
Fling – A Fluent API Generator (Artifact)
Ori Roth
Technion I.I.T Computer Science Dept., Haifa, Israel
ori.rothh@gmail.com

Yossi Gil
Technion I.I.T Computer Science Dept., Haifa, Israel
yogi@cs.technion.ac.il

Abstract
The first general and practical solution of the fluent
API problem is presented. We give an algorithm
that given a deterministic context free language
(equivalently, LR(k), k ≥ 0 language) encodes it in
an unbounded parametric polymorphism type sys-

tem employing only a polynomial number of types.
The theoretical result is employed in an actual tool
Fling– a fluent API compiler-compiler in the style
of YACC, tailored for embedding DSLs in Java.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Software and its engineering → Domain specific languages
Keywords and phrases Fluent API, compilation, generics, code generation
Digital Object Identifier 10.4230/DARTS.5.2.12
Funding Ori Roth: Technion I.I.T
Yossi Gil: Technion I.I.T

Related Article Yossi Gil and Ori Roth, “Fling - A Fluent API Generator”, in 33rd European Conference
on Object-Oriented Programming (ECOOP 2019), LIPIcs, Vol. 134, pp. 13:1–13:25, 2019.
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.13
Related Conference 33rd European Conference on Object-Oriented Programming (ECOOP 2019), July
15–19, 2019, London, United Kingdom

1 Scope

Fluent APIs are often used a implement a domain specific language (DSL). In List. 1 we see an
example of fluent API that specifies a regular expression.

Listing 1 Fluent API specification of the regular expression (ab?)∗ |
(
[0− 9][0− 9]+

)
.

1 re().// this starts the fluent API chain here
2 noneOrMore(exactly("a").and().option(exactly("b"))).//
3 or().oneOrMore(anyDigit()).//
4 $(); // End the chain

In the main ECOOP’19 article, we argued that an efficient and modestly sized fluent API can
be generated for any deterministic language (languages accepted by a deterministic pushdown
automaton), or equivalently, all LR(k) languages. Our theoretical result was supported by a proof
and an implementation. Here we describe on the implementation and its derivatives; we contribute
the code behind the algorithm, and demonstrate that the result is not merely theoretical, but can
applied for embedding a DSL as a fluent API in programming languages with only rudimentary
support of genericity.

Fling (FL uent Interfaces Generator) is a fluent API compiler-compiler (in the venue of
YACC) that does this and more. It accepts a specification of a formal language, e.g., the language
of regular expressions, and compiles this definition into a set of classes and methods that realize a
fluent API for the given language. The formal language may specified in one of two ways:

© Ori Roth and Yossi Gil;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 2, Artifact No. 12, pp. 12:1–12:9
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ori.rothh@gmail.com
mailto:yogi@cs.technion.ac.il
https://doi.org/10.4230/DARTS.5.2.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

12:2 Fling – A Fluent API Generator (Artifact)

Figure 1 A DPDA for the language anbn, n > 0.

q2q1q0start

a, X → XXa, X → XX b, X → EX

b, X → EX b, X → ε

1. DPDA (Deterministic PushDownAutomaton) including a definition of the set of stack symbols,
automaton symbols, start symbol, transition function, and accepting symbols.
Consider for example, a DPDA for the language anbn, n > 0 in Fig. 1.
The automaton in the figure uses two stack symbols: E for denoting the stack’s bottom, and
X, serving as a marker on the stack for each a character that does not found a b that matches
it. List. 2 shows how this automaton is specified in FLING.

Listing 2 Fling specification, in a fluent API fashion, of the DPDA of Fig. 1.

