
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2007

Multi-core processors and the future of parallelism in software Multi-core processors and the future of parallelism in software

Ryan Christopher Youngman

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Systems Architecture Commons

Recommended Citation Recommended Citation
Youngman, Ryan Christopher, "Multi-core processors and the future of parallelism in software" (2007).
Theses Digitization Project. 3120.
https://scholarworks.lib.csusb.edu/etd-project/3120

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3120?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

MULTI-CORE PROCESSORS AND THE FUTURE OF PARALLELISM IN

SOFTWARE

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Ryan Christopher Youngman

June 2007

MULTI-CORE PROCESSORS AND THE FUTURE OF PARALLELISM IN ;

SOFTWARE ' ;

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Ryan Christopher Youngman

June 2007

Approved by:

Dr. Ernesto GoAez, Advisor, ~
Computer Science

Date 7 ' ' ■

Dr. Keith Schubert

© 2007 Ryan Christopher Youngman

ABSTRACT

Recent changes in processor architectures are showing a movement towards utilizing

multi-core technology in their designs. The physical limitations of current proces

sors, advances in fabrication technology, and increasing performance demands have

provided the impetus for multi-core technology to become a reality. The apparent

processing potential, more efficient resource usage and market interest hint that this

technology will become more of a standard in modern processor architecture designs.

It seems that from now on, computers will no longer be Von Neumann machines, bust

rather, they will be parallel machines working together. ,

Multi-core architecture provides benefits such as less power consumption, scal

ability, and improved application performance enabled by thread-level parallelism.

However, with the introduction of this technology, there are implications that we

need to understand and consider. What exactly is a “core” and how does a multi

core CPU differ from the traditional single-core CPU? More importantly, how do we
I

take advantage of this hardware when developing software applications? The purpose

of this thesis is to examine multi-core technology and answer some of these questions.

We will start by discussing the physical and engineering problems and why multi

core design is the natural evolution of microprocessors. Next, we examine multi-core

processors themselves and understand the benefits they provide. A thorough discus

sion of multi-threading concepts follows, leading to a multi-threaded example appli

cation. In the last chapter, we will understand how multi-core processors will change
I

the software world forever and what we need to do to prepare for this significant

change. :

iii

ACKNOWLEDGEMENTS

!

I would like to express my appreciation to Dr. Ernesto Gomez for the many though;-
!

provoking conversations with him concerning parallel concepts and theory. Due to

these, I eventually arrived at the topic of my thesis and I am appreciative of his

support. Dr. Josephine Mendoza, acting as my graduate coordinator, assisted me

while following the necessary steps to complete my thesis and graduate from Cal

State. i

A number of individuals at Intel Corporation were very generous to extend their

support of my thesis. Greg Anderson supplied me with software licenses and few books

from Intel Press. Charles Congdon provided me numerous references and offered his

insight on the subject matter. Thanks to Walter Shands and Gary Carleton for

writing the article which triggered my initial interest in multi-core processors. Many

thanks to Chelsea Goff who was instrumental in helping me acquire remote access

to a multi-core lab machine. AMD should also be acknowledged for their support

through their Developer Center program, which offered me exclusive access to multi

core hardware. . '

Lastly, I would like to thank my family for their patience and emotional support

Many long nights were spent away from them while performing the research, writing,

and programming tasks for this paper. I am very appreciative and grateful for those

who supported and encouraged me throughout the process. '

DEDICATION

To my wife Ruthie, and son Lucas.

