
Average-Case Quantum Advantage with Shallow
Circuits
François Le Gall
Graduate School of Informatics, Kyoto University,
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
legall@i.kyoto-u.ac.jp

Abstract
Recently Bravyi, Gosset and König (Science 2018) proved an unconditional separation between the
computational powers of small-depth quantum and classical circuits for a relation. In this paper we
show a similar separation in the average-case setting that gives stronger evidence of the superiority
of small-depth quantum computation: we construct a computational task that can be solved on
all inputs by a quantum circuit of constant depth with bounded-fanin gates (a “shallow” quantum
circuit) and show that any classical circuit with bounded-fanin gates solving this problem on a
non-negligible fraction of the inputs must have logarithmic depth. Our results are obtained by
introducing a technique to create quantum states exhibiting global quantum correlations from any
graph, via a construction that we call the extended graph.

Similar results have been very recently (and independently) obtained by Coudron, Stark and
Vidick (arXiv:1810.04233), and Bene Watts, Kothari, Schaeffer and Tal (STOC 2019).
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1 Introduction

1.1 Background and our results

A fundamental problem in quantum complexity theory is to prove the superiority of quantum
computation over classical computation. While this has been shown in constrained models of
computation such as query complexity (see for instance [4] for a recent survey), in weak models
of computation like finite-state automata [21], and when considering relativized complexity
classes (see, e.g., [7] for the first results and [25] for the most recent breakthrough), no
definite answer is known in standard computational models such as Turing machines or
general circuits. Indeed, since the complexity class BQP corresponding to the problems that
can be solved efficiently by a quantum computer satisfies the inclusions P ⊆ BQP ⊆ PSPACE,
unconditionally separating P and BQP cannot be shown without separating P and PSPACE.

A recent active research area focuses on conditionally showing the superiority of quantum
computation. Under several assumptions from computational complexity such as non-
collapse of the polynomial hierarchy, the superiority of quantum computation with respect to
classical computation has been shown in the standard circuit model in the worst-case setting
[1, 2, 3, 11, 15, 17, 16, 23, 27] and even in the average-case setting [1, 2, 3, 8, 12, 13, 17].
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21:2 Average-Case Quantum Advantage with Shallow Circuits

Note that showing the superiority in the average-case setting is a much stronger evidence of
the superiority of quantum computation than a proof for the worst-case setting.

A recent breakthrough by Bravyi, Gosset and König [9, 10] showed an unconditional
separation between the computational powers of quantum and classical small-depth circuits:
they constructed a computational problem that can be solved by quantum circuits of constant
depth with bounded-fanin1 gates (“shallow quantum circuits”) and showed that any classical
circuit with bounded fanin gates solving this problem on all inputs must have depth Ω(logm),
where m denotes the input size. Besides being the first such unconditional separation in the
circuit model, this separation is also especially important since shallow quantum circuits
are likely to be the easiest quantum circuits to experimentally implement, due to their
robustness to noise and decoherence. (Note that separations were already known when
allowing gates with unbounded fanin or fanout [18, 20, 26]. The strength of Bravyi, Gosset
and König’s result is that it holds for the weaker model of quantum circuits with bounded
fanin and fanout.)

The original classical lower bound shown in [9] required the classical circuit to output the
correct answer (with high probability) on each input, i.e., this was only a worst-case hardness
result. Showing the advantages of shallow quantum circuits for a distribution (i.e., proving
a corresponding average-case hardness result), which would give a significantly stronger
evidence of the advantage of quantum shallow circuits, was discussed in [9, Section 5] and
referred to as a “challenging open question”. The recently published journal version [10]
partially answers this open question: it presents an average-case lower bound showing that
any classical circuit that outputs the correct answer on a constant fraction of some restricted
subset of the inputs (which can be efficiently sampled) must have logarithmic depth. In
other words, it shows that any sublogarithmic-depth classical algorithm will fail with some
constant probability on a input chosen uniformly at random in this restricted subset.

In this work we give a stronger average-case hardness result. Our main result is the
following theorem.

I Theorem 1. There exists a relation R ⊆ {0, 1}M × {0, 1}N for which the following two
assertions hold.2

There is a constant-depth quantum circuit with bounded-fanin gates (i.e., a shallow
quantum circuit) that on any input x ∈ {0, 1}M outputs an element in the set R(x) with
probability 1.
There is a constant γ > 0 such that any randomized circuit C with bounded-fanin gates
satisfying

1
2M

∑
x∈{0,1}M

Pr[C(x) ∈ R(x)] ≥ 1
exp(γ

√
M)

has depth Ω(logM).
Theorem 1 thus shows the existence of a computational problem that can be solved by a
shallow quantum circuit on all inputs but such that any classical circuit with bounded-fanin
gates solving this problem on a non-negligible fraction of the inputs must have logarithmic

1 In this paper the term bounded-fanin means, as usual, that the fanin is bounded from above by a
constant.

2 As usual in computational complexity, the subset R ⊆ {0, 1}M × {0, 1}N is interpreted as the following
computational problem: given an input x ∈ {0, 1}M , output any element of the set {z ∈ {0, 1}N |(x, z) ∈
R}. Through this paper we will use the convenient notation R(x) = {z ∈ {0, 1}N | (x, z) ∈ R}, for any
x ∈ {0, 1}N .
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depth. This gives an average-case result that is a strengthening of the average-case result
from [10] with respect to two aspects. First, our lower bound holds for any classical circuit
that solves the problem on a non-negligible fraction of the inputs (even exponentially small),
and not only on a constant fraction. Second, our statement does not make any restriction on
the set of inputs for which the hardness is established, i.e., it shows that any sublogarithmic-
depth classical algorithm will fail with high probability on an input chosen uniformly at
random in the whole set {0, 1}M .

1.2 Overview of our techniques
Main technical result. Our central technical result is the following theorem.

I Theorem 2. There exists a relation R ⊆ {0, 1}m × {0, 1}n for which the following two
assertions hold.