1 enum Σ implements Terminal {a, b } // Define the alphabet of input characters.
2 enum Γ implements Named { E, X }// Define the alphabet of stack symbols.
3 public static final DPDA<Named, Verb, Named> dpda =
4 Grammar.cast(dpda(Q.class, Σ.class, Γ.class) // Boiler plate code
5 .q0(q0) // Define the start state
6 .F(q2) // Define the accepting state
7 .γ0(E) // Define the initial stack symbol
8 .δ(q0, a, E, q0, E, X) // Transition for pushing the first X
9 .δ(q0, a, X, q0, X, X) // Transition for pushing additional Xs

10 .δ(q0, b, X, q1) // Transition for consuming first bs
11 .δ(q1, b, X, q1) // Transition for consuming subsequent bs
12 .δ(q1, ε(), E, q2) // Finish when bottom of the stack is reached
13 .go()); // Let the builder of the DPDA start its work.

Once the automaton is built, we can request Fling to generate a fluent API for it. List. 3
shows how this is done.

Listing 3 Using Fling to create a fluent API for Java and C++.

1 public static final String JavaFluentAPI =
2 new JavaAPIAdapter(
3 "fling.examples.generated", // Package name
4 "AnBn", // The class name.
5 "$", // The terminating symbol
6 new NaiveNamer("fling.examples.generated", "AnBn")) //
7 .printFluentAPI(new ReliableAPICompiler(dpda).compileFluentAPI());
8 public static final String CppFluentAPI = new CppAPIAdapter(
9 "$",

10 new NaiveNamer("AnBn")) //
11 .printFluentAPI(new ReliableAPICompiler(dpda).compileFluentAPI());

(This and other examples can be found in fling.examples.automata.)
2. LL(1) EBNF Grammar, including the sets of terminals and non-terminals, the start symbol and

derivation rules. (See examples in fling.examples.languages and the walk-through below.)
Use cases of the generated fluent API are found in fling.examples.usecases.

Incidentally, the specification of the input formal language, be it as DPDA or EBNF, is done
done using fluent API. Moreover, these two fluent APIs that Fling offers to its clients were
generated by Fling itself.

In the case that language is specified using a grammar, Fling also generates code to create
the AST of the parsed input. In particular, Fling defines classes that correspond to non-terminal
symbols of the grammar specification, with class containment and inheritance relationships in
accordance with the derivation rules of the grammar. The fluent API that Fling generates in this
case is such that a fluent API call chain returns an instance of the class corresponding to the start
symbol of the grammar. This instance represents the AST of the particular chain that returned it.

O. Roth and Y. Gil 12:3

Fling can generate fluent API code for different programming languages. The current
implementation may produce Java or C++ code (DPDA only). Fling may be extended by
language adapters (see package fling.adapters for examples) to support other programming
languages. The target language must support unbounded polymorphism of classes, i.e., classes
that may receive type parameters, but it is not required that the language allows constraints on
these parameters, as found in e.g., ML.

For example, let us use Fling to create a Java [1] fluent API of Datalog [2], and then use it
to define Datalog programs and run them. A definition of a DSL by its grammar begins with
definitions of the set of grammar terminals and non-terminas, as shown in List. 4 (drawn from file
Datalog.java in the code).

Listing 4 Terminals and non-terminals for Datalog grammar.

1 /∗∗ Set of terminals, i.e., method names of generated fluent API. ∗/
2 public enum Σ implements Terminal {
3 infer, fact, query, of, and, when, always, v, l
4 }
5
6 /∗∗
7 ∗ Set of non−terminals, i.e., abstract concepts of fluent API; these names
8 ∗ will be translated into names of classes of abstract syntax tree that \Fling
9 ∗ generates, i.e., this AST will have class {@link Program} which will have a

10 ∗ list of {@link Statement}, etc.
11 ∗/
12 public enum V implements Variable {
13 Program, Statement, Rule, Query, Fact, Bodyless, WithBody,
14 RuleHead, RuleBody, FirstClause, AdditionalClause, Term
15 }

The language grammar is then defined by List. 5.

Listing 5 Datalog BNF.

