
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Theses Digitization Project John M. Pfau Library 

2007 

Multi-core processors and the future of parallelism in software Multi-core processors and the future of parallelism in software 

Ryan Christopher Youngman 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project 

 Part of the Systems Architecture Commons 

Recommended Citation Recommended Citation 
Youngman, Ryan Christopher, "Multi-core processors and the future of parallelism in software" (2007). 
Theses Digitization Project. 3120. 
https://scholarworks.lib.csusb.edu/etd-project/3120 

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has 
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. 
For more information, please contact scholarworks@csusb.edu. 

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3120?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


MULTI-CORE PROCESSORS AND THE FUTURE OF PARALLELISM IN 

SOFTWARE

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science 

by

Ryan Christopher Youngman

June 2007



MULTI-CORE PROCESSORS AND THE FUTURE OF PARALLELISM IN ;

SOFTWARE ' ;

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Ryan Christopher Youngman

June 2007

Approved by:

Dr. Ernesto GoAez, Advisor, ~ 
Computer Science

Date 7 ' ' ■

Dr. Keith Schubert



© 2007 Ryan Christopher Youngman



ABSTRACT

Recent changes in processor architectures are showing a movement towards utilizing 

multi-core technology in their designs. The physical limitations of current proces

sors, advances in fabrication technology, and increasing performance demands have 

provided the impetus for multi-core technology to become a reality. The apparent 

processing potential, more efficient resource usage and market interest hint that this 

technology will become more of a standard in modern processor architecture designs. 

It seems that from now on, computers will no longer be Von Neumann machines, bust 

rather, they will be parallel machines working together. ,

Multi-core architecture provides benefits such as less power consumption, scal

ability, and improved application performance enabled by thread-level parallelism. 

However, with the introduction of this technology, there are implications that we 

need to understand and consider. What exactly is a “core” and how does a multi

core CPU differ from the traditional single-core CPU? More importantly, how do we
I

take advantage of this hardware when developing software applications? The purpose 

of this thesis is to examine multi-core technology and answer some of these questions.

We will start by discussing the physical and engineering problems and why multi

core design is the natural evolution of microprocessors. Next, we examine multi-core 

processors themselves and understand the benefits they provide. A thorough discus

sion of multi-threading concepts follows, leading to a multi-threaded example appli

cation. In the last chapter, we will understand how multi-core processors will change
I

the software world forever and what we need to do to prepare for this significant 

change. :
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1. INTRODUCTION

In recent years, there has been a considerable shift among microprocessor designs all of 

which hint at a major evolution in computing hardware. While fabrication technology 

continues to improve, manufactures are starting to reach the physical limitations of 

semi-conductor based microelectronics.

1.1 Physical and Engineering Challenges

In accordance with Moore’s Law, the transistor density of processors has been in

creasing exponentially every eighteen to twenty-four months, and surprisingly, this 

law has held for the past forty years. However, since each transistor is itself a working 

electrical device that consumes power and produces heat, problems such as transistor 

leakage and excess heat consumption are starting to become a hindrance to the con

tinuing pace of Moore’s Law. If the transistor density rate continues at its present 

course, processors would eventually generate more heat per square centimeter than 

the surface of the sun [16].

Along with the heat considerations, we must also notice that with higher transistor 

densities, this requires more interconnects between the components in the CPU. As 

the total interconnects increase in length, path delays can surface and effectively 

nullify the speed increases of the transistors themselves.
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Also, serial architectures such as memory have not been increasing as fast as logic 

processing speeds. A typical Intel i486 CPU in the late 1980s to the early 1990s would 

require 6 to 8 clock cycles to access memory [15]. Today’s processors use more than 

200 clock cycles and these wasted cycles undermine the frequency increases typically 

used to increase processor performance.

It seems as though the traditional methods of increasing the clock rate or packing 

more transistors onto the chjp are starting to reach their practical limits. Even now, 

due to the heat constraints, semiconductor manufactures are actually decreasing clock 

rates in order to throttle back heat and obtain cooler running chips [19]. In the effort 

to produce faster, more efficient processors, manufactures are taking advantage of the 

improvements in fabrication technology and moving towards a chip-level multipro

cessing architecture. Before we look at the current state of processors, let us examine 

how we arrived at where we are today.
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2. EVOLUTION OF THE MICROPROCESSOR

2.1 In Pursuit of Parallel Computation

Over the years, microprocessor manufactures have strived to add more and more 

parallelism into the design of their chips. The main goal of any microprocessor archi

tecture is to obtain efficient resource utilization in order to maximize performance. 

One way to do this is to perform as many operations as possible in a given clock 

cycle. For years, computer architects have used instruction-level parallelism (ILP) to 

achieve out-of-order execution. ILP allows the CPU to re-order the instructions in 

such as way that it eliminates pipeline stalls and allows for an increased number of 

instructions to execute in a single clock cycle. i

A basic processor around the year 1989 featured pipelined execution where a num

ber of instructions were active in their respective stages. By duplicating the functional 

units, superscalar processors arrived on the scene, represented by the Pentium pro

cessors of 1993. By having multiple adders, for example, a Pentium processor could 

execute multiple additions granted they were independent of each other. Later, with 

the addition of single instruction, multiple data (SIMD) instructions, processors were
i

able to execute a single instruction on several data elements. This parallelism was 

made possible by MMX, SSE, and SSE2 instruction set additions. '

While ILP is recognized for its tremendous benefits of which are only now reaching
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Fig. 2.1: Time-slicing over a Number of Processes

their limits, ILP relies heavily on the dependencies between instructions to be low or 

non-existent. Higher dependencies between instructions reduce the overall ability for 

parallel execution to take place. Thread-Level Parallelism (TLP), as we will discuss 

shortly, builds on top of ILP and is widely recognized as one of the most important 

areas of how future parallelism will be achieved.

As software became more complex and able to perform multiple tasks simultane

ously, the ability for a processor to handle parallel computation was seen as a way 

of handling this challenge. Another method of achieving concurrency in software as 

apposed to hardware was to use preemptive, or time-sliced, multitasking. The use 

of time-slicing allowed developers the ability to hide latencies associated with I/O 

by interleaving execution of multiple threads running on the system. This gave the 

appearance of multiple programs running simultaneously, although at any given time, 

only one thread was executing. Figure 2.1 illustrates time-slicing over a number of 

process threads.

However, this method of time-slicing was still not parallel execution because of 
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one simple fact: only one instruction stream could run on a processor at a single 

point in time [1]. One way to solve this problem was to increase the number of 

physical processors in the system. A multiprocessor environment truly allows parallel 

execution because multiple threads or processes can be executed across the processors 

at the same time. Although this alternative solution worked, it came at a high price 

as multi-socket motherboards and the numerous processors that went on them it were 

very costly.

Trying to achieve efficient thread-level parallelism (TLP) on a single processor, 

computer architects found that the resources of the processor we at some times un

derutilized. Hence, they developed a technique called simultaneous multi-threadirig 

(SMT) which allowed the resources to be used more efficiently. In order to understand 

SMT, which heavily relies on threads, we first need to define what a thread is.