There is a constant-depth quantum circuit with bounded-fanin gates (i.e., a shallow
quantum circuit) that on any input x ∈ {0, 1}m outputs a string in the set R(x) with
probability 1.
There is a constant α > 0 such that any randomized circuit C with bounded-fanin gates
satisfying

1
2m

∑
x∈{0,1}m

Pr[C(x) ∈ R(x)] ≥ 1− α

has depth Ω(logm).
Theorem 1 is obtained from Theorem 2 by amplifying the soundness using standard techniques:
the relation R is obtained by taking the direct product of t copies of the relation R for some
sufficiently large integer t (the sizes of the inputs and outputs in R are thus M = mt and
N = nt). We show in Section 6 how the soundness is then amplified from 1− α to (1− α)t′

with t′ ≈ t by this process and observe that (1− α)t′ is upper bounded by 1/ exp(γ
√
M) for

some constant γ. Note that this approach can also be applied to amplify the soundness of
the average-case result in [10], which directly gives a result similar to Theorem 1 (but for a
hard distribution that is not simply the uniform distribution).

Techniques from prior works. Before presenting our techniques we first describe how the
result from [9, 10] was obtained. A central technical tool is a simple but fascinating result
by Barrett et al. [5] that shows that correlations arising from local entanglement cannot be
simulated classically without global interaction. This result was also used recently to show a
separation between quantum and classical distributed computing [22]. More precisely, [5]
considers the problem of simulating the measurement outcomes that occur when measuring
each qubit of a well-chosen quantum state on n qubits (the graph state associated with a
cycle of length n) in either the X-basis or the Y -basis (the choice of the basis depends on
input bits), and shows that creating the resulting output distribution classically requires
coordinating the outcomes of qubits located at distance Ω(n) on the cycle. This result can
actually easily be adapted to show that any classical circuit with one-dimensional nearest-
neighbor architecture and bounded-fanin gates requires logarithmic depth to create this
distribution, since otherwise distant wires cannot interact. Since a graph state over a cycle
(and more generally over any constant-degree graph) can be created using a shallow quantum
circuit, this already gives an unconditional separation between the computational power of
quantum shallow circuits and the computational power of this restricted class of small-depth
classical circuits.

CCC 2019



21:4 Average-Case Quantum Advantage with Shallow Circuits

The main contribution of [9, 10] is to show how to get a similar separation without
restricting the topology of the classical circuit (other than its depth, naturally). A first
important observation is that while interactions can now naturally occur between distant
wires, any sublogarithmic-depth bounded-fanin classical circuit C cannot create interactions
between all pairs of wires. Ref. [9] showed that it is then always possible to find a large subset
of wires SC that are connected as a long cycle and in which distant wires do not interact.
The key idea is then to consider a computational problem (called 2D Hidden Linear Function)
where the input is divided in two parts: one part specifies the basis in which the qubits of
the graph state are measured and the second part the topology of the graph state. By using
the second part of the input to force the graph state to use only nodes corresponding to
wires in SC , the same argument as in [5] can be again applied on the cycle defined by SC to
conclude that the sublogarithmic-depth classical circuit C cannot output a valid output with
high probability.

Our approach. Let us now describe the main ideas of our approach to prove Theorem 2.
Our main technical tool, described in Section 3 is a generalization of the construction from [5]:
we show how to generate useful quantum correlations not only from a cycle but also from
any undirected graph G. The key insight is to consider what we call the extended graph
of G, denoted G, which is obtained by adding a vertex on each edge of G. We show that
when measuring the qubits of the graph state corresponding to G in either the X-basis
or the Y -basis, we get probability distributions that satisfy global conditions related to
properties of subgraphs (in particular paths and cycles) of G. The conditions are described
in Theorems 5 and 6.

In order to prove our separations we consider a d3 × d3 square grid in which one vertex
(called a control vertex) is placed at the center of each 1×1 square of the grid (and connected
by 4 edges to the 4 corners of the square), and then adding one vertex on each edge. The final
graph is denoted Gd. The construction is described in Section 4. Note that by construction Gd

is an extended graph. This means that the probability distributions arising when measuring
the qubits of the graph state associated with this graph, which we denote |Gd〉, can be
described by Theorems 5 and 6.

We can now describe the computational problem that we consider to show our separation.
Let m denote the number of control vertices in Gd and n denote the total number of vertices.
Observe that m = Θ(d6) and n = Θ(d6). Given as input a string of bits x ∈ {0, 1}m, we
consider the following process: measure each qubit of the quantum state |Gd〉 in the X-basis
except the qubits corresponding to the control vertices, which are measured either in the
X-basis or in the Y -basis depending on the value of x. The relation R considered to prove
Theorem 2 simply asks, given x ∈ {0, 1}m as input, to compute any sequence of measurement
outcomes z ∈ {0, 1}n that has non-zero probability of being obtained by this process. Note
that this problem can be solved by shallow quantum circuits: the graph Gd has constant
degree and thus the graph state |Gd〉 can be constructed in constant depth.

In Section 5 we first show that for any sublogarithmic-depth bounded-fanin classical
circuit C there exists a subset SC of wires that are connected as a long cycle and in which
distant wires do not interact. The proof of this claim is similar to what was done in [9, 10].
We then show that this claim, along with Theorems 5 and 6, are enough to prove that the
sublogarithmic-depth classical circuit C cannot output a valid output with high probability.
The key point of our argument – and the reason why our result holds for average-case
hardness on the whole set {0, 1}m of possible inputs and not only for worst-case hardness or
average-case hardness on a restricted set of inputs – is that we do not need to construct the
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graph state corresponding to the subgraph induced by SC , i.e., we do not need to adapt the
topology of the measured graph state to the circuit. Theorems 5 and 6 guarantee that we can
instead work with the graph state |Gd〉 corresponding to the whole graph and simply look at
the relevant part of the probability distribution (the part corresponding to the wires in SC).