1 /∗∗ Datalog’s grammar in Backus−Naur form. ∗/
2 public static final BNF bnf = bnf(). //
3 start(Program). // This is the start symbol
4 derive(Program).to(oneOrMore(Statement)). // Program ::= Statement∗
5 specialize(Statement).into(Fact, Rule, Query).
6 /∗ Defines the rule Statement ::= Fact |Rule | Query, but also defines
7 ∗ that classes {@link Fact}, {@link Rule} and {@link Query} extend class
8 ∗ {@link Statement} ∗/
9 derive(Fact).to(fact.with(S), of.many(S)). // Fact ::= fact(S∗) of(S∗)

10 derive(Query).to(query.with(S), of.many(Term)). //
11 specialize(Rule).into(Bodyless, WithBody). //
12 derive(Bodyless).to(always.with(S), of.many(Term)). //
13 derive(WithBody).to(RuleHead, RuleBody). //
14 derive(RuleHead).to(infer.with(S), of.many(Term)). //
15 derive(RuleBody).to(FirstClause, noneOrMore(AdditionalClause)). //
16 derive(FirstClause).to(when.with(S), of.many(Term)). //
17 derive(AdditionalClause).to(and.with(S), of.many(Term)). //
18 derive(Term).to(l.with(S)).or(v.with(S)). //
19 build();

To complete the definition, we define S as an alias to the class String as in List. 6

Listing 6 A definition of S is required for List. 5.

1 /∗∗
2 ∗ Short name of {@link String}.class, used to specify the type of parameters
3 ∗ to fluent API methods in grammar specification.
4 ∗/
5 private static final Class<String> S = String.class;

Now, Datalog language specification, given in Backus-Naur form (BNF), is embedded in the
Java program shown in List. 5.

DARTS

12:4 Fling – A Fluent API Generator (Artifact)

Listing 7 Datalog program.

1 parent(john, bob).
2 parent(bob, donald).
3 ancestor(A, B) :- parent(A, B).
4 ancestor(A, B) :- parent(A, C), ancestor(C, B).
5 ancestor(john, X)?

Listing 8 Embedded Datalog program.

1 Program program =
2 fact("parent").of("john", "bob").
3 fact("parent").of("bob", "donald").
4 infer("ancestor").of(v("A"), v("B")).
5 when("parent").of(v("A"), v("B")).
6 infer("ancestor").of(v("A"), v("B")).
7 when("parent").of(v("A"), v("C")).
8 and("ancestor").of(v("C"), v("B")).
9 query("ancestor").of(l("john"), v("X")).$();

After calling Fling with the Datalog BNF as its input, we can use the generated fluent API to
define Datalog programs. The native Datalog program shown in List. 7 can now be embedded
in Java as a chain of method calls in fluent API style, as shown in List. 8.

This chain yields a Program object representing the abstract syntax tree (AST) of the program,
later to be traversed by the client library, executing the program and printing its result.

The supplied Java code runs the embedded Datalog program by visiting the said AST.

Listing 9 Visiting a Datalog program using an AST visitor.

1 new DatalogRunner().visit(program);

The DatalogRunner class is implemented as a standard visitor, with dedicated methods for each
node type. Here is an excerpt of the code

Listing 10 An AST visitor running a Datalog program using Jatalog.

1 public static class DatalogRunner extends DatalogAST.Visitor {
2 final Jatalog j = new Jatalog(); // Use Jatalog, a \Datalog engine
3
4 @Override public void whileVisiting(final Fact fact) throws DatalogException {
5 j.fact(fact.fact, fact.of);
6 print(fact);
7 }
8 @Override public void whileVisiting(final WithBody withBody) throws Exception {
9 j.rule(Expr.expr(withBody.ruleHead.infer, toStrings(withBody.ruleHead.of)), //

10 getExprRightHandSide(withBody));
11 print(withBody);
12 }
13 //...
14 }

2 Content

The key packages and classes in Fling are:
Language input

fling.BNF: Language specification in Backus-Naur form. To create a BNF one may use the
fluent API in fling.grammars.api1.
fling.DPDA: Language specification in the form of DPDA.

1 this fluent API was originally generated by Fling

O. Roth and Y. Gil 12:5

fling.internal.grammar.Grammar: base class for a grammar family. Such family declares
its method to convert a BNF to DPDA. Currently, only LL(1) grammars are supported.