2.1.1 Definition of a Thread ;

A thread of execution, or more commonly known as a thread, can be though of as, a 

basic unit of CPU utilization. It has a program counter which points to the current 

instruction. It has CPU state information for the current thread, and it also contains 

other resources such as a stack [1]. A processor is made up of a number of different 

resources: general registers, interrupt logic, caches, buses, execution units, and so 

forth. These different resources comprise the architecture state of the processor. In 

order to define a thread on a processor, only the architecture state is required. This 

is how processors handle time-slicing; by swapping in and out different architectural 

states over time. This context switching comes at a high cost though, and we will
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Fig. 2.2: Simultaneous Multi-Threading Architecture

discuss later how too much context switching can hurt application performance. ]

So, by duplicating the architectural space, designers could implement logical pro

cessors on one chip. Execution resources then become shared among the different 

logical processors. Figure 2.2 shows an example of a SMT processor system. i

2.2 Hyper-Threading

Intel released its implementation of SMT in the early 2000 decade which was named 

Hyper-Threading Technology [15]. A processor using Hyper-Threading Technology 

appears to the operating system software as multiple logical processors even though 

the entire unit consists of just one physical processor. 1

Hyper-Threading Technology literally works by interleaves the instructions in the 

execution pipeline. Which instructions get inserted depends on what execution re

sources are available at execution time [1]. The threads can then be executed iri a 

parallel fashion as the context switching is greatly reduced between the threads. >

This latency hiding is the key behind Hyper-Threading Technology’s performarice 

gains. By having both thread states in the processor, when one thread blocks due tb a 
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cache miss, branch misprediction, or data dependency, the other thread can execute to 

maximize processor resource usage. Now, the operating system scheduler can schedule 

multiple threads to execute just as they would in a multiprocessor system. It then 

becomes the job of the microprocessor to determine how to execute multiple threads 

by interleaving them as the necessary resources for each thread become available. In 

practice, it is recommended for each thread’s work to be as different as possible in an 

effort to reduce contention for processor resources.

Despite the performance increase using SMT, there still exists only one execution 

resource that is shared among multiple threads. As a result, only one thread of 

execution is allowed to run at any given time and true thread-level parallelism is not 

possible.

7



3. MULTI-CORE ARCHITECTURE

While advents such as ILP, instruction sets additions such as MMX/SSE/SSE2, and 

Hyper-Threading Technology have improved processor performance, the next logical 

evolution of the modern microprocessor starts us on a path towards more available 

parallelism and true chip multiprocessing (CMP).

Modern chip architectures are starting to take advantage of fabrication technology 

in a whole new way. Current processor technologies are allowing manufactures to take 

advantage of more real estate on a single die. Manufacturers are using a “divide and 

conquer” strategy and are now able to implement two or more cores or “execution 

engines” on a single processor. Each core has its own set of execution and architectural 

resources such as floating point and integer units, but depending on the design, each 

core may or may not share a large on-chip cache. A multi-core processor plugs into 

a single socket, but the operating system perceives each core as a discrete processor 

with a full set of execution resources. Figures 3.1 and 3.2 demonstrate a simple 

comparison between single-core and multi-core architecture configurations. Other 

design configurations may feature differing cache sizes as well as shared or independent 

front side buses. i

Just as improvements in cache utilization has helped with performance in the past, 

Intel Corporation has developed a technology named Advanced Smart Cache technol-
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Fig. 3.2: Multi-Core Architecture
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ogy (ASC) which should continue to deliver more efficient Cache usage. Intel multif 

core processors feature an optimized cache that improves efficiency by increasing the 

probability of each core accessing data from a higher-performance cache-subsystem'. 

To accomplish this, the processor shares its L2 cache between cores. By sharing this 

cache, ACS also allows each core to dynamically utilize up to 100 percent of the avails 

able L2 cache [25]. For example, if one core has minimal cache requirements, other 

cores can increase their percentage of L2 cache. This results in reduced cache misses 

and bus traffic, as well as lower latency to data. ■

3.1 Advantages of Multi-Core Architecture '

3.1.1 Increased Performance

Because each core has its own execution pipeline and set of execution resources;, 

multiple threads can truly execute in parallel without blocking on resources needed 

by other threads. By splitting up computational work among the available cores, a 

multi-core processor can perform more work in a given cycle. Instead of the previous 

“scale-up” approach by increasing the clock rate, chip designers are now using h 

“scale-out” model for more efficient processing of multiple tasks.

Compared to a single-core processor, a multi-core processor with two cores is not 

twice as fast as a single-core processor of the similar speed. However, it can come 

close. When comparing an over-clocked single-core processor to a dual-core processor, 

tests have been shown that a dual-core processor consumes roughly the same amoun] 

of power while delivering more than a 70 percent performance improvement [18].
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Another reason for increased performance is that multi-core processors greatly 

reduce the associated cost when doing context switching between threads. This results 

in much less overhead and greater code processing throughput.

3.1.2 Reduced Power Consumption and Heat

One area in which multi-core architecture promises to deliver is that of reduced heat 

and power consumption. As most of the processing performance improvements have 

come from improvements to cache, clock speed, memory access and I/O, each of these 

has required an additional increase in power consumption. While increasing heat and 

power resulting in improved performance may lead to the diminishing return issue, it 

seemed a better solution was needed.

Multi-core architecture is different from single-core processors in that rather then 

each chip having its own separate architecture components such as memory and I/O, 

each core shares these resources. The power required to support these shared resources 

is minimally higher than those required for identical resources on a single-core pro

cessor. The only increase in power consumption comes from the addition of the extra 

execution core(s) to the processor. The result is a processor that provides greater 

performance than a single-core processor, without doubling the power requirements.

Since multi-core processors do more work in a given clock cycle, they can thus 

operate at lower frequencies. Semiconductor manufactures are actually starting to 

scale back clock speeds as they introduce more cores so the chips can run cooler [19]. 

Since power consumption goes up proportionally with frequency, multi-core archi

tecture helps combat the issue of increasing power and cooling requirements. For a 
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more in depth look at power and thermal management with respect to Intel micropro!-
. I

cessors, please consult [2], AMD’s optimized power management technology named 

PowerNow! is discussed in [14] and [3]. Please refer to these for more information. '

3.1.3 Benefits in the Data Center !

Multi-core processors are starting to become a favorable option in the data center 

due to their intrinsic benefits. IT managers constantly struggle to deliver higher 

levels of service while reducing costs associated with hardware, power, and physical 

space requirements. A common practice among server systems today is to deploy one
I 

application per server. Also, organizations commonly overprovision IT resources for 

peak usage, yielding low utilization rates. With multi-core processors, server appli

cations will experience faster throughput rates as multiple simultaneous transactions
I 

will be allowed to be processed at the same time. Service applications, databases, and 

real-time systems will enjoy increased responsiveness. Servers will be able to handle 

larger application and data loads which will aid in the effort of server consolidation 

and ultimately result in a reduced total cost of ownership.

With the reduced number of servers also comes the decreased cost of ongoing 

maintenance and management from IT administrators. As previously mentioned, A 

processor with multiple cores requires only a single socket, which aids when dealing 

with scalability issues. Instead of the reliance on multi-processor hardware, which 

tends to be very expensive, replacing a single multi-core processor with another that 

contains more cores is all that is needed to upgrade a machine with moth processingI 
cores.
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3.1.4 Virtualization

Multi-core processors naturally lend themselves to support the virtualization trend 

which is hot across areas of different industries and tied to the progress towards greater 

consolidation in the datacenter. Specific operating systems and/or applications can be 

dedicated to specific cores. Virtual machine strategies are concerned with isolating
/ 1

applications and operating systems from one another while they run on the same 

hardware. A multi-core processor would allow each core to host an operating system 

or application in separate physical states, while drawing from a common memory

pool.

3.1.5 Economical Changes

Maybe one of the most over-looked aspects of multi-core is the economical change it 

will bring. By having multi-core processors as commodity items, the economics of 

computing will change enabling larger and larger systems to be built at a cheaper 

cost. Grid computers and cluster systems will exhibit even more processing power
I

and will be attainable for many organizations, and not reserved for scientific and 

academic communities. Multi-core machines will be a more cost-effective solution for 

high computing needs, and even if the total costs of operation are not dramatically 

reduced, the increased computational power could be the justification alone.
I

3.2 Taking Advantage of Multi-Core Architecture ;

Software applications that will make the most of the thread-level parallelism available 

in multi-core processors will be those that have included multi-threading in their 

13



design. The software must be written so that it can spread its workload acros's
I
I

multiple execution cores allowing each core to execute completely separate threads
i

of code. But what are the challenges associated with multi-threading? Any seasoned 

software engineer will tell you that multi-threading an application is not a trivial
■ i

I task. There are many factors to consider and one must first evaluate if the need for 

threading is beneficial at all. J

In the next section, we will discuss the aspects of multi-threading programming. 