Related works. A similar result has been recently (and independently) obtained by Coudron,
Stark and Vidick and expanded into a framework for robust randomness expansion [14]. The
proof techniques are nevertheless different: [14] constructs a problem hard for small-depth
classical circuits by starting with a non-local game and showing how to plant a polynomial
number of copies of the game into a graph. Our approach, on the other hand, starts with a
graph and shows how to create from it a quantum state exhibiting global quantum correlations
that cannot be simulated by small-depth classical circuits with bounded-fanin gates.

An even stronger result has been very recently announced: Bene Watts, Kothari, Schaeffer
and Tal [6] have shown that the 2D Hidden Linear Function introduced in [9, 10] cannot be
solved on a non-negligible fraction of the inputs even by small-depth classical circuits with
unbounded-fanin parity gates.

2 Preliminaries

2.1 General notations and a technical lemma
Given a Boolean function f : A→ {0, 1} on a finite set A, we write |f | the number of elements
a ∈ A such that f(a) = 1, i.e., |f | =

∑
a∈A f(a). Similarly, for any finite binary string

x ∈ {0, 1}∗, we denote |x| the Hamming weight of x, i.e., the number of non-zero bits of x.
All the graphs considered in this paper will be undirected. Given a graph G = (V,E)

and any vertex u ∈ V , we denote

N (u) = {v ∈ V | {u, v} ∈ E}

the set of neighbors of u. Given a path p in the graph G we will often be mainly interested
only in the set of vertices on the path. For a vertex v ∈ V , we will thus use the convenient
notation v ∈ p to express the fact that v is on the path p.

The notation ⊕ will denote the addition modulo 2 (i.e., the bit parity). We will use the
following lemma, which was first implicitly mentioned in [5], and stated formally (but in
a form slightly different from the form we present below) in [9, 10]. For completeness we
include a proof.

I Lemma 3. ([5, 9, 10]) Consider any affine function q : {0, 1}3 → {0, 1} and any three
affine functions q1 : {0, 1}2 → {0, 1}, q2 : {0, 1}2 → {0, 1}, q3 : {0, 1}2 → {0, 1} such that

q1(b2, b3)⊕ q2(b1, b3)⊕ q3(b1, b2) = 0 (1)

holds for any (b1, b2, b3) ∈ {0, 1}3. Then at least one of the four following equalities does
not hold:

q(0, 0, 0) = 0, (2)
q(0, 1, 1)⊕ q1(1, 1) = 1, (3)
q(1, 0, 1)⊕ q2(1, 1) = 1, (4)
q(1, 1, 0)⊕ q3(1, 1) = 1. (5)

CCC 2019



21:6 Average-Case Quantum Advantage with Shallow Circuits

Proof. Consider any affine function q : {0, 1}3 → {0, 1} and any three affine functions
q1, q2, q3 : {0, 1}2 → {0, 1} satisfying Condition (1) for all (b1, b2, b3) ∈ {0, 1}3. These four
functions can be written as

q(b1, b2, b3) = α0 ⊕ α1b1 ⊕ α2b2 ⊕ α3b3, (6)
q1(b2, b3) = β0 ⊕ β2b2 ⊕ β3b3, (7)
q2(b1, b3) = γ0 ⊕ γ1b1 ⊕ β3b3, (8)
q3(b1, b2) = (β0 ⊕ γ0)⊕ γ1b1 ⊕ β2b2. (9)

for some coefficients α0, α1, α2, α3, β0, β2, β3, γ0, γ1 ∈ {0, 1}. Assume that these functions
satisfy all the four equations (2)-(5). Equation (2) implies that α0 = 0. Consider the quantity

λ = q(1, 1, 0)⊕ q1(1, 1)⊕ q(0, 1, 1)⊕ q2(1, 1)⊕ q(1, 0, 1)⊕ q3(1, 1).

Computing this quantity using the four equations (6)-(9) gives λ = 3α0 = 0. On the other
hand, computing λ using the three equations (3)-(5) gives λ = 1⊕ 1⊕ 1 = 1, which leads to
a contradiction and implies that the four equations (2)-(5) cannot hold simultaneously. J

2.2 Quantum computation: graph states and their measurements
Quantum gates. We assume that the reader is familiar with the basics of quantum compu-
tation and refer to [24] for a standard reference. We will use the Hadamard gate H and the
Pauli X, Y and Z gates:

H = 1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

where i denotes the imaginary unit of complex numbers. Note that XZ = −ZX = −iY .
We will use two kinds of measurements: measurements in the X-basis and measurements
in the Y -basis, which correspond to projective measurements with observables X and Y ,
respectively. Concretely, a measurement in the X-basis is realized by applying a Hadamard
gate to this qubit and then measuring it in the computational basis {|0〉, |1〉}. A measurement
in the Y -basis is realized by applying the gate

1√
2

(
1 −i
1 i

)
to this qubit and then measuring it in the computational basis.3

Graph states. Graph states are quantum states that can be described using graphs [19].
Let G = (V,E) be any undirected graph. The graph state associated with G is the quantum
state on |V | qubits obtained by first constructing the state⊗

u∈V

|0〉Qu
,

3 The outcome of a measurement in the X-basis or the Y -basis is often defined as an element in {−1, 1},
i.e., the outcome corresponds to one of two eigenvalues of the observables X and Y . In our description
the measurement outcome is a bit (the two bits 0 and 1 correspond to the two eigenvalues 1 and −1,
respectively), which will be more convenient to describe our results.
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where each Qu represents a 1-qubit register, then applying a Hadamard gate on each register
and, finally, applying a Controlled-Z gate on (Qu,Qv) for any pair {u, v} ∈ E. We will write
|G〉 the graph state associated with G.

Graph states can equivalently be defined using the stabilizer formalism. For each vertex
u ∈ V define the operator

πu = Xu ⊗
⊗

v∈N (u)

Zv,

where we use Xu to denote the Pauli operator X applied to Register Qu and use Zv to denote
the Pauli operator Z applied to Register Qv. Observe that all these operators commute, and

πu|G〉 = |G〉

for each u ∈ G. The graph state |G〉 is thus the simultaneous eigenstate, associated with the
eigenvalue 1, of all these operators .