TABLE OF CONTENTS

Abstract... iii

Acknowledgements... iv

List of Tables.. viii

List of Figures ix

1. Introduction... 1

1.1 Physical and Engineering Challenges.. 1

2. Evolution of the Microprocessor... 3

2.1 In Pursuit of Parallel Computation.. 3

2.1.1 Definition of a Thread... 5

2.2 Hyper-Threading.. 6

3. Multi-Core Architecture.................................... 8

3.1 Advantages of Multi-Core Architecture.. 10

3.1.1 Increased Performance... 10

3.1.2 Reduced Power Consumption and Heat..................................... 11

3.1.3 Benefits in the Data Center.. 12

3.1.4 Virtualization 13

3.1.5 Economical Changes..................... 13

3.2 Taking Advantage of Multi-Core Architecture..................................... 13

v

4. Multi-Threaded Programming.. 15

4.1 Motivation for Threading ... 17

4.2 Domain (Data) Decomposition... 18

4.3 Functional (Task) Decomposition... 19

4.4 A Methodology for Multi-Threaded Development 19

4.4.1 Identifying Parallelism................................. 20

4.4.2 Expressing Parallelism... 24

4.4.3 Ensuring Correctness.. 29

4.4.4 Analyzing Performance... 34

5. Multi-Threaded Application Development ... 37

5.1 Card Shuffling Example .. 37

6. The Future of Computing with Multi-Core Processors . . :......................... 45

6.1 The Multi-Core Roadmap... 45

6.2 Industry Adoption .. 46

6.2.1 Digital Content Creation.. 46

6.2.2 Computer Game Development... 48

6.3 Academic Acknowledgement ... 49

6.4 The Next Revolution in Software: Concurrency 50

6.4.1 The “Free Lunch” Is Over... 50

6.4.2 Paradigm Shift for Software Architects and Developers 51

6.4.3 Stronger Reliance on Software Analysis Tools 53

7. Conclusion.. 54

7.1 Preparing for the Future.. 54

APPENDIX A: CARD SHUFFLING EXAMPLE SOURCE CODE............... 57

vi

APPENDIX B: MULTI-CORE SYSTEM CONFIGURATIONS...................... 66

REFERENCES... 68

vii

LIST OF TABLES

4.1 OpenMP example of calculating Pi by integration............................... 26

4.2 Example of a race condition.. 30

4.3 Race condition cases for possible values for a;.. 31

5.1 Single-threaded card shuffle console output........................... 41

5.2 Multi-threaded card shuffle console output.................................. 42

5.3 Execution data from card shuffle program running on System A . . . 43

5.4 Execution data from card shuffle program running on System B ... 43

5.5 Execution data from card shuffle program running on System C . . . 44

viii

0

LIST OF FIGURES :

2.1 Time-slicing over a Number of Processes.. . 4

2.2 Simultaneous Multi-Threading Architecture................................ . . 6

3.1 Single-Core Architecture.. 9

3.2 Multi-Core Architecture... 9
i

4.1 Flynn’s Taxonomy 16

4.2 Shared Memory MIMD..................... 17

4.3 Distributed Memory MIMD................ 1$

4.4 Domain (Data) Decomposition................................. 19

4.5 Functional (Task) Decomposition................................. . 20

4.6 Multi-Threaded Development Methodology........................ 21

4.7 OpenMP Parallel Region/Fork-Join Model......................... 27

4.8 A Simple Deadlock Example................................. 33

5.1 CPU Utilization of Shuffle Program in Single-Threaded Mode 38

5.2 CPU Utilization of Shuffle Program in Multi-Threaded Mode.............. 39

ix

1. INTRODUCTION

In recent years, there has been a considerable shift among microprocessor designs all of

which hint at a major evolution in computing hardware. While fabrication technology

continues to improve, manufactures are starting to reach the physical limitations of

semi-conductor based microelectronics.

1.1 Physical and Engineering Challenges

In accordance with Moore’s Law, the transistor density of processors has been in

creasing exponentially every eighteen to twenty-four months, and surprisingly, this

law has held for the past forty years. However, since each transistor is itself a working

electrical device that consumes power and produces heat, problems such as transistor

leakage and excess heat consumption are starting to become a hindrance to the con

tinuing pace of Moore’s Law. If the transistor density rate continues at its present

course, processors would eventually generate more heat per square centimeter than

the surface of the sun [16].

Along with the heat considerations, we must also notice that with higher transistor

densities, this requires more interconnects between the components in the CPU. As

the total interconnects increase in length, path delays can surface and effectively

nullify the speed increases of the transistors themselves.

1

Also, serial architectures such as memory have not been increasing as fast as logic

processing speeds. A typical Intel i486 CPU in the late 1980s to the early 1990s would

require 6 to 8 clock cycles to access memory [15]. Today’s processors use more than

200 clock cycles and these wasted cycles undermine the frequency increases typically

used to increase processor performance.

It seems as though the traditional methods of increasing the clock rate or packing

more transistors onto the chjp are starting to reach their practical limits. Even now,

due to the heat constraints, semiconductor manufactures are actually decreasing clock

rates in order to throttle back heat and obtain cooler running chips [19]. In the effort

to produce faster, more efficient processors, manufactures are taking advantage of the

improvements in fabrication technology and moving towards a chip-level multipro

cessing architecture. Before we look at the current state of processors, let us examine

how we arrived at where we are today.

2

2. EVOLUTION OF THE MICROPROCESSOR

2.1 In Pursuit of Parallel Computation

Over the years, microprocessor manufactures have strived to add more and more

parallelism into the design of their chips. The main goal of any microprocessor archi

tecture is to obtain efficient resource utilization in order to maximize performance.

One way to do this is to perform as many operations as possible in a given clock

cycle. For years, computer architects have used instruction-level parallelism (ILP) to

achieve out-of-order execution. ILP allows the CPU to re-order the instructions in

such as way that it eliminates pipeline stalls and allows for an increased number of

instructions to execute in a single clock cycle. i

A basic processor around the year 1989 featured pipelined execution where a num

ber of instructions were active in their respective stages. By duplicating the functional

units, superscalar processors arrived on the scene, represented by the Pentium pro

cessors of 1993. By having multiple adders, for example, a Pentium processor could

execute multiple additions granted they were independent of each other. Later, with

the addition of single instruction, multiple data (SIMD) instructions, processors were
i

able to execute a single instruction on several data elements. This parallelism was

made possible by MMX, SSE, and SSE2 instruction set additions. '

While ILP is recognized for its tremendous benefits of which are only now reaching

3

Fig. 2.1: Time-slicing over a Number of Processes

their limits, ILP relies heavily on the dependencies between instructions to be low or

non-existent. Higher dependencies between instructions reduce the overall ability for

parallel execution to take place. Thread-Level Parallelism (TLP), as we will discuss

shortly, builds on top of ILP and is widely recognized as one of the most important

areas of how future parallelism will be achieved.

