
A Time-Distance Trade-Off for GDD with
Preprocessing – Instantiating the DLW Heuristic
Noah Stephens-Davidowitz
Massachusetts Institute of Technology, Cambridge, MA, USA
http://www.noahsd.com
noahsd@gmail.com

Abstract
For 0 ≤ α ≤ 1/2, we show an algorithm that does the following. Given appropriate preprocessing
P (L) consisting of Nα := 2O(n1−2α+logn) vectors in some lattice L ⊂ Rn and a target vector t ∈ Rn,
the algorithm finds y ∈ L such that ‖y − t‖ ≤ n1/2+αη(L) in time poly(n) ·Nα, where η(L) is the
smoothing parameter of the lattice.

The algorithm itself is very simple and was originally studied by Doulgerakis, Laarhoven, and
de Weger (to appear in PQCrypto, 2019), who proved its correctness under certain reasonable
heuristic assumptions on the preprocessing P (L) and target t. Our primary contribution is a choice
of preprocessing that allows us to prove correctness without any heuristic assumptions.

Our main motivation for studying this is the recent breakthrough algorithm for IdealSVP due to
Hanrot, Pellet–Mary, and Stehlé (to appear in Eurocrypt, 2019), which uses the DLW algorithm as
a key subprocedure. In particular, our result implies that the HPS IdealSVP algorithm can be made
to work with fewer heuristic assumptions.

Our only technical tool is the discrete Gaussian distribution over L, and in particular, a lemma
showing that the one-dimensional projections of this distribution behave very similarly to the
continuous Gaussian. This lemma might be of independent interest.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Lattices, guaranteed distance decoding, GDD, GDDP

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.11

Related Version A full version of the paper is available at http://arxiv.org/abs/1902.08340.
(Please read the full version!)

Acknowledgements I thank Guillaume Hanrot, Thijs Laarhoven, Alice Pellet–Mary, Oded Regev,
and Damien Stehlé for helpful discussions. I also thank Alice Pellet–Mary, Guillaume Hanrot, and
Damien Stehlé for sharing early versions of their work with me. I am also grateful to the CCC 2019
reviewers for their very helpful comments, and Daniel Dadush for showing me how to obtain the
stronger results to be written up in the full version.

1 Introduction

A lattice L ⊂ Rn is the set of all integer linear combinations

L := {z1b1 + · · ·+ znbn : zi ∈ Z}

of linearly independent basis vectors b1, . . . , bn ∈ Rn. For a lattice L ⊂ Rn and target vector
t ∈ Rn, the d-Guaranteed Distance Decoding problem (d-GDD, or just GDD) asks us to
find y ∈ L such that ‖y − t‖ ≤ d for some distance d := d(L) that depends only on L. In
particular, we must have d ≥ µ(L), where µ(L) := max dist(t,L) is the covering radius of
the lattice.

GDD with preprocessing (GDDP) is the variant of this problem in which we are allowed
to perform arbitrary preprocessing on the lattice (but not on t). I.e., formally an “algorithm”
for GDDP is really a pair of algorithms, a preprocessing algorithm, which takes as input (a

© Noah Stephens-Davidowitz;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 11; pp. 11:1–11:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.noahsd.com
mailto:noahsd@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2019.11
http://arxiv.org/abs/1902.08340
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 GDD with Preprocessing

basis for) a lattice L ⊂ Rn and outputs some preprocessing P (L), and a query algorithm
which takes as input P (L) and a target t and outputs a valid solution to the GDD instance
(L, t). The complexity measure that interests us for such algorithms is the running time of
the query algorithm.

In [7], Doulgerakis, Laarhoven, and de Weger (DLW) gave an elegant algorithm for GDDP
whose correctness relies on certain heuristic assumptions. (Our presentation here differs quite
a bit from DLW’s. See Section 1.2.) In fact, [7] gave a family of algorithms parameterized
by 0 ≤ α ≤ 1/2 whose preprocessing consists of Nα ≈ 2n1−2α lattice vectors in L whose
length is roughly r. Given a target t, the query algorithm starts by setting t′ = t. The
algorithm then simply searches for a vector y in the preprocessing list and an integer k such
that ‖ky − t′‖ < ‖t′‖. If it finds one, it replaces t′ by t′ − ky and repeats this procedure.
Finally, it outputs y′ := t− t′ ∈ L. Under certain heuristic assumptions that in particular
imply that the preprocessing is nicely distributed, [7] showed that this algorithm terminates
with ‖y′ − t‖ = ‖t′‖ . nα · r in time poly(n) ·Nα.