Measurements of graph states. The description of graph states using the stabilizer form-
alism is especially convenient to derive the properties of measurements we describe below
(we refer to [24] for details of the general discussion of measurements of stabilizer states and
state below only the properties we will use in this paper).

Consider the graph state |G〉 of a graph G = (V,E). Let UX , UY ⊆ V be any two disjoint
subsets of vertices. Assume that we measure Register Qu, for each vertex u ∈ UX , in the
X-basis and measure Register Qv, for each vertex v ∈ UY , in the Y -basis. The observable
corresponding to this measurement is

M =
∏

u∈UX

Xu

∏
v∈UY

Yv.

For each u ∈ UX ∪ UY , let zu ∈ {0, 1} denote the random variable corresponding to the
measurement outcome of the measurement performed on Register Qu. Let us denote

z =
⊕

u∈UX∪UY

zu

the random variable corresponding to the parity of all the measurement outcomes. Using the
stabilizer formalism it is easy to show that the value of this random variable is as follows:

if M can be written as M =
∏

u∈S πu for some set S ⊆ V then z = 0 with probability 1;
if M can be written as M = −

∏
u∈S πu for some set S ⊆ V then z = 1 with probability

1;
if M cannot be written as M =

∏
u∈S πu or M = −

∏
u∈S πu for some set S ⊆ V then

z = 0 with probability 1/2 and z = 1 with probability 1/2.

3 Extended Graphs and their Graph States

In this section we describe the general construction on which our results are based.
For any undirected graph G = (V,E), let G denote the graph with |V |+ |E| vertices and

2|E| edges obtained from G by inserting a vertex at the middle of each edge of G. We call G
the extended graph of G. We will write V ∗ the set of inserted vertices and consider G as a
graph over the vertex set V ∪ V ∗. We refer to Figure 1 for an illustration.

We now define the concept of f -covering of a graph.

CCC 2019



21:8 Average-Case Quantum Advantage with Shallow Circuits

Figure 1 Example for our construction. The graph G = (V,E) is represented on the left. The
extended graph G is represented on the right. In this figure the large circles represent the vertices
in V , while the small circles represent the vertices in V ∗.

I Definition 4. Let G = (V,E) be an undirected graph and f : V → {0, 1} be any function
such that |f | is even. An f-covering of G is a set of |f |/2 paths of G such that each vertex
in {v ∈ V | f(v) = 1} appears once as an endpoint of one of these paths.

We refer to Figure 2 for an illustration. Note that the |f |/2 paths of an f -covering do not
need to be edge-disjoint.

u8 u9 u10 u11

u5 u6 u7

u1 u2 u3 u4

Figure 2 Illustration of the concept of f -covering. Here V = {u1, . . . , u11} and f : V → {0, 1}
is defined as follows: f(u2) = f(u4) = f(u5) = f(u10) = 1 and f(u1) = f(u3) = f(u6) = f(u7) =
f(u8) = f(u9) = f(u11) = 0. The two paths depicted in red form an f -covering.

1. Construct the graph state over G.
2. For each v ∈ V such that f(v) = 1, measure the qubit of the node v in the Y -basis.

Measure the qubits of all the other nodes of G in the X-basis.

Figure 3 The process P(G, f).

Given a graph G = (V,E) and a function f : V → {0, 1}, consider the process P(G, f)
described in Figure 3. For any vertex v ∈ V ∪ V ∗, let zv denote the random variable
corresponding to the outcome of the measurement performed on the qubit of node v. The
following two theorems describe the correlations among these random variables.

I Theorem 5. For any cycle C of G the following equality holds with probability 1:⊕
v∈C∩V ∗

zv = 0. (10)

Proof. In Process P(G, f) all the vertices in C ∩ V ∗ are measured in the X-basis. Since C is
a cycle we have∏

v∈C∩V ∗

πv =
∏

v∈C∩V ∗

Xv,
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which is the measurement operator corresponding to this measurement. The discussion
of Section 2.2 implies that the parity of all the measurement outcomes is always zero, as
claimed. J

I Theorem 6. Assume that |f | is even and let {p1, . . . , p|f |/2} be any f -covering of G. Let
us write

zV =
⊕
v∈V

zv.

Then the following equality holds with probability 1:

zV ⊕
|f |/2⊕
i=1

⊕
v∈pi∩V ∗

zv =
{

0 if |f | mod 4 = 0,
1 if |f | mod 4 = 2.

(11)

Proof. Let V1 = {u1, . . . , u|f |/2, v1, . . . , v|f |/2} ⊆ V denote the set of vertices that appear as
an endpoint of one of the paths. Let V2 ⊆ V ∗ denote the set of vertices in V ∗ that appear
on an odd number of paths (remember that the paths in an f -covering do not need to be
disjoint). Note that the equation we want to show (Equation (11)) can be rewritten as

zV ⊕
⊕
v∈V2

zv =
{

0 if |f | mod 4 = 0,
1 if |f | mod 4 = 2.

(12)

From the definition of an f -covering, we have V1 = {v ∈ V | f(v) = 1}, and thus in
Process P(G, f) all the vertices in V1 are measured in the Y -basis, while the vertices in V \V1
and the vertices in V2 are measured in the X-basis. The observable corresponding to this
measurement is thus∏

u∈V1

Yu

∏
v∈(V \V1)∪V2

Xv. (13)

Observe that∏
v∈V

πv =
∏
v∈V

Xv.

This simple but crucial property follows from our construction: G is obtained from G by
inserting a vertex on each edge of G. For each i ∈ {1, . . . , |f |/2} we also have

∏
v∈pi∩V ∗

πv = Zui

 ∏
v∈pi∩V ∗

Xv

Zvi
.

