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Abstract
In this work, we present an unexpected connection between gradual typing and type error debugging.
Namely, we illustrate that gradual typing provides a natural way to defer type errors in statically ill-
typed programs, providing more feedback than traditional approaches to deferring type errors. When
evaluating expressions that lead to runtime type errors, the usefulness of the feedback depends on
blame tracking, the defacto approach to locating the cause of such runtime type errors. Unfortunately,
blame tracking suffers from the bias problem for type error localization in languages with type
inference. We illustrate and formalize the bias problem for blame tracking, present ideas for adapting
existing type error debugging techniques to combat this bias, and outline further challenges.
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2:2 Blame Tracking and Type Error Debugging

1 Introduction

Static and dynamic typing have different strengths [38, 53, 54]. For example, static typing
can detect more errors at compile time but delivers no runtime feedback for programs that
have static errors, while dynamic typing can run any program and provide feedback but defers
error detection to runtime. Gradual typing [45, 52, 47] is a new language design approach
that can integrate both typing disciplines in a single language, allowing different interacting
program regions to use static or dynamic typing as needed. Adopting gradual typing has
been popular with both statically typed languages (for example C#[3]) and dynamically
typed languages (for example JavaScript and Flow [8]). Additionally, gradual typing has
been adapted to work with many advanced language features [44, 31, 46, 37, 16, 30].

In particular, much research has explored the interaction of gradual typing with type
inference [46, 37, 16, 4, 5]. There are several reasons that this interaction has been explored.
First, inference can benefit the usability of gradual typing without programmers having to
manually modify numerous type annotations, as argued by [36]. Second, inferred types can
be synchronized to help improve gradual typing performance [36, 37, 5, 57]. Third, inference
can aid in the detection of inconsistencies in programs [16, 4, 30].

This paper explores an intriguing connection between gradual typing and type inference,
the blame tracking in gradual typing and type error debugging in type inference. In gradual
typing, well-typed programs may still encounter runtime type errors since type-checkers
allow statically typed contexts to accept values produced by dynamically typed expressions.
At runtime these dynamic values may not have the desired runtime types that the context
expected, and consequently a runtime type error may be triggered. Blame safety, adapted
from [15] by Wadler and Findler [61] and further developed in [1, 60, 43, 2], is a well accepted
approach in the gradual typing community for indicating which code region is responsible for
a runtime type error. Blame safety states that when a cast fails the blame is always assigned
to the more dynamic part, under the slogan that “well-typed programs can’t be blamed”.

Type error localization provides a similar purpose in type error debugging. It specifies
which code region is responsible for a static type error. Inaccurate type error localization
produces poor error messages [62, 24], and type inference often leads to poor localization.
Unlike in gradual typing where blame tracking is the de facto mechanism for enforcing blame
safety, numerous approaches have been developed to improving error localization and error
reporting in the presence of type inference errors in the last three decades [7, 21, 19, 51, 24,
28, 17, 14, 13, 10, 68, 33, 27, 9, 12, 32, 26, 55, 64, 65, 42, 11].

In this paper, we explore the relations between gradual typing and type error debugging.
Our exploration includes the following directions. First, we investigate whether gradual
typing and blame tracking improve type error debugging for type inference. Intuitively,
we can turn a program with type errors into a well-typed gradual program by annotating
certain expressions with dynamic types. We can then obtain and observe runtime behaviors
of the program using gradual typing, which may give the users a better understanding of the
type error. Through a few examples, we conjecture that gradual typing improves type error
debugging, but blame tracking does not. We present the details in Section 2.

Second, by drawing an analogy from type error localization, we reflect the usefulness
of blame tracking for providing debugging information when gradual programs encounter
dynamic type errors. A fundamental difficulty in type error localization is that type inference
is biased. Specifically, it tends to attribute the type error to a later part of the program’s
syntax tree while in fact the error may have been caused by an earlier part. Unfortunately,
we observe that blame tracking is also biased. It tends to blame a later untyped region along
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the execution path leading to a dynamic type error, while the error may have been caused
by an earlier region. We prove this problem in Section 3. Thus, we suggest that while blame
tracking is well-accepted in the gradual typing community, its helpfulness in debugging is
questionable, particularly in languages supporting type inference.

