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Abstract
This artifact provides a preliminary release of NAB,
a distributed infrastructure for executing large-scale
dynamic program analyses (DPAs). The artifact
consists of ready-to-use Docker containers that al-
low one to run different DPA tools (Deep-Promise,
JITProf, and tgp) on Node.js, Java, and Scala

projects hosted on GitHub. The artifact enables
the reproduction of the figures and tables of the re-
lated paper “Automated Large-scale Multi-language
Dynamic Program Analysis in the Wild” with pre-
collected data (several GBs) and the execution of
DPAs on specific sets of GitHub projects.
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1 Scope

The artifact contains a preliminary release of NAB, including different services (i.e., NAB-Master,
NAB-Crawler, NAB-Analyzer, and NAB-Dashboard) that run in Docker containers, as described
in the related paper “Automated Large-scale Multi-language Dynamic Program Analysis in the
Wild” [6]. The NAB-Analyzer Docker image in the artifact includes three DPA tools (Deep-
Promise [6], JITProf [2] and tgp [5, 3, 4] and two runtimes (Oracle’s JVM [1] and GraalVM [7])
for analyzing open-source Java, Scala, and Node.js projects hosted on GitHub.

To reproduce the figures and tables from the related paper, we use pre-collected data (i.e.,
results of DPA tools applied to more than 56K Node.js, Java, and Scala projects from GitHub)
stored in MongoDB databases. The pre-collected data is stored in the NAB-Dashboard image.
We provide scripts to restore the database, to process the results, and to generate the tables
and figures.

The artifact also includes scripts to execute the DPA tools on the full set of GitHub projects
used to generate the pre-collected data (i.e., to reproduce the experiments), as well as to execute
the DPA tools on smaller subsets of selected GitHub projects (for evaluating NAB on a smaller
input set). The scripts automate different activities, such as cloning, building, running test code
applying the selected DPA tool, collecting DPA results, and generating output in the form of
tables and figures.

2 Content

The artifact includes the following content:
docker/: directory containing four Docker images, one for each NAB core service
(nab-master.img, nab-analyzer.img, nab-crawler.img, and nab-dashboard.img).
nab/: directory containing scripts, configuration files for each case study, sample configuration
files, and NAB service deployment files.
utils/: directory containing helper scripts.
load.sh: script to load the images of NAB services in the Docker installation.
README.pdf: a description about how to run the Docker images containing NAB services for
the three DPAs covered in the related paper.
run-nab.sh: the main script to start the core NAB services and run the experiments.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: http://research.upb.edu/NAB/nab-artifact.tgz.

4 Tested platforms

The artifact has been successfully tested on machines running Linux or macOS with at least
16 GB of RAM and 50 GB of free storage. It was tested with Docker 18.06.1-ce (build e68fc7a)
and 18.09.2 (build 6247962).

5 License

The artifact is available under Apache License 2.0.

http://research.upb.edu/NAB/nab-artifact.tgz
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6 MD5 sum of the artifact

fa2151a3fa429d676e7eb2c77d5aad62

7 Size of the artifact

5.6 GB
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