Thus(∏
v∈V

πv

)
×

|f |/2∏
i=1

∏
v∈pi∩V ∗

πv

 =
(∏

u∈V1

XuZu

)
×

 ∏
v∈V \V1

Xv

×(∏
v∈V2

Xv

)

= (−1)|f |/2
∏

u∈V1

Yu

∏
v∈(V \V1)∪V2

Xv.

When |f | mod 4 = 0 the observable of Equation (13) can then be written as a product
of generators of the graph state, and thus the parity of all the measurement outcomes is 0.
When |f | mod 4 = 2 the additive inverse of this observable can be written as a product of
generators of the graph states, and thus the parity of all the measurement outcomes is 1.
This proves Equation (12), and thus Equation (11). J

CCC 2019



21:10 Average-Case Quantum Advantage with Shallow Circuits

Remark. The conditions of Equations (10) for all the cycles C of G and the condition of
Equation (11) together actually completely characterize the distribution of the outcomes
of P(G, f): the variables {zv}v∈V ∪V ∗ are uniformly distributed over the set of all values
satisfying all these equations. Note that when G is a connected graph then this corresponds
to satisfying exactly |E| − |V | + 2 independent linear equations. Indeed, |E| − (|V | − 1)
equations suffice to guarantee that Equation (10) holds for all the cycles C of G, as can be
seen by considering a spanning tree of G: the spanning tree contains |V | − 1 edges and each
of the remaining |E| − (|V | − 1) edges gives rise to a cycle in G (and thus to a new linear
equation) when added to the spanning tree. A similar characterization can be easily obtained
when G is not connected as well, by considering separately each connected component.

4 Description of the Relation R

In this section we describe the computational problem we use to prove Theorem 2.

4.1 Our graph construction

For any even positive integer d, we explain how to construct two graphs Gd and Gd that we
will use to define the computational problems. The construction is illustrated in Figure 4.

The graph Gd is the graph with vertex set Vd = V 1
d ∪V 2

d defined as follows. We start with
a d3 × d3 square grid and denote V 1

d the set of vertices of this grid (observe that |V 1
d | = d6).

This grid can be divided into d4 contiguous square regions each of size d× d. We call each
region a box. In each box we place a vertex at the center of each 1× 1 square and connect
it to the four corners of the square. Let V 2

d denote the set of all these new vertices. We
have |V 2

d | = d4(d− 1)2. It will be convenient to denote those vertices uij for i, j ∈ {1, . . . , k},
where k = d2(d− 1), with the index i representing the horizontal position and the index j
representing the vertical position. This completes the description of Gd.

The graph Gd is obtained from Gd by the construction described in Section 3: one
vertex is inserted on each edge of Gd. Let V ∗d denote the introduced vertices. Note that
|V ∗d | = 2d3(d3 − 1) + 4d4(d− 1)2. Let us denote V d = V 1

d ∪ V 2
d ∪ V ∗d the set of all vertices in

Gd and write

n = |V d| = Θ(d6).

For any vertex u ∈ Vd, let Box(u) denote the unique d×d box in which u is included. Finally,
we denote ∂(Gd) the external border of the graph, i.e., the perimeter of the whole grid.

4.2 Definition of the relation

Let d, k and n be as in Section 4.1. Given a matrix A ∈ {0, 1}k×k, consider the process
Pd(A) described in Figure 5.

In this process each node of Gd performs a measurement and outputs one bit. We represent
the whole output by a binary string of length n by fixing an arbitrary ordering of the n
nodes of Gd. With this representation of measurement outcomes as strings, let

Λd(A) ⊆ {0, 1}n

denote the set of all the strings that occur with non-zero probability in Process Pd(A).
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Figure 4 The graph Gd, here represented for d = 4. The vertices in V 1
d are represented in white,

the vertices in V 2
d are represented in blue and the vertices in V ∗

d are represented in green. The blue
line represents the external border of the graph. The dashed squares represent the boxes.

1. Construct the graph state over Gd.
2. For each vertex uij ∈ V 2

d , measure the qubit of the vertex uij in the X-basis if
Aij = 0, and measure it in the Y -basis if Aij = 1.
For each vertex u ∈ V 1

d ∪ V ∗d , measure the qubit of the vertex u in the X-basis.

Figure 5 The process Pd(A).

Definition of the relation R. For any even positive integer d, the computational problem
that we consider is as follows: given a matrix A ∈ {0, 1}k×k as input, where k = d2(d− 1),
compute a string from Λd(A). Note that since |Λd(A)| > 1 there are more than one valid
output. This computational problem corresponds to the relation

R =
{

(A, z) |A ∈ {0, 1}k×k and z ∈ Λd(A)
}
⊆ {0, 1}k×k × {0, 1}n.
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By setting m = k2 and identifying {0, 1}k×k with {0, 1}m, we interpret R as a subset of
{0, 1}m×{0, 1}n. This relation R is the relation that appears in the statement of Theorem 2.
To avoid confusion it will be preferable to make explicit the dependence on the parameter d.
We will thus denote this relation by Rd instead of R in the next sections.

5 Proof of Theorem 2

In this section we prove Theorem 2. Let Rd be the relation defined in Section 4.2.
In the quantum setting, the computational problem corresponding to Rd can obviously

be solved by directly implementing the process Pd(A). This can be done by a constant-depth
quantum circuit since the graph Gd, which has constant degree, can be constructed in constant
depth. Note that the description of the quantum circuit can be computed easily, e.g., by a
logarithmic-space classical Turing machine.

We now show the classical lower bound, i.e., show that any classical circuit of sublogar-
ithmic depth with bounded-fanin gates cannot output a string in Λd(A) with high probability
on a non-negligible fraction of the inputs A. For concreteness (and without loss of generality)
we will assume in this section that all the gates in the classical circuit have fanin at most 2.