We will explore how threading is handled by the application, the operating systenj, 

and also the processor. Issues of data synchronization, race conditions, and deadlock 

will be mentioned as they pertain to multi-threading. ■
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4. MULTI-THREADED PROGRAMMING 

To take full advantage of multi-core technology, software applications must be multi

threaded. The work performed must be able to be spread out among the execution 

units of a multi-core processor so they can execute at the same point in time. A good 

place to start taking a closer look at multi-threading is to first understand parallel 

computing and parallel hardware.

In order to achieve parallel execution, we must first have hardware that supports 

simultaneous execution of threads. In general, a computing system can be described 

in terms of how instructions and data are processed. Michael J. Flynn proposed 

a taxonomy that places computing platforms in one of four categories [7]. Flynn’s 

Taxonomy is depicted in Figure 4.1.

Most of the designs for running parallel applications can be classified into two 

types: distributed memory MIMD or shared memory MIMD architectures. A shared 

memory system is different from a distributed memory system in that a single address 

space is shared across all processing elements. As the name suggests, distributed 

memory systems have distinct memories and the processing elements must interact 

through an interconnection network. Figure 4.2 and Figure 4.3 illustrate the two 

different architectures.

Both of these architectures are important and either one is chosen depending oil

15
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Fig. 4.1: Flynn’s Taxonomy

the problem being solved. However, over the next few years, the number of shared 

memory systems will explode due to the push for multi-core architecture. Soon, 

shared memory systems will be the norm and programmers will have wider and mote 

available access to parallel hardware on their target platforms than ever before.

Fortunately, high performance computers built to run parallel applications haye 

been around since the early 1980s. Since then, much has been learned about par

allel algorithms, parallel programming, and the tools required to make a parallel
I

programmer’s life easier and more productive. For years, parallel programming was 

the domain of high performance computing (HPC) which was widely used by the 

scientific and academic communities.



Fig. 4.2: Shared Memory MIMD ,

4.1 Motivation for Threading

What exactly is the motivation behind the decision to thread an application? First 

and foremost, the trend toward multi-core for server, desktop, and mobile class pro

cessors is expected to continue well into the future. To take full advantage of this 

new hardware requires that your applications be multi-threaded. By doing this, your 

applications will experience increased performance by running in a parallel environ

ment. Your users will have improved application responsiveness and productivity as 

they are able to increase the amount of work that can be done in less time. As hard

ware manufactures continue to add more cores, applications that are not threaded 

will only utilize a percentage of the total processing power available to them.



Fig. 4.3: Distributed Memory MIMD

What kinds of problems are good to solve through parallelism? The problems 

that are ideal are ones that can be partitioned by either of two methods: domain or 

functional decomposition. The goal of both these methods is to identify independent 

computations and primitive tasks that have no or limited relationships.

4.2 Domain (Data) Decomposition

Domain decomposition is a form of data parallelism where the same operation is 

applied to all data. For example, if you were encoding an MP3 file, you could partition 

the file into multiple chunks of data and send each chunk of data to multiple threads 

for encoding. Reconstruction of all chunks into the final encoded result would then be 

necessary. An example of where data decomposition can be found in code is usually 

18



on independent loop iterations. Domain decomposition is a highly scalable approach 

and allows for better performance as more processors are added.

Fig. 4.4: Domain (Data) Decomposition

4.3 Functional (Task) Decomposition

Functional decomposition is a noticeably harder method of parallelism where a prob

lem is segmented into unique jobs or tasks. Each task is then distributed among 

threads which execute concurrently. Simulation of complex systems falls into this 

category, for example, simulating the systems and dynamics of an automobile. Each 

sub-system simulation from the engine model, suspension model, to an aerodynamics 

model can all be simulated in a parallel fashion if these components are partitioned 

as independent tasks. Figure 4.5 shows a rather simple example of functional decom

position.

4.4 A Methodology for Multi-Threaded Development

Many experts suggest using a methodology when engaging in a multi-threading de

velopment effort. In this section, we will cover a number of stages which are part of

19



Fig. 4.5: Functional (Task) Decomposition

an iterative process aimed at producing an optimal multi-threaded solution. From 

identifying candidate areas for parallelism to analyzing the performance, following 

a process may be of help to you. Figure 4.6 shows a visual representation of this 

process.

4.4.1 Identifying Parallelism

The first stage of parallel application development begins with identifying opportu

nities for parallelism in the application. Naturally, the problems in your application 

must contain areas for parallel work to be done. If the problems are inherently struc

tured as a single task with a fixed order of events, there is just no concurrency to work 

with. The one goal of this stage is to identify hotspot areas that could be candidates 

for threading. Hotspot functions with no data dependencies and loops with inde

pendent iterations are some common areas where threading may benefit. Software 

architects who have intimate knowledge of the application and its algorithms can be 

an excellent source to find and propose areas for multi-threading. You may also use
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Fig. 4.6: Multi-Threaded Development Methodology

software tools to analyze your application and discover not only hotspots, but which 

hotspots will give you the greatest performance return on your parallelization efforts.

But what if your application does not have any use for multi-threading? If this 

is the case, a multi-core processor will simply benefit from improved multi-tasking 

while running multiple applications. Fortunately, single-threaded applications that 

run on single-core processors will also run on multi-core processors as well with no 

code alteration.

Granularity

The issue of granularity is one of many concerns when solving a parallel problem.

Often, finding the right size of “chunks” of work and be a challenging task. Having
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chunks of work that are too large can lead to an imbalance in the load where one or 

more threads are overworked, while others are not being used efficiently. On the other 

hand, too much granularity can lead to synchronization overhead and can effectively 

reduce the benefits of threading altogether. The levels of granularity are important
' I

because of how they affect synchronization and locking of critical sections and shared 

memory variables. A common solution to this problem is to dynamically adjust the 

granularity based on the data set and system configuration in order to maintain load 

balance and reduce synchronization.

Load Balancing <

Closely related to granularity, load balancing is also a unique problem. The goal here 

is to give each thread an equal size amount of work. Doing so will enable the threads 

to complete as close together in time as possible, which reduces the amount of time on 

thread waits and synchronization. More often than not, this does not occur and can 

be very challenging to obtain. For data decomposition problems, equal splitting of the 

data is recommended. Conversely for task decomposition, creating equal sized tasks 

will generally result in more efficient load balancing. For this method in particular, 

it may be data-dependent so adjusting the tasks dynamically is a common practice.
I

For example, one thread might get several tasks instead of a single task. Again] it
I

depends on various factors of the data, but there are profiling tools which can help
■ .

to assess load and give you insight into how your application executes. In either case
I

of data or task decomposition, you may have to resort to reducing the granularity 

of the parallel work to obtain better load balancing. Remember though that f!his
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reduction in granularity increases the probability of increased synchronization. This 

is a tradeoff that must be analyzed and evaluated in order to make the best decision 

concerning which is the more favorable option for the application. ■

Overhead and Synchronization i

When thinking about analyzing and implementing a parallel application, it is helpful 

for one to recognize the overhead concerns associated with performing parallel work. 

First and foremost, the creation of threads in the system is a very expensive operation 

and should be done infrequently. A recommended practice when working with threads 

is to utilize a thread pool in which threads can be reused as necessary. This method 

is an efficient way to remove the costs associated with destroying and subsequently 

creating new threads. ;

As a rule, synchronization should occur in the smallest region of code as possible.