DLW’s algorithm is the first to provide a smooth trade-off between the running time
and the distance d. (Such trade-offs are known for other lattice problems. E.g., without
preprocessing, block reduction [19, 8] algorithms accomplish this for many lattice problems,
and with preprocessing, such trade-offs are known for Bounded Distance Decoding and the
Closest Vector Problem [12, 6].) This recently found an exciting application discovered by
Pellet–Mary, Hanrot, and Stehlé [18]. [18] showed the best known time-approximation-factor
trade-off for the very important problem of finding short non-zero vectors in ideal lattices
(given suitable preprocessing on the underlying number field). Their algorithm uses the DLW
algorithm as a key subprocedure. However, since DLW’s algorithm relies on certain heuristic
assumptions, their application crucially relies on the (reasonable but unproven) assumption
that these heuristics apply in their particular use case.

1.1 Removing the heuristic in DLW’s GDDP algorithm
We show how to instantiate DLW’s heuristic algorithm in a provably correct way. In particular,
we show an explicit distribution over the lattice such that, when the preprocessing consists of
independent samples from this distribution, the above algorithm provably succeeds with high
probability. Indeed, there is a very natural choice for this distribution: the discrete Gaussian
over the lattice, DL,s. This is the distribution that assigns probability to each lattice vector
y ∈ L proportional to its Gaussian mass exp(−π‖y‖2/s2), and it is a ubiquitous tool in
lattice algorithms and the study of lattices more generally. (See, e.g., [20].) When the
width parameter s > 0 is at least as large as the smoothing parameter η(L), the discrete
Gaussian distribution DL,s provably behaves quite similarly to the continuous Gaussian in
many ways [15]. (E.g., its moments are close to those of a continuous Gaussian.) So, one
might expect that it will be distributed nicely enough to work for DLW’s use case.

We show that for s = η(L), the discrete Gaussian DL,s does in fact suffice to provably
instantiate DLW’s heuristic algorithm with r ≈

√
n · η(L). (This is essentially the same value

of r used in [7]. See Section 1.2 for more discussion.) I.e., we prove the following theorem.

I Theorem 1. For any 0 ≤ α ≤ 1/2, there is an algorithm that solves d-GDDP in time
2O(n1−2α+logn) where d(L) := n1/2+α · η(L).

Theorem 1 is primarily interesting for α strictly between zero and 1/2. For α = 0,
Theorem 1 is outperformed by existing 2O(n)-time algorithms for CVP [16, 2]. These
algorithms do not require preprocessing and are actually guaranteed to find a closest vector
to the target t, so our algorithm is beaten in many respects by the competition in this regime.



N. Stephens-Davidowitz 11:3

Similarly, for α = 1/2, Babai’s celebrated polynomial-time algorithm [3] always matches
or outperforms Theorem 1 when instantiated with an appropriate basis as preprocessing.
However, we will show in the full version [21] how to essentially combine ideas from Babai’s
algorithm to correct this and to beat all prior algorithms for all (constants) 0 < α < 1/2.

However, even without these improvements, this result is already quite strong for the
“typical” lattices that interest us – e.g., that that arise in cryptography and those that satisfy
the heuristics in [7] – which in particular satisfy η(L) ≈ µ(L)/

√
n. In particular, Theorem 1 is

already enough to remove [18]’s reliance on certain heuristic assumptions. ([18] also requires
additional unrelated heuristic assumptions, which our result does not remove. We refer the
reader to [18] for more information.)

Behind this result is a geometric lemma concerning the discrete Gaussian distribution
that, to the author’s knowledge, is novel. The lemma shows that one-dimensional projections
of the discrete Gaussian look very much like a continuous Gaussian for parameters above
smoothing. (See Theorem 7.)

1.2 Relation to DLW
Our presentation here is quite different from the presentation in [7]. (See also an earlier
version of the same paper [10] and a closely related paper [11].) We attempt to clarify some
of the differences here to avoid confusion.

