
Lifestate: Event-Driven Protocols and Callback
Control Flow (Artifact)

Shawn Meier
University of Colorado Boulder, USA
https://plv.colorado.edu/shawn/
shawn.meier@colorado.edu

Sergio Mover
École Polytechnique, Palaiseau, France
http://www.sergiomover.eu/
sergio.mover@lix.polytechnique.fr

Bor-Yuh Evan Chang
University of Colorado Boulder, USA
https://www.cs.colorado.edu/~bec/
evan.chang@colorado.edu

Abstract
Developing interactive applications (apps) against
event-driven software frameworks such as Android
is notoriously difficult. To create apps that behave
as expected, developers must follow complex and
often implicit asynchronous programming protocols.
Such protocols intertwine the proper registering
of callbacks to receive control from the framework
with appropriate application-programming interface
(API) calls that in turn affect the set of possible
future callbacks. An app violates the protocol when,
for example, it calls a particular API method in
a state of the framework where such a call is in-
valid. What makes automated reasoning hard in
this domain is largely what makes programming
apps against such frameworks hard: the specifica-
tion of the protocol is unclear, and the control flow
is complex, asynchronous, and higher-order. In this
paper, we tackle the problem of specifying and mod-
eling event-driven application-programming proto-

cols. In particular, we formalize a core meta-model
that captures the dialogue between event-driven
frameworks and application callbacks. Based on
this meta-model, we define a language called lifest-
ate that permits precise and formal descriptions of
application-programming protocols and the callback
control flow imposed by the event-driven framework.
Lifestate unifies modeling what app callbacks can
expect of the framework with specifying rules the
app must respect when calling into the framework.
In this way, we effectively combine lifecycle con-
straints and typestate rules. To evaluate the effect-
iveness of lifestate modeling, we provide a dynamic
verification algorithm that takes as input a trace
of execution of an app and a lifestate protocol spe-
cification to either produce a trace witnessing a
protocol violation or a proof that no such trace is
realizable.

2012 ACM Subject Classification Software and its engineering → Software verification
Keywords and phrases domain-specific languages, event-based programming, language implementation,
new programming models or languages, object-oriented programming, semantics, testing, verification -
automated
Digital Object Identifier 10.4230/DARTS.5.2.13

Related Article Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang, “Lifestate: Event-Driven
Protocols and Callback Control Flow”, in 33rd European Conference on Object-Oriented Programming
(ECOOP 2019), LIPIcs, Vol. 134, pp. 1:1–1:29, 2019.
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.1
Related Conference 33rd European Conference on Object-Oriented Programming (ECOOP 2019), July
15–19, 2019, London, United Kingdom

© Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 2, Artifact No. 13, pp. 13:1–13:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-1349-4316
https://plv.colorado.edu/shawn/
mailto:shawn.meier@colorado.edu
https://orcid.org/0000-0003-1029-9547
http://www.sergiomover.eu/
mailto:sergio.mover@lix.polytechnique.fr
https://orcid.org/0000-0002-1954-0774
https://www.cs.colorado.edu/~bec/
mailto:evan.chang@colorado.edu
https://doi.org/10.4230/DARTS.5.2.13
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.1
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


13:2 Lifestate: Event-Driven Protocols and Callback Control Flow (Artifact)

1 Scope

The accompanying scholarly paper [1] argues for a re-examination of the process of modeling
callback control flow. Through this process, we identified some essential aspects of event-driven
frameworks to arrive at a language called lifestates that simultaneously captures callback control
flow and event-driven application-programming protocols at the app-framework interface. This
re-examination leads to both a methodology for empirically validating such event-driven framework
models against corpora of app-framework interaction traces and a technique for verifying trace
rearrangements are absent of protocol violations. Overall, we evaluate empirically the capacity
of lifestates to model a real, complex event-driven framework like Android and the necessity of
validating such models (cf. Section 6 of the accompanying paper [1]). This artifact includes the
software and inputs that we used in the evaluation section of our paper.

2 Content

The artifact package includes a virtual machine image (username verivita and password
verivita) with the software, trace corpora, and callback control-flow models described above,
along with the measurements produced to respond to the research questions described above.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://drive.google.com/open?id=15DSRQCvuxgxhYKcA7L3ah9WlQNE_t4Wr

4 Tested platforms

We provide the artifact as an Ubuntu virtual machine created with Virtual Box. We suggest using
a machine with at least 16GB of RAM and dual core CPU.

5 License

Different parts of the artifact are under different licenses. Verivita, TraceRunner, and the trace
data are under the Apache 2.0 license. Benchtools is licensed under GPL V3. NuXmV is under a
proprietary license (see https://es-static.fbk.eu/tools/nuxmv/downloads/LICENSE.txt).

6 MD5 sum of the artifact

verivita.ova : d0ebbd97cb03e592b4d73ba57a633279

7 Size of the artifact

14 GB

https://drive.google.com/open?id=15DSRQCvuxgxhYKcA7L3ah9WlQNE_t4Wr
https://es-static.fbk.eu/tools/nuxmv/downloads/LICENSE.txt


S. Meier, S. Mover, and B.-Y. E. Chang 13:3

A Running the Virtual Machine

We suggest using VirtualBox which can be downloaded from https://www.virtualbox.org/
wiki/Downloads. The virtual machine image may be downloaded from https://drive.google.
com/open?id=15DSRQCvuxgxhYKcA7L3ah9WlQNE_t4Wr. Import the machine by clicking file →
import appliance and select verivita.ovf.

B Extended Artifact Description

An extended description of the artifact and how to reproduce results may be found on the desktop
of the virtual machine in the file artifact_description_extended.pdf.

References
1 Shawn Meier, Sergio Mover, and Bor-Yuh Evan

Chang. Lifestate: Event-Driven Protocols and
Callback Control Flow. In ECOOP, 2019.

DARTS

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://drive.google.com/open?id=15DSRQCvuxgxhYKcA7L3ah9WlQNE_t4Wr
https://drive.google.com/open?id=15DSRQCvuxgxhYKcA7L3ah9WlQNE_t4Wr
file
import
appliance
verivita.ovf
artifact_description_extended.pdf

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact
	Running the Virtual Machine
	Extended Artifact Description

