for
i, we show that it holds for i+ 1.

We first fix Y1,Y′1, · · · ,Yi,Y′i. By the induction hypothesis, conditioned on the fixing
of these random variables, each of V i and V ′i is a deterministic function of V, V ′,X,X′, and
thus independent of (Yi+1,Y′i+1). We only consider the row h ∈ [t] such that (Vh, V ′h) ≈4·2iε
(Um, V ′h), since the analysis for the rest of the rows are similar and simpler.

First we ignore the error εi. By Theorem 29, and note that we are merging every two
rows at one step, we can choose a suitable constant c > 1 in the construction such that

(V ih′ , V ′ih′ ,Y
1
i+1,Y′1i+1) ≈2ε (Um1 , V

′i
h′ ,Y

1
i+1,Y′1i+1),

where h′ = dh2 e and m1 = 0.2m. We now fix (Y1
i+1,Y′1i+1). Note that conditioned on

the fixing, Yi+1 still has average conditional min-entropy at least d − d/3 = 2d/3 and is
independent of (V ih′ , V ′ih′). Now we can first fix V ′ih′ and then Y′ih′ . Note that conditioned on
this fixing, V ih′ is still (close to) uniform and the average conditional min-entropy of Yi+1 is
at least 2d/3− d/4 > d/3. Thus as long as c is large enough, by Theorem 22 we have that

(Yih′ , V ih′) ≈ε (Ud/4, V ih′).

We now further fix V ih′ . Note that conditioned on this fixing, Yih′ is still (close to) uniform.
Moreover conditioned on all the random variables we have fixed, Yih′ is a deterministic
function of Y1,Y′1, · · · ,Yi+1,Y′i+1 and thus independent of X,X′. Also conditioned on all
the random variables we have fixed, the average conditional min-entropy of X is at least
6m− 2m1 > 5m.

We can now further fix Ṽ ′ih′ , which is a deterministic function of X′. Conditioned on
this fixing the independence of random variables still holds, while the average conditional
min-entropy of X is at least 5m−m = 4m. Therefore by Theorem 22 we have that

(Ṽ ih′ ,Yih′) ≈ε (Um,Yih′).

X. Li 28:19

Since we have already fixed Y′ih′ and Ṽ ′ih′ , and note that conditioned on this fixing, (Y,Y′)
are independent of Ṽ ih′ which is a deterministic function of X, we also have that

(Ṽ ih′ , X̃′h′ ,Y,Y
′) ≈ε (Um, X̃′h′ ,Y,Y

′).

Adding back all the errors we get that there exists an h′ ∈ [t] such that

(X̃h′ , Ṽ ′ih′ ,Y,Y
′) ≈εi+1 (Um, Ṽ ′ih′ ,Y,Y

′),

where εi+1 ≤ 2εi + 4ε. Furthermore, it is clear that conditioned on the fixing of Y1,Y′1, · · · ,
Yi+1,Y′i+1, each of V i+1 and V ′i+1 is a deterministic function of V, V ′,X,X′.

We can now estimate the final error to be ε` ≤ 4(
∑`
i=1 2iε) = O(Lε). Finally, when

the number or rows in V i decreases to 1 after step `, the output W = V logL satisfies the
conclusion of the lemma. J

We will now construct another NIPM. First we need the following lemma.

I Lemma 34. For any constant a ∈ N , any `, s ∈ N and any ε > 0 there exists an explicit
function Conva : {0, 1}n × {0, 1}a·d → {0, 1}`·s with d = O(log(n/ε)) and n = 2O(a·`

1
a) · s

such that the following holds. Let (Y, Y ′) be two random variables each on n bits, and Y
is uniform. Let (X = (X1, · · · , Xa), X ′ = (X ′1, · · · , X ′a)) be random variables each on a · d
bits, where each Xi and X ′i is on d bits. Further assume that (X,X ′) satisfies the following
look-ahead property: ∀i ∈ [a], we have

(Xi, X1, X
′
1, · · · , Xi−1, X

′
i−1) = (Ud, X1, X

′
1, · · · , Xi−1, X

′
i−1).

Let (W1, · · · ,W`) = Conva(Y,X) and (W ′1, · · · ,W ′`) = Conva(Y ′, X ′). Then we have

(X,X ′,W1,W
′
1, · · · ,W`,W

′
`) ≈O(`ε) (X,X ′, Us,W ′1, · · · , Us,W ′`),

where each Us is independent of previous random variables but may depend on later random
variables.

Proof. We will prove the lemma by induction on a. For the base case a = 1, consider the
following construction. For j = 1, · · · , `, let Yj be a slice of Y with length (2j − 1) · 2s (this
is possible since the total entropy required is at most 2` · 2s), and compute Wj = Ext(Yj , X1).
Note that for any j ∈ [`], conditioned on the fixing of Y1, Y

′
1 , · · · , Yj−1, Y

′
j−1, the average

conditional min-entropy of Yj is at least (2j − 1) · 2s − 2(2j−1 − 1) · 2s = 2s. Thus by
Theorem 22 we have that

(Wj , Y1, Y
′
1 , · · · , Yj−1, Y

′
j−1, X,X

′) ≈ε (Us, Y1, Y
′
1 , · · · , Yj−1, Y

′
j−1, X,X

′).

Since (W1,W
′
1, · · · ,Wj−1,W

′
j−1) is a deterministic function of (Y1, Y

′
1 , · · · , Yj−1, Y

′
j−1)

and (X,X ′), we also have that

(Wj ,W1,W
′
1, · · · ,Wj−1,W

′
j−1, X,X

′) ≈ε (Us,W1,W
′
1, · · · ,Wj−1,W

′
j−1,W,W

′).

By adding all the errors the statement of the lemma holds.
Now assume that the lemma holds for a, we will construct another function Conva+1 for

the case of a+ 1. First choose a parameter t ∈ N to be decided later. For j = 1, · · · , `/t,
let Yj be a slice of Y with length (2j − 1) · 2m, where m is the length of Y (i.e., n) for
Conva when choosing ` = t. Thus we have m = 2O(a·t

1
a) · s. Now, for every j we first

CCC 2019

28:20 Partially Optimal Non-Malleable Extractors and Codes

use X1 to compute Ŵj = Ext(Yj , X1) and output m bits, then compute (Ŵ1j , · · · , Ŵtj) =
Conva(Ŵj , X2, · · · , Xa+1). The final outputs are obtained by combining all the {Ŵij} in
sequence.

Note that by the same argument as above, we have that

(X1, X
′
1, Ŵ1, Ŵ ′1, · · · , Ŵ`/t, Ŵ ′`/t) ≈O(`t ε)

(X1, X
′
1, Um, Ŵ

′1, · · · , Um, Ŵ ′`/t).

Now we can fix (X1, X
′
1). Note that conditioned on the fixing, (Ŵ1, Ŵ ′1, · · · , Ŵ`/t, Ŵ ′`/t)

is a deterministic function of (Y, Y ′), thus independent of (X,X ′). Now we can used the
induction hypothesis to conclude that the statement holds for the case of a+ 1. Note that
the total error is O(`t ε) + `/t ·O(tε) = O(`ε) since the part of O(`t ε) decreases as a geometric
sequence. Finally, the entropy requirement of Y is (2`/t−1) ·2m = (2`/t−1) ·2 ·2O(a·t

1
a) · s =

2l/t+O(a·t
1
a)+1 · s.

We now just need to choose a t to minimize this quantity. We can choose t = `
a
a+1 so

that the entropy requirement of Y is 2O((a+1)·`
1
a+1) · s. J

We now have the following construction.

I Construction 35. NIPMx (which is strong in Y) or NIPMy (which is strong in X).
Inputs:
An error parameter ε > 0 and a constant a ∈ N .
A random variable V supported on a boolean L×m matrix.
A uniform string X on d1 bits.
A uniform string Y on d2 bits.
Let d = c log(max{d1, d2}/ε) for some constant c > 1.

Output: NIPMx outputs a random variable Wx ∈ {0, 1}m, and NIPMy outputs Wy ∈
{0, 1}d.

1. Let ` = logL.5 Let X0 be a slice of X with length 4a · d, and Y0 be a slice of Y with
length 4a · d. Use X0 and Y0 to run an alternating extraction protocol, and output
(R0, · · · , Ra) = laExt(X0, Y0) where each Ri has d bits.

2. Compute Z = Ext(Y,R0) and output d2/2 bits, where Ext is the strong seeded extractor
from Theorem 22.

3. For every i ∈ [L], compute Vi = Ext(Y0, Vi) and output d bits. Then, compute V̂i =
Ext(X,Vi) and output m bits.

4. Compute (Z1, · · · , Z`) = Conva(Z,R1, · · · , Ra) where each Zi has d bits.
5. NIPMx outputs Wx = NIPM(V̂ , Z1, · · · , Z`), where NIPM is the merger in Construc-

tion 31 and Lemma 32. NIPMy outputs Wy = Ext(Y,Wx) with d bits.

We now have the following lemma.

I Lemma 36. There exist a constant c > 1 such that for any ε > 0 and any L,m, d1, d2, n ∈ N
such that d ≥ c(log max{d1, d2} + log(1/ε)), m ≥ d, d1 ≥ 8a · d + 6m and d2 ≥ 8a · d +
ca·log

1
a L · d, the above construction gives an (L, d1, d2, O(Lε))-NIPM that is either strong in

X or strong in Y .

5 Without loss of generality we assume that L is a power of 2. Otherwise add 0 to the string until the
length is a power of 2.

X. Li 28:21

Proof. Note that Y0 has min-entropy 4ad ≥ 4d, thus by Theorem 22 we have that for every
i ∈ [L],

(Vi, Vi) ≈ε (Ud, Vi),

and there exists an h ∈ [L] such that

(Vh, V ′h, Vh, V
′
h) ≈ε (Ud, V ′h, Vh, V

′
h).

Note that conditioned on the fixing of (V, V ′), we have that (X,X ′) and (Y, Y ′) are
still independent, and furthermore (V , V ′) is a deterministic function of (Y, Y ′). Note that
conditioned on the fixing of (X0, X

′
0), the average conditional min-entropy of X is at least

8a · d+ 6m− 2 · 4a · d = 6m. Thus again by Theorem 22 we have that for every i ∈ [L],

(V̂i, Vi) ≈ε (Ud, Vi),

and there exists an h ∈ [L] such that

(V̂h, V̂ ′h, Vh, V ′h) ≈ε (Ud, V̂ ′h, Vh, V ′h).

Note that now conditioned on the fixing of (Vh, V ′h), we have that (X,X ′) and (Y, Y ′) are
still independent, and furthermore (V̂h, V̂ ′h) is a deterministic function of (X,X ′). Thus we
basically have that conditioned on the fixing of (X0, X

′
0, Y0, Y

′
0), (V̂ , V̂ ′) is a deterministic

function of (X,X ′) and they satisfy the property needed by an NIPM.
Now, by Lemma 27, we have that

(Y0, Y
′
0 , R0, R

′
0, · · · , Ra, R′a) ≈O(a2ε) (Y0, Y

′
0 , Ud, R

′
0, · · · , Ud, R′a).

Note that conditioned on the fixing of (Y0, Y
′
0), we have that (X,X ′) and (Y, Y ′) are still

independent, and furthermore (R0, R
′
0, · · · , Ra, R′a) is a deterministic function of (X,X ′).

Also the average conditional min-entropy of Y is at least d2 − 2 · 4a · d = ca·log
1
a L · d > 3d2/4

for a large enough constant c. Thus by Theorem 22 we have that

(Z,R0) ≈ε (Ud2/2, R0).

We can now fix (R0, R0). Note that now (Z0, Z
′
0) is a deterministic function of (Y, Y ′),

and d2/2 > 1
2c
a·log

1
a L · d. Note that now (R1, R

′
1, · · · , Ra, R′a) still satisfies the look-ahead

property. Thus as long as c is large enough, by Lemma 34 we have that

(Z1, Z
′
1, · · · , Z`, Z ′`, X0, X

′
0) ≈O(`ε) (Ud,W ′1, · · · , Ud,W ′` , X0, X

′
0).

We can now fix (X0, X
′
0), and note that conditioned on this fixing (Z1, Z

′
1, · · · , Z`, Z ′`) is

a deterministic function of (Y, Y ′). In summary, conditioned on the fixing of (X0, X
′
0, Y0, Y

′
0),

we have that (V̂ , V̂ ′)and (Z1, Z
′
1, · · · , Z`, Z ′`) satisfy the conditions required by Lemma 32.

Therefore we can now apply that lemma to finish the proof. The total error is at most
O(Lε) +O(a2ε) +O(ε) +O(`ε) = O(Lε). J

The extreme case of the above construction gives the following NIPM.

I Construction 37. NIPMx (which is strong in Y) or NIPMy (which is strong in X).
Inputs:
An error parameter ε > 0.
A random variable V supported on a boolean L×m matrix.
A uniform string X on n bits.
A uniform string Y on n′ bits.

CCC 2019

28:22 Partially Optimal Non-Malleable Extractors and Codes

Output: NIPMx outputs a random variable Wx ∈ {0, 1}m, and NIPMy outputs Wy ∈
{0, 1}O(log(n/ε)).

1. Let d1 = c log(n′/ε) and d2 = c log(n/ε). Take a slice X0 of X with length 10 log logL ·d1,
and a slice Y0 of Y with length 10 log logL · d2.

2. Use X0 and Y0 to do an alternating extraction protocol, and output (R0, R1, · · · , Rt) =
laExt(X0,Y0) where t = log logL and each Ri has 4d1 bits, each Si (used in the alternating
extraction) has d2 bits.

3. For each i ∈ [L], compute Yi = Ext(Y0, Vi) where each Yi outputs d2 bits. Then compute
V i = Ext(X,Yi) where each V i outputs m bits. Here Ext is the strong seeded extractor
from Theorem 22. Let V be the matrix whose i’th row is V i.