First of all, DLW described their algorithm as a solution to the Closest Vector Problem
(CVP), in which the goal is to output a vector y ∈ L with ‖y − t‖ ≤ γ · dist(t,L) for
some approximation factor γ ≥ 1. In contrast, we call the same algorithm a GDD(P)
algorithm. This discrepancy arises when one moves from heuristic algorithms to provably
correct algorithms. Since dist(t,L) is nearly maximal for “most” t [9], DLW’s heuristics
quite reasonably imply that dist(t,L) is nearly maximal, i.e., dist(t,L) ≈ µ(L). With this
assumption, γ-CVP is essentially equivalent to (γµ(L))-GDD. However, without such a
heuristic, the two problems seem to be quite different, so that the distinction is unfortunately
necessary here.

Second, since [7] describe their results in terms of CVP and do not mention the smoothing
parameter η(L), their results are formally incomparable with Theorem 1. However, we note
that the heuristics in [7] imply that η(L) ≈ λ1(L)/

√
n ≈ µ(L)/

√
n, and the DLW algorithm

finds vectors within distance roughly nαλ1(L) of the target. Since we obtain vectors within
distance n1/2+αη(L), our result essentially matches theirs when their heuristics apply.

Third, while we match DLW’s algorithm asymptotically, we do not claim to match
the constants. Indeed, in the language of this paper, much of [7] is devoted to finding
vectors within distance c1

√
n · η(L) in time 2c2n+o(n) for small constants 0 < c1, c2 < 1.

In contrast, we are mostly interested in what appears as a secondary result in that paper:
the time-distance trade-off achievable for distance n1/2+αη(L) and time 2O(n1−2α+logn) for
0 < α < 1/2. And, we make very little effort to optimize the constants. For example, [7]
uses nearest neighbor data structures to let the query algorithm avoid reading the entire
preprocessing, which we do not attempt to replicate here. Similarly, while [7] proposed
specific techniques for computing the preprocessing in 2cn+o(n) time, we ignore this. (We do
note, however, that [1] shows how to sample the preprocessing in time 2n+o(n).)

2 Preliminaries

Throughout this work, we adopt the common convention of expressing the running times of
lattice algorithms in terms of the dimension n only, ignoring any dependence on the bit length
of the input B. Formally, we should specify a particular input format for the (basis of the)

CCC 2019



11:4 GDD with Preprocessing

lattice (e.g., by restricting our attention to rational numbers and using the natural binary
representation of a rational matrix to represent a basis for the lattice), and our running
time should of course have some dependence on B. Consideration of the bit length would
simply add a poly(B) factor to the running time for the algorithm(s) considered in this
paper, provided that the input format allows for efficient arithmetic operations.

2.1 The discrete Gaussian
For a vector x ∈ Rn and parameter s > 0, we write ρs(x) := exp(−π‖x‖2/s2) for the
Gaussian mass of x with parameter s. For a lattice L ⊂ Rn and shift vector t ∈ Rn, we write

ρs(L − t) :=
∑
y∈L

ρs(y − t)

for the Gaussian mass of L−t with parameter s. We writeDL,s for the probability distribution
over L defined by

Pr
X∼DL,s

[X = y] = ρs(y)
ρs(L)

for y ∈ L.
The dual lattice L∗ ⊂ Rn is the set of vectors that have integer inner product with all

lattice vectors,

L∗ := {w ∈ Rn : ∀y ∈ L, 〈w,y〉 ∈ Z} .

Micciancio and Regev defined the smoothing parameter η(L) as the unique parameter s such
that ρ1/s(L∗) = 3/2 [15].1 The following claim justifies the name “smoothing parameter,”
and it is the only fact about the smoothing parameter that we will need.
B Claim 2. For any lattice L ⊂ Rn, parameter s ≥ η(L), and shift t ∈ Rn,

1
3 ≤

ρs(L − t)
ρs(L) ≤ 1 .

We will also need a simplified version of Banaszczyk’s celebrated tail bound for the
discrete Gaussian [4].
I Theorem 3. For any lattice L ⊂ Rn and parameter s > 0,

Pr
X∼DL,s

[‖X‖ ≥
√
ns] ≤ 2−n .