If your granularity is such that is it quite large, the execution of your application 

becomes more serialized as other threads must wait on the section being locked. This
I

problem can also occur when multiple threads try to acquire the same lock at t;he 

same time. Causing a thread to enter its sleep state, then wake it up is an expensive 

task and should happen as little as possible. Optimal threads are those that are in 

their active state as long as possible. Also, the frequency of synchronization should 

as minimal as possible. As mentioned previously, too much granularity leads to more 

synchronization and this overhead can eventually dominate the application. '

One method of reducing synchronization overhead is to minimize the sharing! of 

data across threads. An excess of data sharing can lead to false-sharing overhead.
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False-sharing occurs when two threads are altering data that lie on the same cache 

line. When one thread changes data on a line of cache, it causes the cache to become 

invalidated. The second thread must then wait while the cache is reloaded from 

memory. This does not necessarily mean that an error exists in the program, but 

if this cache pinging happens frequently, for instance inside of a loop, is it likely to 

severely affect performance. One way to detect false-sharing behavior is to observe 

the L2 cache miss rates using software analysis tools.

4.4.2 Expressing Parallelism

Currently, there are a number of options for expressing parallelism into your code. 

Which method is chosen depends on your application, the skill set of your developers, 

and on the problem being solved. However, they are also not mutually exclusive; 

you may mix and match them to meet the requirements of your project. For multi

threading programming applications, the most common methods are to utilize explicit 

threading, OpemMP, programming language APIs, or internally threaded libraries.

Explicit Threading

By using explicit threading libraries, such as Win32 threads and POSIX threads (for 

UNIX/Linux operating systems), you can achieve a fine-grained control of all the low 

level details of managing the threads. This allows for the programmer to handle a 

wider range of algorithms and do more to tune the application to meet their needs. 

Explicit threading libraries can support a large range of compilers and languages due 

to the fact that they only need an interface to the multi-threading library of the 
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system. A considerable amount of code must be written to create threads and the 

code that will run within the thread. Therefore, explicit threading libraries are more 

error prone and harder to use then other methods simply due to the fact that ydu 

must control the low level details of thread management.

OpenMP 1

OpenMP is a portable, industry-wide standard collection of directives and runtime 

library routines for C, C++, and FORTRAN. It greatly simplifies parallel application 

development by hiding many of the details of thread management and communication. 

It consists of a small number of compiler directives, such as pragmas, which specify 

sections of code which tell the compiler to execute in parallel. i

OpenMP works on the concept of parallel regions. After each parallel directive, 

every thread is executing the same code as the master thread. The parallel directive 

specifies a number of items for the compiler. These can include the number of threads 

to use in the parallel region, a list of private and shared variables available to each 

thread, and even reduction operations on specified variables. At the end of the par

allel region, the slave threads disappear leaving only the master thread to continue 

execution. '

The most common use for OpenMP is on loop-level parallelism. In Table 4.1, we 

see a code sample of how to compute the value of Pi by summing the area under a 

curve.

One may wonder when looking at the code example in Table 4.1 as to the number 

of threads created when executing this example. OpenMP provides several environ-
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^include <omp.h>

static long num.steps = 100000;

double step ;

void main() {

int i ;

double X, pi , sum =0.0;

step = 1.0/(double) num.steps;

^pragma omp parallel for reduction ( + ;sum) private (x)

for (i=l; i<=num_steps; i++) { ■

X = (i —0.5)*step ;

sum += 4.0/(1.0 + x*x);

}

pi = step * sum;

Tab. 4.1: OpenMP example of calculating Pi by integration
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Fig. 4.7: OpenMP Parallel Region/Fork-Join Model

ment variables that can be used to control the behavior of an OpenMP program. 

An especially important environment variable is OMP_NUM_THREADS,which specifies 

the number of threads (including the master thread) to be used in its parallel re

gions. OMP_DYNAMIC is another environmental variable which dynamically adjusts 

the number of threads at runtime depending on the underlying implementation. The 

general rule of thumb is to make the number of threads no larger than the total 

number of cores in the system. ’

To use OpenMP, you must have an OpenMP-enabled compiler. However, if your 

compiler does not support OpenMP, the directives simply compile out. A technique 

often used to assess speedup is in the use of a compiler switch to enable/disable 

OpenMP, making the code execute in parallel/non-parallel fashion.

OpenMP is a favorable option when implementing parallel programming because of 

its simplicity. By having a small set of directives, the introduction of OpenMP usually
I

does not change the program semantics. This allows a developer to prototype possible 

threading implementations without investing a large amount of time and effort. After 

an implementation with OpenMP is complete, the programmer can even rewrite the 

code using native threading APIs for more threading control. Regardless of what 
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implementation is finally used, OpenMP provides a quick way to add parallelism to 

your existing code.

Programming Language APIs

Programming Language APIs, such as those for C# and Java, are another method 

of adding threading to your application. The use of language threading APIs can 

save you time by hiding the complexity of thread management and also provide 

powerful threading support for your application. Many of these APIs have support for 

thread pools and synchronization objects such as monitors, mutexes, and semaphores. 

Optimizing compilers are another way to add parallelism to your code, specifically 

ones that offer automatic parallelization features. This feature analyzes loops and 

creates threaded code for loops which it can determine to be safe and beneficial for 

parallelization. In the case where a compiler cannot automatically parallelize a loop, 

it can provide a report of why it could not, which a developer could then analyze and 

identify regions for manual threading.

Internally Threaded Libraries

Finally, another method for implementing parallelism in your code is to use internally- 

threaded runtime libraries for common tasks. Intel offers two products, the Integrated 

Performance Primitives and the Math Kernel Library which aids in solving complex 

problems such as linear algebra, fast Fourier transform (FFT), and solving large 

equations. AMD also offers similar libraries like their AMD Performance Library 

(APL) which is a collection of low level routines ranging from simple arithmetic to
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signal processing. AMD also offers an optimized math library, namely the AMD Cofe 

Math Library. These libraries transparently hide threading details and are written to 

immediately take advantage of multi-core hardware. i

4.4.3 Ensuring Correctness

Once an application has been implemented using a threading methodology, assuring 

correctness of the application becomes important. One must verify that the addition 

of the non-deterministic execution through threading does not alter the expected 

behavior of the program. Let us explore a number of issues that may occur as' a 

result of adding multi-threading to an application. !

Race Conditions

A race condition occurs when two or more threads attempt to access the same resource 

at once. Because of the non-deterministic execution of the threads, it is impossible 

to determine which thread will access the resource first. This can lead to inconsistent 

program results. ■

The following example illustrates a read/write race condition. Suppose you have 

two threads, each with access to a shared variable z, which has the initial value! of 

1. Variables a and b hold the values of 1 and 2 respectively after running their large 

tasks. Table 4.2 shows the code for this example. ;

Depending on how these instructions are executed in a multi-threaded program, 

the value for x will vary. If the large tasks for Thread 1 and Thread 2 widely differ 

in their execution time, a race condition is less likely to occur, however, you cannot
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Tab. 4.2: Example of a race condition

Thread 1 Code Thread 2 Code

a = LargeTask()

x = x + a

b = LargeTask()

x = x + b

make any assumptions here and doing so could lead to incorrect results. Table 4.3 

shows the differing values for x when the operations of both threads are executed in 

different orders.

The same out-of-order execution concept applies to data races for write/read and 

write/write conditions as well. To eliminate race conditions, the program must yield 

the correct result regardless of the interleaving of instructions between threads. It is 

the job of the programmer to identify all shared objects and protect them with the 

proper synchronization mechanisms to ensure the correct order of execution.

The problem with race conditions is that they are at some times difficult to detect. 

