
Minimal Session Types (Artifact)
Alen Arslanagić
University of Groningen, The Netherlands

Jorge A. Pérez
University of Groningen, The Netherlands

Erik Voogd
University of Groningen, The Netherlands

Abstract
This artifact contains MISTY, a tool that decom-
poses message-passing programs with session types
into programs typable with the minimal session
types we introduce in our ECOOP paper. MISTY in-
corporates a domain-specific language for message-
passing concurrency based on a higher-order process
calculus with session types. Given a source program

in this language, MISTY follows the results in our
ECOOP paper to produce LATEX code for its corres-
ponding decomposition. To demonstrate the tight
connection between source and decomposed pro-
grams, MISTY also allows users to simulate their
corresponding reductions.

2012 ACM Subject Classification Theory of computation → Type structures; Theory of computation
→ Process calculi; Software and its engineering → Concurrent programming structures; Software and its
engineering → Message passing
Keywords and phrases Session types, process calculi, π-calculus
Digital Object Identifier 10.4230/DARTS.5.2.5
Funding Work partially supported by the Netherlands Organization for Scientific Research (NWO)
under the VIDI Project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).
Acknowledgements We are grateful to the anonymous artifact reviewers for their suggestions. Pérez is
also with CWI, Amsterdam and the NOVA Laboratory for Computer Science and Informatics (FCT
grant NOVA LINCS PEst/UID/CEC/04516/2013), Universidade Nova de Lisboa, Portugal.

Related Article Alen Arslanagić, Jorge A. Pérez, and Erik Voogd, “Minimal Session Types”, in 33rd
European Conference on Object-Oriented Programming (ECOOP 2019), LIPIcs, Vol. 134, pp. 23:1–23:28,
2019.
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.23
Related Conference 33rd European Conference on Object-Oriented Programming (ECOOP 2019), July
15–19, 2019, London, United Kingdom

1 Scope

The artifact concerns MISTY, a tool that demonstrates the decomposition of message-passing
programs with (standard) session types into programs typable with the minimal session types
that we define and study in our ECOOP paper. We have used MISTY to automatically develop
the several examples included in our paper. In our view, MISTY serves as significant evidence that
the conceptual benefits of relying on minimal session types, thoroughly developed in our ECOOP
paper, have also concrete practical applications.

The syntax of MISTY programs closely follows Cloud Haskell [1]. Indeed, MISTY is implemented
as a deeply embedded domain-specific language in Haskell. For a given MISTY program, the tool
generates corresponding LATEX code that renders the following:
1. The program’s representation as an HO process with standard session types;
2. The reduction chain of the HO process obtained in (1);

© Alen Arslanagić, Jorge A. Pérez, and Erik Voogd;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 2, Artifact No. 5, pp. 5:1–5:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225000496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-0292-478X
https://orcid.org/0000-0002-1452-6180
https://doi.org/10.4230/DARTS.5.2.5
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.23
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


5:2 Minimal Session Types (Artifact)

3. The decomposition of the HO process obtained in (1) into an HO process with minimal session
types;

4. The reduction chain of the HO process obtained in (3).

2 Content

The source code of MISTY has been packaged using stack. At the top level there is a MISTY
module that implements main misty and mistymu functions; given an input program, these
functions generate the corresponding LATEX code.

This module depends on the following submodules:
Misty.Channel implements channel names.
Misty.Process implements the source language for MISTY as well as representations of
monadic and polyadic HO languages (target language of the decomposition).
Misty.Semantics implements the operational semantics of the languages defined in Process.
Misty.Types implements session types for input and intermediate languages as well as minimal
session types for the target language.
Misty.Decomposition implements the decomposition function for finite processes, divided
into a core fragment and its extension with selection and branching.
Misty.DecompositionMu implements the extension of the decomposition function that supports
tail-recursive session types.
Misty.DecompositionBase contains utilities common to both decomposition functions.

The package also includes:
Example MISTY programs in ../examples.
Already generated examples, consisting of LATEX code and PDF renderings.

The documentation is available in the MISTY package.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

The latest version of our code is available on the repository:

https://gitlab.com/aalen9/misty.git

To set up the environment:
Install stack (https://docs.haskellstack.org/en/stable/README/)
Clone the repository at https://gitlab.com/aalen9/misty.git

4 License

MISTY is released under BSD 2-clause License (https://opensource.org/licenses/BSD-
2-Clause).

5 Tested platforms

The artifact has been tested on macOs 10.14.3 platform, using:
GHC version 8.6.4
stack version 1.9.3
pdfLatex LATEXengine for generating PDFs.

https://gitlab.com/aalen9/misty.git
https://docs.haskellstack.org/en/stable/README/
https://gitlab.com/aalen9/misty.git
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause


A. Arslanagić, J. A. Pérez, and E. Voogd 5:3

6 MD5 sum of the artifact

381ff0f71f30f9711a7afd9dd210bb04

7 Size of the artifact

3 MiB

References
1 Jeff Epstein, Andrew P. Black, and Simon Peyton-

Jones. Towards Haskell in the Cloud. SIGPLAN
Not., 46(12):118–129, September 2011. doi:10.
1145/2096148.2034690.

DARTS

http://dx.doi.org/10.1145/2096148.2034690
http://dx.doi.org/10.1145/2096148.2034690

	Scope
	Content
	Getting the artifact
	License
	Tested platforms
	MD5 sum of the artifact
	Size of the artifact