Third, as blame tracking suffers from the same problem as type inference does, we are
interested in knowing the potential of adapting existing type error localization and debugging
approaches to improve blame tracking. We discuss the potential of several approaches and
highlight the challenges in adapting them in Section 4. We conclude in Section 5.

2 Gradual Typing and Blame Tracking for Type Error Debugging

This section investigates how gradual typing and blame tracking can help with type error
debugging in Sections 2.1 and 2.2, respectively.

2.1 Gradual Typing for Type Error Debugging
We use the example factorial program from Figure 1 to illustrate how gradual typing provides
new insights for type error debugging. The type error in Figure 1a is caused by the value
true, which should instead be 1. Types for the program are inferred by solving constraints
that are generated by the structure of the program. For example, in each function call a
constraint is generated ensuring that the argument type of the function must match the type
of the argument, and similarly different branches in a single function are constrained into
returning the same type. These constraints are collected and solved while traversing program
structure. If the constraints can’t be solved, then a type error is raised.

To make type inference feasible, constraint solving must be most general [59]. Most-
general constraint solving pushes back failure detection as late as possible, and thus the
reported location is likely not the real error cause. For example, Helium [20], a Haskell type
error debugger, attributes the type error to *, later than the real error cause true, as can be
seen from Figure 1b. The standard Haskell compiler GHC also suffers from the right-biased
problem, although it reports the whole else branch as the error cause.

Most type error debugging approaches prevent the running of ill-typed programs. However,
the ability to run ill-typed programs is believed to help program understanding [41, 58],
which may in turn help programmers fix their type errors. A main approach that enables the
execution of ill-typed programs is deferring type errors to runtime [58]. In a program that
contains both well-typed and ill-typed functions, deferring type errors allows programmers to
run functions that are not involved in the type error. It, however, provides little help to fix
the type error itself. To illustrate, consider running the program in Figure 1a with GHC and
deferred type errors enabled. After loading the function, we can invoke fac in GHCi. While
it looks reasonable to expect the result true when we run fac 0, since the branch that will
be executed does not contain a type error, GHCi actually dumps its deferred compile-time
type error message, as shown in Figure 1d. This message is biased since it does not mention
the real error cause true. The work by Seidel et al. [41] can also run ill-typed programs, but
it supports much fewer language features.

An alternative to the previously mentioned approaches is to use gradual typing, facilitated
by ascribing certain subexpressions with the dynamic type (denoted by ?). For fac in
Figure 1a, we make it well-typed by ascribing ? to *, as shown in Figure 1c. This new
expression, which we name facG, is well-typed because the dynamically typed operator
(*:?) can accept values of any type as arguments. We run facG with the gradual evaluator
developed by Miyazaki et al. [30], and the result is shown in Figure 1e. The output first shows
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2:4 Blame Tracking and Type Error Debugging

fac n = if n == 0 then true
else n * fac (n-1)

(a) An ill-typed function, adopted from [41].

(3,43): Type error in infix application
expression : n * fac (n - 1)
operator : *

type : a -> a -> a
does not match : Int -> Bool -> Bool

(b) Output from Helium [20] for fac.

facG n = if n == 0 then true
else n (*:?) facG (n-1)

(c) A well-typed gradual program by ascribing *
in Figure 1a to have a dynamic type ?.

*Main> fac 0
*** Exception: Fac.hs:3:41: error:
• Couldn’t match expected type ‘Bool’

with actual type ‘Int’
• In the expression: n * fac (n - 1)

In the expression:
if n == 0 then True else n * fac (n - 1)
...

(deferred type error)

(d) Output from running fac with GHC 8.0.2 and de-
ferring type errors enabled.

# facG 0;;
- : bool = true
(e) Result of running facG with the idea from [30].

Figure 1 An ill-typed function fac and outputs from various tools and approaches. To reconcile
language differences, we use true for True in Haskell.

the type and then the result after the equals sign. Interestingly, gradual typing produces
true for the expression facG 0. With this output, a keen programmer should already be able
to fix the type error in fac because the factorial function should never return a boolean value.
She may thus change true to 1 to remove the type error.