Running the program one-thousand times may yield the same result, yet after only one 

more execution, the program produces a different result. Luckily, there are software 

tools which can analyze code and detect race conditions in your threaded code. Even 

more impressive, these race conditions errors do not even have to occur for these 

tools to detect them [6]. Consequently, these tools can ease the burden of debugging 

a multi-threaded program significantly.

30



Tab. 4.3: Race condition cases for possible values for x

Values for x Condition

4 Thread 1 completes then Thread 2 completes, or vice 

versa

2 Thread 1 reads x, then Thread 2 reads x and writes (1 

+ 2) to x. Thread 1 should receive the latest value of x 

written by Thread 2 (which is 3), but instead it has an 

invalid value (1) and does its sum anyways.

3 Thread 2 reads x, then Thread 1 reads x and writes (1 

+ 1) to x. Thread 2 should receive the latest value of x 

written by Thread 1 (which is 2), but instead it has an 

invalid value (1) and does its sum anyways.
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Synchronization. Mechanisms

So how can we prevent race conditions? One method is to use synchronization mech

anisms. A critical section is a construct used to denote'a block of code where only 

one thread is allowed to execute that section of code at any time. This ensures that 

threads access resources inside the critical section in a more organized fashion. Syn

chronization is a useful technique, but as mentioned previously, you should try to 

reduce the amount of synchronization as it will add more serialization and degrade 

performance of your application. While only One thread is allowed inside the critical 

section, other threads needing to access the shared resources are forced to wait.

Deadlock and Thread Stalls

Although extremely rare, there are certain instances where a multi-threaded program 

will hang for no apparent reason. If no programming errors are present, this behavior 

could be attributed to a deadlock. Deadlock occurs when one or more threads are 

waiting for exclusive access to a resource which will never be released. In order for 

deadlock to occur, the following criteria must exist in the system [22],

• Exclusive Access: Processes request exclusive access to resources.

• Wait While Hold: Processes hold previously acquired resources while waiting for 

additional resources.

• No Preemption: A resource cannot be preempted from a process without abort

ing the process.

• Circular Wait: There exists a set of blocked processes involved in a circular wait.

32



Fig. 4.8: A Simple Deadlock Example .

The simplest case of deadlock is illustrated in Figure 4.8. In this instance, Thread 

1 (Tl) currently has exclusive access to Resource 1 (Rl), and is requesting access 

to Resource 2 (R2) currently held by Thread 2 (T2). Conversely, Thread 2 has
I

exclusive access to Resource B and is requesting access to Resource A currently held 

by Thread 1. Since neither process relinquishes the hold on its resource, both threads 

wait forever, and deadlock has occurred. In order to prevent deadlock, one has to be 

mindful of how the application threads gain and release access to shared resources.

Deadlock has a very low potential for occurrence and will only happen under the 

right conditions, but it can happen. Another possible explanation of why a multi

threaded application hangs during execution could be due to a thread stall. A thread 

stall occurs when a thread is waiting on resource owned by a thread where that thread 
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has already been destroyed. Since the desired resource has a “dangling lock”, it will 

never be released and any threads waiting to acquire it will stall or wait indefinitely. 

The solution to this is to understand that the resource locks held by a thread are not 

automatically released when the thread is destroyed. Resource locks must be released 

within the same thread that obtained them.

4.4.4 Analyzing Performance

Amdahl’s Law

We can estimate the expected performance of a parallel program in terms of speedup. 

Amdahl’s Law quantifies the potential speedup from converting serial code to parallel 

code. Let s be the fraction of code that is inherently serial and cannot be parallelized, 

while p will represent the fraction of code that can be converted to parallel. Hence, 

s + p = 1. If we use N as the number of processors, we arrive at Amdahl’s Law as 

depicted in Equation 4.1.

s + (p/N) ' ■ '

We can observe that with an infinite number of processors, the term p/N will 

eventually drop out. Thus, the maximum speedup one can achieve by parallelizing a 

program is the inverse of the fraction of the code that must run in serial. For example, 

if 20 percent of your code is serial, then you could expect, at most, a speedup of 5; If 

you are concerned with increasing performance, you should then pay close attention 

to minimizing the fraction of code that runs in serial.

One interesting note on Amdahl’s Law to mention is that as the problem size 
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grows, p may rise and s may fall. Consider a Monte Carlo simulation which has 

a large number of iterations. The serial portion of setting up the data and I/O 

overhead, s, remains the same as p grows and s declines. Furthermore, Amdahl’s 

Law is the best case. Adding processors will eventually lead to diminishing returns, 

and the equation does not take into account factors such as thread management and 

coordination. Whatever speedup you achieve will most likely be less than the value 

provided by Amdahl’s Law.

Contrary to what one might expect, it is quite possible for a program to perform 

more slowly after having been multi-threaded. There are a number of factors which 

can influence this outcome, some harder to pinpoint then others. Excessive use of 

shared data can lead to synchronization issues where thread contention is high re

sulting in long thread wait times. A large amount of locking granularity lends itself 

to parallel overhead dominating the application and too little granularity may not 

parallelize enough work to make threading worthwhile. As mentioned previously, 

good load balancing can sometimes be difficult to achieve as improper distribution of 

parallel work can affect performance.

Alternatively, instead of performing worse that its single-threaded version, an ap

plication may exhibit only a minimal performance boost from threading. This may be 

due to an issue concerning poor scaling. A common issue resulting in poor scaling is 

the existence of large sections of serial code that dominate execution as more proces

sors are added. Sometimes, portions of serialized code are not identified as candidate 

areas for parallelization, and thus the entire application suffers from potential parallel 

work lost in a multi-core environment. An often overlooked cause of poor scaling is 
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an application that has exceeded the memory bandwidth of the system or is suffering 

from memory-related issues, such as false sharing described earlier.

A recommended practice to diagnose scaling problems is to schedule periodic scal

ing studies using different processor configurations [5]. Performing tests using twice 

the number of available processors on the common consumer system will help you 

prepare and stay ahead of your customers.
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5. MULTI-THREADED APPLICATION DEVELOPMENT

Now that we are familiar with multi-core processors and understand how multi

threading helps to take full advantage of this new hardware, we will be better prepared 

to use it effectively when developing applications. Let us examine a simple application 

using single and multiple threads.

5.1. Card Shuffling Example

In this example program, we will simulate the creation and shuffling of multiple 

card decks. See Appendix A for the full C# source code listing. This program 

has the ability to be executed in either a single-threaded or multi-threaded mode, 

which is denoted by the first command-line parameter passed to the program. The 

second command-line parameter is the number of times to shuffle each deck. For 

this example, we will shuffle our decks an outlandish amount of times so that we can 

observe activity on the cores. The last command-line parameter tells the program 

how many decks to create. Therefore, the syntax for executing this program is:

CardShuffle.exe [0 or 1] ShufAmt NumDecks

When the program is executed in single-threaded mode it uses its main thread to 

create the number of decks specified, then it shuffles each deck the number of tiriies 

specified by the command-line parameter. Figure 5.1 shows the CPU utilization when
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Fig. 5.1: CPU Utilization of Shuffle Program in Single-Threaded Mode

the program is running in single-threaded mode. We can clearly see that the program 

is utilizing only one of the available eight cores of the system, namely core six.

If we instruct the program to run in its multi-threaded mode, it creates an equal 

number of decks and threads as there are cores in the system. It assigns one deck per 

thread and then executes the Shuffle() method on each deck. For example, if we run 

the program using the command “CardShuffle.exe 1 10000000 8”, it will create eight 

decks, eight threads, then start each thread to shuffle its own deck ten million times.

If we inspect the CPU utilization now, we observe that the program is fully utilizing 

all eight cores and is thus doing its work in parallel.
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To even further observe parallel behavior by the program, we can inspect the 

output from each thread to the console. Table 5.1 shows the typical output from 

the program running in single-threaded mode. Notice how each deck is printed in 

sequential order; this tells us that only a single thread is doing the work.