4. Let Y0
1 = Y. For j = 0 to log logL do the following. For h = 1 to 2j , use Yj

h and Rj to
do an alternating extraction protocol, and output (Sjh1, S

j
h2) = laExt(Yj

h, Rj), where each
Sjhi has (loglog a L

aj−1 − 1)d2 bits. Note that altogether we get 2j+1 outputs and relabel them
as Yj+1

1 , · · · ,Yj+1
2j+1 .

5. After the previous step, we get 2 logL outputs. Let them be Y1, · · · ,Y2 logL, and output
Wx = NIPM(V ,X,Y1, · · · ,Y2 logL) with m bits. Let Wy = Ext(Y,Wx) with d2 bits.

We now have the following lemma.

I Lemma 38. There is a constant c > 1 such that suppose we have the following random
variables and conditions:

V, V ′, each supported on a boolean L×m matrix s.t for any i ∈ [L], Vi = Um. In addition,
there exists an h ∈ [L] such that (Vh, V ′h) = (Um, V ′h).
Y,Y′, each supported on n′ bits, where Y is uniform.
X,X′, each supported on n bits, where X is uniform. In addition, X is independent of
(V, V ′), and (V, V ′,X,X′) is independent of (Y,Y′).
m ≥ c log(n′/ε), n ≥ 20c log logL log(n′/ε) + 6m and n′ ≥ 20c loglog a L log(n/ε).

Let (Wx,Wy) be the outputs of (NIPMx,NIPMy) on (V,X,Y) and (W′
x,W′

y) be the outputs
of the (NIPMx,NIPMy) on (V ′,X′,Y′). Then

(Wx,W′
x,Y,Y′) ≈O(Lε) (Um,W′

x,Y,Y′)

and

(Wy,W′
y, V, V

′,X,X′) ≈O(Lε) (UO(log(n/ε)),W′
y, V, V

′,X,X′).

Proof. First, since (V, V ′,X,X′) is independent of (Y,Y′), as long as c is large enough, by
Theorem 22 we know that for any i ∈ [L],

(Yi, V) ≈ε (Ud, V).

In addition, suppose for some h ∈ [L] we have that (Vh, V ′h) = (Um, V ′h), then we can first
fix V ′h and then Yh. Conditioned on this fixing Vh is still uniform, the average conditional
min-entropy of Y0 is at least 10 log logL · d− d > 3d and Vh and Y0 are still independent,
thus by Theorem 22 we have that

(Yh,Y
′
h, V, V

′) ≈ε (Ud,Y
′
h, V, V

′).

In other words, the random variables {(Yi,Y
′
i)} inherit the properties of {(Vi, V ′i)}. We

now ignore the errors since this adds at most Lε to the final error. Now we fix (V, V ′). Note
that conditioned on this fixing, the random variables (Yi,Y

′
i) are deterministic functions of

(Y0,Y′0), and are thus independent of (X,X′). Furthermore, we have that conditioned on this

X. Li 28:23

fixing, X is still uniform. In addition, even conditioned on the fixing of (X0,X′0), the average
conditional min-entropy of X is at least 20c log logL log(n′/ε) + 6m−2 ·10 log logL ·d1 = 6m.
Thus by the same argument before we have that for any i ∈ [L],

(V i,Y0,X0,X′0) ≈ε (Um,Y0,X0,X′0),

and that there exists an h ∈ [L] such that

(V h, V
′
h,Y0,Y′0,X0,X′0) ≈ε (Um, V

′
h,Y0,Y′0,X0,X′0).

We will again ignore the error for now since this adds at most Lε to the final error. Next,
by Lemma 27 we have that for any 0 ≤ j ≤ t− 1,

(Rj+1, (R1, R
′
1, · · · , Rj , R′j),Y0,Y′0) ≈O(tε) (U4d1 , (R1, R

′
1, · · · , Rj , R′j),Y0,Y′0).

Thus by a hybrid argument and the triangle inequality, we have that

(Y0,Y′0, R1, R
′
1, · · · , Rt, R′t) ≈O(t2ε) (Y0,Y′0, U4d1 , R

′
1, · · · , U4d1 , R

′
t),

where each U4d1 is independent of all the previous random variables (but may depend on
later random variables). From now on, we will proceed as if each Rj is uniform given
(Y0,Y′0, {R1, R

′
1, · · · , Rj−1, R

′
j−1}), since this only adds O(t2ε) to the final error.

Now we can fix (Y0,Y′0). Note that conditioned on this fixing, (V , V ′, R1, R
′
1, · · · , Rt, R′t)

are deterministic functions of (V, V ′,X,X′), and thus independent of (Y,Y′). Also note that
conditioned on this fixing, the average conditional min-entropy of Y is at least 20 loglog a L ·
d2 − 2 · 10 log logL · d2 > a2 loglog a L · d2. We now prove the following claim.

B Claim 39. Let Rj = (R1, · · · , Rj). Suppose that at the beginning of the j’th iteration, we
have that conditioned on the fixing of Rj−1, the following holds.

1. , (X,X′) is independent of (Y,Y′), and (Y1,Y′1, · · · ,Y2j ,Y′2j) is a deterministic function
of (Y,Y′).

2. For every h ∈ [2j], the average conditional min-entropy of Yh given (Y1,Y′1, · · · ,Yh−1,

Y′h−1) is at least (loglog a L
aj−2 − 1)d2.

Then at the end of the j’th iteration, the following holds.
1. Conditioned on the fixing of Rj , (X,X′) is independent of (Y,Y′), and (Y1,Y′1, · · · ,

Y2j+1 ,Y′2j+1) is a deterministic function of (Y,Y′).
2. For every h ∈ [2j+1],

(Yh, (Y1,Y′1, · · · ,Yh−1,Y′h−1), Rj) ≈ε (U
(loglog a L

aj−1 −1)d2
, (Y1,Y′1, · · · ,Yh−1,Y′h−1), Rj).

Proof of the claim. First, since the computation in the j’th iteration only involves (Rj , R′j)
and (Y1,Y′1, · · · ,Y2j ,Y′2j), and (Rj , R′j) is a deterministic function of (X,X′) conditioned
on the fixing of the previous random variables, we know that at the end of the j’th iteration,
conditioned on the fixing of (R1, · · · , Rj) we have that (X,X′) is independent of (Y,Y′),
and (Y1,Y′1, · · · ,Y2j+1 ,Y′2j+1) is a deterministic function of (Y,Y′).

Next, we use (Z1, Z
′
1, · · · , Z2j+1 , Z ′2j+1) to represent the outputs computed from (Rj , R′j)

and (Y1,Y′1, · · · ,Y2j ,Y′2j), and assume that 2`−1 ≤ h ≤ 2` for some `, then Zh is obtained
from Y`. We can now first fix (Y1,Y′1, · · · ,Y`−1,Y′`−1), and conditioned on this fixing

CCC 2019

28:24 Partially Optimal Non-Malleable Extractors and Codes

Y` has average conditional min-entropy at least (loglog a L
aj−2 − 1)d2. Now by Lemma 27 we

have that

(S`1, Rj , R′j) ≈ε (U
(loglog a L

aj−1 −1)d2
, Rj , R

′
j)

and

(S`2, S`1, S′`1 , Rj , R′j) ≈ε (U
(loglog a L

aj−1 −1)d2
, S`1, S

′`
1 , Rj , R

′
j),

since (loglog a L
aj−2 − 1)d2 ≥ 2 · (loglog a L

aj−1 − 1)d2 + (1 + α)(loglog a L
aj−1 − 1)d2 + d2 and 4d1 ≥

2d1 + 1.1d1 + 0.9d1. Thus as long as the constant c is large enough one can make sure
that min{d2, 0.9d1} ≥ 2 log(1/ε), and we can extract (loglog a L

aj−1 − 1)d2 bits from entropy
(1 + α)(loglog a L

aj−1 − 1)d2 and d1 bits from entropy 1.1d1. Note that (Z1, Z
′
1, · · · , Z2`−2, Z

′
2`−2)

are computed from (Y1,Y′1, · · · ,Y`−1,Y′`−1) and (Rj , R′j), and (Y1,Y′1, · · · ,Y`−1,Y′`−1)
are already fixed. Thus the second part of the claim also holds. C

Now note that at the beginning of the first iteration, the condition of the claim holds.
Thus if we ignore the errors, then we can apply the claim repeatedly until the end of the
iteration. At this time for each h ∈ [logL] we have that Yh has at least (loglog a L

alog logL−1 −1)d2 > d2
bits. Furthermore

(Yh, (Y1,Y′1, · · · ,Yh−1,Y′h−1), Rt) ≈ (U, (Y1,Y′1, · · · ,Yh−1,Y′h−1), Rt).

The total error so far is O(Lε) + O(t2ε) +
∑log logL
j=0 2j · 2ε = O(Lε). Note that now

conditioned on all the fixed random variables (X0,X′0,Y0,Y′0, Rt) (note that Rt is a determ-
inistic function of (X0,X′0,Y0,Y′0), we have that (V, V ′,Y1,Y′1, · · · ,Y2 logL,Y′2 logL,X,X′)
satisfies the conditions of the Lemma 32, since the average conditional min-entropy of X is
at least n− 20 log logL · d1 ≥ 6m. Now we can apply Lemma 32 to show that

(Wx,W′
x,Y,Y′) ≈ (Um,W′

x,Y,Y′),

where the total error is O(Lε)+O(Lε) = O(Lε). Furthermore, note that conditioned on the
fixing of (Y1,Y′1, · · · ,Y2 logL,Y′2 logL), we have that (Wx,W′

x) is a deterministic function
of (V, V ′,X,X′), and thus independent of (Y,Y′). Also note that Y has average conditional
min-entropy at least 20c loglog a L log(n/ε)− 4 logLd2 > 10d2. Thus by Theorem 22 we have
that

(Wy,W′
y,Wx,W′

x) ≈ (Ud2 ,W′
y,Wx,W′

x),

where the error is O(Lε)+O(ε) = O(Lε). Note that given (Wx,W′
x), we have that (Wy,W′

y)
is a deterministic function of (Y,Y′). Thus we also have that

(Wy,W′
y, V, V

′,X,X′) ≈O(Lε) (Ud2 ,W′
y, V, V

′,X,X′). J

5 Correlation Breaker with Advice

We now use our non-malleable independence preserving mergers to construct improved
correlation breakers with advice. A correlation breaker uses independent randomness to
break the correlations between several correlated random variables. The first correlation
breaker appears implicitly in the author’s work [49], and this object is strengthened and
formally defined in [20]. A correlation breaker with advice additionally uses some string as
an advice. This object was first introduced and used without its name in [12], and then
explicitly defined in [22].

X. Li 28:25

I Definition 40 (Correlation breaker with advice). A function

AdvCB : {0, 1}n × {0, 1}d × {0, 1}L → {0, 1}m

is called a (k, k′, ε)-correlation breaker with advice if the following holds. Let Y, Y ′ be d-
bit random variables such that H∞(Y) ≥ k′. Let X,X ′ be n-bit random variables with
H∞(X) ≥ k, such that (X,X ′) is independent of (Y, Y ′). Then, for any pair of distinct L-bit
strings α, α′,

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′)) ≈ε (U,AdvCB(X ′, Y ′, α′)).

In addition, we say that AdvCB is strong if

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′), Y, Y ′)
≈ε(U,AdvCB(X ′, Y ′, α′), Y, Y ′).

Our construction needs the following flip-flop extraction scheme, which was constructed
by Cohen [20] using alternating extraction, based on a previous similar construction of
the author [49]. The flip-flop function can be viewed as a basic correlation breaker, which
(informally) uses an independent source X to break the correlation between two r.v’s Y and
Y′, given an advice bit.

I Theorem 41 ([20, 12]). There exists a constant c41 such that for all n > 0 and any ε > 0,
there exists an explicit function flip-flop : {0, 1}n × {0, 1}d → {0, 1}m, m = 0.4k, satisfying
the following: Let X be an (n, k)-source, and X′ be a random variable on n bits arbitrarily
correlated with X. Let Y be an independent uniform seed on d bits, and Y′ be a random
variable on d bits arbitrarily correlated with Y. Suppose (X,X′) is independent of (Y,Y′).
If k, d > C41 log(n/ε), then for any bit b,

|flip-flop(X,Y, b),Y,Y′ − Um,Y,Y′| 6 ε.

Furthermore, for any bits b, b′ with b 6= b′,

|flip-flop(X,Y, b),flip-flop(X′,Y′, b′),Y,Y′

− Um,flip-flop(X′,Y′, b′),Y,Y′| 6 ε.

5.1 Asymmetric correlation breaker
We will present correlation breakers that use general NIPMs. By plugging in various NIPMs
this gives different correlation breakers.

I Construction 42. Inputs:
Let `,m ∈ N be two integers, ε > 0 be an error parameter.
X,Y , two independent sources on n bits and s bits respectively, with min-entropy at least
n− ` and s− `.
an advice string α ∈ {0, 1}L.
An (L, d1, d2, O(Lε))-NIPMx that is strong in Y .
Let IP be the two source extractor from Theorem 23.

1. Let d′ = O(log(max{n, s}/ε)) be the seed length of the extractor from Theorem 22, and
let d = 8d′. Let X0 be a slice of X with length d+ 2`+ 2 log(1/ε), and Y 0 be a slice of Y
with length d+ 2`+ 2 log(1/ε).

2. Compute Z = IP(X0, Y 0) and output d bits.

CCC 2019

28:26 Partially Optimal Non-Malleable Extractors and Codes

3. Use X and Z to do an alternating extraction, and output two random variables (X0, X1) =
laExt(X,Z) where each Xi has 3m bits.

4. Use Y and Z to do an alternating extraction, and output two random variables (Y0, Y1) =
laExt(Y, Z) where each Yi has 3d bits.

5. Use X1, Y1, α to obtain an L×m matrix V , where for any i ∈ [L], Vi = flip-flop(X1, Y1, αi)
and outputs m bits.

6. Compute X̂ = Ext(X,Y0) and output n/2 bits. Compute Ŷ = Ext(Y,X0) and output s/2
bits. Here Ext is the strong seeded extractor from Theorem 22.