Finally, we will need the following rather weak consequence of Babai’s algorithm [3].
I Theorem 4. There is a polynomial-time algorithm for (2nη(L))-GDD.

2.2 ε-nets
For ε > 0, we say that a set {v1, . . . ,vM} ⊂ Rn of unit vectors with ‖vi‖ = 1 is an ε-net of
the unit sphere if for any t ∈ Rn with ‖t‖ = 1, there exists vi such that ‖vi − t‖ ≤ ε. We
will use a simple bound on the size of such a net, which can be proven via a simple packing
argument. See [22, Lemma 5.2], for example.
I Lemma 5. For any ε > 0, there exists an ε-net of the unit sphere in Rn with (1 + 2/ε)n
points.

1 This is more commonly referred to as η1/2(L), where ηε(L) is the unique parameter s such that
ρ1/s(L∗) = 1 + ε. Since we will always take ε = 1/2, we simply omit it. Our results remain essentially
unchanged if we take ε to be any constant strictly between zero and one.



N. Stephens-Davidowitz 11:5

3 The algorithm

We consider the following algorithm for GDDP. For an input lattice L ⊂ Rn with n ≥ 40,
the preprocessing consists of N lattice vectors y1, . . . ,yN ∈ L. On input t ∈ Rn, the
query algorithm behaves as follows. It first uses Theorem 4 to find t0 ∈ L + t such that
‖t0‖ ≤ 2nη(L) and sets j = 0. The algorithm then does the following repeatedly. It finds an
index i and integer k such that ‖tj − kyi‖2 ≤ (1− 1/n2) · ‖tj‖2, sets tj+1 := tj − kyi, and
increments j. Once the algorithm fails to find such a vector, it outputs tj − t ∈ L.2

Our main theorem shows that this algorithm will succeed when the preprocessing is chosen
from the right distribution. We emphasize the order of quantifiers: with high probability
over the preprocessing, the algorithm works for all targets t ∈ Rn. In particular, there exists
fixed preprocessing that works for all targets t.

I Theorem 6. For any α with 2
logn ≤ α ≤

1
2 , when the preprocessing of the above algorithm

consists of Nα := n2e(n1/2−α+4)2 = 2O(n1−2α+logn) samples from DL,s for s := η(L), it yields
a solution to d-GDDP in time poly(n) ·Nα with high probability, where d := n1/2+α · η(L).

Proof. By scaling appropriately, we may assume without loss of generality that d = 1, and
therefore s = n−1/2−α. Let y1, . . . ,yNα ∼ DL,s. To prove correctness, we must show that,
with high probability over the yi, for every t ∈ Rn with ‖t‖ ≥ 1, there exists an index i
and integer k such that ‖t− kyi‖2 ≤ (1− 1/n2) · ‖t‖2. It suffices to prove that for ‖t‖ = 1,
there exists an i with ‖t − yi‖2 ≤ 1 − 4/n2.3 Finally, to prove this, it suffices to take a
(1/n3)-net of the unit sphere, v1, . . . ,vM , and to show that for each j, there exists an i such
that ‖vj − yi‖2 ≤ 1− 5/n2.

By Lemma 5, there exists such a net of cardinality M = (3n)3n. For each vj in this net
and each index i, we have by Corollary 8 (proven below) that

Pr
[
‖vj − yi‖2 ≤ 1− 5/n2] ≥ exp(−π(5/(n2s) + ns+ 4)2/4)− 2−n

≥ exp(−(n1/2−α + 4)2)
= n2/Nα .

Since the yi are sampled independently, the probability that no such i exists is at most
(1− n2/Nα)Nα < 2−n/M . The result then follows by taking a union bound over the vj . J

3.1 One-dimensional projections of the discrete Gaussian
We are interested in the lower bound in the following lemma (whose proof uses a very nice
idea from [13]). The upper bound (i.e., the subgaussianity of the discrete Gaussian) applies
for all parameters s > 0 and is well known. (It appears in slightly different forms in [5, 17].
See also [14, Lemma 2.8].) We only include the upper bound for comparison, and we make
no effort to optimize the lower-order term.