Consider any randomized classical circuit Cd, with gates of fanin at most 2, of depth at
most 1

8 log2 m for the relation Rd. The circuit has m = k2 = Θ(d6) input wires to receive
the matrix A and n output wires. Remember that n = Θ(d6). To simplify the presentation
we assume that d is large enough so that the inequality

3n1/7 < d− 2 (14)

holds. In Section 5.1 below we show how to associate the wires of Cd to the nodes of Gd.
In Section 5.2 we present technical results that exploit this correspondence. Finally, in
Section 5.3 we give an upper bound on the success probability of Cd and conclude the proof
of Theorem 2.

5.1 Correspondence between Cd and Gd

We associate the wires of Cd to the nodes of Gd in the following way. For any vertex uij ∈ V 2
d ,

we denote xuij the input wire of Cd that receives the entry Aij of A. For any vertex u ∈ V d,
we denote zu the output wire of Cd that should output the outcome of the measurement
performed at vertex u.

For any vertex u ∈ V d, we denote L(zu) the set of all vertices v ∈ V 2
d such that the input

wire xv is in the lightcone of zu (i.e., the value of zu depends on the value of xv). For any
u ∈ V 2

d , we denote L(xu) the set of all vertices v ∈ V d such that the output wire zv is in the
lightcone of xu (i.e., the value of zv depends on the value of xu). Since the depth of Cd is at
most 1

8 log2 m and since each gate of Cd has fanin at most 2, we have |L(zu)| ≤ m1/8 ≤ n1/8

for each u ∈ V d. Let us define the set

Γ = {u ∈ V 2
d | L(xu) > n1/7}.

Since the number of input wires is |V 2
d | = Θ(n), a simple counting argument shows that

|Γ| = O(n55/56), i.e., most input wires have small lightcones as well.
Define the sets U ,V,W ⊆ V 2

d as follows:

U =
{
uij | i ∈ {1, . . . , bk/3c} and j ∈ {1, . . . , bk/3c}

}
\ Γ,

V =
{
uij | i ∈ {d2k/3e , . . . , k} and j ∈ {1, . . . , bk/3c}

}
\ Γ,

W =
{
uij | i ∈ {d2k/3e , . . . , k} and j ∈ {d2k/3e , . . . , k}

}
\ Γ.
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These three sets represent the vertices in V 2
d ∩ Γ that are in the upper left part, the upper

right part, and the lower right part of the graph Gd, respectively. From the above discussion
we have |U| = Θ(n), |V| = Θ(n) and |W| = Θ(n).

5.2 Graph-theoretic arguments
We start with a first lemma, which is similar to [9, Claim 6].

I Lemma 7. The number of triples (u, v, w) ∈ U × V ×W such that the three conditions
L(xu) ∩ Box(v) = ∅ and L(xu) ∩ Box(w) = ∅;
L(xv) ∩ Box(u) = ∅ and L(xv) ∩ Box(w) = ∅;
L(xw) ∩ Box(u) = ∅ and L(xw) ∩ Box(v) = ∅.

do not simultaneously hold is O(n2+10/21).

Proof. Observe that for each u ∈ U , there are at most n1/7 boxes that intersect L(xu). Since
each box contains (d − 1)2 = O(n1/3) vertices in V 2

d , there are at most O(n10/21) vertices
v ∈ V such that Box(v) intersects L(xu). Assume that we choose a vertex v uniformly at
random in V. Then we have

Pr
v∈V

[L(xu) ∩ Box(v) 6= ∅] = O
(
n−11/21

)
.

Applying the union bound shows that if we choose a triple (u, v, w) uniformly at random
in U × V ×W, then the probability that this triple does not satisfy all the three conditions
of the lemma is O(n−11/21). Since |U × V ×W| = Θ(n3), we thus obtain the statement of
the lemma. J

The following simple lemma will be crucial for our analysis.

I Lemma 8. The number of triples (u, v, w) ∈ U × V ×W such that the three lightcones
L(xu), L(xv) and L(xw) are not pairwise disjoint is O(n2+2/7).

Proof. Let t ∈ V d be any vertex of Gd. When choosing (u, v) uniformly at random in U ×V ,
the probability that t is in L(xu) ∩L(xv) is O((n1/7/n)2) = O(n−12/7). By the union bound
this implies that when choosing a triple (u, v, w) uniformly at random in U × V ×W, the
probability that x is in more than one of the three lightcones L(xu), L(xv) and L(xw) is
O(n−12/7) as well. By the union bound again, we conclude that when choosing (u, v, w)
uniformly at random in U × V ×W, the probability that the three lightcones L(xu), L(xv)
and L(xw) are not pairwise disjoint is O(n−5/7). J

The following proposition is the main result of this subsection.

I Proposition 9. There exists a triple of vertices (u, v, w) ∈ U × V ×W such that all the
following conditions hold:
(i) the lightcones L(xu), L(xv) and L(xw) are pairwise disjoint;
(ii) there exists a cycle C containing u, v and w such that

(ii-a) C does not use any edge from the external border ∂(Gd);
(ii-b) C ∩ V 2

d = {u, v, w};
(ii-c) q1 ∩ L(xw) = ∅, q2 ∩ L(xu) = ∅ and q3 ∩ L(xv) = ∅, where q1 denotes the direct

path4 from v to w in the cycle C, q2 denotes the direct path from u to w in C and let
q3 denote the direct path from u to v in C.

4 There are two paths from v to w in the cycle C: one path going via u and one path not using u. The
direct path is the latter.
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Proof. Lemmas 7 and 8 imply that among the Θ(n3) triples (u, v, w) ∈ U × V ×W there
exists one triple such that Condition (i) and the three conditions of Lemma 7 simultaneously
hold. Let us fix such a triple.

Let u1, . . . , ud−2 denote the vertices on the right border5 of Box(u) and u′1, . . . , u
′
d−2

denote the vertices on the bottom border of Box(u). Similarly, let v1, . . . , vd−2 denote the
vertices on the left border of Box(v) and v′1, . . . , v

′
d−2 denote the vertices on the bottom

border of Box(v). Finally, let w1, . . . , wd−2 denote the vertices on the top border of Box(w)
and w′1, . . . , w′d−2 denote the vertices on the left border of Box(w). We refer to Figure 6 for
an illustration.