7. Output V̂ = NIPMx(V, X̂, Ŷ).

We now have the following lemma.

I Lemma 43. There exists a costant c > 1 such that the following holds. Suppose that there
exists an (L, d1, d2, O(Lε))-NIPM that is strong in Y which outputs m bits, then there exists
an explicit (n − `, s − `, O(Lε)) AdvCB : {0, 1}n × {0, 1}s × {0, 1}L → {0, 1}m as long as
m ≥ c log(max{n, s}/ε), n ≥ 20m+ 2d1 + 5`+ 4 log(1/ε) and s ≥ m+ 2d2 + 5`+ 4 log(1/ε).

Proof. Throughout the proof we will use letters with prime to denote the corresponding
random variables obtained from (X ′, Y ′, α′). First, notice that both X0 and Y 0 have
min-entropy at least d+ `+ 2 log(1/ε). Thus by Theorem 23 we have that

(Z,X0) ≈ε (Ud, X0)

and

(Z, Y 0) ≈ε (Ud, Y 0).

We now ignore the error ε. Note that conditioned on the fixing of (X0, X ′0), (Z,Z ′) is a
deterministic function of (Y 0, Y ′0), and thus independent of (X,X ′). Moreover, the average
conditional min-entropy of X given this fixing is at least n− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 10m
as long as c is large enough. Thus by Lemma 27 (note that the extractor from Z side can
use seed length d′) we have that

(Y 0, Y ′0, X0, X
′
0, X1, X

′
1, Z, Z

′) ≈O(ε) (Y 0, Y ′0, U3m, X
′
0, Ud1 , X

′
1, Z, Z

′),

where each U3m is uniform given the previous random variables, but may depend on later
random variables. Similarly, note that conditioned on the fixing of (Y 0, Y ′0), (Z,Z ′) is a
deterministic function of (X0, X ′0), and thus independent of (Y, Y ′). Moreover, the average
conditional min-entropy of Y given this fixing is at least s− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 10d.
Thus by Lemma 27 we have that

(Y0, Y
′
0 , Y1, Y

′
1 , Z, Z

′, X0, X ′0) ≈O(ε) (U3d, Y
′
0 , Ud2 , Y

′
1 , Z, Z

′, X0, X ′0),

where each U3d is uniform given the previous random variables, but may depend on later
random variables. We can now fix (X0, X ′0, Y 0, Y ′0), and conditioned on this fixing, we have
that (X,X ′) and (Y, Y ′) are still independent, (X0, X

′
0, X1, X

′
1) is a deterministic function

of (X,X ′), and (Y0, Y
′
0 , Y1, Y

′
1) is a deterministic function of (Y, Y ′). Further they satisfy the

look-ahead properties in the previous two equations. We will ignore the error for now since
this only adds at most O(ε) to the final error.

We now claim that conditioned on the fixing of (X0, X
′
0, Y0, Y

′
0 , Y1, Y

′
1) (and ignoring the

error), the random variables (V, V ′, X̂, X̂ ′) and (Ŷ , Ŷ ′) satisfy the conditions required by
Lemma 36. To see this, note that if we fix (Y0, Y

′
0 , Y1, Y

′
1), then the average conditional

X. Li 28:27

min-entropy of Y is at least s− `− 2(d+ 2`+ 2 log(1/ε))− 2 · 3d > 2s/3 as long as c is large
enough. Thus by Theorem 22 we have that

(Ŷ , X0, X
′
0) ≈ε (Us/2, X0, X

′
0).

Thus conditioned on the further fixing of (X0, X
′
0), we have that (Ŷ , Ŷ ′) is a deterministic

function of (Y, Y ′), and s/2 ≥ d2. On the other hand, conditioned on the fixing of (X0, X
′
0)

and (Y0, Y
′
0), we have X1 is still close to uniform. Thus by Theorem 41 we have that for any

i ∈ [L],

|Vi, Y1, Y
′
1 − Um, Y1, Y

′
1 | 6 ε

and there exists i ∈ [L] such that

|Vi, V ′i , Y1, Y
′
1 − Um, V ′i , Y1, Y

′
1 | 6 ε.

We now further fix (Y1, Y
′
1). Note that conditioned on this fixing (X,X ′) and (Y, Y ′) are

still independent. Furthermore (V, V ′) is now a deterministic function of (X1, X
′
1), and thus

independent of (Y, Y ′). Finally, note that conditioned on the fixing of (X0, X
′
0, X1, X

′
1), the

average conditional min-entropy of X is at least n− `− 2(d+ 2`+ 2 log(1/ε))− 2 · 3m > 2n/3.
Thus by Theorem 22 we have that

(X̂, Y0, Y
′
0) ≈ε (Un/2, Y0, Y

′
0).

Thus conditioned on the further fixing of (Y0, Y
′
0), we have that (X̂, X̂ ′) is a determ-

inistic function of (X,X ′), and n/2 ≥ d1. Thus, even if conditioned on the fixing of
(X0, X

′
0, X1, X

′
1, Y0, Y

′
0 , Y1, Y

′
1), we have that (X̂ is close to Un/2. Since (V, V ′) is obtained

from (X1, X
′
1, Y1, Y

′
1), we know that (X̂ is close to uniform even given (X0, X

′
0, Y0, Y

′
0 , Y1, Y

′
1)

and (V, V ′). Thus by Lemma 36 we have that

(V̂ , V̂ ′, Y, Y ′) ≈ (Um, V̂ ′, Y, Y ′),

where the error is O(Lε) +O(Lε) +O(ε) = O(Lε). J

Next we give another correlation breaker, which recycles the randomness used.

I Construction 44. Inputs:
Let `,m ∈ N be two integers, ε > 0 be an error parameter.
X,Y , two independent sources on n bits with min-entropy at least n− `.
an advice string α ∈ {0, 1}L and an integer 2 ≤ t ≤ L.
An (L, d1, d2, O(Lε))-NIPMy that is strong in X.
Let IP be the two source extractor from Theorem 23.

1. Let d′ = O(log(n/ε)) be the seed length of the extractor from Theorem 22, and let
d = 8 logL

log t d
′. Let X0 be a slice of X with length d+ 2`+ 2 log(1/ε), and Y 0 be a slice of

Y with length d+ 2`+ 2 log(1/ε).
2. Compute Z = IP(X0, Y 0) and output d bits.
3. Use X and Z to do an alternating extraction, and output 3 logL

log t + 1 random variables
X0, · · · , X3 logL

log t
where each Xi has d1 bits.

4. Use Y and Z to do an alternating extraction, and output two random variables Y0, Y1
where each Yi has d2 bits.

5. Use X0, Y0, α to obtain an L×m matrix V 0, where for any i ∈ [L], V 0
i = flip-flop(X0, Y0, αi)

and outputs m bits.

CCC 2019

28:28 Partially Optimal Non-Malleable Extractors and Codes

6. For i = 1 to logL
log t do the following. Merge every t rows of V i−1 using NIPMy and

(X3i−2, Yi), and output d′ bits. Concatenate the outputs to become another matrix W i.
Note that W i has L/ti rows. Then for every row j ∈ [L/ti], compute V ij = Ext(X3i,W

i
j)

to obtain a new matrix V i. Finally let Yi+1 = Ext(Y,X3i−1) and output d2 bits.
7. Output V̂ = V

logL
log t .

We now have the following lemma.

I Lemma 45. There exists a costant c > 1 such that the following holds. Suppose that
for any t ∈ N there exists an (t, d1, d2, O(tε))-NIPMy that is strong in X which outputs
d′ = O(log(n/ε)) bits, then there exists an explicit (n−`, n−`, O(Lε)) correlation breaker with
advice AdvCB : {0, 1}n × {0, 1}n × {0, 1}L → {0, 1}m as long as d1 ≥ 4m, m ≥ c log(d2/ε),
and n ≥ c logL

log t log(n/ε) +max{8 logL
log t d1, 2t · d′ + 4d2}+ 5`+ 4 log(1/ε).

Proof. Throughout the proof we will use letters with prime to denote the corresponding
random variables obtained from (X ′, Y ′, α′). First, notice that both X0 and Y 0 have
min-entropy at least d+ `+ 2 log(1/ε). Thus by Theorem 23 we have that

(Z,X0) ≈ε (Ud, X0)

and

(Z, Y 0) ≈ε (Ud, Y 0).

We now ignore the error ε. Note that conditioned on the fixing of (X0, X ′0), (Z,Z ′) is a
deterministic function of (Y 0, Y ′0), and thus independent of (X,X ′). Moreover, the average
conditional min-entropy of X given this fixing is at least n−`−2(d+2`+2 log(1/ε)) ≥ 8 logL

log t d1
as long as c is large enough. Thus by Lemma 27 (note that the extractor from Z side can
use seed length d′) we have that

(Y 0, Y ′0, Z, Z ′, X0, X
′
0, · · · , X3 logL

log t
, X ′3 logL

log t
)

≈O((logL
log t)2ε) (Y 0, Y ′0, Z, Z ′, Ud1 , X

′
0, · · · , Ud1 , X

′
3 logL

log t
),

where each Ud1 is uniform given the previous random variables, but may depend on later
random variables. Similarly, note that conditioned on the fixing of (Y 0, Y ′0), (Z,Z ′) is a
deterministic function of (X0, X ′0), and thus independent of (Y, Y ′). Moreover, the average
conditional min-entropy of Y given this fixing is at least n− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 4d2.
Thus by Lemma 27 we have that

(Z,Z ′, X0, X ′0, Y0, Y
′
0 , Y1, Y

′
1) ≈O(ε) (Z,Z ′, X0, X ′0, Ud2 , Y

′
0 , Ud2),

where each Ud2 is uniform given the previous random variables, but may depend on later
random variables. We can now fix (X0, X ′0, Y 0, Y ′0), and conditioned on this fixing, we have
that (X,X ′) and (Y, Y ′) are still independent, (X0, X

′
0, · · · , X3 logL

log t
, X ′3 logL

log t
) is a deterministic

function of (X,X ′), and (Y0, Y
′
0 , Y1, Y

′
1) is a deterministic function of (Y, Y ′). Further they

satisfy the look-ahead properties in the previous two equations. We will ignore the error for
now since this only adds at most O((logL

log t)2ε) to the final error.
Now by Theorem 41 we have that for any i ∈ [L],

|V 0
i , Y0, Y

′
0 − Um, Y0, Y

′
0 | 6 ε

X. Li 28:29

and there exists i ∈ [L] such that

|V 0
i , V

′0
i , Y0, Y

′
0 − Um, V ′0i , Y0, Y

′
0 | 6 ε.

We now further fix (Y0, Y
′
0). Note that conditioned on this fixing (X,X ′) and (Y, Y ′) are still

independent. Furthermore (V 0, V ′0) is now a deterministic function of (X0, X
′
0), and thus

independent of (Y, Y ′). Thus by the property of NIPMy we have that for every row j in W 1,

(W 1
j , V

0, V ′0, X1, X
′
1) ≈O(tε) (Ud′ , V 0, V ′0, X1, X

′
1),

and there exists a row j such that

(W 1
j ,W

′1
j , V

0, V ′0, X1, X
′
1) ≈O(tε) (Ud′ ,W ′1j , V 0, V ′0, X1, X

′
1).

Note that we have fixed (X0, X ′0, Y 0, Y ′0), and if we further condition on the fixing of
(X0, X

′
0, Y0, Y

′
0 , X1, X

′
1), then (W 1,W ′1) is a deterministic function of (Y, Y ′). Furthermore

(X,X ′) and (Y, Y ′) are still independent. We will now use induction to prove the following
claim (note that we have already fixed (X0, X ′0, Y 0, Y ′0)).

B Claim 46. Let Ti = (Y0, Y
′
0 , X0, X

′
0, · · · , X3i−2, X

′
3i−2). In the i’ th iteration, the following

holds.
1. Conditioned on the further fixing of Ti, we have that (X,X ′) and (Y, Y ′) are still

independent, and furthermore (W i,W ′i) is a deterministic function of (Y, Y ′).
2. For every row j in W i,

(W i
j , Ti) ≈εi (Ud′ , Ti),

and there exists a row j such that

(W i
j ,W

′i
j , Ti) ≈εi (Ud′ ,W ′ij , Ti),

where εi = O(
∑i
j=1 t

jε).

Proof of the claim. The base case of i = 1 is already proved above. Now suppose the claim
holds for the i’th iteration, we show that it also holds for the i+ 1’th iteration.

To see this, note that conditioned on the fixing of Ti, (X,X ′) and (Y, Y ′) are still
independent, and furthermore (W i,W ′i) is a deterministic function of (Y, Y ′) and thus
independent of (X,X ′). Note that Yi+1 is computed from Y and X3i−1 while V i is computed
from X3i and W i. Thus if we further fix X3i−1, X

′
3i−1 and (W i,W ′i), then (X,X ′) and

(Y, Y ′) are still independent, and furthermore Yi+1 is a deterministic function of Y and V i
is a deterministic function of X3i. Now W i+1 is computed from V i, X3i+1 and Yi+1. Thus
if we further fix (X3i, X

′
3i) and (X3i+1, X

′
3i+1) (i.e., we have fixed Ti+1) then (X,X ′) and

(Y, Y ′) are still independent, and furthermore (W i+1,W ′i+1) is a deterministic function of
(Y, Y ′).

Next, let h be the row in W i such that

(W i
h,W

′i
h , Ti) ≈εi (Ud′ ,W ′ih , Ti).

Note that V i has the same number of rows as W i, and consider the merging of some
t rows in V i that contain row h into W i+1

j (the merging of the other rows is similar and
simpler). Without loss of generality assume that these t rows are row 1, 2, · · · , t.

First, since for every row j in W i,

(W i
j , Ti) ≈εi (Ud′ , Ti),

CCC 2019

28:30 Partially Optimal Non-Malleable Extractors and Codes

and rows h in W i and W ′i satisfy the independence property, by Theorem 22 (and ignoring
the error εi) we have that for every j ∈ [t],

(V ij , Ti, X3i−1, X
′
3i−1,W

i
j ,W

′i
j) ≈ε (Um, Ti, X3i−1, X

′
3i−1,W

i
j ,W

′i
j),

and

(V ih , V ′ih , Ti, X3i−1, X
′
3i−1,W

i
j ,W

′i
j) ≈ε (Um, V ′ih , Ti, X3i−1, X

′
3i−1,W

i
j ,W

′i
j).