As software became more complex and able to perform multiple tasks simultane

ously, the ability for a processor to handle parallel computation was seen as a way

of handling this challenge. Another method of achieving concurrency in software as

apposed to hardware was to use preemptive, or time-sliced, multitasking. The use

of time-slicing allowed developers the ability to hide latencies associated with I/O

by interleaving execution of multiple threads running on the system. This gave the

appearance of multiple programs running simultaneously, although at any given time,

only one thread was executing. Figure 2.1 illustrates time-slicing over a number of

process threads.

However, this method of time-slicing was still not parallel execution because of

4

one simple fact: only one instruction stream could run on a processor at a single

point in time [1]. One way to solve this problem was to increase the number of

physical processors in the system. A multiprocessor environment truly allows parallel

execution because multiple threads or processes can be executed across the processors

at the same time. Although this alternative solution worked, it came at a high price

as multi-socket motherboards and the numerous processors that went on them it were

very costly.

Trying to achieve efficient thread-level parallelism (TLP) on a single processor,

computer architects found that the resources of the processor we at some times un

derutilized. Hence, they developed a technique called simultaneous multi-threadirig

(SMT) which allowed the resources to be used more efficiently. In order to understand

SMT, which heavily relies on threads, we first need to define what a thread is.

2.1.1 Definition of a Thread ;

A thread of execution, or more commonly known as a thread, can be though of as, a

basic unit of CPU utilization. It has a program counter which points to the current

instruction. It has CPU state information for the current thread, and it also contains

other resources such as a stack [1]. A processor is made up of a number of different

resources: general registers, interrupt logic, caches, buses, execution units, and so

forth. These different resources comprise the architecture state of the processor. In

order to define a thread on a processor, only the architecture state is required. This

is how processors handle time-slicing; by swapping in and out different architectural

states over time. This context switching comes at a high cost though, and we will

5

Fig. 2.2: Simultaneous Multi-Threading Architecture

discuss later how too much context switching can hurt application performance.]

So, by duplicating the architectural space, designers could implement logical pro

cessors on one chip. Execution resources then become shared among the different

logical processors. Figure 2.2 shows an example of a SMT processor system. i

2.2 Hyper-Threading

Intel released its implementation of SMT in the early 2000 decade which was named

Hyper-Threading Technology [15]. A processor using Hyper-Threading Technology

appears to the operating system software as multiple logical processors even though

the entire unit consists of just one physical processor. 1

Hyper-Threading Technology literally works by interleaves the instructions in the

execution pipeline. Which instructions get inserted depends on what execution re

sources are available at execution time [1]. The threads can then be executed iri a

parallel fashion as the context switching is greatly reduced between the threads. >

This latency hiding is the key behind Hyper-Threading Technology’s performarice

gains. By having both thread states in the processor, when one thread blocks due tb a

6

cache miss, branch misprediction, or data dependency, the other thread can execute to

maximize processor resource usage. Now, the operating system scheduler can schedule

multiple threads to execute just as they would in a multiprocessor system. It then

becomes the job of the microprocessor to determine how to execute multiple threads

by interleaving them as the necessary resources for each thread become available. In

practice, it is recommended for each thread’s work to be as different as possible in an

effort to reduce contention for processor resources.

Despite the performance increase using SMT, there still exists only one execution

resource that is shared among multiple threads. As a result, only one thread of

execution is allowed to run at any given time and true thread-level parallelism is not

possible.

7

3. MULTI-CORE ARCHITECTURE

While advents such as ILP, instruction sets additions such as MMX/SSE/SSE2, and

Hyper-Threading Technology have improved processor performance, the next logical

evolution of the modern microprocessor starts us on a path towards more available

parallelism and true chip multiprocessing (CMP).

Modern chip architectures are starting to take advantage of fabrication technology

in a whole new way. Current processor technologies are allowing manufactures to take

advantage of more real estate on a single die. Manufacturers are using a “divide and

conquer” strategy and are now able to implement two or more cores or “execution

engines” on a single processor. Each core has its own set of execution and architectural

resources such as floating point and integer units, but depending on the design, each

core may or may not share a large on-chip cache. A multi-core processor plugs into

a single socket, but the operating system perceives each core as a discrete processor

with a full set of execution resources. Figures 3.1 and 3.2 demonstrate a simple

comparison between single-core and multi-core architecture configurations. Other

design configurations may feature differing cache sizes as well as shared or independent

front side buses. i

Just as improvements in cache utilization has helped with performance in the past,

Intel Corporation has developed a technology named Advanced Smart Cache technol-

8

Fig. 3.2: Multi-Core Architecture

9

ogy (ASC) which should continue to deliver more efficient Cache usage. Intel multif

core processors feature an optimized cache that improves efficiency by increasing the

probability of each core accessing data from a higher-performance cache-subsystem'.