Because gradual typing generally provides more feedback when running “statically”
ill-typed (but gradually well-typed) programs than deferred type errors, we believe that
gradual typing does offer additional insights beyond existing type error debugging approaches.
However, a main hindrance of adopting gradual typing for debugging type errors is that
current implementations supporting gradual typing with type inference and parametric
polymorphism are limited. The work in [30] (building on much previous work on some mix
of polymorphism, inference, and blame [16, 1, 2, 22, 23]) provides an implementation, but it
is restricted to a small set of language features.

A particular twist in using gradual typing to improve type error debugging is that the
user needs to provide appropriate arguments to ill-typed functions. Specifically, gradual
typing will show execution results only if the execution does not encounter a dynamic type
error. For example, only when the argument to facG is 0 will the resulting true be shown.
Otherwise, blaming information will be shown. In such cases, the usefulness of gradual
typing for type error debugging depending on that of blame tracking, which we investigate
in Section 2.2.

2.2 Blame Tracking for Type Error Debugging

Blame tracking specifies which subexpression should be blamed if the execution of an
expression encounters a runtime error. The standard goal of blame tracking in gradual
typing is to preserve blame safety [61, 60], which attributes the blame for runtime type errors
to subexpressions with more dynamic types. We use the following table to illustrate the
behaviors of blame safety. In the “Expressions” column, we use a ; to denote a sequential
expression. The “Blames” column are the expressions blamed after running the corresponding
expression with the evaluator from [30]. Our goal in the expressions (1) through (4) is to
use gradual typing to debug the type error in fac (Figure 1a). The goal of expressions (5)
through (11) is to debug the type error in (\x y -> if true then x else y) 2 false.
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Ids Expressions Blames

(1) fac1 n = if n == 0 then true else n (*:?) fac1 (n-1); fac1 1 *
(2) fac2 n = if n == 0 then (true:?) else n * fac2 (n-1); fac2 1 true
(3) fac3 n = if n == 0 then (true:?) else n (*:?) fac3 (n-1); fac3 1 *
(4) fac4 n = if n > 0 then n (*:?) fac4 (n-1) else (true:?); fac4 1 *

(5) (\x y -> if true then x else y) 2 (false:?) false
(6) (\x y -> if true then x else y) (2:?) false 2
(7) (\x y -> if true then x else y) (2:?) (false:?) false
(8) (\x y -> if true then x else y) (false:?) (2:?) 2
(9) (\x y -> if true then x else y) ((succ:?) 2) (false:?) false
(10) (\x y -> if true then x else y) ((succ:?) (2:?)) (false:?) false
(11) (\x y -> if true then x else y) ((\x -> x) (succ:?) 2) (false:?) false

From the table, we make two observations. First, when an expression contains only one
subexpression with a dynamic type ?, then that subexpression will be blamed for causing
the runtime type error. This is intuitive, because that subexpression is more dynamic than
all other subexpressions and will alone be responsible for type mismatches at runtime. The
expressions (1), (2), (5), and (6) in the table all belong to this case. Note that the anonymous
function is statically-typed (since the parameters do not have the type ?), and the conditional
branches are required to have the same type. As a result, the expressions (5) through (11)
will raise blame, rather than returning the first argument. We observe that blame tracking
does blame the subexpression that caused the type error if that subexpression happens to
have the dynamic type, as in the expression (2) above. However, if the user knows where to
add ? she probably already knows how to fix the type error.

Second, when an expression contains multiple subexpressions that have the dynamic
type, then blame safety is biased in attributing the dynamic type error. Specifically, because
blame safety is connected to the expression that triggers the runtime type error, it always
blames the most recently encountered dynamic context in program execution, even if the
true cause of the error was due to an expression evaluated much earlier. For example, in
both expressions (3) and (4), the subexpression true:? is returned earlier than it is being
used as a multiplicand to *:?. In other words, true is being executed before *:?. As a result,
*:? is blamed in both subexpressions, regardless of their ordering in the conditional branches.
Alternatively, we can view true:? as injecting true to a dynamic value, and when it is used in
*:? a projection happens. This fits in our description of blame, since blame tracking always
blames projections that follow injections.