This is because X3i has average conditional min-entropy at least d1 even conditioned
on the fixing of (X3i−1, X

′
3i−1). We now ignore the error ε. Note that conditioned on the

fixing of (W i
j ,W

′i
j), we have that (V ij , V ′ij) is a deterministic function of (X3i, X

′
3i), and

thus independent of (Y, Y ′). We now fix {(W i
j ,W

′i
j), j ∈ [t]}. Note that conditioned on this

fixing {V ij , j ∈ [t]} and {V ′ij , j ∈ [t]} each is a t ×m matrix, and a deterministic function
of (X3i, X

′
3i). Further note that they form two matrices that meet the condition to apply

an NIPM. Since {(W i
j ,W

′i
j), j ∈ [t]} is a deterministic function of (Y, Y ′), conditioned on

this fixing (X,X ′) and (Y, Y ′) are still independent. Furthermore the average conditional
min-entropy of Y is at least n − ` − 2(d + 2` + 2 log(1/ε)) − 2d2 − 2td′ ≥ 2d2. Thus by
Theorem 22 we have that

(Yi+1, X3i−1) ≈ε (Ud2 , X3i−1).

Note that conditioned on the fixing of X3i−1, we have that Yi+1 is a deterministic function
of Y . Thus we can now further fix (X3i−1, X

′
3i−1), and conditioned on this fixing, Yi+1 is

still close to uniform. To conclude, now conditioned on the fixing of {(W i
j ,W

′i
j), j ∈ [t]}

and (X3i−1, X
′
3i−1), we have that {V ij , j ∈ [t]} and {V ′ij , j ∈ [t]} each is a t×m matrix, and

a deterministic function of (X3i, X
′
3i); Yi+1 is still close to uniform and (Yi+1, Y

′
i+1) is a

deterministic function of (Y, Y ′). Furthermore X3i+1 is close to uniform. Now we can use
the property of NIPMy to show that after merging these t rows, the corresponding row j in
W i+1 satisfies

(W i+1
j ,W ′i+1

j , Ti, X3i−1, X
′
3i−1, X3i, X

′
3i, X3i+1, X

′
3i+1)

≈tε(Ud′ ,W ′i+1
j , Ti, X3i−1, X

′
3i−1, X3i, X

′
3i, X3i+1, X

′
3i+1).

Adding back all the errors we get that

(W i+1
j ,W ′i+1

j , Ti+1) ≈εi+1 (Ud′ ,W ′i+1
j , Ti+1),

where εi+1 = tεi +O(tε) = O(
∑i+1
j=1 t

jε). C

Now we are basically done. In the last iteration we know that W
logL
log t has reduced to one

row, and W
logL
log t is close to uniform given W ′

logL
log t . Also conditioned on the fixing of T logL

log t

they are deterministic functions of (Y, Y ′). Thus when we use W
logL
log t to extract V

logL
log t from

X3 logL
log t

, by Theorem 22 we have that

(V̂ , V̂ ′, Y, Y ′) ≈ (Um, V̂ ′, Y, Y ′),

where the error is O(
∑ logL

log t
j=1 tjε) +O((logL

log t)2ε) = O(Lε). J

X. Li 28:31

6 The Constructions of Non-Malleable Extractors

In this section we construct our improved seeded non-malleable extractors and seedless
non-malleable extractors. Both the constructions follow the general approach developed in
recent works [12, 13, 21, 54], i.e., first obtaining an advice and then applying an appropriate
correlation breaker with advice. First we need the following advice generator from [12].

I Theorem 47 ([12]). There exist a constant c > 0 such that for all n > 0 and any ε > 0,
there exists an explicit function AdvGen : {0, 1}n × {0, 1}d → {0, 1}L with L = c log(n/ε)
satisfying the following: Let X be an (n, k)-source, and Y be an independent uniform seed
on d bits. Let Y ′ be a random variable on d bits s.t Y ′ 6= Y , and (Y, Y ′) is independent of
X. Then with probability at least 1− ε, AdvGen(X,Y) 6= AdvGen(X,Y ′). Moreover, there is
a deterministic function g such that AdvGen(X,Y) is computed as follows. Let Y1 be a small
slice of Y with length O(log(n/ε)), compute Z = Ext(X,Y1) where Ext is an optimal seeded
extractor from Theorem 22 which outputs O(log(n/ε)) bits. Finally compute Y2 = g(Y,Z)
which outputs O(log(1/ε)) bits and let AdvGen(X,Y) = (Y1, Y2).

For two independent sources we also have the following slightly different advice generator.

I Theorem 48 ([12]). There exist constants 0 < γ < β < 1 such that for all n > 0 and any
ε ≥ ε′ for some ε′ = 2−Ω(n), there exists an explicit function AdvGen : {0, 1}n × {0, 1}n →
{0, 1}L with L = 2βn+O(log(1/ε)) satisfying the following: Let X,Y be two independent
(n, (1− γ)n)-sources, and (X ′, Y ′) be some tampered versions of (X,Y), such that (X,X ′) is
independent of (Y, Y ′). Furthermore either X 6= X ′ or Y 6= Y ′. Then with probability at least
1− ε, AdvGen(X,Y) 6= AdvGen(X ′, Y ′). Moreover, there is a deterministic function g such
that AdvGen(X,Y) is computed as follows. Let X1, Y1 be two small slice of X,Y respectively,
with length βn, compute Z = IP(X,Y1) where IP is the inner product two source extractor
from Theorem 23 which outputs Ω(n) bits. Finally compute X2 = g(X,Z), Y2 = g(Y,Z)
which both output O(log(1/ε)) bits and let AdvGen(X,Y) = (X1, X2, Y1, Y2).

By using these advice generators, the general approach of constructing seeded non-
malleable extractors and seedless non-malleable extractors can be summarized in the following
two theorems.

I Theorem 49. [12, 13, 21, 54] There is a constant c > 1 such that for any n, k, d ∈ N and
ε1, ε2 > 0, if there is a (k− c log(n/ε1), d− c log(n/ε1), ε2) advice correlation breaker AdvCB :
{0, 1}k × {0, 1}d × {0, 1}c log(n/ε1) → {0, 1}m, then there exists an (O(k), ε1 + ε2) seeded non-
malleable extractor nmExt : {0, 1}n×{0, 1}d → {0, 1}m. Furthermore if m ≥ c log(d/ε1) then
there exists an (O(k), ε1 + ε2) seeded non-malleable extractor nmExt : {0, 1}n × {0, 1}O(d) →
{0, 1}Ω(k).

Sketch. The seeded non-malleable extractor is constructed as follows. First use the seed and
the source to obtain an advice as in Theorem 47 with error ε1/3, however when we compute
Z = Ext(X,Y1) we in fact output Z1 = Ext(X,Y1) with k bits and choose Z to be a small slice
of Z1 with length O(log(n/ε)). Then we can fix the random variables (Y1, Y

′
1 , Z, Z

′, Y2, Y
′
2).

Note that conditioned on this fixing (X,X ′) is still independent of (Y, Y ′), and (Z1, Z
′
1)

is a deterministic function of (X,X ′) thus is independent of (Y, Y ′). Furthermore with
probability 1− ε1/3, Z1 has min-entropy at least k−O(log(n/ε1)) and Y has min-entropy at
least d−O(log(n/ε1)). We can now apply the correlation breaker to (Z1, Y) and the advice
to get the desired output, where the total error is at most ε1/3 + ε1/3 + ε1/3 + ε2 = ε1 + ε2.
If the output m is large enough (i.e., m ≥ c log(d/ε1)), then we can use it to extract from Y

and then extract again from Z1 to increase the output length to Ω(k). J

CCC 2019

28:32 Partially Optimal Non-Malleable Extractors and Codes

I Theorem 50. [12, 13, 21, 54] There are constants c > 1, 0 < γ < β < 1/100 such that for
any n ∈ N and ε1, ε2 > 0, if there is a ((1−2β)n−c log(n/ε1), (1−2β)n−c log(n/ε1), ε2) advice
correlation breaker AdvCB : {0, 1}n×{0, 1}n×{0, 1}2βn+c log(1/ε1) → {0, 1}m, then there exists
an ((1−γ)n, (1−γ)n, ε1 + ε2) non-malleable two source extractor nmExt : {0, 1}n×{0, 1}n →
{0, 1}m. Furthermore if m ≥ c log(n/ε1) then there exists an ((1 − γ)n, (1 − γ)n, ε1 + ε2)
non-malleable two source extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}Ω(n).

Sketch. The non-malleable two-source extractor is constructed as follows. First use the two
independent sources (X,Y) to obtain an advice as in Theorem 48 with error ε1/3, then we
can fix the random variables (X1, X

′
1, Y1, Y

′
1 , X2, X

′
2, Y2, Y

′
2). Note that conditioned on this

fixing (X,X ′) is still independent of (Y, Y ′), furthermore with probability 1− ε1/3, both X
and Y have min-entropy at least (1− γ)n− βn− c log(1/ε1) ≥ (1− 2β)n− c log(1/ε1). We
can now apply the correlation breaker to (X,Y) and the advice to get the desired output,
where the total error is at most ε1/3 + ε1/3 + ε1/3 + ε2 = ε1 + ε2. If the output m is large
enough (i.e., m ≥ c log(d/ε1)), then we can use it to extract from Y and then extract again
from X to increase the output length to Ω(n). J

Combined with our new correlation breakers with advice, we have the following new
constructions of non-malleable extractors.

I Theorem 51. There exists a constant C > 1 such that for any constant a ∈ N ,a ≥ ∈,
any n, k ∈ N and any 0 < ε < 1 with k ≥ C(logn + a log(1/ε)), there is an explicit
construction of a strong seeded (k, ε) non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with
d = O(logn) + log(1/ε)2O(a(log log(1/ε))

1
a) and m = Ω(k). Alternatively, we can also achieve

entropy k ≥ C logn+ log(1/ε)2C·a(log log(1/ε))
1
a and d = O(logn+ a log(1/ε)).

Proof. The theorem is obtained by combining Theorem 49, Lemma 43 and Lemma 36. We
choose an error ε′ to be the error in Theorem 49, Lemma 43 and Lemma 36. Thus the total
error is O(Lε′) where L = O(log(n/ε′)). To ensure O(Lε′) = ε it suffices to take ε′ = ε

c log(n/ε)
for some constant c > 1. We know ` = O(log(n/ε′)). Therefore to apply Lemma 43 and
Lemma 36, we need to find m, d′, d1, d2 such that

d′ ≥ c(log max{d1, d2}+log(1/ε′)),m ≥ d′, d1 ≥ 8a ·d′+6m and d2 ≥ 8a ·d′+ca·log
1
a L ·d′.

Then we can take

k = O(d1 +m+ `+ log(1/ε′)) and d = O(d2 +m+ `+ log(1/ε′)).

It can be seen that we can take m = O(log(n/ε′)), d′ = O(log logn + log(1/ε′)), d1 =
8a · d′ + 6m = O(logn+ a log(1/ε′)) and d2 = 2O(a(log log(n/ε′))

1
a) · d′. We now consider two

cases. First, log(1/ε′) > logn

c′a(log logn)
1
a

for some large constant c′. In this case we have that

log(1/ε′) > logn
c′a(log logn)

1
a

>
√

logn

for any a ≥ 2. Thus

log log(n/ε′)) = log(logn+ log(1/ε′)) < log(log2(1/ε′) + log(1/ε′)) < 2 log log(1/ε′) + 1.

Also note that d′ = O(log logn + log(1/ε′)) = O(log(1/ε′)). Thus in this case we have
d2 ≤ O(log(1/ε′))2O(a(log log(1/ε′))

1
a) = log(1/ε′)2O(a(log log(1/ε′))

1
a). Next, consider the case

X. Li 28:33

where log(1/ε′) ≤ logn

c′a(log logn)
1
a
. In this case note that we have log(1/ε′) < logn and thus

2O(a(log log(n/ε′))
1
a) < 2O(a(log log(n))

1
a). Therefore when c′ is large enough and a ≥ 2 we

have that

d2 ≤ 2O(a(log log(n))
1
a)(log logn+ log(1/ε′)) ≤ logn.

Therefore altogether we have that d2 ≤ (logn + log(1/ε′)2O(a(log log(1/ε′))
1
a)) and d =

O(d2 + m + ` + log(1/ε′)) = O(logn) + log(1/ε′)2O(a(log log(1/ε′))
1
a). Note that log(1/ε′) =

log(1/ε) + log(logn+ log(1/ε)) +O(1), a careful analysis similar as above shows that we also
have that

d = O(logn) + log(1/ε)2O(a(log log(1/ε))
1
a).

Note that the correlation breaker is completely symmetric to both sources, and the only
difference is in generating the advice. Thus after advice generation which costs both sources
O(log(n/ε)) entropy, we can switch the role of the seed and the source. Therefore we can
also get the other setting of parameters where k ≥ C logn + log(1/ε)2C·a(log log(1/ε))

1
a and

d = O(logn+ a log(1/ε)). J

By using this theorem, we can actually improve the entropy requirement of the non-
malleable extractor. Specifically, we have the following theorem.

I Theorem 52. There exists a constant C > 1 such that for any constant a ∈ N ,a ≥ ∈,
any n, k ∈ N and any 0 < ε < 1 with k ≥ C(log logn + a log(1/ε)), there is an explicit
construction of a strong seeded (k, ε) non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with
d = O(logn) + log(1/ε)2O(a(log log(1/ε))

1
a) and m = Ω(k). Alternatively, we can also achieve

entropy k ≥ C log logn+ log(1/ε)2C·a(log log(1/ε))
1
a and d = O(logn+ a log(1/ε)).