To accomplish this, the processor shares its L2 cache between cores. By sharing this

cache, ACS also allows each core to dynamically utilize up to 100 percent of the avails

able L2 cache [25]. For example, if one core has minimal cache requirements, other

cores can increase their percentage of L2 cache. This results in reduced cache misses

and bus traffic, as well as lower latency to data. ■

3.1 Advantages of Multi-Core Architecture '

3.1.1 Increased Performance

Because each core has its own execution pipeline and set of execution resources;,

multiple threads can truly execute in parallel without blocking on resources needed

by other threads. By splitting up computational work among the available cores, a

multi-core processor can perform more work in a given cycle. Instead of the previous

“scale-up” approach by increasing the clock rate, chip designers are now using h

“scale-out” model for more efficient processing of multiple tasks.

Compared to a single-core processor, a multi-core processor with two cores is not

twice as fast as a single-core processor of the similar speed. However, it can come

close. When comparing an over-clocked single-core processor to a dual-core processor,

tests have been shown that a dual-core processor consumes roughly the same amoun]

of power while delivering more than a 70 percent performance improvement [18].

10

Another reason for increased performance is that multi-core processors greatly

reduce the associated cost when doing context switching between threads. This results

in much less overhead and greater code processing throughput.

3.1.2 Reduced Power Consumption and Heat

One area in which multi-core architecture promises to deliver is that of reduced heat

and power consumption. As most of the processing performance improvements have

come from improvements to cache, clock speed, memory access and I/O, each of these

has required an additional increase in power consumption. While increasing heat and

power resulting in improved performance may lead to the diminishing return issue, it

seemed a better solution was needed.

Multi-core architecture is different from single-core processors in that rather then

each chip having its own separate architecture components such as memory and I/O,

each core shares these resources. The power required to support these shared resources

is minimally higher than those required for identical resources on a single-core pro

cessor. The only increase in power consumption comes from the addition of the extra

execution core(s) to the processor. The result is a processor that provides greater

performance than a single-core processor, without doubling the power requirements.

Since multi-core processors do more work in a given clock cycle, they can thus

operate at lower frequencies. Semiconductor manufactures are actually starting to

scale back clock speeds as they introduce more cores so the chips can run cooler [19].

Since power consumption goes up proportionally with frequency, multi-core archi

tecture helps combat the issue of increasing power and cooling requirements. For a

11

more in depth look at power and thermal management with respect to Intel micropro!-
. I

cessors, please consult [2], AMD’s optimized power management technology named

PowerNow! is discussed in [14] and [3]. Please refer to these for more information. '

3.1.3 Benefits in the Data Center !

Multi-core processors are starting to become a favorable option in the data center

due to their intrinsic benefits. IT managers constantly struggle to deliver higher

levels of service while reducing costs associated with hardware, power, and physical

space requirements. A common practice among server systems today is to deploy one
I

application per server. Also, organizations commonly overprovision IT resources for

peak usage, yielding low utilization rates. With multi-core processors, server appli

cations will experience faster throughput rates as multiple simultaneous transactions
I

will be allowed to be processed at the same time. Service applications, databases, and

real-time systems will enjoy increased responsiveness. Servers will be able to handle

larger application and data loads which will aid in the effort of server consolidation

and ultimately result in a reduced total cost of ownership.

With the reduced number of servers also comes the decreased cost of ongoing

maintenance and management from IT administrators. As previously mentioned, A

processor with multiple cores requires only a single socket, which aids when dealing

with scalability issues. Instead of the reliance on multi-processor hardware, which

tends to be very expensive, replacing a single multi-core processor with another that

contains more cores is all that is needed to upgrade a machine with moth processingI
cores.

12

3.1.4 Virtualization

Multi-core processors naturally lend themselves to support the virtualization trend

which is hot across areas of different industries and tied to the progress towards greater

consolidation in the datacenter. Specific operating systems and/or applications can be

dedicated to specific cores. Virtual machine strategies are concerned with isolating
/ 1

applications and operating systems from one another while they run on the same

hardware. A multi-core processor would allow each core to host an operating system

or application in separate physical states, while drawing from a common memory

pool.

3.1.5 Economical Changes

Maybe one of the most over-looked aspects of multi-core is the economical change it

will bring. By having multi-core processors as commodity items, the economics of

computing will change enabling larger and larger systems to be built at a cheaper

cost. Grid computers and cluster systems will exhibit even more processing power
I

and will be attainable for many organizations, and not reserved for scientific and

academic communities. Multi-core machines will be a more cost-effective solution for

high computing needs, and even if the total costs of operation are not dramatically

reduced, the increased computational power could be the justification alone.
I

3.2 Taking Advantage of Multi-Core Architecture ;

Software applications that will make the most of the thread-level parallelism available

in multi-core processors will be those that have included multi-threading in their

13

design. The software must be written so that it can spread its workload acros's
I
I

multiple execution cores allowing each core to execute completely separate threads
i

of code. But what are the challenges associated with multi-threading? Any seasoned

software engineer will tell you that multi-threading an application is not a trivial
■ i

I task. There are many factors to consider and one must first evaluate if the need for

threading is beneficial at all. J

In the next section, we will discuss the aspects of multi-threading programming.