In expressions (7) through (11), the anonymous function is first applied to the first
argument, substituting the argument into x in the body and also instantiating the type of
both parameters x and y. When it is applied to the second argument, its type is ensured to
be the same as the instantiation. Therefore, we observe that the first argument is executed
first and the second argument later. Unsurprisingly, blame safety always assigns the blame
to the second argument. The expression (8) in the table demonstrates that that the ordering
of types is responsible for determining the blamed expression. The expressions (9) through
(11) confirm this observation, even as expressions become more complicated.

We observe that when an expression has multiple subexpressions with ?, blame tracking
may provide little help to type error debugging. There is little context in the program that
indicates that the blamed subexpression is the true cause of the type error. This phenomenon
is well-understood in the type error debugging research community. For example, while *
is blamed in the expressions (3) and (4), we already know that that does not cause the

SNAPL 2019



2:6 Blame Tracking and Type Error Debugging

Term variables x, y Type variables X, Y
Type constants ι Blame labels `

Static types T ::= ι | X | T →T Gradual types U ::= ? | ι | X | U→U

Ground types G ::= ι | ?→?
Expressions e ::= x | c | op(e, e) | λx :U.e | e e | e : U ⇒` U

Values w ::= c | op(w,w) | λx :U.e | w : U→U ⇒` U→U | w : G⇒`?

Figure 2 Syntax of types, expressions, and values.

type error. In subexpressions (7) and (9) through (11), while false may be the error cause
(because changing it to some integer value will in fact fix the type error), 2 or/and succ are
equally likely to have caused the type error. For example, the user may have intended to use
a boolean value where 2 is, or they may have intended to use a boolean valued function such
as even or odd instead of succ.

Based on these two observations, we conclude that blame tracking offers very little
additional help to type error debugging. Moreover, our second observation implies that
blame safety may not be an ideal way to report causes for dynamic type errors, since it is
biased. In Section 3 we prove that this bias is indeed a general problem.

3 Blame Tracking is Biased

To prove that blame tracking is biased, our high-level idea is to show that gradual program
execution embodies type constraint generation and solving, which are well-known to be
biased in the type inference research community. Our idea is inspired by the work of dynamic
type inference (DTI) for gradual typing [30]. In combining gradual typing and type inference,
some type variables are left undecided at compile time due to the interaction of dynamic
types. Consider, for example, the expression (λx : ?.x 2) (λy.y). During type inference,
the type, say Y , for the parameter y cannot be decided because it is solely required to be
consistent with ? (which every type is consistent with). However, the choice of Y has a
significant impact on the execution result. If Y is chosen to be Int, then the expression runs
correctly. Otherwise, the expression leads to dynamic type errors. The challenge here is that
it is statically difficult to decide that Y should be Int.

DTI addressed this issue by keeping Y as y’s static type and deferring the instantiation
of it to runtime. Eventually, λy.y will be applied to 2, making it clear that Y needs to be
instantiated with Int to make this application succeed. Miyazaki et al. [30] proved that DTI
is both sound and complete in the sense that if a term is evaluated successfully then some
correct instantiation (such as instantiating Y with Int at compile time) of the term will
execute successfully in the blame calculus [61, 1, 2].

This example illustrates that DTI mixes reductions and type instantiations without
generating type constraints explicitly. To investigate whether existing type error localization
and debugging approaches can help address the bias in blame tracking, we instead separate
constraint generation (during program execution) and constraint solving (after the execution
is finished). If constraint solving succeeds, then the program executes without raising blame
in DTI. Otherwise, blame will be raised. The advantage of this separation is that it allows
us to make a clear connection between constraint solving and blame tracking.
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op(w1, w2) −→G (JopK(w1, w2), {})
(λx :U.e) w −→G (e[w/x], {})
w : ι⇒` ι −→G (w, {})
w :?⇒`? −→G (w, {})

(w1 : U1→U2 ⇒` U3→U4) w2 −→G ((w1 (w2 : U3 ⇒` U1)) : U2 ⇒` U4, {})
w : U ⇒`? −→G (w : U ⇒` G⇒`?,{}) (if U 6=?, U 6= G, U ∼ G)
w :?⇒` U −→G (w :?⇒` G⇒` U ,{}) (if U 6=?, U 6= G, U ∼ G)

w : G1 ⇒`1 ?⇒`2 G2 −→G (w, {G1 ·
`2= ·G2}) Meet

w : ι⇒`1 ?⇒`2 X −→G (w, {ι · `2= ·X}) Base
w :?→?⇒`1 ?⇒`2 X −→G (w :?→?⇒`2 X1→X2,{X ·

`2= ·X1→X2}) Arrow

Figure 3 Reduction rules. X1 and X2 in the Arrow rule are fresh.