We can construct a path p1
i from ui to vi, a path p2

i from v′i to wi and a path p3
i from w′i

to u′i, for each i ∈ {1, . . . , d− 2}, so that the 3(d− 2) paths constructed are disjoint, do not
use any edge on the border ∂(Gd), do not go through any vertex in V 2

d , and do not contain
any vertex in Box(u) ∪ Box(v) ∪ Box(w) except their endpoint. From Inequality (14) and
since the three lightcones L(xu), L(xv) and L(xw) do not have size larger than n1/7, there
necessarily exist three indices i1, i2, i3 ∈ {1, . . . , d− 2} such that the three paths p1

i1
, p2

i2
and

p3
i3

do not contain any vertex in L(xu) ∪ L(xv) ∪ L(xv). Finally, observe that these three
paths can be completed (avoiding all vertices in V 2

d \ {u, v, w}) to obtain a cycle

u −→ ui1

p1
i1−−→ vi1 −→ v −→ v′i2

p2
i2−−→ wi2 −→ w −→ w′i3

p3
i3−−→ u′i3

−→ u

that satisfies Conditions (ii-a), (ii-b) and (ii-c). See Figure 6 for an illustration. Note that
Condition (ii-c) can be guaranteed due to the fact that (u, v, w) satisfies the three conditions
from Lemma 7. J

5.3 Upper bound on the success probability

Let (u, v, w) denote the triple from U ×V×W whose existence is guaranteed by Proposition 9.
Let C, q1, q2 and q3 denote the cycle and the three paths of Condition (ii) of the proposition.

Remember that each entry Aij of the input matrix A specifies the basis in which the qubit
of vertex uij in the graph state |Gd〉 is measured. We will say that the vertex uij is marked
if Aij = 1. The input matrix A ∈ {0, 1}k×k can then be constructed by first considering the
k2 − 3 entries corresponding to all vertices in V 2

d \ {u, v, w}, and then specifying the entries
of the three vertices u, v and w. This means that A can be represented as a pair of strings
(a, b) where a ∈ {0, 1}k2−3 and b = (bu, bv, bw) ∈ {0, 1}3.

The randomized classical circuit Cd can be seen as a deterministic circuit receiving a
random string r. Let us fix the value of this random string. Let us also fix the string
a ∈ {0, 1}k2−3 and assume that the Hamming weight |a| is even (note that |a| corresponds
to the number of marked vertices in V 2

d \ {u, v, w}). The only remaining variables are thus
the three bits bu, bv and bw.

Observe that the graph Gd remains connected when removing all the vertices on the
cycle C, due to Conditions (ii-a) and (ii-b) of Proposition 9. No vertex from V 2

d \ {u, v, w}
appears in C, from Condition (ii-b) of Proposition 9. This implies that there exists a set
of |a|/2 paths {p1, . . . , p|a|/2} such that pi ∩ C = ∅ for each i ∈ {1, . . . , |a|/2}, and each
marked vertex in V 2

d \ {u, v, w} appears once as an endpoint of one of these paths. Define

5 To simplify the presentation we exclude the two corners at the extremities of each border.
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Figure 6 The paths considered to construct the cycle C in the proof of Proposition 9 are depicted
in red. The blue line show how the paths are completed to construct the cycle C in the case i1 = 1,
i2 = 2 and i3 = 2. Note that some vertices in V 2

d are omitted in order to make the figure clearer.

the three bits

λ1 =
⊕
`∈Vd

z`,

λ2 =
|a|/2⊕
i=1

⊕
`∈pi∩V ∗

d

z`,

y =
{

λ1 ⊕ λ2 if |a| mod 4 = 0,
λ1 ⊕ λ2 ⊕ 1 if |a| mod 4 = 2.

A crucial observation is that y is an affine function of bu, bv and bw, due to Condition (i) of
Proposition 9.

Define

y1 =
⊕

`∈q1∩V ∗
d

z`, y2 =
⊕

`∈q2∩V ∗
d

z`, y3 =
⊕

`∈q3∩V ∗
d

z`.
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Condition (i) of Proposition 9 again guarantees that y1, y2 and y3 are affine functions of the
three bits bu, bv, bw. Moreover, Condition (ii-c) implies that y1 does not depend on bu, y2
does not depend on bv and y3 does not depend on bw.

Theorem 5 implies that if the output of the circuit is in the set Λd(A) (i.e., the output
corresponds to a valid outcome arising from the corresponding measurement of the graph
state |Gd〉), then the following condition should hold:

y1 ⊕ y2 ⊕ y3 = 0 for all (bu, bv, bw) ∈ {0, 1}3. (15)

Theorem 6 additionally implies that if the output of the circuit is in the set Λd(A) then the
following condition should hold:

y = 0 if (bu, bv, bw) = (0, 0, 0),
y ⊕ y1 = 1 if (bu, bv, bw) = (0, 1, 1),
y ⊕ y2 = 1 if (bu, bv, bw) = (1, 0, 1),
y ⊕ y3 = 1 if (bu, bv, bw) = (1, 1, 0).

(16)

Lemma 7 implies that there is at least one value for the triple (bu, bv, bw) for which these
conditions are not satisfied.

We have just shown that for any value of r and any value of a such that |a| is even, the
output of the circuit Cd is incorrect for at least a fraction 1/8 of the strings b = (bu, bv, bw) ∈
{0, 1}3. Since |a| is even with probability 1/2 when choosing the matrix A uniformly at
random, we conclude that for any value of r the output of the circuit is incorrect for at least
a fraction 1/16 of the matrices A ∈ {0, 1}k×k. This implies the inequality

∑
A∈{0,1}k×k

Pr
r

[Cd(A) /∈ Λd(A)] ≥ 2k2

16 .

and thus
1

2k2

∑
A∈{0,1}k×k

Pr
r

[Cd(A) ∈ Λd(A)] < 15/16.

This concludes the proof of Theorem 2.