However, a multi-threaded run gives us much more interesting output. Because 

of the non-deterministic behavior of threading we see that the output to the console 

is dynamic because each thread writes to the console at different points in time. 

The solution to the interleaving of output statements could be handled simply by 

synchronizing access to the console using standard conventions. Table 5.2 shows an 

example console output from a multi-threaded run of the program.

I was fortunate to be given access to a variety of multi-core machines with differing 

configurations. See Appendix B for a list of system configurations used in this study. 

The following tables show data from executing the card shuffling program on those 

different systems.

By reviewing the data, one can determine the benefit of having more processing 

cores. System A, a dual-core machine, had an average of 50 percent improvement 

gain while running in multi-threaded mode. System B, an eight-core machine using 

AMD’s Opteron processor, saw an average of 87 percent performance gain. System 

C, an eight-core machine using Intel’s Xeon processor, saw a similar average of 86 

percent performance gain. It is worthwhile to note that even while quadrupling the 

number of processing cores from System A to Systems B and C, we did not observe a 

linear performance gain. This is likely the existence of diminishing returns at work.
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Using single—threaded shuffle (3 decks)...

Player 0’s hand ...

Player 0 0: 7 of Spades

Player 0 1: Ace of Clubs

Player 0 2: 5 of Spades

Player 0 3: 10 of Clubs

Player 0 4: Jack of Clubs

Player 1’ s hand . . .

Player 1 0: 10 of Hearts

Player 1 1:: 4 of Hearts

Player 1 2: Queen of Clubs

Player 1 3:: King of Spades

Player 1 4: Ace of Clubs

Player 2'’s hand . .

Player 2 0: 9 of Clubs

Player 2 1: 2 of Spades

Player 2 2: 3 of Diamonds

Player 2 3: 5 of Spades

Player 2 4: 10 ol: Hearts

Process completed in 00:00:00.3042325 seconds.

Tab. 5.1: Single-threaded card shuffle’console output
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Using multi—threaded shuffle (3 decks)...

Player 1’s hand . . .

Player 0’s hand . . .

Player 0: 4 of Clubs

Player 1: King of Hearts

Player 2: King of Clubs

Player 3: 2 of Hearts

Player 4: 4 of Diamonds

0

0

0

0

0

Player 1 0:: 4 of Clubs

Player 1 1:: .King of Hearts

Player 1 2: King of Clubs

Player 2 ’s hand . .

Player 2 0: 4 of Clubs

Player 2 1: King of Hearts

Player 2 2: King of Clubs

Player 2 3: 2 of Hearts

Player 2 4: 4 of Diamonds

1Player 3: 2 of Hearts

Player 4: 4 of Diamonds1

Process completed in 00:00:00.1125793 seconds.

Tab. 5.2: Multi-threaded card shuffle console output
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Tab. 5.3: Execution data from card shuffle program running on System A

Run Multi-

Threaded

Decks Shuffle

Amount

Avg. Exec

Time(s)

MT Improve

ment

1 No 2 107 2.3112845 -

2 Yes 2 107 1.5468929 33.1%

3 No 2 108 23.0747055 -

4 Yes 2 108 11.6918898 49.3%

5 No 2 109 231.0912208 -

6 Yes 2 109 117.43444253 49.2%

Run Multi-

Threaded

Decks Shuffle Amt. Avg. Exec

Time(s)

MT Improve

ment

1 No 8 107 8.5817276 -

2 Yes 8 107 1.2418062 85.6%

3 No 8 IO8 84.9485922 -

4 Yes 8 108 10.8091182 87.3%

5 No 8 109 848.9395972 -

6 Yes 8 109 108.6855996 87.2% '

Tab. 5.4: Execution data from card shuffle program running on System B
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Tab. 5.5: Execution data from card shuffle program running on System C

Run Multi-

Threaded

Decks Shuffle Amt. Avg. Exec

Time(s)

MT Improve

ment

1 No 8 .. 107 7.6190219 -

2 Yes 8 107 1.0773939 85.6%

3 No 8 108 77.7749434 -

4 Yes 8 ib8 11.1424368 85.7%

5 No 8 io9 765.6089332 -

6 Yes 8 109 97.8403878 87.2%



6. THE FUTURE OF COMPUTING WITH MULTI-CORE PROCESSORS

6.1 The Multi-Core Roadmap

It seems evident that the single processor days are over and multi-core architecture 

is here to stay. Intel forecasts that more than 85 percent of its server processors and 

more than 70 percent of its mobile and desktop processors will be dual-core by the 

end of 2006 [21]. At the Spring 2005 Intel Developer Forum in San Francisco, Intel 

senior fellow and CTO director Justin Rattner spoke of the company’s goal to deliver 

chips with one-hundred or more processing cores by the year 2015 [17].

Intel is also planning to take multi-core to the next level by implementing special

ized cores for classes of computation such as graphics, artificial intelligence, speech 

and handwriting recognition, image processing, and even communication protocol 

processing [13]. In an interesting question and answer interview with Jerry Bautista, 

who leads the Intel Microprocessor Lab, Bautista speculates that with enough cores, 

the graphics processing commonly done by expensive GPUs will eventually be pulled 

back onto the CPU [24]. Perhaps this is the same thinking from microprocessor com

petitor Advanced Micro Devices (AMD) as evident in their October 2006 acquisition 

of graphics chipset manufacturer, ATI Technologies. AMD has also announced its 

commitment to multi-core architecture progression in its line of server, desktop, and 

mobile processors. Peter Buhr, a professor of computer science at the University of
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Waterloo, states, “You won’t be able to buy a computer in five years that doesn’t 

have a dual-core processor” [4]. If this is indeed the case, parallel computing will truly 

become more mainstream then ever before. Instead of needing expensive hardware or 

access to a large number of networked machines, every consumer-level processor will 

be able to perform parallel computation.

6.2 Industry Adoption

Already, the software industry is preparing for the multi-core era by adapting multi

threading into their applications and reaping the benefits. In the future, users can 

expect more performance and responsive applications which take advantage of multi

core processors. Companies are noticing the potential for parallel processing and are 

eager to use multi-core to gain a competitive edge for their products. From digital 

-content creation applications to computer games, multi-core is applicable to virtually 

all industries.,

6.2.1 Digital Content Creation

Pixar Animation Studios has already been enjoying the benefits of multi-core pro

cessing as they recently multi-threaded their award-winning RenderMan rendering 

software. Since its inception in 1984, Pixar has always been looking for ways to im

prove frame rendering which can speed up the film production cycle and results in 

greater detailed scenes and realistic imagery. Adding more scene objects and detail 

requires more computing power, but Pixar was reaching the limits of its data center 

power and cooling capacity. A solution was needed to obtain more processing power 
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from the same amount of real estate. The solution was to choose multi-core and add 

multi-threading to RenderMan.

RenderMan was originally designed to manage many independent servers operating 

in parallel using its integrated network rendering dispatcher. However, it did not 

incorporate multi-threading, which was needed to take full advantage of their multi

core processors. To guide them in this herculean effort, the RenderMan team was 

educated on threading concepts and trained to use software development tools from 

Intel. One developer noted that Intel’s Thread Checker tool helped him to find race 

conditions in the threaded code which could have led to weeks of analysis to uncover 

[io]-

Ultimately, the RenderMan team achieved their goal of a 75 percent improvement 

when scaling up to four physical processors. RenderMan could now render up to 

five times faster in threaded mode on a system with four dual-core processors than 

when rendered in a non-threaded mode on a single processor system. Also, the team 

found that two cores working from the same memory rendered at nearly the same 

speed as two physical processors with distinct memories. According to Dana Batali, 

director of RenderMan development, by adding threading to RenderMan, Pixar whs 

able to pack more processing power capacity into their render farm while lowering 

their RAM costs as well [10]. Batali noted that the threading expertise and software 

tools from Intel were “extremely helpful” and essential for creating a stable, reliable 

multi-threaded application [10].
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Some applications were already posed to give immediate benefits with multi-core 

processors to its users without the need for code changes. For over a decade, Adobe 

Systems has been developing its line of video processing software, such as its Adobe 

Premiere Pro line, for use with multi-processor systems [8]. This product uses threads 

to process and render video frames for faster, even real-time, data manipulation. 