Proof. We start by taking a slice of the seed Y1 with length O(log(n/ε)) to extract from the
source, and output some k′ = 0.9k uniform bits with error ε/2. Note that conditioned on the
fixing of (Y1, Y

′
1) where Y ′1 is the tampered version, the two sources are still independent,

and the seed now has average conditional entropy at least d−O(log(n/ε)). We now switch
the role of the seed and the source, and use the output of the extractor from the source as
the seed of a non-malleable extractor and apply Theorem 51 with error ε/2, so that the final
error is ε.

Note that now we know the original seed is different from its tampered version, so we
only need to obtain advice from the original seed and thus the advice size is O(log(d/ε)).
Now we only need

k ≥ C(log d+ a log(1/ε))

and

d−O(log(n/ε)) ≥ C log k + log(1/ε)2C·a(log log(1/ε))
1
a .

Thus we can choose

k ≥ C ′(log logn+ a log(1/ε))

for some slightly larger constant C ′ > 1, while the requirement of the seed is still

d = O(logn) + log(1/ε)2O(a(log log(1/ε))
1
a).

Similarly, we can switch the role of the seed and the source to get the other setting of
parameters. J

CCC 2019

28:34 Partially Optimal Non-Malleable Extractors and Codes

The next theorem improves the seed length, at the price of using a slightly larger entropy.

I Theorem 53. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε < 1 with
k ≥ C(logn+log(1/ε) log log log(1/ε)), there is an explicit construction of a strong seeded (k, ε)
non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with d = O(logn+log(1/ε)(log log(1/ε))2)
and m = Ω(k).

Proof. The theorem is obtained by combining Theorem 49, Lemma 43 and Lemma 38. Again,
We choose an error ε′ to be the error in Theorem 49, Lemma 43 and Lemma 38. Thus
the total error is O(Lε′) where L = O(log(n/ε′)). To ensure O(Lε′) = ε it suffices to take
ε′ = ε

c log(n/ε) for some constant c > 1. We also know ` = O(log(n/ε′)) in Lemma 43. Thus
to apply Lemma 38, we need to find m, d1, d2 such that (for simplicity, we choose a = 4 in
Lemma 38),

m ≥ c log(d2/ε
′), d1 ≥ 20c log logL log(d2/ε

′) + 6m and d2 ≥ 20c log2 L log(d1/ε
′).

Then we can take

k = O(d1 +m+ `+ log(1/ε′)) and d = O(d2 +m+ `+ log(1/ε′)).

A careful but tedious calculation shows that we can choose
k ≥ C(logn + log(1/ε′) log log log(1/ε′)) for some large enough constant C > 1, and
d = O(logn + log(1/ε′)(log log(1/ε′))2). Note that we can choose m = O(log(n/ε′)) for
a large enough constant in O(.), thus by Theorem 49 we can get an output length of Ω(k).
Finally, note that log(n/ε′) = O(log(n/ε)), thus the theorem follows. J

Similar to what we have done above, we can also use this to get improved parameters.
Specifically, we have

I Theorem 54. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε <

1 with k ≥ C(log logn + log(1/ε) log log log(1/ε)), there is an explicit construction of a
strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m with d = O(logn+
log(1/ε)(log log(1/ε))2) and m = Ω(k). Alternatively, we can also achieve entropy k ≥
C(log logn+ log(1/ε)(log log(1/ε))2) and seed length d = O(logn+ log(1/ε) log log log(1/ε)).

For non-malleable two-source extractors we have the following theorem.

I Theorem 55. There exists a constant 0 < γ < 1 and a non-malleable two-source extractor
for (n, (1− γ)n) sources with error 2−Ω(n log logn/ logn) and output length Ω(n).

Proof. The theorem is obtained by combining Theorem 50, Lemma 45 and Lemma 36.
Again, we choose an error ε′ to be the error in Theorem 49, Lemma 43 and Lemma 38.
Thus the total error is O(Lε′) where L = O(n). To ensure O(Lε′) = ε it suffices to take
ε′ = ε

cn for some constant c. We also know ` = 2βn+ o(n) for some constant β < 1/100 in
Lemma 45. We choose a = 2 in Lemma 36 and thus we obtain a correlation breaker with
m = O(log(n/ε′)), d1 = O(log(n/ε′)) and d2 = log(n/ε′)2O(

√
log t) where t is the parameter

in Construction 44 with t ≤ L. Note that this also satisfies that d1 ≥ 4m and m ≥ c log(d2/ε)
as required by Lemma 45.

Now we need to ensure that

(1− β)n ≥ c logL
log t log(n/ε′) +max{8 logL

log t d1, 2t · d′ + 4d2}+ 5`+ 4 log(1/ε′),

X. Li 28:35

where d′ = O(log(n/ε′)). We choose t = logL
log logL and this gives us

(1− 12β)n ≥ C logL
log logL log(n/ε′),

for some constant C > 1. Note that log(n/ε′) = O(log(n/ε)) thus we can set ε =
2−Ω(n log logn/ logn) and satisfy the above inequality. J

For applications in two-source extractors, we first need the following generalization of
non-malleable extractors, which allows multiple tampering.

I Definition 56 (Seeded t-Non-malleable extractor). A function snmExt : {0, 1}n×{0, 1}d →
{0, 1}m is a seeded t-non-malleable extractor for min-entropy k and error ε if the following
holds : If X is a source on {0, 1}n with min-entropy k and A1, · · · ,At : {0, 1}d → {0, 1}d
are t arbitrary tampering functions with no fixed points, then∣∣snmExt(X,Ud) ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud

− Um ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud
∣∣ < ε

where Um is independent of Ud and X.

The following theorem is a special case of Theorem 8.6 proved in [54].

I Theorem 57. Suppose there is a function f , a constant γ > 0 and an explicit non-malleable
two-source extractor for (f(ε), (1− γ)f(ε)) sources with error ε and output length Ω(f(ε)).
Then there is a constant C > 0 such that for any 0 < ε < 1 with k ≥ Ct2(logn + f(ε)),
there is an explicit strong seeded t-non-malleable extractor for (n, k) sources with seed length
d = Ct2(logn+ f(ε)), error O(tε) and output length Ω(f(ε)).

Combined with Theorem 55, this immediately gives the following theorem.

I Theorem 58. There is a constant C > 0 such that for any 0 < ε < 1 and n, k ∈ N with
k ≥ Ct2(logn+ log(1/ε) log log(1/ε)

log log log(1/ε)), there is an explicit strong seeded t-non-malleable extractor
for (n, k) sources with seed length d = Ct2(logn+ log(1/ε) log log(1/ε)

log log log(1/ε)), error O(tε) and output
length Ω(k/t2). As a special case, there exists a seeded non-malleable extractor for entropy
k ≥ C(logn+ log(1/ε) log log(1/ε)

log log log(1/ε)) and seed length d = C(logn+ log(1/ε) log log(1/ε)
log log log(1/ε)).

Similar techniques as above can reduce the logn term in the entropy requirement to
log logn, so we get

I Theorem 59. There is a constant C > 0 such that for any 0 < ε < 1 and n, k ∈ N with
k ≥ C(log logn+ log(1/ε) log log(1/ε)

log log log(1/ε)), there is an explicit strong seeded non-malleable extractor
for (n, k) sources with seed length and seed length d = C(logn+ log(1/ε) log log(1/ε)

log log log(1/ε)).

Ben-Aroya et. al [8] proved the following theorem.

I Theorem 60 ([8]). Suppose there is a function f and an explicit strong seeded t-non-
malleable extractor (n, k′) sources with seed length and entropy requirement d = k′ = f(t, ε),
then for every constant ε > 0 there exist constants t = t(ε), c = c(ε) and an explicit extractor
Ext : ({0, 1}n)2 → {0, 1} for two independent (n, k) sources with k ≥ f(t, 1/nc) and error ε.

Combined with Theorem 53, this immediately gives the following theorem.

I Theorem 61. For every constant ε > 0, there exists a constant C > 1 and an explicit two
source extractor Ext : ({0, 1}n)2 → {0, 1} for entropy k ≥ C logn log logn

log log logn with error ε.

CCC 2019

28:36 Partially Optimal Non-Malleable Extractors and Codes

7 Non-Malleable Two-Source Extractor and Non-Malleable Code

Formally, non-malleable codes are defined as follows.

I Definition 62 ([1]). Let NMk denote the set of trivial manipulation functions on k-
bit strings, which consists of the identity function I(x) = x and all constant functions
fc(x) = c, where c ∈ {0, 1}k. Let E : {0, 1}k → {0, 1}m be an efficient randomized encoding
function, and D : {0, 1}m → {0, 1}k be an efficient deterministic decoding function. Let
F : {0, 1}m → {0, 1}m be some class of functions. We say that the pair (E,D) defines an
(F , k, ε)-non-malleable code, if for all f ∈ F there exists a probability distribution G over
NMk, such that for all x ∈ {0, 1}k, we have

|D(f(E(x)))−G(x)| ≤ ε.

I Remark 63. The above definition is slightly different form the original definition in [36].
However, [1] shows that the two definitions are equivalent.

We will mainly be focusing on the following family of tampering functions in this paper.

I Definition 64. Given any t > 1, let Stn denote the tampering family in the t-split-state-
model, where the adversary applies t arbitrarily correlated functions h1, · · · , ht to t separate,
n-bit parts of string. Each hi can only be applied to the i-th part individually.

We remark that even though the functions h1, · · · , ht can be correlated, their correlation
is independent of the original codewords. Thus, they are actually a convex combination
of independent functions, applied to each part of the codeword. Therefore, without loss of
generality we can assume that each hi is a deterministic function, which acts on the i-th part
of the codeword individually.We will mainly consider the case of t = 2, i.e., the two-split-state
model. We recall the original definition of non-malleable two-source extractors by Cheraghchi
and Gursuswami [18]. First we define the following function.

copy(x, y) =
{
x if x 6= same?

y if x = same?

I Definition 65 (Seedless Non-Malleable 2-Source Extractor). A function nmExt : ({0, 1}n)2 →
{0, 1}m is a (k, ε)-seedless non-malleable extractor for two independent sources, if it satisfies
the following property: Let X,Y be two independent (n, k) sources, and f1, f2 : {0, 1}n →
{0, 1}n be two arbitrary tampering functions, then
1. |nmExt(X,Y)− Um| ≤ ε.
2. There is a distribution D over {0, 1}m∪{same?} such that for an independent Z sampled

from D, we have

(nmExt(X,Y), nmExt(f1(X), f2(Y))) ≈ε (nmExt(X,Y), copy(Z, nmExt(X,Y))).

Cheraghchi and Gursuswami [18] showed that the relaxed definition 5 implies the above
general definition with a small loss in parameters. Specifically, we have

I Lemma 66 ([18]). Let nmExt be a (k − log(1/ε), ε)-non-malleable two-source extractor ac-
cording to Definition 5. Then nmExt is a (k, 4ε)-non-malleable two-source extractor according
to Definition 65.

The following theorem was proved by Cheraghchi and Gursuswami [18], which establishes
a connection between seedless non-malleable extractors and non-malleable codes.

X. Li 28:37

I Theorem 67. Let nmExt : {0, 1}n × {0, 1}n → {0, 1}m be a polynomial time computable
seedless 2-non-malleable extractor at min-entropy n with error ε. Then there exists an explicit
non-malleable code with an efficient decoder in the 2-split-state model with block length = 2n,
rate = m

2n and error = 2m+1ε.
One can construct a non-malleable code in the 2-split-state model from a non-malleable

two-source extractor as follows: Given any message s ∈ {0, 1}m, the encoding Enc(s) is done
by outputting a uniformly random string from the set nmExt−1(s) ⊂ {0, 1}2n. Given any
codeword c ∈ {0, 1}2n, the decoding Dec(c) is done by outputting nmExt(c). Thus, to get an
efficient encoder we need a way to efficiently uniformly sample from the pre-image of any
output of the extractor.

Since our new non-malleable two-source extractor follows the same structure as in [54],
we can use the same sampling procedure there to efficiently uniformly sample from the
pre-image of any output of the extractor. We briefly recall the construction and sampling
procedure in [54].

The extractor construction and sampling

The high level structure of the non-malleable two-source extractor in [54] is as follows. First
take two small slices (X1, Y1) of both sources and apply the inner product based two-source
extractor, as in Theorem 23. Then, use the output to sample O(log(1/ε)) bits from the
encodings of both sources, using a randomness efficient sampler and an asymptotically good
linear encoding of the sources. We need an asymptotically good encoding since then we
only need to sample O(log(1/ε)) bits to ensure that the sampling of two different codewords
are different with probability at least 1− ε. The advice is then obtained by combining the
slices and the sample bits. Now, take two larger slices (X2, Y2) of both sources and apply the
correlation breaker. Finally, take another larger slice of either source (say X3 from X) and
apply a strong linear seeded extractor, which is easy to invert and has the same pre-image
size for any output. By limiting the size of each slice to be small, the construction ensures
that there are at least n/2 bits of each source that are only used in the encoding of the
sources but never used in the subsequent extraction.

Now to sample uniformly from the pre-image of any output, we first uniformly inde-
pendently generate the slices (X1, Y1, X2, Y2) and the sampled bits Z. From these we can
compute the coordinates of the sampled bits and the output of the correlation breaker. Now
we can invert the linear seeded extractor and uniformly sample X3 given the output of the
extractor and the output of the correlation breaker (which is used as the seed of the linear
seeded extractor). Now, to sample the rest of the bits, we need to condition on the event
that the sample bits from the encoding of the sources are indeed Z. Note that Z has size at
most αn for some small constant α < 1/2 since we can restrict the error to be at least some
2−Ω(n). Also note that for each source we have already sampled some bits but there are still
at least n/2 un-sampled free bits, thus we insist on that no matter which αn columns of the
generating matrix of the encoding we look at, the sub matrix corresponding to these columns
and the last n/2 rows have full column rank. If this is true then no matter which coordinates
we use and what Z is, the pre-image always have the same size and we can uniformly sample
from the pre-image by solving a system of linear equations.