6 Soundness Amplification for Small-Depth Circuits

In this section we show how to obtain Theorem 1 from Theorem 2. In Section 6.1 we
first present a general soundness amplification result that holds for any relation. Then in
Section 6.2 we apply this result to the relation Rd of Theorem 2 in order to obtain Theorem 1.

6.1 General result
Consider any relation R ⊆ {0, 1}m × {0, 1}n for some positive integers m and n. As usual,
this relation is interpreted as the following computational problem: given as input a string
x ∈ {0, 1}m, output one string from the set R(x) = {z ∈ {0, 1}n | (x, z) ∈ R}. For any
integer t ≥ 1, now consider the following computational problem: given as input t strings
x1, . . . , xt ∈ {0, 1}m, output one element from the setR(x1)×· · ·×R(xt). This computational
problem corresponds to the direct product of t copies of the relation R. We will write this
relation R×t and interpret it as the subset

R×t ⊆ {0, 1}mt × {0, 1}nt

by associating {0, 1}mt with the t copies of {0, 1}m and {0, 1}nt with the t copies of {0, 1}n.
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The main result of this section is the following repetition theorem, which shows that if R
cannot be computed with average success probability larger than 1− α using small-depth
classical circuits, then R×t cannot be computed with average success probability larger than
(1− α)t′ for some t′ ≈ t by circuits of the same depth. The idea is to show how to extract,
from the t copies of R making R×t, at least t′ copies on which the circuit acts independently.

I Theorem 10. Let R ⊆ {0, 1}m × {0, 1}n be a relation for which the following assertion
holds for some real numbers c ≥ 0 and α ∈ [0, 1]: any m-input n-output randomized circuit
C with bounded-fanin gates and depth at most c log2 m satisfies the inequality

1
2m

∑
x∈{0,1}m

Pr[C(x) ∈ R(x)] < 1− α.

Let t be any integer such that t ≥ 6nmc + 2. Then any (mt)-input (nt)-output randomized
circuit C ′ with bounded-fanin gates and depth at most c log2 m satisfies

1
2mt

∑
x′∈{0,1}mt

Pr[C ′(x′) ∈ R×t(x′)] < (1− α)t/(6mcn+2).

Proof. Consider any (mt)-input (nt)-output randomized circuit C ′ with gates of fanin at
most 2 and depth at most c log2 m for the relation R×t. For each i ∈ {1, . . . , t}, let Si denote
the set of wires corresponding to the inputs of the i-th copy of R in R×t and Ti denote the
set of wires corresponding to the outputs of the i-th copy of R in R×t. The following claim
is the crucial part of the proof.

B Claim 11. There exists a subset of indices I ⊆ {1, . . . , t} of size |I| ≥ t
6nmc+2 such that

L(Si) ∩ Tj = ∅ for all distinct i, j ∈ I.

Proof. Define the set

J =
{
i ∈ {1, . . . , t} |

∑
x∈Si

|L(x)| ≤ 2mcn
}
.

Since the circuit C ′ has depth c log2 m and its gates have fanin at most 2, we have |L(z)| ≤ mc

for any output wire z. Since the total number of output wires is nt, a simple counting
argument shows that |J | ≥ t/2.

Let us now construct a graph on the vertex set J as follows: two distinct vertices i, j ∈ J
are connected by an edge if and only if at least one of L(Si) ∩ Tj 6= ∅ and L(Sj) ∩ Ti 6= ∅
holds. In this graph each vertex has degree at most 2mcn+mcn = 3mcn. There thus exists6
an independent set I ⊆ J of G of size

|I| ≥ t/2
3mcn+ 1 = t

6mcn+ 2 .

This independent set is precisely the set of indices we wanted to construct. J

To lighten the notation we will assume that the set I from Claim 11 is I = {1, . . . , `} for
some integer ` (with ` ≥ t

6mcn+2 ). This assumption can be made without loss of generality.
Claim 11 implies that when the values of all the input wires in S`+1 ∪ · · · ∪ St are fixed, then

6 Here we are using a trivial result from graph theory that states that a graph of maximum degree ∆ on
N vertices has an independent set of size at least N/(∆ + 1).
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for each i ∈ {1, . . . , `} the values of the output wires in Ti only depend on the values of the
input wires in Si. This implies that for any (x`+1, . . . , xt) ∈ {0, 1}(t−`)m the inequality

1
2m`

∑
x1,...,x`∈{0,1}m

Pr[C ′(x1, . . . , x`, x`+1, . . . , xt) ∈ R×t(x1, . . . , x`, x`+1, . . . , xt)]

< (1− α)`,

holds, from our assumption on the relation R (since the depth of C ′ is at most c log2 m).
Thus

1
2mt

∑
x1,...,xt∈{0,1}m

Pr[C ′(x1, . . . , xt) ∈ R×t(x1, . . . , xt)] < (1− α)` ≤ (1− α)t/(6mcn+2),

as claimed. This concludes the proof of Theorem 10. J

6.2 Application: proof of Theorem 1
We are now able to give the proof of Theorem 1.

Proof of Theorem 1. We consider the relation Rd ⊆ {0, 1}m × {0, 1}n defined in Section
4.2 and used in Theorem 2. Remember that for this relation we have m = Θ(d6) and
n = Θ(d6). Take the integer t =

⌈
(6nm1/8 + 2)3⌉ and observe that the inequality t ≥ m27/8

holds. Define R = R×t
d . The sizes of the inputs and outputs in R are M = mt and N = nt,

respectively. Observe that t ≥ m27/8 implies t ≥ M27/35. Theorem 2 and then Theorem
10 with R = Rd imply that there exist constants c > 0 and α > 0 such that any M -input
N -output randomized circuit C ′ with bounded-fanin gates and depth at most c log2 m satisfies

1
2M

∑
x′∈{0,1}M

Pr[C ′(x′) ∈ R(x′)] < (1− α)t2/3
≤ (1− α)M54/105

< (1− α)
√

M
,

which leads to the claimed statement. J
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