API compilation
fling.internal.compiler.api.APICompiler: compiles DPDA into a fluent API. The
fluent API computed in an internal abstract form. This internal form can be then be
translated to the target language. There are two compilers available:
∗ fling.compilers.api.PolynomialAPICompiler: generates a polynomial number of

types, but an illegal API method call returns “bottom”, empty type instead of raising a
compilation exception2.

∗ fling.compilers.api.RelizableAPICompiler: generates a (possibly) exponential num-
ber of types, yet all illegal API method calls raise a compilation exception.

AST compilation
fling.compilers.ast.ASTCompiler: compiles grammar into types representing its AST
nodes. The AST types class is given as an AST, to be translated to a program of the target
language.

Language adaption
fling.adapters: contains target language adapters.
∗ fling.adapters.JavaMediator: integrate the generated API and AST to a Java pro-

gram. Its input must be an LL(1) grammar.
∗ fling.adapters.CppAPIAdapter: compiles API to C++ [3] code. Its input must be a

DPDA. The generated C++ fluent API supports method chains of the form
a()→ b().c().$()3.

∗ fling.internal.compiler.Namer: responsible of naming entities in the generate code.
Currently there is only one namer available, fling.namers.NaiveNamer.

Testing
fling.examples.automata: language examples given as DPDA
fling.examples.languages: language examples given as BNF
fling.examples.usecases: examples of using the language examples. These use cases
refer to code generated by Fling, located in fling.examples.generated. To activate the
examples run fling.examples.ExamplesMainRunMeFirst.

2.1 Walk-through
We now demonstrate the common use-case of Fling, by defining a grammar, generating a fluent
API of its language and analyzing the ASTs created at run-time. Let us create a fluent API
for arithmetic expressions supporting addition and multiplication, containing words such as
“2 * (3 + 4)”.

1. Choose a grammar for your language: A possible grammar for the language of arithmetic
expression is defined as follows:
E -> E + T | T
T -> T * F | F
F -> (E) | int

Fling currently supports only LL(1) grammars, so this grammar should be rewritten to fit
the LL(1) class4:

2 this is an implementation of the API generation algorithm discussed in the paper
4 exlanation about LL(1) grammars is given here: https://andrewbegel.com/cs164/ll1.html

DARTS

https://andrewbegel.com/cs164/ll1.html

12:6 Fling – A Fluent API Generator (Artifact)

E -> T E’
E’ -> + T E’ | ε
T -> F T’
T’ -> * F T’ | ε
F -> (E) | int

2. Encode the grammar in Java: Write your grammar in a Java class using Fling’s API.
First define the terminal and non-terminal symbols of your language in their respecting enums:
Keep in mind you are limitted by Java’s naming rules, so replacements might be needed.
import fling.*;
...
public enum Σ implements Terminal {

plus, mult, begin, end, i
}
public enum V implements Variable {

E, E_, T, T_, F
}

Next encode the grammar rules, given in BNF, using Fling’s fluent API:
Declare the start symbol
Compose at least one derivation rule for each non-terminal
The derivation rules may make use of extended BNF notations
You may specialize terminals with parameter declarations: These parameter will later be
accepted by the fluent API methods5.

import fling.BNF;
import static fling.grammars.api.BNFAPI.bnf;
...
public static final BNF bnf = bnf(). // Start defining BNF

start(E). // Declare the start symbol
derive(E).to(T, E_). // E ::= T E’
derive(E_).to(plus, T, E_).orNone(). // E’ ::= + T E’ | ε
derive(T).to(F, T_). // T ::= F T’
derive(T_).to(mult, F, T_).orNone(). // T’ ::= * F T’ | ε
derive(F).to(begin, E, end).or(i.with(Integer.class)). // F ::= (E) | int
// The terminal i representing a number is specialized with a parameter of type Integer
build(); // Yield BNF