By already utilizing threading in their design, the application currently supports 

multi-core processors in the same way it already supports multiple processor systems. 

What this means for the user is increased performance without the need for expensive 

hardware systems or a software upgrade.

6.2.2 Computer Game Development

Multi-core processors even have benefits for the digital entertainment industry, bring

ing larger and richer experiences to gamers worldwide. One area in which multi-core 

processing is already being used is for asynchronous background loading [11]. In 

modern computer games, a “zone” is a section of the in-game universe which can be 

explored by the player. As the player travels to different zones the player must wait 

for different zones to be loaded into memory and rendered. Asynchronous background 

loading allows the machine to pre-load nearby zones so as the player approaches therh, 

the transition is seamless. What this could mean is the end of the dreaded “Loading” 

screen for computer gaming.

Mark Rein, vice president at Epic Games is expecting big changes in the gaming 

industry. “When the Intel folks first told us that they were taking a multi-core 

approach, we cheered and clapped” [11]. Epic Games is already thinking ahead to 
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the time when multi-core is more pervasive and how they can leverage that extra 

processing power in the form of user-to-user communication. Rein suggests multi

core will eventually allow for integration of real-time high-quality video in the game 

itself.

Multi-core processors will allow game developers to effectively separate tasks be

tween the available cores. For instance, a photorealistic rendering algorithm could use 

multiple cores for on-the-fly graphics. Expensive in-game physics calculations could 

be dedicated to one core while artificial intelligence could be processed on another 

core creating a more rich and immersive experience. As the gaming industry is known 

for pushing the boundaries of hardware, it will be interesting to see the innovations 

made possible by multi-core processors and how it will affect this ever-changing field 

of computing.

6.3 Academic Acknowledgement

By recognizing the effect that multi-core will have on parallel computing potential, 

education institutions are already adapting their courses to provide students with the 

knowledge and skills necessary to succeed as computer scientist, system architects, 

and programmers. The College of Computing (CoC) at the Georgia Institute of 

Technology is starting to re-emphasize concurrency and parallelism to their students 

in an effort to teach these important concepts. Over the next two years, Georgia 

Tech expects to upgrade their core curriculum to convey the principles of multi

core processing and the techniques needed to take advantage of the architecture [9]. 

Professor Karsten Schwan at the CoC says, “we have to start educating and thinking 
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in terms of parallel” [9].

Through their efforts, Georgia Tech will be helping to educate and train the next 

generation of engineers and architects who are ready for the parallel age of computing. 

In light of this, I anticipate other academic institutions to follow Georgia Tech’s lead 

and adapt their undergraduate, postgraduate, and doctoral programs to have an 

increased emphasis on multi-core and parallel computing concepts.

6.4 The Next Revolution in Software: Concurrency

Every so often a technology comes around and shakes the software world to its foun

dation. Multi-core architecture and parallel computing enabled by this technology is 

such a change. Analysts and experts are predicting the move to multi-core will be as 

profound as the object-oriented paradigm shift of the 80s and 90s. Who knows, they 

may be correct. If they are, software developers will likely be motivated to re-think 

application design and implementation to support concurrency.

6.4.1 The “Free Lunch” Is Over

For years, applications gained a performance “free lunch” as better and faster proces

sors were released to the market. Improvements in clock speed, cache, and execution 

optimizations such as pipelining, branch prediction and ILP, made applications run 

faster without any code changes. It is interesting to note that a surprising eighty 

percent of performance gained was simply due to the increased processor clock rates 

[13]. Unfortunately, this trend will not continue. Due to the inherent problems wjth 

heat consumption and current leakage that accompany clock speed increases, only 
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advances in the area of cache will continue to deliver performance benefits for the 

time being. It seems as though the “speed wars” are over and most microprocessor 

vendors are pursuing the multi-core direction.

6.4.2 Paradigm Shift for Software Architects and Developers

So how then can we as software developers best utilize the performance improvements 

available in multi-core processors? The answer, as you may have guessed by noxV, 

lies in software multi-threading. In the future, it will be advantageous for software 

engineers and designers to embrace and introduce multi-threaded designs into their 

applications to truly benefit from TLP offered by multi-core processors. We’ll still 

use the traditional “divide and conquer” methodology, but we’ll need to adopt the 

“work smarter, not harder” mindset as well.

Unfortunately, as I have found from my research, only a small fraction of developers 

have been doing concurrent programming regularly. Multi-threading is considered by 

most programmers to be an advanced topic only useful if the application specifications 

require it. The vast majority of applications today are single-threaded, most likely
i

due to the fact that the majority of target platforms did not have parallel hardware.

This fact is going to change; and change rapidly. Here is an example of the rate 'of 

change we can expect. When I started my Masters Thesis research in July of 2006, 

most major microprocessor manufactures had dual-core processors on the market. 

At the time of this writing, only six months later, quad-core processors are already 

available for purchase. An interesting fact comes from IDC, a market researcher 

specializing in the information technology and telecommunications industries. IDC 
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makes an interesting claim for the server market and says that the future growth of 

this market can be mapped directly to the similar growth we have seen in the storage 

industry for the past five years [20]. As the number of cores per processor increases, 

IDC predicts the power of the server market will increase at an exponential rate.

Like any major technology change, it may take some time for the majority of soft

ware developers to understand parallel programming concepts and have their applica

tions take full advantage of multi-core processors. For example, object-orientation of 

code did not become mainstream until 30 years after its initial use with the SIMULA 

language back in the mid 1960s [23]. Object-oriented concepts and principles ulti

mately became popular years after their debut simply due to application requirements 

needing to consist of larger and larger systems. The powerful abstraction offered by 

object-orientation became a natural fit and thus it began to pick up adoption by 

the industry. A lack of motivation prevented object-orientation of code to hit the 

mainstream, until there was a need.

Although parallel programming and object-orientation concepts may have a similar 

complexity and learning curve, I estimate parallel programming will not take as long
I 

to permeate into the software industry. Why do I believe this? Because the need fpr 

more performance will always be present, and as user expectation rises through the 

years as it has in the past, parallel programming will be the answer in utilizing the 

new hardware given to us through multi-core architecture.
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6.4.3 Stronger Reliance on Software Analysis Tools

Due to the inherent difficulty of parallel programming, I anticipate, as it becomes 

a more prevalent part of software development, we will see a stronger reliance for 

software analysis tools than ever before. These tools will provide helpful insight int'o 

the use of parallel constructs and will aid developers to find and fix bugs before they 

are introduced into production software. Analysis tools will help to remove the guess 

work involved in locating candidate code for parallelism, striving for appropriate 

load balancing, and minimizing issues revolved around parallel programming such ds 

synchronization and efficient cache usage. :

If we as software developers understand the new architectural changes brought 

about by multi-core processors, we can begin to take advantage of parallelism and 

create the next generation of applications. These future applications will need to use 

threading to fully exploit the architectural innovations from multi-core processors. A 

single threaded application on a 100-core processor could be utilizing only l/100th of 

the total processing throughput of the machine. The inherent benefits are too large 

to ignore.
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7. CONCLUSION

It seems that the future of microprocessor architecture has multi-core written all over 

it. The major vendors are already shipping their dual and quad-core processors with 

promise of many more cores in the coming years. Although it seems that clock rates 

are stabilizing, transistor counts should continue to explode and it seems that CPUs 

will exhibit Moore’s Law-like throughput gains for some years to come.