2 The author made no effort to optimize these parameters. Notice that we can find such an i and k (if
they exist) in time essentially poly(n) ·N . To guarantee a total running time of poly(n) ·N , we can
also assume that the algorithm halts and outputs tj − t ∈ L if j reaches, say, 100n3. This is not strictly
necessary, since we will have ‖yi‖ ≈

√
n · η(L) with very high probability.

3 Indeed, suppose that ‖t− yi‖2 ≤ 1− 4/n2 and ‖t‖ = 1, so that in particular 〈yi, t〉 ≥ 0. Then for any
β/2 ≤ k ≤ β,

‖βt− kyi‖2

‖βt‖2 = 1− k2

β2 ·
(
1− ‖t− yi‖

2)− (2k
β
− 2k2

β2

)
· 〈yi, t〉 ≤ 1− k2

β2 ·
4
n2 ≤ 1− 1

n2 .

CCC 2019



11:6 GDD with Preprocessing

I Theorem 7. For any lattice L ⊂ Rn, parameter s ≥ η(L), unit vector v ∈ Rn with ‖v‖ = 1,
and r0 > 0, we have

exp(−π(r0/s+ 2)2) < Pr
X∼DL,s

[
〈X,v〉 ≥ r0

]
≤ exp(−πr2

0/s
2) . (1)

Before presenting the proof, we provide some of the intuition behind it. The idea is
to control the moment-generating function g(β) := E[exp(2πβ〈X,v〉)] for β > 0. For a
continuous Gaussian, this is exp(πβ2), and the discrete Gaussian behaves similarly, with
g(β) ≈ exp(πβ2) (see Eq. (2)). For a fixed value of β, knowledge of g(β) is insufficient to
prove something like Eq. (1). So, we take a weighted combination α1g(β1)−α2g(β2)−α3g(β3)
for appropriately chosen weights to essentially approximate

E[1〈X,v〉&r0 ] ≈ Pr
X∼DL,s

[
〈X,v〉 ≥ r0

]
.

More specifically, we define the function f(r) as in Eq. (3), which satisfies f(r) < 0 unless
r ≈ r0 and f(r) ≈ exp(2πβr0) for r ≈ r0. We then use our bounds on the moment-generating
function to show that E[f(〈X,v〉)] is not too small, which implies the result.

Proof. By scaling appropriately, we may assume that s = 1. Let β > 0 to be chosen later.
By completing the square in the exponent, we see that

E[exp(2πβ〈X,v〉)] = exp(πβ2) · ρ1(L − βv)
ρ1(L) .

Therefore, by Claim 2,
1
3 ≤ exp(−πβ2) · E[exp(2πβ〈X,v〉)] ≤ 1 . (2)

I.e., we know the moment generating function of 〈X,v〉 to within a multiplicative constant.
The upper bound in Eq. (1) then follows from taking β = r0 and applying Markov’s inequality.
(This proof of the upper bound is identical to the proof in [14]. See their Lemma 2.8 and
their discussion above it.)

Turning to the lower bound, for r ∈ R, let

f(r) := exp(2πβr) ·
(
1− exp(2π(r0 − r))− exp(2π(r − r0 − 2))

)
. (3)

Notice that f(r) < 0 unless r0 < r < r0 + 2. And, f(r) < exp(2πβr), which together with
the previous two inequalities implies that f(r) < exp(2πβ(r0 + 2)) for all r. Therefore,

E
[
f(〈X,v〉)

]
< exp(2πβ(r0 + 2)) · Pr

[
〈X,v〉 ≥ r0

]
. (4)

By applying Eq. (2) term-wise and taking β = r0 + 1, we have

E
[
f(〈X,v〉)

]
= E

[
exp(2πβ〈X,v〉)

]
− exp(2πr0)E

[
exp(2π(β − 1)〈X,v〉)

]
− exp(−2π(r0 + 2))E

[
exp(2π(β + 1)〈X,v〉)

]
≥ 1

3 · exp(πβ2)− exp(π(β − 1)2 + 2πr0)− exp(π(β + 1)2 − 2π(r0 + 2))

= exp(πr2
0 + 2πr0) · (eπ/3− 2)

> exp(πr2
0 + 2πr0) . (5)

Combining Eqs. (4) and (5) and rearranging, we have

Pr
[
〈X,v〉 ≥ r0

]
> exp(πr2

0 + 2πr0 − 2πβ(r0 + 2)) = exp(−π(r0 + 2)2) ,

as needed. J



N. Stephens-Davidowitz 11:7

I Corollary 8. For any 0 < r < 1, lattice L ⊂ Rn, unit vector v ∈ Rn with ‖v‖ = 1, and
s ≥ η(L), we have

Pr
X∼DL,s

[
‖v −X‖2 ≤ 1− r

]
> exp(−π(r/s+ ns+ 4)2/4)− 2−n .