3. Generate the fluent API: Use a JavaModerator to create the fluent API classes. The
moderator links together the various compilers offered by Fling, making the process handleable.
The contents of the fluent API classes are computed upon initialing the moderator, and are
available each in a class field: Thus writting the classes into the corresponding files is made
easy.
import fling.adapters.JavaMediator;
...
JavaMediator jm = new JavaMediator(bnf, // The grammar defined above

"fling.examples.generated", // Output package name
"SimpleArithmetic", // Output base class name
Σ.class); // Class of terminal symbols

// Write classes to filesystem:
writeToFile("SimpleArithmetic", jm.apiClass);
writeToFile("SimpleArithmeticAST", jm.astClass);
writeToFile("SimpleArithmeticCompiler", jm.astCompilerClass);

Here, class SimpleArithmetic contains the fluent API interfaces declarations. The declar-
ations used for the AST generated at runtime are in SimpleArithmeticAST. The LL(1)
run-time compiler used to create the ASTs of fluent API method chains is found in class
SimpleArithmeticCompiler

4. Use your fluent API: After saving the generated code into .java files and compiling
this, the fluent API is ready for use. The class containing the fluent API declarations,
SimpleArithmetic, contains a static method for each terminal which with which an arithmetic
expression can start. In the present case, these are begin and i. A fluent API call chain

5 A specialized terminal counts as a new terminal, in respect to the grammar rules

O. Roth and Y. Gil 12:7

then starts with SimpleArithmetic.begin() (or SimpleArithmetic.i(· · ·)) and ends with
a .$(). The value returned by the chain is the AST of the declared arithmetic expression.
Types of AST nodes are either non-abstract class or an interface:

A class represents an “is-a” derivation rule of the form X ::= AbcD, containing a field for
each of its non-vacuous descendants.
An interface represents an “is-either” derivation rule of the form X ::= A|B|C|D, imple-
mented by two or more interfaces and classes.

Class SimpleArithmetic in package fling.examples.languages defines the grammar in a
fluent API style
package fling.examples.languages;
// Imports omitted for brevity
public class SimpleArithmetic {
// Terminal symbols:
public enum Σ implements Terminal {plus, mult, begin, end, i}
// Non−terminal symbols:
public enum V implements Variable {E, E_, T, T_, F}
public static final BNF bnf = bnf(). // Start defining BNF

start(E). // Declare the start symbol
derive(E).to(T, E_). // E ::= T E’
derive(E_).to(plus, T, E_).orNone(). // E’ ::= + T E’ | ε
derive(T).to(F, T_). // T ::= F T’
derive(T_).to(mult, F, T_).orNone(). // T’ ::= ∗ F T’ | ε
derive(F).to(begin, E, end).or(i.with(Integer.class)). // F ::= (E) | int
build(); // Yield BNF

public static void main(String[] args) {
JavaMediator jm = new JavaMediator(bnf, // Grammar definition

"fling.examples.generated", // Output package name
"SimpleArithmetic", // Output base class name
Σ.class); // Class of terminal symbols

writeToFile("SimpleArithmetic", jm.apiClass);
writeToFile("SimpleArithmeticAST", jm.astClass);
writeToFile("SimpleArithmeticCompiler", jm.astCompilerClass);

}
private static void writeToFile(String fileName, String fileContent) {
// Code for formatting Java code and saving it omitted for brevity

}
}

Compiling and running this class will generate three files:
1. ./src/test/java/fling/examples/generated/SimpleArithmetic.java
2. ./src/test/java/fling/examples/generated/SimpleArithmeticAST.java
3. ./src/test/java/fling/examples/generated/SimpleArithmeticCompiler

You must compile and run these files to be able to test run the fluent API. Within Eclipse,
this means refreshing the files, by hitting F5. Here is a simple use case which puts the generated
code to use:
package fling.examples.usecases;
import static fling.examples.generated.SimpleArithmetic.i;
import fling.examples.generated.SimpleArithmeticAST.*;
public class SimpleArithmeticUseCase {

public static void main(String[] args) {
// A method calls chain declaring the arithmetic expression 2+(3∗4)
E e = i(2).mult().begin().i(3).plus().i(4).end().$();
System.out.println("2 * (3 + 4) = " + evaluate(e)); // Output is "2 ∗ (3 + 4) = 14"