We will explore how threading is handled by the application, the operating systenj,

and also the processor. Issues of data synchronization, race conditions, and deadlock

will be mentioned as they pertain to multi-threading. ■

14

4. MULTI-THREADED PROGRAMMING

To take full advantage of multi-core technology, software applications must be multi

threaded. The work performed must be able to be spread out among the execution

units of a multi-core processor so they can execute at the same point in time. A good

place to start taking a closer look at multi-threading is to first understand parallel

computing and parallel hardware.

In order to achieve parallel execution, we must first have hardware that supports

simultaneous execution of threads. In general, a computing system can be described

in terms of how instructions and data are processed. Michael J. Flynn proposed

a taxonomy that places computing platforms in one of four categories [7]. Flynn’s

Taxonomy is depicted in Figure 4.1.

Most of the designs for running parallel applications can be classified into two

types: distributed memory MIMD or shared memory MIMD architectures. A shared

memory system is different from a distributed memory system in that a single address

space is shared across all processing elements. As the name suggests, distributed

memory systems have distinct memories and the processing elements must interact

through an interconnection network. Figure 4.2 and Figure 4.3 illustrate the two

different architectures.

Both of these architectures are important and either one is chosen depending oil

15

Single Multiple

Instruction Streams

Single CPU
Workstation

X-p.Ndtlmdch-d’one-V:
• Jriihls.a^'A A.

Array-Style
Processor

General .
.. Multiprocessor

Fig. 4.1: Flynn’s Taxonomy

the problem being solved. However, over the next few years, the number of shared

memory systems will explode due to the push for multi-core architecture. Soon,

shared memory systems will be the norm and programmers will have wider and mote

available access to parallel hardware on their target platforms than ever before.

Fortunately, high performance computers built to run parallel applications haye

been around since the early 1980s. Since then, much has been learned about par

allel algorithms, parallel programming, and the tools required to make a parallel
I

programmer’s life easier and more productive. For years, parallel programming was

the domain of high performance computing (HPC) which was widely used by the

scientific and academic communities.

Fig. 4.2: Shared Memory MIMD ,

4.1 Motivation for Threading

What exactly is the motivation behind the decision to thread an application? First

and foremost, the trend toward multi-core for server, desktop, and mobile class pro

cessors is expected to continue well into the future. To take full advantage of this

new hardware requires that your applications be multi-threaded. By doing this, your

applications will experience increased performance by running in a parallel environ

ment. Your users will have improved application responsiveness and productivity as

they are able to increase the amount of work that can be done in less time. As hard

ware manufactures continue to add more cores, applications that are not threaded

will only utilize a percentage of the total processing power available to them.

Fig. 4.3: Distributed Memory MIMD

What kinds of problems are good to solve through parallelism? The problems

that are ideal are ones that can be partitioned by either of two methods: domain or

functional decomposition. The goal of both these methods is to identify independent

computations and primitive tasks that have no or limited relationships.

4.2 Domain (Data) Decomposition

Domain decomposition is a form of data parallelism where the same operation is

applied to all data. For example, if you were encoding an MP3 file, you could partition

the file into multiple chunks of data and send each chunk of data to multiple threads

for encoding. Reconstruction of all chunks into the final encoded result would then be

necessary. An example of where data decomposition can be found in code is usually

18

on independent loop iterations. Domain decomposition is a highly scalable approach

and allows for better performance as more processors are added.

Fig. 4.4: Domain (Data) Decomposition

4.3 Functional (Task) Decomposition

Functional decomposition is a noticeably harder method of parallelism where a prob

lem is segmented into unique jobs or tasks. Each task is then distributed among

threads which execute concurrently. Simulation of complex systems falls into this

category, for example, simulating the systems and dynamics of an automobile. Each

sub-system simulation from the engine model, suspension model, to an aerodynamics

model can all be simulated in a parallel fashion if these components are partitioned

as independent tasks. Figure 4.5 shows a rather simple example of functional decom

position.

4.4 A Methodology for Multi-Threaded Development

Many experts suggest using a methodology when engaging in a multi-threading de

velopment effort. In this section, we will cover a number of stages which are part of

19

Fig. 4.5: Functional (Task) Decomposition

an iterative process aimed at producing an optimal multi-threaded solution. From

identifying candidate areas for parallelism to analyzing the performance, following

a process may be of help to you. Figure 4.6 shows a visual representation of this

process.

4.4.1 Identifying Parallelism

The first stage of parallel application development begins with identifying opportu

nities for parallelism in the application. Naturally, the problems in your application

must contain areas for parallel work to be done. If the problems are inherently struc

tured as a single task with a fixed order of events, there is just no concurrency to work

with. The one goal of this stage is to identify hotspot areas that could be candidates

for threading. Hotspot functions with no data dependencies and loops with inde

pendent iterations are some common areas where threading may benefit. Software

architects who have intimate knowledge of the application and its algorithms can be

an excellent source to find and propose areas for multi-threading. You may also use

20

► identifying Parallelism

l
Expressing Parallelism

I
Ensuring Correctness

tuning

I Analysing Performance

Fig. 4.6: Multi-Threaded Development Methodology

software tools to analyze your application and discover not only hotspots, but which

hotspots will give you the greatest performance return on your parallelization efforts.