In this paper, we explored the current state of microprocessors today and showed 

how multi-core is the natural progression of this technology. We defined exactly 

what multi-core means, and the benefits we can obtain by utilizing it. We then 

explored the topic of multi-threading and learned that threading is the single greatest 

method for maximizing use of a multi-core processor. Concepts surrounding threaded 

development were discussed which are important to keep in mind while implementing 

a threaded solution. We then learned how the move to multi-core design in processor 

architecture will affect software developers.

7.1 Preparing for the Future

Many are expecting multi-core to bring a huge impact to the software industry. Herb 

Sutter of Microsoft says, “[Multi-core processing is creating]... the biggest sea change 

in software development since the object-oriented programming revolution...” [12].
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James Reinders, director of marketing and business of Intel’s Software Development
■ ' . . ■ ' i

Products Division has been quoted as saying, “It strikes me that in terms of future 

development, the magnitude of the change that software developers are going to 

experience will be substantial” [12].

Whether they like it or not, parallelism has gone mainstream and software devel

opers need to keep their threading skills current and be prepared. We should utilise 

this time now to get up to speed on our threading skills. No doubt, engineers who 

possess the skills necessary to analyze, design, and debug multi-threaded applications 

will be in high demand in the foreseeable future.

No matter the change, it is surely an exciting time to be a software developer. For 

the first time in history, parallelism, for everyone, is going to be ubiquitous. The level 

of performance we can expect from our applications will continue to soar. Even so, 

software vendors are already putting multi-core processors to work as we saw. With 

this age of parallelism, new applications will surface, and new methods of solvirig 

current problems will emerge. I believe this is a wonderful time for opportunity. :

But it won’t be an easy change to cope with. Software developers will need to re

think how they design their applications to take advantage of threading; the real power 

behind multi-core processors. Training and experience will be crucial to ensure that 

correctness and efficiency are maintained in the implementation of multi-threaded 

applications. If we know and understand the hardware, we will be more prepared tp 

effectively utilize all the benefits that multi-core processors can provide.
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Parallel computing has finally hit the mainstream. From the hardware engineer 

to the end-user, multi-core will reach the masses and affect everyone. The time to 

adapt to all that multi-core brings is now because this “wave of parallelism” isn’t on 

the way, it’s already here.
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APPENDIX A

CARD SHUFFLING EXAMPLE SOURCE CODE
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// ********************************************

// File: Main.cs

// Single/Multi-Threaded Card Shuffling Example

// usage: CardShuffle.exe [0 | 1] #1 #2")

// 0 = Single Threaded Example (required)

// 1 = Multi-Threaded Example

// #1 = Shuffle Iterations (required)

// #2 = Number of Threads (optional)

// ********************************************

using System;

using System.Collections.Generic;

using System.Text;

using System.Threading;

using System.Diagnostics;

using System.Collections;

L

namespace CardShuffle {

class MainClass {

public static void Main(string[] args) {

double ShufAmt;

ArrayList myDecks, myThreads;
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Deck deck;

Thread myShuffle;

int numDecks, useSingleThreading;

if (args.Length < 2)

Environment.Exit(0) ;

else {

useSingleThreading = Convert.Tolnt32(args[0]);

ShufAmt = Convert.ToDouble(args[1]);

if (args.Length == 3)

numDecks = Convert.Tolnt32(args[2]);

else

numDecks = System.Environment.Processorcount;

if (useSingleThreading == 0) {

// Single-Threaded Version

Console.WriteLine("Using single-threaded shuffle

(" + numDecks + " decks)...");

Stopwatch watch = new Stopwatch();

watch.Start();
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deck = new Deck("Player 1", ShufAmt);

for (int i = 0; i < numDecks; i++)

deck.Shuffle();

watch.Stop (); // Stop the clock

Console.WriteLine("Process completed in " + 

watch.Elapsed.ToString() + " seconds.");

}

else {

// Multi-Threaded Version

Console.WriteLine("Using multi-threaded shuffle

(" + numDecks + " decks) ...");

Stopwatch watch = new Stopwatch();

watch.Start();

myDecks = new ArrayListO;

myThreads = new ArrayListO;

// Create our decks and threads

for (int i = 0; i < numDecks; i++) {

deck = new Deck("Player " + i, ShufAmt);
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myDecks.Add(deck);

myShuffle = new Thread(new Threadstart(

(myDecks[i] as Deck).Shutfle)); 

myThreads.Add(myShuffle) ;

}

// Start all the threads

for (int i = 0; i < numDecks; i++)

(myThreads[i] as Thread) . Start () ;

// Wait for all threads to complete

for (int i = 0; i < numDecks; i++)

(myThreads[i] as Thread).Join();

watch.Stop(); // Stop the clock

Console.WriteLine("Process completed in " + 

watch.Elapsed.ToString() + " seconds.");

}

}

}

}
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// File: Deck.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace CardShuffle {

public class Deck {

private string[] oCards;

private string oDeckOwner;

private double oShufAmt;

public Deck(string deckOwner, double ShufAmt) {

oCards = new string[52];

oShufAmt = ShufAmt;

oDeckOwner = deckOwner;

int thisCard;

int cnt = 0;

for (int suit=0; suit < 4; suit++) {

for (int num=0; num < 13; num++) {

cnt = (suit * 13) + num;

// Which card are we on?
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switch(num) {

case 0:

oCards[cnt] = "Ace";

break;

case 10:

oCards[cnt] = "Jack";

break;

case 11:

oCardsfcnt] = "Queen";

break;

case 12:

oCards[cnt] = "King";

break;

default:

thisCard = num + 1;

oCards[cnt] = thisCard.ToString(); 

break;

}

// Append the suit

switch(suit) {

case 0:

oCards(cnt) += " of Spades";
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break;

case 1:

oCards[ent] += " of Hearts";

break;

case 2:

oCards[ent] += " of Clubs";

break;

case 3:

oCards[ent] += " of Diamonds

break;

}

}

}

}

public void Shuffle() {

int cardl, card2;

string tmpCard;

Random Randomclass = new RandomQ;

for (int i=0; i < oShufAmt; i++) {

cardl = RandomClass.Next(0,52);

card2 = RandomClass.Next(0,52); 

tmpCard = oCards[cardl];
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oCards[cardl] = oCards[card2];

oCards [card2] =■ tmpCard;

}

Console.WriteLine(oDeckOwner + ”'s hand...");

Print(5);

Console.WriteLine();

}

public void Print(int numCardsFromStart) { 

for (int i=0; i < numCardsFromStart; i++)

Console.WriteLine(oDeckOwner + "" + 

i.ToStringO + ": " + oCards[i]);

}

}

}
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APPENDIX B

MULTI-CORE SYSTEM CONFIGURATIONS
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• SYSTEM A

PROCESSOR(S): Intel Core 2 Duo

L2 CACHE: 2MB

FSB: 1066 MHz

MEMORY: 1 GB

OPERATING SYSTEM: Windows XP Professional w/ SP2

• SYSTEM B

PROCESSOR(S): Dual-Core AMD Opteron 2.6 GHz x 4

L2 CACHE: 4MB x 2

FSB: HyperTransport Technology (1GHz true, 2GHz effective)

MEMORY: 16GB DDR400 ECC Registered

OPERATING SYSTEM: Windows Server 2003

• SYSTEM C

PROCESSOR(S): Quad-Core Intel Xeon 2.67 GHz x 2

L2 CACHE: 4MB x 2

FSB: 1066 MHz

MEMORY: 4GB FBDIMM DDR2 533 MHz

OPERATING SYSTEM: Windows Vista
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