3.1 Syntax
We consider a cast calculus with the type and expression syntax given in Figure 2. The
definition is standard compared to other cast calculi [30, 47]. In the figure, e : U1 ⇒` U2
denotes a cast that ensures e has the type U2 at runtime and raises blame at location `

otherwise. Both the cast and the label ` are inserted while translating gradual programs into
programs in a cast calculus [47, 30].

The main difference between our calculus and others is that we do not have an explicit
blame construct and do not terminate programs early, while others do [30, 47]. To avoid
early termination, we add a value form op(w1, w2) that interprets possible computations like
3 + true as the value +(3,true). The main reason for this addition is that we do not want
to terminate program execution once a cast error would be encountered but rather collect
all type constraints until program reduction finishes. We will show that our calculus and
corresponding reduction rules yield the same result as others–that is they succeed with the
the same value or fail with the same blame label.

3.2 Dynamic Constraint Generation and Solving
The reduction and constraint generation rules are presented in Figure 3. Our reductions
have the form e1 −→G (e2, C), where C is a set of constraints. A constraint has the form
U1 ·

`= ·U2, denoting that U1 and U2 are required to be the same type, and ` will be blamed if
they can not be made the same. We write e −→∗

G (en, C) if e −→G (e1, C1), e1 −→G (e2, C2),
. . . , and en−1 −→G (en, Cn), and C = C1 ∪ C2 ∪ · · · ∪ Cn.

Since our semantics is designed to collect all type constraints, our reduction rules differ
from those in [30] only when typing constraints are generated, or when a primitive operation
would produce an error. The rules are the same in all other cases. Specifically, the first seven
rules in Figure 3 are mostly standard among other cast dynamic semantics [30, 47]. Since no
typing constraints are generated, the constraint set is empty in these rules.

The Meet rule handles two cases that are dealt separately in other cast semantics. In the
first case, G1 and G2 are the same, and the cast will be successful and will thus be dropped.
In the second case, G1 and G2 are different, and the cast will fail and blame `2. When our
approach attempts to solve the constraint G1 ·

`2= ·G2, it will behave as one of these cases.
Specifically, if G1 and G2 are the same, then the constraint solving succeeds. Otherwise,
constraint solving fails and blames `2.
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2:8 Blame Tracking and Type Error Debugging

In Base, a dynamically typed value with primitive type ι can be projected into having
type X if and only if X of is the same as ι. As a result, a constraint ι · `2= ·X is generated.
Similarly, in Arrow, when we project a value that has a function type (?→?), our minimal
expectation of the value is that it is a function (U1→U2). Both of these rules are similar to
those in [30], but they solve the constraint immediately while we collect and solve them later.

For a generated constraint set, the Robinson’s unification algorithm [39] will suffice to
solve it. For simplicity, we use U to denote that algorithm with following simple extensions.
For any constraint set C, U(C) returns a substitution θ if constraint solving succeeds. When
constraint solving fails, it returns (`, θ), where ` is the label of the constraint that fails to
solve and must be blamed, and θ is the substitution accumulated so far. Note that U solves
the constraints in the ordering they are added to the constraint set, as what classic type
inference does [35].

In general, our approach of separating reduction and constraint solving is correct, as
expressed in the following theorem, where −→∗

D denotes the reduction relation that mixes
constraint solving and reduction, as defined in [30].

I Theorem 1 (Correctness of −→G and U). Given any expression e, let e −→∗
G (w1, C).

U(C) = θ if and only if e −→∗
D w2 and θ(w1) = w2.

U(C) = (`,θ) if and only if e −→∗
D blame `.

Intuitively, the theorem states that both approaches compute the same correct result or
blame the same location. The theorem can be proved by induction over the −→G relation
defined in Figure 3 and the relation −→D in [30].

The following example shows the reduction sequences of −→∗
G (between the two rules)

and −→∗
D (after the second rule) for the expression (λx y.if true then x else y) (2:?) (5:?).