But what if your application does not have any use for multi-threading? If this

is the case, a multi-core processor will simply benefit from improved multi-tasking

while running multiple applications. Fortunately, single-threaded applications that

run on single-core processors will also run on multi-core processors as well with no

code alteration.

Granularity

The issue of granularity is one of many concerns when solving a parallel problem.

Often, finding the right size of “chunks” of work and be a challenging task. Having

21

chunks of work that are too large can lead to an imbalance in the load where one or

more threads are overworked, while others are not being used efficiently. On the other

hand, too much granularity can lead to synchronization overhead and can effectively

reduce the benefits of threading altogether. The levels of granularity are important
' I

because of how they affect synchronization and locking of critical sections and shared

memory variables. A common solution to this problem is to dynamically adjust the

granularity based on the data set and system configuration in order to maintain load

balance and reduce synchronization.

Load Balancing <

Closely related to granularity, load balancing is also a unique problem. The goal here

is to give each thread an equal size amount of work. Doing so will enable the threads

to complete as close together in time as possible, which reduces the amount of time on

thread waits and synchronization. More often than not, this does not occur and can

be very challenging to obtain. For data decomposition problems, equal splitting of the

data is recommended. Conversely for task decomposition, creating equal sized tasks

will generally result in more efficient load balancing. For this method in particular,

it may be data-dependent so adjusting the tasks dynamically is a common practice.
I

For example, one thread might get several tasks instead of a single task. Again] it
I

depends on various factors of the data, but there are profiling tools which can help
■ .

to assess load and give you insight into how your application executes. In either case
I

of data or task decomposition, you may have to resort to reducing the granularity

of the parallel work to obtain better load balancing. Remember though that f!his

22

reduction in granularity increases the probability of increased synchronization. This

is a tradeoff that must be analyzed and evaluated in order to make the best decision

concerning which is the more favorable option for the application. ■

Overhead and Synchronization i

When thinking about analyzing and implementing a parallel application, it is helpful

for one to recognize the overhead concerns associated with performing parallel work.

First and foremost, the creation of threads in the system is a very expensive operation

and should be done infrequently. A recommended practice when working with threads

is to utilize a thread pool in which threads can be reused as necessary. This method

is an efficient way to remove the costs associated with destroying and subsequently

creating new threads. ;

As a rule, synchronization should occur in the smallest region of code as possible.

If your granularity is such that is it quite large, the execution of your application

becomes more serialized as other threads must wait on the section being locked. This
I

problem can also occur when multiple threads try to acquire the same lock at t;he

same time. Causing a thread to enter its sleep state, then wake it up is an expensive

task and should happen as little as possible. Optimal threads are those that are in

their active state as long as possible. Also, the frequency of synchronization should

as minimal as possible. As mentioned previously, too much granularity leads to more

synchronization and this overhead can eventually dominate the application. '

One method of reducing synchronization overhead is to minimize the sharing! of

data across threads. An excess of data sharing can lead to false-sharing overhead.

23

False-sharing occurs when two threads are altering data that lie on the same cache

line. When one thread changes data on a line of cache, it causes the cache to become

invalidated. The second thread must then wait while the cache is reloaded from

memory. This does not necessarily mean that an error exists in the program, but

if this cache pinging happens frequently, for instance inside of a loop, is it likely to

severely affect performance. One way to detect false-sharing behavior is to observe

the L2 cache miss rates using software analysis tools.

4.4.2 Expressing Parallelism

Currently, there are a number of options for expressing parallelism into your code.

Which method is chosen depends on your application, the skill set of your developers,

and on the problem being solved. However, they are also not mutually exclusive;

you may mix and match them to meet the requirements of your project. For multi

threading programming applications, the most common methods are to utilize explicit

threading, OpemMP, programming language APIs, or internally threaded libraries.

Explicit Threading

By using explicit threading libraries, such as Win32 threads and POSIX threads (for

UNIX/Linux operating systems), you can achieve a fine-grained control of all the low

level details of managing the threads. This allows for the programmer to handle a

wider range of algorithms and do more to tune the application to meet their needs.

Explicit threading libraries can support a large range of compilers and languages due

to the fact that they only need an interface to the multi-threading library of the

24

system. A considerable amount of code must be written to create threads and the

code that will run within the thread. Therefore, explicit threading libraries are more

error prone and harder to use then other methods simply due to the fact that ydu

must control the low level details of thread management.

OpenMP 1

OpenMP is a portable, industry-wide standard collection of directives and runtime

library routines for C, C++, and FORTRAN. It greatly simplifies parallel application

development by hiding many of the details of thread management and communication.

It consists of a small number of compiler directives, such as pragmas, which specify

sections of code which tell the compiler to execute in parallel. i

OpenMP works on the concept of parallel regions. After each parallel directive,

every thread is executing the same code as the master thread. The parallel directive

specifies a number of items for the compiler. These can include the number of threads

to use in the parallel region, a list of private and shared variables available to each

thread, and even reduction operations on specified variables. At the end of the par

allel region, the slave threads disappear leaving only the master thread to continue

execution. '

The most common use for OpenMP is on loop-level parallelism. In Table 4.1, we

see a code sample of how to compute the value of Pi by summing the area under a

curve.