In [54], we use the Reed-Solomn encoding for each source with field Fq for q ≈ n. This is
asymptotically good and also satisfies the property that any sub matrix with less columns
than rows has full column rank since it is a Vandermonde matrix. However in this case
each symbol has roughly logn bits so we can sample at most n/ logn symbols (otherwise
fixing them may already cost us all the entropy), thus the best error we can get using this
encoding is 2−n/ logn.

CCC 2019

28:38 Partially Optimal Non-Malleable Extractors and Codes

We now give a new construction of non-malleable two-source extractors for two (n, (1−γ)n)
sources, where 0 < γ < 1 is some constant. First, we need the following ingredients.

I Theorem 68 ([54]). There exists a constant 0 < α < 1 such that for any n ∈ N and
2−αn < ε < 1 there exists a linear seeded strong extractor IExt : {0, 1}n × {0, 1}d → {0, 1}0.3d
with d = O(log(n/ε)) and the following property. If X is a (n, 0.9n) source and R is an
independent uniform seed on {0, 1}d, then

|(IExt(X,R), R)− (U0.3d, R)| ≤ ε.

Furthermore for any s ∈ {0, 1}0.3d and any r ∈ {0, 1}d, |IExt(·, r)−1(s)| = 2n−0.3d.

I Definition 69 (Averaging sampler [64]). A function Samp : {0, 1}r → [n]t is a (µ, θ, γ)
averaging sampler if for every function f : [n]→ [0, 1] with average value 1

n

∑
i f(i) > µ, it

holds that

Pr
i1,...,it←Samp(UR)

[
1
t

∑
i

f(i) < µ− θ

]
≤ γ.

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by Samp(x) are all
distinct.

I Theorem 70 ([64]). Let 1 ≥ δ ≥ 3τ > 0. Suppose that Samp : {0, 1}r → [n]t is an (µ, θ, γ)
averaging sampler with distinct samples for µ = (δ−2τ)/ log(1/τ) and θ = τ/ log(1/τ). Then
for every δn-source X on {0, 1}n, the random variable (Ur, XSamp(Ur)) is (γ+ 2−Ω(τn))-close
to (Ur,W) where for every a ∈ {0, 1}r, the random variable W |Ur=a is (δ − 3τ)t-source.

I Theorem 71 ([64]). For every 0 < θ < µ < 1, γ > 0, and n ∈ N , there is an explicit
(µ, θ, γ) averaging sampler Samp : {0, 1}r → [n]t that uses

t distinct samples for any t ∈ [t0, n], where t0 = O(1
θ2 log(1/γ)), and

r = log(n/t) + log(1/γ)poly(1/θ) random bits.

7.1 A new advice generator
Here we show that we can give a new advice generator with optimal advice length. We have
the following construction. Let (X,Y) be two independent (n, (1− τ)n) sources. Let IP be
the inner product two-source extractor from Theorem 23, and Samp : be the sampler from
Theorem 70. Let L > 0 be a parameter, and c > 0 be a constant to be chosen later. We have
the following algorithm.

1. Let n1 = 3τn. Divide X into X = (X1, X2) such that X1 has n1 bits and X2 has
n2 = (1− 3τ)n bits. Similarly divide Y into Y = (Y1, Y2) such that Y1 has n1 bits and
Y2 has n2 = (1− 3τ)n bits.

2. Compute Z = IP(X1, Y1) which outputs r = Ω(n) ≤ τn bits.
item Let F be the finite field F2logn . Let n0 = n2

logn . Let RS : Fn0 → Fn be the
Reed-Solomon code encoding n0 symbols of F to n symbols in F (we slightly abuse the
use of RS to denote both the code and the encoder). Thus RS is a [n, n0, n − n0 + 1]n
error correcting code. Let X̂2 be X2 written backwards, and similarly Ŷ2 be Y2 written
backwards. Let X2 = RS(X̂2) and Y 2 = RS(Ŷ2).

3. Use Z to sample r/ logn distinct symbols from X2 (i.e., use each logn bits to sample
a symbol), and write the symbols as a binary string X̃2. Note that X̃2 has r bits.
Similarly, use Z to sample r/ logn distinct symbols from Y 2 and obtain a binary string
Ỹ2 with r bits.

X. Li 28:39

4. Let V1 = X1 ◦ Y1 ◦ X̃2 ◦ Ỹ2.
5. Take a slice of X2 with length 15τn, and let it be X3. Similarly, take a slice of Y2 with

length 10τn, and let it be Y3. Compute W = IP(X3, Y3) which outputs r = Ω(n) ≤ τn
bits.

6. Take a slice of X2 with length 40τn, and let it be X4. Use W and X4 to do an alternating
extraction protocol for L = log∗ n6 rounds, and output (R1, · · · , RL) = laExt(X4,W),
where each Si, Ri used in the alternating extraction has τn/ logn bits.

7. Set i = 1 and let n1 be the length of V1, which is at most 8τn. While L < c logni do
the following: encode Vi to Ṽi using an asymptotically good binary error correcting code.
Cut Ri into O(logni) bits. Use the sampler from Theorem 71 and Ri to sample logni
bits of Ṽi, let the sampled string be Vi. Set Vi+1 = Ri ◦ Vi and let i = i+ 1.

8. Finally, cut Ri into O(logni) bits. Use the sampler from Theorem 71 and Ri to sample
L− |Ri| bits of Ṽi, let the sampled string be Vi. Set α̃ = Ri ◦ Vi which has length L.

We have the following lemma.

I Lemma 72. There are constants 0 < τ, µ < 1 and C > 1 such that the following holds.
Let (X,Y) be two independent (n, (1− τ)n) sources, and (X ′, Y ′) be their tampered versions.
Assume that either the tampering function f on X or the tampering function g on Y has no
fixed point. For any L such that C ≤ L ≤ µn

logn , with probability 1− 2−Ω(L) over the fixing of
(X1, Y1, X̃2, Ỹ2, X3, Y3, X4) and the tampered versions (X ′1, Y ′1 , X̃ ′2, Ỹ ′2 , X ′3, Y ′3 , X ′4), we have
that α̃ 6= α̃′. Moreover, conditioned on these fixings, X and Y are independent, and the
average conditional min-entropy of both X and Y is (1−O(τ))n.

Proof. As usual we use letters with primes to denote the tampered versions of random
variables. First note that both X1 and Y1 have min-entropy at least 2τn, thus by Theorem 23,
we have that

(Z,X1) ≈2−Ω(n) (U,X1),

and

(Z, Y1) ≈2−Ω(n) (U, Y1).

If X1 6= X ′1 or Y1 6= Y ′1 then we have V1 6= V ′1 . Now consider the case where X1 6= X ′1
and Y1 6= Y ′1 . In this case we have Z = Z ′ and either X2 6= X ′2 or Y2 6= Y ′2 . Without loss of
generality assume that X2 6= X ′2. We can now first fix (X1, X

′
1). Note that conditioned on this

fixing, Z = Z ′ is a deterministic function of Y , and thus independent of (X2, X
′
2). The Reed-

Solomon encoding of X̂2 and X̂ ′2 ensures that X2 and X ′2 differ in at least n− n0 + 1 > 0.9n
symbols. Thus, with probability 1− 2−Ω(n) − 2−Ω(r/ logn) = 1− 2−Ω(n/ logn) over Z, we have
that X̃2 6= X̃ ′2. Therefore, altogether with probability 1 − 2−Ω(n/ logn) over the fixing of
(X1, Y1, X̃2, Ỹ2) and (X ′1, Y ′1 , X̃ ′2, Ỹ ′2) we have that V1 6= V ′1 .

We now fix (X1, Y1, X̃2, Ỹ2) and (X ′1, Y ′1 , X̃ ′2, Ỹ ′2). Note that conditioned on this fixing,
X and Y are independent. Moreover, the average conditional min-entropy of both X3 and
Y3 is at least 15τn− τn− 2τn− 3τn = 9τn. Thus by Theorem 23, we have that

(W,X3) ≈2−Ω(n) (U,X3).

6 Here by log∗ n we mean the number of steps it takes to get down to c′ by computing n→ c logn for
some constants c, c′.

CCC 2019

28:40 Partially Optimal Non-Malleable Extractors and Codes

We ignore the error for now since this only adds 2−Ω(n) to the final error. We now fix
(X3, X

′
3). Note that conditioned on this fixing, (W,W ′) is a deterministic function of (Y, Y ′),

and thus independent of (X,X ′). Further, the average conditional min-entropy of X4 is at
least 40τn − τn − 2(15τn + τn) − 3τn = 4τn. Thus by Lemma 27 we have that for any
0 ≤ j ≤ L− 1,

(W,W ′, {R1, R
′
1, · · · , Rj , R′j}, Rj+1) ≈ε′ (W,W ′, {R1, R

′
1, · · · , Rj , R′j}, U),

where ε′ = O(L2−Ω(n/ logn)) = 2−Ω(n/ logn). Since conditioned on the fixing of (W,W ′), the
random variables {Ri, R′i} are deterministic functions of (X,X ′) and independent of (Y, Y ′),
we also have that

(Y3, Y
′
3 , {R1, R

′
1, · · · , Rj , R′j}, Rj+1) ≈ε′ (Y3, Y

′
3 , {R1, R

′
1, · · · , Rj , R′j}, U).

We now further fix (Y3, Y
′
3). Note that now we have fixed (X1, Y1, X̃2, Ỹ2, X3, Y3) and

(X ′1, Y ′1 , X̃ ′2, Ỹ ′2 , X ′3, Y ′3). Ignoring the error for now let’s assume that V1 6= V ′1 (note that
(V1, V

′
1) are now fixed) and for any 0 ≤ j ≤ L− 1,

({R1, R
′
1, · · · , Rj , R′j}, Rj+1) = ({R1, R

′
1, · · · , Rj , R′j}, U).

Let j be the index when the protocol executes step 8. We know that j ≤ L since in each
step the length of the string Vi goes from ni to O(logni). We have the following observation.
For any 1 ≤ i ≤ j, we have that Vi is a deterministic function of (R1, · · · , Ri−1); similarly,
V ′i is a deterministic function of (R′1, · · · , R′i−1). Next, we have the following claim.

B Claim 73. For any 1 ≤ i < j, suppose that conditioned on the fixing of
(R1, · · · , Ri−1), (R′1, · · · , R′i−1) we have Vi 6= V ′i , then with probability 1 − 2−Ω(logni) over
the further fixing of (Ri, R′i), we have Vi+1 6= V ′i+1. Suppose that conditioned on the fixing
of (R1, · · · , Rj−1), (R′1, · · · , R′j−1) we have Vj 6= V ′j , then with probability 1− 2−Ω(L) over
the further fixing of (Rj , R′j), we have α̃ 6= α̃′.

Proof of the claim. Suppose that conditioned on the fixing of (R1, · · · , Ri−1), (R′1, · · · , R′i−1)
we have Vi 6= V ′i . Note that now (Vi, V ′i) is also fixed. We know that Ri is still uniform.
Again, we have two cases. First, if Ri 6= R′i, then we definitely have Vi+1 6= V ′i+1. Otherwise,
we have Ri = R′i. The encoding of Vi and V ′i ensures that at least a constant fraction of bits
in Ṽi and Ṽi

′ are different. Thus by Theorem 71 with probability 1 − 2−Ω(logni) over the
further fixing of (Ri, R′i), we have that Vi 6= Vi

′ and thus Vi+1 6= V ′i+1.
For the case of i = j, the argument is the same, except now we are sampling L−O(lognj)

bits, and the probability that Vi 6= Vi
′ is 2−Ω(L−O(lognj)) = 2−Ω(L) since L ≥ c lognj . C

Now we are basically done. Since we start with V1 6= V ′1 , at the end the probability that
α̃ 6= α̃′ is at least

Πj−1
i=1 (1− 2−Ω(logni)) · (1− 2−Ω(L)).

Note that for any 1 ≤ i < j we have ni+1 = O(logni), so 2−Ω(logni) ≤ 2−Ω(logni)/2.
Thus the terms 2−Ω(logni) form at least a geometric expression and hence this probability
is at least 1 − O(2−Ω(L)) = 1 − 2−Ω(L). Adding back all the errors, and noticing that
C ≤ L ≤ µn

logn for some properly chosen constants C and µ, the final error is still 1− 2−Ω(L).
Moreover, since the size of each random variable in (X1, Y1, X̃2, Ỹ2, X3, Y3, X4) is at most
O(τn), conditioned on the fixing of (X1, Y1, X̃2, Ỹ2, X3, Y3, X4) and the tampered versions
(X ′1, Y ′1 , X̃ ′2, Ỹ ′2 , X ′3, Y ′3 , X ′4), the average conditional min-entropy of both X and Y is (1 −
O(τ))n. J

X. Li 28:41

We now use the above advice generator to give a new construction of non-malleable
two-source extractors. Let (X,Y) be two independent (n, (1− γ)n) sources with γ ≤ τ where
τ is the constant in Lemma 72.

Let AdvGen be the advice generator from Lemma 72 for some error ε1.
Let AdvCB be the correlation breaker with advice from Lemma 45 with error some ε2,
using the merger from Lemma 36.
Let IExt be the invertible linear seeded extractor form Theorem 68.

1. Compute α̃ = AdvGen(X,Y).
2. Consider the unused part of X. Divide it into (X5, X6, X7) where X5, X6 has length

αn, βn for some constants β > α > γ, and X7 is the rest of X with length at least n/2.
Similarly, divide the unused part of Y into (Y5, Y6, Y7) where Y5, Y6 has length αn, βn
and Y7 is the rest of Y with length at least n/2 (this can be ensured by choosing α, β, γ
to be small enough).

3. Compute V = AdvCB(X5, Y5, α̃) which outputs d = O(log(n/ε2)) bits.
4. Finally compute W = IExt(Y6, V) which outputs Ω(n) bits.

We need the following proposition.

I Proposition 74 ([18]). Let D and D′ be distributions over the same finite space Ω, and
suppose they are ε-close to each other. Let E ⊆ Ω be any event such that D(E) = p. Then,
the conditional distributions D|E and D′|E are (ε/p)-close.