Proof. Notice that ‖v−X‖2 = 1+‖X‖2−2〈v,X〉. By Theorem 3, we have that ‖X‖2 ≤ ns2

except with probability at most 2−n. By Theorem 7, we see that

Pr[〈v,X〉 ≥ (ns2 + r)/2] > exp(−π(r/s+ ns+ 4)2/4) .

The result follows from union bound. J

References
1 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving

the Shortest Vector Problem in 2n time via Discrete Gaussian Sampling. In STOC, 2015.
arXiv:abs/1412.7994.

2 Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the Closest Vector
Problem in 2n time–The discrete Gaussian strikes again! In FOCS, 2015. arXiv:1504.01995.

3 L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1), 1986.

4 Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Mathematische Annalen, 296(4), 1993.

5 Wojciech Banaszczyk. Inequalites for convex bodies and polar reciprocal lattices in Rn. Discrete
& Computational Geometry, 13, 1995.

6 Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. On the Closest Vector Problem
with a distance guarantee. In CCC, 2014. arXiv:1409.8063.

7 Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de de Weger. Finding closest lattice
vectors using approximate Voronoi cells. In PQCrypto, 2019. (To appear.) https://eprint.
iacr.org/2016/888.

8 Nicolas Gama and Phong Q. Nguyen. Finding Short Lattice Vectors Within Mordell’s
Inequality. In STOC, 2008.

9 Ishay Haviv, Vadim Lyubashevsky, and Oded Regev. A Note on the Distribution of the
Distance from a Lattice. Discrete & Computational Geometry, 41(1), 2009.

10 Thijs Laarhoven. Finding closest lattice vectors using approximate Voronoi cells, 2016. URL:
https://eprint.iacr.org/2016/888/20161219:141310.

11 Thijs Laarhoven. Sieving for Closest Lattice Vectors (with Preprocessing). In SAC, 2016.
12 Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On Bounded Distance Decoding

for general lattices. In RANDOM, 2006.
13 J. E. Mazo and A. M. Odlyzko. Lattice points in high-dimensional spheres. Monatshefte für

Mathematik, 110(1), 1990.
14 Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller.

In EUROCRYPT, 2012. URL: https://eprint.iacr.org/2011/501.
15 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian

measures. SIAM Journal of Computing, 37(1), 2007.
16 Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm

for most lattice problems based on Voronoi cell computations. SIAM Journal on Computing,
42(3), 2013.

17 Chris Peikert. Limits on the Hardness of Lattice Problems in `p Norms. Computational
Complexity, 17(2), 2008.

18 Alice Pellet–Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in Ideal Lattices with
Pre-processing. In Eurocrypt, 2019. (to appear).

CCC 2019

http://arxiv.org/abs/abs/1412.7994
http://arxiv.org/abs/1504.01995
http://arxiv.org/abs/1409.8063
https://eprint.iacr.org/2016/888
https://eprint.iacr.org/2016/888
https://eprint.iacr.org/2016/888/20161219:141310
https://eprint.iacr.org/2011/501


11:8 GDD with Preprocessing

19 Claus-Peter Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms.
Theor. Comput. Sci., 53(23), 1987.

20 Noah Stephens-Davidowitz. On the Gaussian measure over lattices. Ph.D. thesis, New York
University, 2017.

21 Noah Stephens-Davidowitz. A time-distance trade-off for GDD with preprocessing – Instanti-
ating the DLW heuristic, 2019. arXiv:1902.08340.

22 Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In
Compressed Sensing: Theory and Applications. Cambridge University Press, 2012.

http://arxiv.org/abs/1902.08340

	Introduction
	Removing the heuristic in DLW's GDDP algorithm
	Relation to DLW

	Preliminaries
	The discrete Gaussian
	Eps-nets

	The algorithm
	One-dimensional projections of the discrete Gaussian