One may wonder when looking at the code example in Table 4.1 as to the number

of threads created when executing this example. OpenMP provides several environ-

25

^include <omp.h>

static long num.steps = 100000;

double step ;

void main() {

int i ;

double X, pi , sum =0.0;

step = 1.0/(double) num.steps;

^pragma omp parallel for reduction (+ ;sum) private (x)

for (i=l; i<=num_steps; i++) { ■

X = (i —0.5)*step ;

sum += 4.0/(1.0 + x*x);

}

pi = step * sum;

Tab. 4.1: OpenMP example of calculating Pi by integration

26

Fig. 4.7: OpenMP Parallel Region/Fork-Join Model

ment variables that can be used to control the behavior of an OpenMP program.

An especially important environment variable is OMP_NUM_THREADS,which specifies

the number of threads (including the master thread) to be used in its parallel re

gions. OMP_DYNAMIC is another environmental variable which dynamically adjusts

the number of threads at runtime depending on the underlying implementation. The

general rule of thumb is to make the number of threads no larger than the total

number of cores in the system. ’

To use OpenMP, you must have an OpenMP-enabled compiler. However, if your

compiler does not support OpenMP, the directives simply compile out. A technique

often used to assess speedup is in the use of a compiler switch to enable/disable

OpenMP, making the code execute in parallel/non-parallel fashion.

OpenMP is a favorable option when implementing parallel programming because of

its simplicity. By having a small set of directives, the introduction of OpenMP usually
I

does not change the program semantics. This allows a developer to prototype possible

threading implementations without investing a large amount of time and effort. After

an implementation with OpenMP is complete, the programmer can even rewrite the

code using native threading APIs for more threading control. Regardless of what

27

implementation is finally used, OpenMP provides a quick way to add parallelism to

your existing code.

Programming Language APIs

Programming Language APIs, such as those for C# and Java, are another method

of adding threading to your application. The use of language threading APIs can

save you time by hiding the complexity of thread management and also provide

powerful threading support for your application. Many of these APIs have support for

thread pools and synchronization objects such as monitors, mutexes, and semaphores.

Optimizing compilers are another way to add parallelism to your code, specifically

ones that offer automatic parallelization features. This feature analyzes loops and

creates threaded code for loops which it can determine to be safe and beneficial for

parallelization. In the case where a compiler cannot automatically parallelize a loop,

it can provide a report of why it could not, which a developer could then analyze and

identify regions for manual threading.

Internally Threaded Libraries

Finally, another method for implementing parallelism in your code is to use internally-

threaded runtime libraries for common tasks. Intel offers two products, the Integrated

Performance Primitives and the Math Kernel Library which aids in solving complex

problems such as linear algebra, fast Fourier transform (FFT), and solving large

equations. AMD also offers similar libraries like their AMD Performance Library

(APL) which is a collection of low level routines ranging from simple arithmetic to

28

signal processing. AMD also offers an optimized math library, namely the AMD Cofe

Math Library. These libraries transparently hide threading details and are written to

immediately take advantage of multi-core hardware. i

4.4.3 Ensuring Correctness

Once an application has been implemented using a threading methodology, assuring

correctness of the application becomes important. One must verify that the addition

of the non-deterministic execution through threading does not alter the expected

behavior of the program. Let us explore a number of issues that may occur as' a

result of adding multi-threading to an application. !

Race Conditions

A race condition occurs when two or more threads attempt to access the same resource

at once. Because of the non-deterministic execution of the threads, it is impossible

to determine which thread will access the resource first. This can lead to inconsistent

program results. ■

The following example illustrates a read/write race condition. Suppose you have

two threads, each with access to a shared variable z, which has the initial value! of

1. Variables a and b hold the values of 1 and 2 respectively after running their large

tasks. Table 4.2 shows the code for this example. ;

Depending on how these instructions are executed in a multi-threaded program,

the value for x will vary. If the large tasks for Thread 1 and Thread 2 widely differ

in their execution time, a race condition is less likely to occur, however, you cannot

29

Tab. 4.2: Example of a race condition

Thread 1 Code Thread 2 Code

a = LargeTask()

x = x + a

b = LargeTask()

x = x + b

make any assumptions here and doing so could lead to incorrect results. Table 4.3

shows the differing values for x when the operations of both threads are executed in

different orders.

The same out-of-order execution concept applies to data races for write/read and

write/write conditions as well. To eliminate race conditions, the program must yield

the correct result regardless of the interleaving of instructions between threads. It is

the job of the programmer to identify all shared objects and protect them with the

proper synchronization mechanisms to ensure the correct order of execution.

The problem with race conditions is that they are at some times difficult to detect.

Running the program one-thousand times may yield the same result, yet after only one

more execution, the program produces a different result. Luckily, there are software

tools which can analyze code and detect race conditions in your threaded code. Even

more impressive, these race conditions errors do not even have to occur for these

tools to detect them [6]. Consequently, these tools can ease the burden of debugging

a multi-threaded program significantly.

