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Abstract
Developing interactive applications (apps) against
event-driven software frameworks such as Android
is notoriously difficult. To create apps that behave
as expected, developers must follow complex and
often implicit asynchronous programming protocols.
Such protocols intertwine the proper registering
of callbacks to receive control from the framework
with appropriate application-programming interface
(API) calls that in turn affect the set of possible
future callbacks. An app violates the protocol when,
for example, it calls a particular API method in
a state of the framework where such a call is in-
valid. What makes automated reasoning hard in
this domain is largely what makes programming
apps against such frameworks hard: the specifica-
tion of the protocol is unclear, and the control flow
is complex, asynchronous, and higher-order. In this
paper, we tackle the problem of specifying and mod-
eling event-driven application-programming proto-

cols. In particular, we formalize a core meta-model
that captures the dialogue between event-driven
frameworks and application callbacks. Based on
this meta-model, we define a language called lifest-
ate that permits precise and formal descriptions of
application-programming protocols and the callback
control flow imposed by the event-driven framework.
Lifestate unifies modeling what app callbacks can
expect of the framework with specifying rules the
app must respect when calling into the framework.
In this way, we effectively combine lifecycle con-
straints and typestate rules. To evaluate the effect-
iveness of lifestate modeling, we provide a dynamic
verification algorithm that takes as input a trace
of execution of an app and a lifestate protocol spe-
cification to either produce a trace witnessing a
protocol violation or a proof that no such trace is
realizable.
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1 Scope

The accompanying scholarly paper [1] argues for a re-examination of the process of modeling
callback control flow. Through this process, we identified some essential aspects of event-driven
frameworks to arrive at a language called lifestates that simultaneously captures callback control
flow and event-driven application-programming protocols at the app-framework interface. This
re-examination leads to both a methodology for empirically validating such event-driven framework
models against corpora of app-framework interaction traces and a technique for verifying trace
rearrangements are absent of protocol violations. Overall, we evaluate empirically the capacity
of lifestates to model a real, complex event-driven framework like Android and the necessity of
validating such models (cf. Section 6 of the accompanying paper [1]). This artifact includes the
software and inputs that we used in the evaluation section of our paper.

2 Content

The artifact package includes a virtual machine image (username verivita and password
verivita) with the software, trace corpora, and callback control-flow models described above,
along with the measurements produced to respond to the research questions described above.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://drive.google.com/open?id=15DSRQCvuxgxhYKcA7L3ah9WlQNE_t4Wr

4 Tested platforms

We provide the artifact as an Ubuntu virtual machine created with Virtual Box. We suggest using
a machine with at least 16GB of RAM and dual core CPU.

5 License

Different parts of the artifact are under different licenses. Verivita, TraceRunner, and the trace
data are under the Apache 2.0 license. Benchtools is licensed under GPL V3. NuXmV is under a
proprietary license (see https://es-static.fbk.eu/tools/nuxmv/downloads/LICENSE.txt).

6 MD5 sum of the artifact

verivita.ova : d0ebbd97cb03e592b4d73ba57a633279

7 Size of the artifact

14 GB

https://drive.google.com/open?id=15DSRQCvuxgxhYKcA7L3ah9WlQNE_t4Wr
https://es-static.fbk.eu/tools/nuxmv/downloads/LICENSE.txt
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A Running the Virtual Machine

We suggest using VirtualBox which can be downloaded from https://www.virtualbox.org/
wiki/Downloads. The virtual machine image may be downloaded from https://drive.google.
com/open?id=15DSRQCvuxgxhYKcA7L3ah9WlQNE_t4Wr. Import the machine by clicking file →
import appliance and select verivita.ovf.

B Extended Artifact Description

An extended description of the artifact and how to reproduce results may be found on the desktop
of the virtual machine in the file artifact_description_extended.pdf.
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