We now have the following theorem.

I Theorem 75. Assume that either the tampering function f on X or the tampering
function g on Y has no fixed point. There exist a constant C > 1 such that as long as
n ≥ C log log(1/ε1)

log log log(1/ε1) log(n/ε2), the above non-malleable two-source extractor gives a non-
malleable code with error ε1 +O(log(1/ε1)√ε2) and rate Ω(log(1/ε2)/n).

Proof. First note that by Lemma 72, conditioned on the fixing of H = (X1, Y1, X̃2, Ỹ2, X3, Y3,

X4) and the tampered versions H ′ = (X ′1, Y ′1 , X̃ ′2, Ỹ ′2 , X ′3, Y ′3 , X ′4), X and Y are independent,
and the average conditional min-entropy of both X and Y is (1−O(γ))n. If in addition we
have that α̃ 6= α̃′, then we will apply Lemma 45 and Lemma 36. Note that in order to set the
error of the advice generator to be ε1, we need to set the advice length to be L = O(log(1/ε1))
by Lemma 72. Thus in Lemma 45 we need to merge L = O(log(1/ε1)) rows.

Again, as in Theorem 55, we know that when we apply the correlation breaker to X5
and Y5, the entropy loss of both of them is O(γn). By choosing α, β, γ appropriately we
can ensure that X5 and Y5 have sufficient entropy in them. We choose a = 2 in Lemma 36
and thus we obtain a correlation breaker with m = O(log(n/ε2)), d1 = O(log(n/ε2)) and
d2 = log(n/ε2)2O(

√
log t) where t is the parameter in Construction 44 with t ≤ L. Note that

this also satisfies that d1 ≥ 4m and m ≥ c log(d2/ε) as required by Lemma 45.
Now we need to ensure that

(α−O(γ))n ≥ c logL
log t log(n/ε2) +max{8 logL

log t d1, 2t · d′ + 4d2}+ 5`+ 4 log(1/ε2),

where d′ = O(log(n/ε2)). We choose t = logL
log logL and this gives us

n ≥ C logL
log logL log(n/ε2),

CCC 2019

28:42 Partially Optimal Non-Malleable Extractors and Codes

for some constant C > 1. That is, we need

n ≥ C log log(1/ε1)
log log log(1/ε1) log(n/ε2),

for some constants C > 1. As long as this condition is satisfied, conditioned on the event
that α̃ 6= α̃′, we have that

(V, V ′, H,H ′, X,X ′) ≈O(Lε2) (U, V ′, H,H ′, X,X ′).

By choosing β > α appropriately, we can ensure that conditioned on the fixing of
the previous random variables in the computation, Y6 has entropy Ω(n) and (V, V ′) is a
deterministic function of (X,X ′) and thus independent of (Y, Y ′). Thus eventually we get

(W,W ′, H,H ′, X,X ′) ≈O(Lε2) (U,W ′, H,H ′, X,X ′).

However, note that our construction is a two-source extractor itself. Thus, regardless of
whether α̃ 6= α̃′, we have that

(W,H,H ′, X,X ′) ≈O(Lε2) (U,H,H ′, X,X ′).

We can cut the output length of the extractor to be m = Θ(log(1/ε2)) such that for any
s in the support, we have Pr[U = s] = 2−m = √ε2. Thus we have for any s,

(H,H ′, X,X ′|W = s) ≈O(L√ε2) (H,H ′, X,X ′|U = s).

This means for any s,

(H,H ′, X,X ′|W = s) ≈O(L√ε2) (H,H ′, X,X ′).

Let A be the event that α̃ 6= α̃′. Note that Pr[A] ≥ 1 − ε1. Since A is determined by
(H,H ′), we have that for any s, |Pr[A|W = s]− Pr[A]| ≤ O(L√ε2).

We now consider the probability distribution (W ′|W = s,A). This time we first condition
on A. Note that conditioned on this event, we have

(W,W ′, H,H ′, X,X ′) ≈O(Lε2) (U,W ′, H,H ′, X,X ′).

Thus again here we have that for any s,

(W ′, H,H ′, X,X ′|W = s) ≈O(L√ε2) (W ′, H,H ′, X,X ′).

Therefore, we have for any s,

(W ′|W = s,A) ≈O(L√ε2) (W ′|A).

We can now bound the statistical distance between (W ′|W = s) and W ′. We have∣∣(W ′|W = s)−W ′
∣∣

=
∣∣(Pr[A|W = s](W ′|W = s,A) + Pr[Ā|W = s](W ′|W = s, Ā))− (Pr[A](W ′|A) + Pr[Ā](W ′|Ā))

∣∣
≤
∣∣Pr[A]((W ′|W = s,A)−W ′|A)

∣∣+
∣∣(Pr[A|W = s]− Pr[A])(W ′|W = s,A)

∣∣
+
∣∣Pr[Ā]((W ′|W = s, Ā)− (W ′|Ā))

∣∣+
∣∣(Pr[Ā|W = s]− Pr[Ā])(W ′|W = s, Ā)

∣∣
≤
∣∣Pr[A]((W ′|W = s,A)−W ′|A)

∣∣+
∣∣Pr[Ā]((W ′|W = s, Ā)− (W ′|Ā))

∣∣+O(L
√
ε2)

≤
∣∣((W ′|W = s,A)−W ′|A)

∣∣+ Pr[Ā]

≤ε1 +O(L
√
ε2).

Note that the distribution of W ′ is a fixed probability distribution which is independent
of s. Thus the construction gives a non-malleable code with error ε1 + O(L√ε2) = ε1 +
O(log(1/ε1)√ε2), and the rate of the code is Ω(log(1/ε2)/n). J

X. Li 28:43

We need to use the following simple inequality:

I Fact 76. For any 0 < x ≤ 1/3, we have 1− 3x ≤ 1−x
1+x <

1+x
1−x ≤ 1 + 3x.

We now have the following lemma, which gives a construction of non-malleable codes in
the general case.

I Lemma 77. Assume 2Ext : {0, 1}n × {0, 1}n → {0, 1}m satisfies the following conditions:

It is a two-source extractor for entropy n− log(1/ε′) with error ε′ ≤ 2−(m+2).
It is a non-malleable two-source extractor for entropy n− log(1/ε′), which gives a non-
malleable code in the two-split state model with error ε when either the tampering function
f or the tampering function g has no fixed point.

Then 2Ext gives non-malleable code in the two-split state model with error ε+ 2m+4ε′.

Proof. Consider the tampering function f : {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n.
Let X and Y be two independent uniform distributions on {0, 1}n, let p0 = Pr[f(X) = X],
q0 = Pr[g(Y) = Y], p1 = Pr[f(X) 6= X] = 1− p0 and q1 = Pr[g(Y) 6= Y] = 1− q0. Let the
subsource of X conditioned on f(X) = X be X0, and the subsource of X conditioned on
f(X) 6= X be X1. Thus X = p0X0 + p1X1. Similarly, we can define the subsources Y0, Y1 of
Y such that Y = q0Y0 + q1Y1.

Consider the pairs of subsources (X0, Y0), (X0, Y1), (X1, Y0), and (X1, Y1), which have
probability mass p0q0, p0q1, p1q0 and p1q1 respectively. Note that we have

(X,Y) = p0q0(X0, Y0) + p0q1(X0, Y1) + p1q0(X1, Y0) + p1q1(X1, Y1).

Let W = 2Ext(X,Y). Consider any s ∈ {0, 1}m and the uniform distribution on the
pre-image of W = s in (X,Y), call it Zs. For any i, j ∈ {0, 1}, let the subsource Zij
stand for the uniform distribution on the pre-image of W = s in (Xi, Yj). Further let
rij = Pr[2Ext(Xi, Yj) = s]. Then we have

Zs =
∑
i,j piqjrijZij∑
i,j piqjrij

=
∑
i,j

αijZij ,

where αij = piqjrij∑
i,j
piqjrij

.

We now have the following claim.

B Claim 78. For any i, j ∈ {0, 1}, we have
If either pi < ε′ or qj < ε′, then αij ≤ 2m+1ε′.
Otherwise, |αij/(piqj)− 1| ≤ 2m+2ε′

Proof of the claim. Note that
∑
i,j piqjrij = Pr[W = s], and we have Pr[W = s] ≥ 2−m−ε′ >

2−(m+1). Thus if either pi < ε′ or qj < ε′, we have

αij = piqjrij∑
i,j piqjrij

< 2m+1ε′.

Otherwise, both pi ≥ ε′ and qj ≥ ε′. This means that both Xi and Yj have min-entropy at
least n− log(1/ε′). Therefore we have |rij−2−m| ≤ ε′. Note that αij/(piqj) = rij/Pr[W = s]
and we also have .|Pr[W = s]− 2−m| ≤ ε′. Since ε′ ≤ 2−(m+2) by Fact 76 we have that

|αij/(piqj)− 1| ≤ 2m+2ε′. J

CCC 2019

28:44 Partially Optimal Non-Malleable Extractors and Codes

We now consider the distribution 2Ext(T (Zs)), where for any distribution Z on {0, 1}n ×
{0, 1}n, T (Z) stands for the distribution (f(x), g(y)) where (x, y) is sampled from Z. Note
that 2Ext(Zs) is fixed to s and and 2Ext(T (Zs)) is the distribution of the decoded message after
tampering. We have that T (Zs) =

∑
i,j αijT (Zij) and 2Ext(T (Zs)) =

∑
i,j αij2Ext(T (Zij)).

We will show that this distribution is close to the following distribution. For any i, j ∈ {0, 1}
that are not both 0, if either pi < ε′ or qj < ε′, we define the distribution Dij on {0, 1}m to be
a fixed constant (e.g., Pr[Dij = 0m] = 1); otherwise since both Xi and Yj have min-entropy
at least n− log(1/ε′), 2Ext gives a non-malleable code and thus 2Ext(T (Zij) is ε-close to a
distribution Dij independent of s. We let D00 be the distribution obtained by the identity
function, i.e., for any s, D00 is fixed to be I(s) = s. We now claim that 2Ext(T (Zs)) is close
to the distribution

∑
i,j piqjDij . We have∣∣∣∣∣∣2Ext(T (Zs))−

∑
i,j

piqjDij

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i,j

αij2Ext(T (Zij))−
∑
i,j

piqjDij

∣∣∣∣∣∣
≤
∑
i,j

|αij2Ext(T (Zij))− piqjDij | .

For any i, j ∈ {0, 1}, if either pi < ε′ or qj < ε′, we have the following bound.

|αij2Ext(T (Zij))− piqjDij | ≤ |αij2Ext(T (Zij))|+ |piqjDij | ≤ 2m+1ε′ + ε′ < 2m+2ε′.

Otherwise if i, j are not both 0 we have the following bound.

|αij2Ext(T (Zij))− piqjDij | ≤ piqj |2Ext(T (Zij))−Dij |+ |(αij − piqj)2Ext(T (Zij))|
≤ piqjε+ 2m+2ε′.

For the case of i = j = 0, we have that for any (x, y) ∈ Supp(Z00), f(x) = x and g(y) = y.
Thus 2Ext(T (Zij)) = s = D00 and we have

|αij2Ext(T (Zij))− piqjDij | ≤ piqj |2Ext(T (Zij))−Dij |+ |(αij − piqj)2Ext(T (Zij))|
≤ 2m+2ε′.

Therefore altogether we have∣∣∣∣∣∣2Ext(T (Zs))−
∑
i,j

piqjDij

∣∣∣∣∣∣ ≤
∑
i,j

(piqjε+ 2m+2ε′) = ε+ 2m+4ε′.

Since
∑
i,j piqjDij is obtained by G(s) where G is a fixed probability distribution on the

identity function and constant functions (the distribution of G only depends on f and g, but
not on s), this implies that we have a non-malleable code in the 2 split-state model with
error ε+ 2m+4ε′. J

We now have the following theorem.

I Theorem 79. There are constants 0 < η, µ < 1 such that for any n ∈ N and 2−
µn

logn ≤ ε ≤ η
there exists an explicit non-malleable code in the 2-split-state model with block length 2n, rate
Ω(log log log(1/ε)

log log(1/ε)) and error ε.

Proof. We combine Theorem 75 and Lemma 77. Note that in Theorem 75, the construction
is itself a two-source extractor for entropy (1 − γ)n with error O(log(1/ε1)ε2). To apply
Theorem 75, we just need to ensure that

n ≥ C log log(1/ε1)
log log log(1/ε1) log(n/ε2)

X. Li 28:45

for some constant C > 1. We set ε1 = ε/2 and ε2 = 2−Ω(log log log(1/ε)n
log log(1/ε)). Note that

C
log log(1/ε1)

log log log(1/ε1) log(n/ε2) = O(log log(1/ε)
log log log(1/ε) logn) +O(log log(1/ε)

log log log(1/ε) log(1/ε2)).

Since 2−
µn

logn ≤ ε we have log log(1/ε)
log log log(1/ε) logn = O(log2 n

log logn). Thus we can set ε2 =

2−Ω(log log log(1/ε)n
log log(1/ε)) to satisfy the inequality. Now we apply Lemma 77. We can set ε′ =

O(log(1/ε1)ε2) since by Theorem 75 the construction is both a two-source extractor and
a non-malleable two-source extractor for entropy (1 − γ)n, and as long as ε ≤ η for some
appropriately chosen η < 1 we have log(1/ε′) ≤ γn. Since in Theorem 75 we set the output of
the extractor to be m = Θ(log(1/ε2)) such that 2−m = √ε2, we have that ε′ ≤ 2−(m+2) and
2m+4ε′ = O(log(1/ε1)√ε2). Thus by Lemma 77 the final error of the non-malleable code is

ε1 +O(log(1/ε1)
√
ε2) + 2m+4ε′ = ε/2 +O(log(1/ε)

√
ε2).