Note,  denotes the step of type inference and cast insertion. The two parameters have
the same type variable X after type inference because (1) they have no ?s and normal
type inference applies to them and the subexpressions using them and (2) they are the two
branches of the same conditional, which are required to have the same type [16, 30].

(λx y.if true then x else y) (2:?) (5:?)
 (λx : X y : X.if true then x else y) (2 : Int⇒`2 ?⇒`2 X) (5 : Int⇒`5 ?⇒`5 X)

−→G (λx : X y : X.if true then x else y) 2 (5 : Int⇒`5 ?⇒`5 X) {Int · `2= ·X}
−→G (λy : X.if true then 2 else y) (5 : Int⇒`5 ?⇒`5 X) {Int · `2= ·X}
−→G (λy : X.if true then 2 else y) 5 {Int · `2= ·X, Int · `5= ·X}
−→∗

G 2 {Int · `2= ·X, Int · `5= ·X}

−→D (λx : Int y : Int.if true then x else y) 2 (5 : Int⇒`5 ?⇒`5 Int) {X 7→ Int}
−→D (λy : Int.if true then 2 else y) (5 : Int⇒`5 ?⇒`5 Int)
−→D (λy : Int.if true then 2 else y) 5
−→D 2

For this example, the reduction −→∗
D produces the result 2. The relation −→∗

G also
produces that result, but generates an additional constraint set {Int · `2= ·X, Int · `5= ·X}, which
has the solution {X 7→ Int} after being solved by the solver U . Therefore, both reductions
succeed and produce 2.

The following example shows the reduction sequences of −→∗
G (between the two rules) and

−→∗
D (after the second rule) for the expression (λx y.if true then x else y) (2:?) (false:?).
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(λx y.if true then x else y) (2:?) (false:?)
 (λx : X y : X.if true then x else y) (2 : Int⇒`2 ?⇒`2 X) (false : Bool⇒`f ?⇒`f X)

−→G (λx : X y : X.if true then x else y) 2 (false : Bool⇒`f ?⇒`f X) {Int · `2= ·X}
−→G (λy : X.if true then 2 else y) (false : Bool⇒`f ?⇒`f X) {Int · `2= ·X}
−→G (λy : X.if true then 2 else y) false {Int · `2= ·X, Bool · `f= ·X}
−→∗

G 2 {Int · `2= ·X, Bool · `f= ·X}

−→D (λx : Int y : Int.if true then x else y) 2 (false : Bool⇒`f ?⇒`f Int) {X 7→ Int}
−→D (λy : Int.if true then 2 else y) (false : Bool⇒`f ?⇒`f Int)
−→D (λy : Int.if true then 2 else y) (blame `f)
−→D blame `f

For this example, the reduction −→∗
D blames the location `f because false does not

have the expected type Int at runtime. The relation −→∗
G produces the result 2 with the

constraint set {Int · `2= ·X, Bool · `f= ·X}. When solving this set in the ordering that constraints
were added to this set, U fails to solve the second constraint because X will be updated to
Int after the first constraint is solved. As a result, solving the second constraint leads the
program label `f being blamed. Overall, both reductions have the same behavior of blaming
`f for this example.

Although the two reductions blame same locations for expressions that have runtime
type errors, the reduction −→∗

G can extract more useful information that can be exploited
by existing type error debugging approaches to provide better blaming information (We
briefly explore this idea in Section 4). The following example cond3 illustrates this aspect.
For the cast inserted program, the relation −→∗

D blames `2 and so does −→∗
G. However, our

reduction rules also collect the constraint set Ccond= {Bool · `f= ·X, Int · `2= ·X, Int · `5= ·X}.

cond3 = (λx y z.if false then x else (if true then y else z)) (false:?) (2:?) (5:?)
 (λx : X y : X z : X.if false then x else (if true then y else z))

(false : Bool⇒`f ?⇒`f X) (2 : Int⇒`2 ?⇒`2 X) (5 : Int⇒`5 ?⇒`5 X)

Based on Theorem 1, we can reduce blame tracking to constraint generation and solving in
our approach. Since constraint solving is biased [14, 25, 29, 66, 10, 17], blame tracking is
also biased. The difference between type inference and gradual typing is that constraints are
collected at compile time in the former while at runtime in the latter. This means that in
type inference the bias happens along the abstract syntax traversal ordering while in gradual
typing the bias happens along the execution ordering.