}
private static int evaluate(E e) { return evaluate(e.t) + evaluate(e.e_); }
private static int evaluate(E_ e) { return e instanceof E_1 ? evaluate((E_1) e) : evaluate((E_2) e); }
private static int evaluate(E_1 e) { return evaluate(e.t) + evaluate(e.e_); } // E ::= T E’
private static int evaluate(E_2 e) { return 0; } // E ::= ε
private static int evaluate(T t) { return evaluate(t.f) * evaluate(t.t_); }
private static int evaluate(T_ t) { return t instanceof T_1 ? evaluate((T_1) t) : evaluate((T_2) t); }
private static int evaluate(T_1 t) { return evaluate(t.f) * evaluate(t.t_); } // T ::= F T’
private static int evaluate(T_2 t) { return 1; } // T ::= ε
private static int evaluate(F f) { return f instanceof F1 ? evaluate((F1) f) : evaluate((F2) f); }
private static int evaluate(F1 f) { return evaluate(f.e); } // F ::= (E)
private static int evaluate(F2 f) { return f.i; } // F ::= int

}

DARTS

12:8 Fling – A Fluent API Generator (Artifact)

2.2 Troubleshooting
Error handling in Fling is minimal. Some exceptions with useful error message do occur. Note

While standard compilers provide suggestions to fixing improperly designed grammars, Fling
does not offer such a service (although it could). If you get an exception while building the
BNF, make sure it adheres the LL(1) grammar class rules before proceeding. Sending a
proper LL(1) grammar to a JavaMediator should generate the fluent API classes successfully.
Put in mind a code using the fluent API will not compile until it has been generated. While
Eclipse support partial compilation, other IDEs might encounter problems while trying to
compile, for instance, the above example in a single pass.
Project Fling has a few external dependencies. Before using the project, make sure to build it
using Maven. An optional compilation script is given below:
#!/bin/bash
Clone repository
git clone https://github.com/OriRoth/fling.git
cd fling
Compile without fling.examples.usecases (will produce errors)
mvn test-compile
Generate example fluent-APIs
mvn -Dtest=fling.examples.ExamplesMainRunMeFirst surefire:test
Compile with fling.examples.usecases (without errors)
mvn test-compile
Copy dependencies to local directory
mvn dependency:copy-dependencies
Run "SimpleArithmetic" use-case example
java -Dfile.encoding=UTF8 -cp target/classes/:target/test-classes/:target/dependency/* \
fling.examples.usecases.SimpleArithmeticUseCase
Should output "2 * (3 + 4) = 14"

The script above clones the project from the repository, compiles it in two passes and runs the
use case above class SimpleArithmeticUseCase class depicted above.
The project files should be UTF-8 encoded, or otherwise will produce errors.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at https://github.com/OriRoth/fling. Clone this repository and open it with Eclipse to gain
access to the sources and examples. Be sure to compile and run as Java application the file named
ExamplesMainRunMeFirst to generate the classes used by the tests.

4 Tested platforms

Product was tested on Windows and Linux under the Eclipse Orion environment. Requires Java
1.8 or above to compile.

5 License

The artifact is available under MIT license.

6 MD5 sum of the artifact

5064eb01b5f238cd081fc9c63e604cbf

https://github.com/OriRoth/fling

O. Roth and Y. Gil 12:9

7 Size of the artifact

1,113,854 Bytes

References
1 Ken Arnold and James Gosling. The Java Pro-

gramming Language. Addison Wesley, 1996.
2 Stefano Ceri, Georg Gottlob, and Letizia Tanca.

Logic programming and databases. SVNY, 1990.

3 Stroustrup. The C++ Programming Language.
AW, awad, third edition, 1997.

DARTS

	Scope
	Content
	Walk-through
	Troubleshooting

	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