Finally, notice that
√
ε2 = 2−Ω(log log log(1/ε)n

log log(1/ε)) ≤ α ε

log(1/ε)

for any arbitrary constant α > 0, since the latter is at least 1
n2−

µn
logn and ε2 is 2−Ω(n log logn

logn).
Thus the final error of the non-malleable code is at most ε/2 + ε/2 = ε, while the rate of the
code, by Theorem 75, is Ω(log(1/ε2)/n) = Ω(log log log(1/ε)

log log(1/ε)). J

Next, we show how to achieve better error in the non-malleable two-source extractor and
non-malleable codes. Recall that a bottleneck for error is the use of Reed-Solomon code in
the construction. In order to get better error, we instead use a binary linear error correcting
code and its generating matrix. It is easy to show using standard probabilistic argument
that there exists a binary generating matrix that satisfies our requirements.

I Theorem 80. There exists constants 0 < α, β < 1 such that for any n ∈ N there exists an
n×m matrix over F2 with n = βm which is the generating matrix of an asymptotically good
code. Furthermore, Any sub-matrix formed by taking αn columns and the last n/2 rows has
full column rank. In addition, for some ε = 2−O(n), an ε-biased sample space over nm bits
generates such a matrix with probability 1− 2−Ω(n).

Proof. We take an ε-biased sample space over nm bits for some ε = 2−O(n). First, consider
the sum of the rows over any non-empty subset of the rows. The sum is an m-bit string such
that any non-empty parity is ε-close to uniform. Thus by the XOR lemma it is 2m/2ε-close
to uniform. We know a uniform m-bit string has weight d = m/4 with probability at least
1− 2−Ω(m). Thus for this string the probability is at least 1− 2−Ω(m) − 2m/2ε. By a union
bound the total failure probability is at most 2n(2−Ω(m) + 2m/2ε) = 2−Ω(n) by an appropriate
choice of β and ε = 2−O(n).

Next, consider any sub-matrix formed by taking βm columns and the last n/2 rows, if it’s
truly uniform, then the probability that it has full column rank is at least 1− αn2αn−n/2 ≥
1− 2−n/4 for α < 1/5. Now by a union bound the total failure probability is at most(

m

αn

)
(2−n/4 + ε) ≤

(em
αn

)αn
2−n/4+1 =

(
e

βα

)αn
2−n/4+1,

if we choose ε < 2−n/4. Note that for a fixed β, the quantity (e
βα)α goes to 1 as α goes

to 0. Thus we can choose α small enough such that this failure probability is also 2−Ω(n).
Therefore altogether the failure probability is 2−Ω(n). J

CCC 2019

28:46 Partially Optimal Non-Malleable Extractors and Codes

Note that an ε-biased sample space over nm bits can be generated using O(log(nm/ε)) =
O(n) bits if ε = 2−O(n). Now for any length n ∈ N , we can compute the generating matrix
(either using an ε-biased sample space or compute it deterministically in 2O(n) time) once in
the pre-processing step, and when we do encoding and decoding of the non-malleable code,
all computation can be done in polynomial time.

Combining Theorem 67 and Theorem 55, we immediately obtain the following theorem.

I Theorem 81. For any n ∈ N there exists a non-malleable code with efficient encoder-
/decoder in the 2-split-state model with block length 2n, rate Ω(log logn/ logn) and error
= 2−Ω(n log logn/ logn).

8 Discussion and Open Problems

Several natural open problems remain here. The most intriguing one is how far we can push
our new techniques. As mentioned above, one bottleneck here is that the computation of the
merger is not a small space computation. If one can find a more succinct way to represent the
computation, then it will certainly lead to further improvements (e.g., decrease the entropy
requirement in two-source extractors to O(logn

√
log logn)). If in addition we can find a way

to apply the recursive construction as in Nisan’s generator [59], then it is potentially possible
to decrease the entropy requirement in two-source extractors to O(logn log log logn). We also
believe our approach has the potential to eventually achieve truly optimal (up to constants)
constructions. In addition, our techniques of treating the errors separately in non-malleable
two-source extractors, may be useful in helping improve the rate of non-malleable codes for
other classes of tampering functions (e.g., the affine tampering function and small depth
circuits studied in [14]).

References

1 D. Aggarwal, Y. Dodis, T. Kazana, and M. Obremski. Non-malleable Reductions and
Applications. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing,
2015.

2 Divesh Aggarwal. Affine-evasive sets modulo a prime. Technical Report 2014/328, Cryptology
ePrint Archive, 2014.

3 Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable Codes from Additive
Combinatorics. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
2014.

4 Boaz Barak, R. Impagliazzo, and Avi Wigderson. Extracting Randomness Using Few Inde-
pendent Sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, pages 384–393, 2004.

5 Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating
Independence: New Constructions of Condensers, Ramsey Graphs, Dispersers, and Extractors.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 1–10,
2005.

6 Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2 Source Dispersers for no(1)

Entropy and Ramsey Graphs beating the Frankl-Wilson Construction. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing, 2006.

7 Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma. Two-Source Condensers
with Low Error and Small Entropy Gap via Entropy-Resilient Functions. Technical Report
TR18-066, ECCC, 2018.

X. Li 28:47

8 Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Explicit two-source extractors for
near-logarithmic min-entropy. In Proceedings of the 49th Annual ACM Symposium on Theory
of Computing, 2017.

9 Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy Amplification by Public
Discussion. SIAM Journal on Computing, 17(2):210–229, April 1988.

10 Jean Bourgain. More on the sum-product phenomenon in prime fields and its applications.
International Journal of Number Theory, 1:1–32, 2005.

11 N. Chandran, B. Kanukurthi, R. Ostrovsky, and L. Reyzin. Privacy amplification with
asymptotically optimal entropy loss. In Proceedings of the 42nd Annual ACM Symposium on
Theory of Computing, pages 785–794, 2010.

12 Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-Malleable Extractors and Codes, with
their Many Tampered Extensions. In Proceedings of the 48th Annual ACM Symposium on
Theory of Computing, 2016.

13 Eshan Chattopadhyay and Xin Li. Explicit Non-Malleable Extractors, Multi-Source Extractors
and Almost Optimal Privacy Amplification Protocols. In Proceedings of the 57th Annual IEEE
Symposium on Foundations of Computer Science, 2016.

14 Eshan Chattopadhyay and Xin Li. Non-Malleable Codes and Extractors for Small-Depth
Circuits, and Affine Functions. In Proceedings of the 49th Annual ACM Symposium on Theory
of Computing, 2017.

15 Eshan Chattopadhyay and David Zuckerman. Non-malleable Codes against Constant Split-
State Tampering. In Proceedings of the 55th Annual IEEE Symposium on Foundations of
Computer Science, pages 306–315, 2014.

16 Eshan Chattopadhyay and David Zuckerman. Explicit Two-Source Extractors and Resilient
Functions. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, 2016.

17 Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In ITCS,
pages 155–168, 2014.

18 Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable Coding against Bit-Wise and
Split-State Tampering. In TCC, pages 440–464, 2014.

19 Benny Chor and Oded Goldreich. Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

20 Gil Cohen. Local Correlation Breakers and Applications to Three-Source Extractors and
Mergers. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science, 2015.

21 Gil Cohen. Making the Most of Advice: New Correlation Breakers and Their Applications. In
Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science, 2016.

22 Gil Cohen. Non-Malleable Extractors - New Tools and Improved Constructions. In Proceedings
of the 31st Annual IEEE Conference on Computational Complexity, 2016.

23 Gil Cohen. Non-Malleable Extractors with Logarithmic Seeds. Technical Report TR16-030,
ECCC, 2016.

24 Gil Cohen. Two-Source Extractors for Quasi-Logarithmic Min-Entropy and Improved Privacy
Amplification Protocols. In Proceedings of the 49th Annual ACM Symposium on Theory of
Computing, 2017.

25 Gil Cohen, Ran Raz, and Gil Segev. Non-Malleable Extractors with Short Seeds and Applica-
tions to Privacy Amplification. SIAM Journal on Computing, 43(2):450–476, 2014.

26 Gil Cohen and Leonard Schulman. Extractors for Near Logarithmic Min-Entropy. In Proceed-
ings of the 57th Annual IEEE Symposium on Foundations of Computer Science, 2016.

27 Y. Dodis, J. Katz, L. Reyzin, and A. Smith. Robust Fuzzy Extractors and Authenticated
Key Agreement from Close Secrets. In Advances in Cryptology — CRYPTO ’06, 26th Annual
International Cryptology Conference, Proceedings, pages 232–250, 2006.

28 Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM Journal on Computing, 38:97–139, 2008.

CCC 2019

28:48 Partially Optimal Non-Malleable Extractors and Codes

29 Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy Amplification and
Non-Malleable Extractors Via Character Sums. SIAM Journal on Computing, 43(2):800–830,
2014.

30 Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptography
from weak secrets. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
pages 601–610, 2009.

31 Dean Doron, Pooya Hatami, and William Hoza. Near-Optimal Pseudorandom Generators for
Constant-Depth Read-Once Formulas. Technical Report TR18-183, ECCC, 2018.

32 Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the Method
of Multiplicities, with applications to Kakeya Sets and Mergers. In Proceedings of the 50th
Annual IEEE Symposium on Foundations of Computer Science, 2009.

33 Zeev Dvir and Avi Wigderson. Kakeya sets, new mergers and old extractors. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science, 2008.

34 Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable Codes from
Two-Source Extractors. In CRYPTO (2), pages 239–257, 2013.

35 Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-Resilient Secret Sharing. In Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’07, pages
227–237, Washington, DC, USA, 2007. IEEE Computer Society. doi:10.1109/FOCS.2007.35.

36 Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-Malleable Codes. In ICS,
pages 434–452, 2010.

37 P. Erdős. Some remarks on the theory of graphs. Bulletin of the American Mathematics
Society, 53:292–294, 1947.

38 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better
pseudorandom generators from milder pseudorandom restrictions. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science, 2012.

39 Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Constant-rate Non-malleable Codes in
the Split-state Model. Technical Report Report 2017/1048, Cryptology ePrint Archive, 2018.

40 Tom Gur and Igor Shinkar. An Entropy Lower Bound for Non-Malleable Extractors. Technical
Report TR18-008, ECCC, 2018.

41 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced Expanders and
Randomness Extractors from Parvaresh-Vardy Codes. Journal of the ACM, 56(4), 2009.

42 Yael Kalai, Xin Li, and Anup Rao. 2-Source Extractors Under Computational Assumptions
and Cryptography with Defective Randomness. In Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, pages 617–628, 2009.

43 Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network Extractor Protocols.
In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 654–663, 2008.

44 B. Kanukurthi and L. Reyzin. Key agreement from close secrets over unsecured channels. In
EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2009.

45 Bhavana Kanukurthi, Lakshmibhavana Obbattu, and Sruthi Sekar. Four-state Non-malleable
Codes with Explicit Constant Rate. In Fifteenth IACR Theory of Cryptography Conference,
2017.

46 Xin Li. Improved Constructions of Three Source Extractors. In Proceedings of the 26th Annual
IEEE Conference on Computational Complexity, pages 126–136, 2011.

47 Xin Li. Design Extractors, Non-Malleable Condensers and Privacy Amplification. In Proceedings
of the 44th Annual ACM Symposium on Theory of Computing, pages 837–854, 2012.

48 Xin Li. Non-Malleable Extractors, Two-Source Extractors and Privacy Amplification. In
Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pages
688–697, 2012.

https://doi.org/10.1109/FOCS.2007.35

X. Li 28:49

49 Xin Li. Extractors for a Constant Number of Independent Sources with Polylogarithmic
Min-Entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science, pages 100–109, 2013.

50 Xin Li. New Independent Source Extractors with Exponential Improvement. In Proceedings
of the 45th Annual ACM Symposium on Theory of Computing, pages 783–792, 2013.

51 Xin Li. Non-Malleable Condensers for Arbitrary Min-Entropy, and Almost Optimal Protocols
for Privacy Amplification. In 12th IACR Theory of Cryptography Conference, pages 502–531.
Springer-Verlag, 2015. LNCS 9014.

52 Xin Li. Three Source Extractors for Polylogarithmic Min-Entropy. In Proceedings of the 56th
Annual IEEE Symposium on Foundations of Computer Science, 2015.

53 Xin Li. Improved Two-Source Extractors, and Affine Extractors for Polylogarithmic Entropy.
In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science,
2016.

54 Xin Li. Improved Non-Malleable Extractors, Non-Malleable Codes and Independent Source
Extractors. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing,
2017.

55 C. J. Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up to Constant
Factors. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
602–611, 2003.

56 Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries. In
Advances in Cryptology — CRYPTO ’97, 17th Annual International Cryptology Conference,
Proceedings, 1997.

57 Raghu Meka. Explicit resilient functions matching Ajtai-Linial. In Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2015.

58 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom Generators for Width-3
Branching Programs. Technical Report TR18-112, ECCC, 2018.

59 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12:449–461, 1992.

60 Noam Nisan and David Zuckerman. Randomness is Linear in Space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

61 Anup Rao. Extractors for a Constant Number of Polynomially Small Min-entropy Independent
Sources. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006.

62 Ran Raz. Extractors with Weak Random Seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

63 Renato Renner and Stefan Wolf. Unconditional authenticity and privacy from an arbitrarily
weak secret. In Advances in Cryptology — CRYPTO ’03, 23rd Annual International Cryptology
Conference, Proceedings, pages 78–95, 2003.

64 Salil P. Vadhan. Constructing Locally Computable Extractors and Cryptosystems in the
Bounded-Storage Model. J. Cryptology, 17(1):43–77, 2004. doi:10.1007/s00145-003-0237-x.

CCC 2019

https://doi.org/10.1007/s00145-003-0237-x

	Introduction
	Seedless extractors
	Non-malleable extractors
	Our Results
	Overview of The Constructions and Techniques

	Preliminaries
	Probability Distributions
	Average Conditional Min Entropy
	Prerequisites from Previous Work

	Alternating Extraction
	Non-Malleable Independence Preserving Merger
	Correlation Breaker with Advice
	Asymmetric correlation breaker

	The Constructions of Non-Malleable Extractors
	Non-Malleable Two-Source Extractor and Non-Malleable Code
	A new advice generator

	Discussion and Open Problems