4 Type Error Debugging for Blame Tracking

The previous section shows that blame tracking is biased similar to type inference, albeit
with constraint collection happening at different times. This inspires that existing work in
type error debugging may be adapted to alleviate the bias problem in blame tracking.

Reordering constraint solving. A common idea to combat the bias in the standard uni-
fication algorithm is to reorder the unification problems being solved [14, 25, 29, 66]. For
example, if we solve the constraints in Ccond from the last to the first, then the location `f ,
corresponding to false, will be blamed. While these approaches can improve blame tracking
in some cases, they are in general still biased in the orderings they solve constraint problems.
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Error slicing. Instead of just blaming one location, type error slicing approaches [50, 17, 40,
48, 49, 63] highlight all of the program locations relevant to a type error. For example, for
the expression cond3 in Section 3, although only `2 looks to cause the dynamic type error, all
three locations `f , `2, and `5 will be identified by slicing approaches due to the connection of
the common type variable X in all constraints. The downside of slicing approaches is that
the user still must determine the real error cause among all those identified.

Error localization. Many approaches [24, 21, 18, 20, 34, 33, 27, 67, 68, 69] have been
developed to exploit context information to locate the most likely error location among a set
of locations. From the constraint set Ccond, all these approaches will blame `f as the error
cause because the type variable X is unified with Bool once but Int twice. This result makes
sense because changing false modifies only one subexpression, whereas the other fix requires
changing 2 and 5. Most of these approaches, however, lack a concrete message about how to
fix the type error.

Discussion. Some challenges exist in adopting existing type error debugging for improving
blame tracking, including: (1) current gradual typing implementations do not facilitate
constraint collection at runtime, (2) the assumptions that hold for type error debugging may
not hold for blame tracking, and (3) shortcomings with error debugging approaches will also
be transferred to those for blame tracking.

The real challenge is that, in some situations, neither blame tracking nor type error
debugging help to debug the error, illustrated by the following expression.

(\x y -> if true then x else y) ((\x -> (x:?)) succ (2:?)) (false:?)

Assume the user intended to use even instead of succ in the expression, meaning that succ is
the error source. Similar to the expression (11) (Section 2.2), this expression will cause a
dynamic type error. However, neither blame tracking nor a potentially adopted type error
debugging approach will be able to locate succ as the error source since it is not annotated
with a ?. Worse, since this expression is well-typed, no existing type error debugging approach
can help, leaving it to the user to determine the real problem.

One may suggest to remove all ?s in gradual programs and employ existing type error
debugging approaches to assign blame for such programs. This idea is particularly intriguing
as recent work on a user study of gradual typing behaviors [56] suggests that both experienced
and novice programmers value static feedback for programs that have runtime type errors.
However, the suggested idea fails because it may report errors in programs that do not fail.
To illustrate, consider the following expression condxy, adopted from [6].

condxy = (λx (y :?).if x then even y else not y)true 2

Assume even has the type Int→ Bool and not has the type Bool→ Bool. This gradual
expression runs without blaming any subexpression. However, if we remove the ? for the
parameter y, we receive an error that blames some subexpression in condxy. Consequently,
this idea may yield too many false positive error reports.

5 Conclusion

Type error debugging for fixing and understanding type errors when type inference fails is a
well-studied subject. Blame tracking, though relatively new, is a well-accepted mechanism
for assigning blames to program locations when gradually-typed programs encounter runtime



S. Chen and J. P. Campora III 2:11

type errors. This paper explores connections between these two error debugging mechanisms,
focusing on how one can help the other. A fundamental observation in our exploration is that
blame tracking can be reduced to constraint collection and solving, the two main components
of type inference, indicating that the well-accepted gradual typing error debugging mechanism
suffers from the bias problem in type inference. This illustrates two problems. First, it limits
the ability to use gradual typing as a type-error debugging approach similar to deferred type
errors. Second, it means that blame tracking in general may not help programmers find
the cause of their runtime type errors. This calls for more research into understanding and
improving of blame tracking, particularly in gradual languages that employ type inference to
recover type information.
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