
Automated Large-Scale Multi-Language Dynamic
Program Analysis in the Wild (Artifact)
Alex Villazón
Universidad Privada Boliviana, Bolivia
avillazon@upb.edu

Haiyang Sun
Università della Svizzera italiana, Switzerland
haiyang.sun@usi.ch

Andrea Rosà
Università della Svizzera italiana, Switzerland
andrea.rosa@usi.ch

Eduardo Rosales
Università della Svizzera italiana, Switzerland
rosale@usi.ch

Daniele Bonetta
Oracle Labs, United States
daniele.bonetta@oracle.com

Isabella Defilippis
Universidad Privada Boliviana, Bolivia
isabelladefilippis@upb.edu

Sergio Oporto
Universidad Privada Boliviana, Bolivia
sergiooporto@upb.edu

Walter Binder
Università della Svizzera italiana, Switzerland
walter.binder@usi.ch

Abstract
This artifact provides a preliminary release of NAB,
a distributed infrastructure for executing large-scale
dynamic program analyses (DPAs). The artifact
consists of ready-to-use Docker containers that al-
low one to run different DPA tools (Deep-Promise,
JITProf, and tgp) on Node.js, Java, and Scala

projects hosted on GitHub. The artifact enables
the reproduction of the figures and tables of the re-
lated paper “Automated Large-scale Multi-language
Dynamic Program Analysis in the Wild” with pre-
collected data (several GBs) and the execution of
DPAs on specific sets of GitHub projects.

2012 ACM Subject Classification Software and its engineering → Dynamic analysis
Keywords and phrases Dynamic program analysis, code repositories, GitHub, Node.js, Java, Scala,
promises, JIT-unfriendly code, task granularity
Digital Object Identifier 10.4230/DARTS.5.2.11
Acknowledgements This work has been supported by Oracle (ERO project 1332), Swiss National Science
Foundation (scientific exchange project IZSEZ0_177215), Hasler Foundation (project 18012), and by a
Bridging Grant with Japan (BG 04-122017).

Related Article Alex Villazón, Haiyang Sun, Andrea Rosà, Eduardo Rosales, Daniele Bonetta, Isabella
Defilippis, Sergio Oporto, and Walter Binder, “Automated Large-Scale Multi-Language Dynamic Program
Analysis in the Wild”, in 33rd European Conference on Object-Oriented Programming (ECOOP 2019),
LIPIcs, Vol. 134, pp. 20:1–20:27, 2019. https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
Related Conference 33rd European Conference on Object-Oriented Programming (ECOOP 2019), July
15–19, 2019, London, United Kingdom

© Alex Villazón, Haiyang Sun, Andrea Rosà, Eduardo Rosales, Daniele Bonetta, Isabella Defilippis,
Sergio Oporto, and Walter Binder;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 2, Artifact No. 11, pp. 11:1–11:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-8428-3420
mailto:avillazon@upb.edu
mailto:haiyang.sun@usi.ch
mailto:andrea.rosa@usi.ch
https://orcid.org/0000-0002-6404-3128
mailto:rosale@usi.ch
mailto:daniele.bonetta@oracle.com
mailto:isabelladefilippis@upb.edu
mailto:sergiooporto@upb.edu
mailto:walter.binder@usi.ch
https://doi.org/10.4230/DARTS.5.2.11
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


11:2 Automated Large-Scale Multi-Language Dynamic Program Analysis in the Wild (Artifact)

1 Scope

The artifact contains a preliminary release of NAB, including different services (i.e., NAB-Master,
NAB-Crawler, NAB-Analyzer, and NAB-Dashboard) that run in Docker containers, as described
in the related paper “Automated Large-scale Multi-language Dynamic Program Analysis in the
Wild” [6]. The NAB-Analyzer Docker image in the artifact includes three DPA tools (Deep-
Promise [6], JITProf [2] and tgp [5, 3, 4] and two runtimes (Oracle’s JVM [1] and GraalVM [7])
for analyzing open-source Java, Scala, and Node.js projects hosted on GitHub.

To reproduce the figures and tables from the related paper, we use pre-collected data (i.e.,
results of DPA tools applied to more than 56K Node.js, Java, and Scala projects from GitHub)
stored in MongoDB databases. The pre-collected data is stored in the NAB-Dashboard image.
We provide scripts to restore the database, to process the results, and to generate the tables
and figures.

The artifact also includes scripts to execute the DPA tools on the full set of GitHub projects
used to generate the pre-collected data (i.e., to reproduce the experiments), as well as to execute
the DPA tools on smaller subsets of selected GitHub projects (for evaluating NAB on a smaller
input set). The scripts automate different activities, such as cloning, building, running test code
applying the selected DPA tool, collecting DPA results, and generating output in the form of
tables and figures.

2 Content

The artifact includes the following content:
docker/: directory containing four Docker images, one for each NAB core service
(nab-master.img, nab-analyzer.img, nab-crawler.img, and nab-dashboard.img).
nab/: directory containing scripts, configuration files for each case study, sample configuration
files, and NAB service deployment files.
utils/: directory containing helper scripts.
load.sh: script to load the images of NAB services in the Docker installation.
README.pdf: a description about how to run the Docker images containing NAB services for
the three DPAs covered in the related paper.
run-nab.sh: the main script to start the core NAB services and run the experiments.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: http://research.upb.edu/NAB/nab-artifact.tgz.

4 Tested platforms

The artifact has been successfully tested on machines running Linux or macOS with at least
16 GB of RAM and 50 GB of free storage. It was tested with Docker 18.06.1-ce (build e68fc7a)
and 18.09.2 (build 6247962).

5 License

The artifact is available under Apache License 2.0.

http://research.upb.edu/NAB/nab-artifact.tgz


A. Villazón et al. 11:3

6 MD5 sum of the artifact

fa2151a3fa429d676e7eb2c77d5aad62

7 Size of the artifact

5.6 GB

References
1 Oracle Corporation. Java SE HotSpot at a Glance.

https://www.oracle.com/technetwork/java/
javase/tech/index-jsp-136373.html, 2018.

2 L. Gong, M. Pradel, and K. Sen. JITProf: Pin-
pointing JIT-unfriendly JavaScript Code. In ES-
EC/FSE, pages 357–368, 2015.

3 A. Rosà, E. Rosales, and W. Binder. Analyzing
and Optimizing Task Granularity on the JVM. In
CGO, pages 27–37, 2018.

4 A. Rosà, E. Rosales, and W. Binder. Analysis and
Optimization of Task Granularity on the Java Vir-
tual Machine. ACM Transactions on Programming
Languages and Systems (TOPLAS), pages 1–47,
2019.

5 E. Rosales, A. Rosà, and W. Binder. tgp: a Task-
Granularity Profiler for the Java Virtual Machine.
In APSEC, pages 570–575, 2017.

6 A. Villazón, H. Sun, A. Rosà, E. Rosales,
D. Bonetta, I. Defilippis, S. Oporto, andW. Binder.
Automated Large-scale Multi-language Dynamic
Program Analysis in the Wild. In ECOOP, Lon-
don, UK, July 2019.

7 T. Würthinger, C. Wimmer, C. Humer, A. Wöß,
L. Stadler, C. Seaton, G. Duboscq, D. Simon, and
M. Grimmer. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In
PLDI, pages 662–676, 2017.

DARTS

https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