30

Tab. 4.3: Race condition cases for possible values for x

Values for x Condition

4 Thread 1 completes then Thread 2 completes, or vice

versa

2 Thread 1 reads x, then Thread 2 reads x and writes (1

+ 2) to x. Thread 1 should receive the latest value of x

written by Thread 2 (which is 3), but instead it has an

invalid value (1) and does its sum anyways.

3 Thread 2 reads x, then Thread 1 reads x and writes (1

+ 1) to x. Thread 2 should receive the latest value of x

written by Thread 1 (which is 2), but instead it has an

invalid value (1) and does its sum anyways.

31

Synchronization. Mechanisms

So how can we prevent race conditions? One method is to use synchronization mech

anisms. A critical section is a construct used to denote'a block of code where only

one thread is allowed to execute that section of code at any time. This ensures that

threads access resources inside the critical section in a more organized fashion. Syn

chronization is a useful technique, but as mentioned previously, you should try to

reduce the amount of synchronization as it will add more serialization and degrade

performance of your application. While only One thread is allowed inside the critical

section, other threads needing to access the shared resources are forced to wait.

Deadlock and Thread Stalls

Although extremely rare, there are certain instances where a multi-threaded program

will hang for no apparent reason. If no programming errors are present, this behavior

could be attributed to a deadlock. Deadlock occurs when one or more threads are

waiting for exclusive access to a resource which will never be released. In order for

deadlock to occur, the following criteria must exist in the system [22],

• Exclusive Access: Processes request exclusive access to resources.

• Wait While Hold: Processes hold previously acquired resources while waiting for

additional resources.

• No Preemption: A resource cannot be preempted from a process without abort

ing the process.

• Circular Wait: There exists a set of blocked processes involved in a circular wait.

32

Fig. 4.8: A Simple Deadlock Example .

The simplest case of deadlock is illustrated in Figure 4.8. In this instance, Thread

1 (Tl) currently has exclusive access to Resource 1 (Rl), and is requesting access

to Resource 2 (R2) currently held by Thread 2 (T2). Conversely, Thread 2 has
I

exclusive access to Resource B and is requesting access to Resource A currently held

by Thread 1. Since neither process relinquishes the hold on its resource, both threads

wait forever, and deadlock has occurred. In order to prevent deadlock, one has to be

mindful of how the application threads gain and release access to shared resources.

Deadlock has a very low potential for occurrence and will only happen under the

right conditions, but it can happen. Another possible explanation of why a multi

threaded application hangs during execution could be due to a thread stall. A thread

stall occurs when a thread is waiting on resource owned by a thread where that thread

33

has already been destroyed. Since the desired resource has a “dangling lock”, it will

never be released and any threads waiting to acquire it will stall or wait indefinitely.

The solution to this is to understand that the resource locks held by a thread are not

automatically released when the thread is destroyed. Resource locks must be released

within the same thread that obtained them.

4.4.4 Analyzing Performance

Amdahl’s Law

We can estimate the expected performance of a parallel program in terms of speedup.

Amdahl’s Law quantifies the potential speedup from converting serial code to parallel

code. Let s be the fraction of code that is inherently serial and cannot be parallelized,

while p will represent the fraction of code that can be converted to parallel. Hence,

s + p = 1. If we use N as the number of processors, we arrive at Amdahl’s Law as

depicted in Equation 4.1.

s + (p/N) ' ■ '

We can observe that with an infinite number of processors, the term p/N will

eventually drop out. Thus, the maximum speedup one can achieve by parallelizing a

program is the inverse of the fraction of the code that must run in serial. For example,

if 20 percent of your code is serial, then you could expect, at most, a speedup of 5; If

you are concerned with increasing performance, you should then pay close attention

to minimizing the fraction of code that runs in serial.

One interesting note on Amdahl’s Law to mention is that as the problem size

34

grows, p may rise and s may fall. Consider a Monte Carlo simulation which has

a large number of iterations. The serial portion of setting up the data and I/O

overhead, s, remains the same as p grows and s declines. Furthermore, Amdahl’s

Law is the best case. Adding processors will eventually lead to diminishing returns,

and the equation does not take into account factors such as thread management and

coordination. Whatever speedup you achieve will most likely be less than the value

provided by Amdahl’s Law.

Contrary to what one might expect, it is quite possible for a program to perform

more slowly after having been multi-threaded. There are a number of factors which

can influence this outcome, some harder to pinpoint then others. Excessive use of

shared data can lead to synchronization issues where thread contention is high re

sulting in long thread wait times. A large amount of locking granularity lends itself

to parallel overhead dominating the application and too little granularity may not

parallelize enough work to make threading worthwhile. As mentioned previously,

good load balancing can sometimes be difficult to achieve as improper distribution of

parallel work can affect performance.

Alternatively, instead of performing worse that its single-threaded version, an ap

plication may exhibit only a minimal performance boost from threading. This may be

due to an issue concerning poor scaling. A common issue resulting in poor scaling is

the existence of large sections of serial code that dominate execution as more proces

sors are added. Sometimes, portions of serialized code are not identified as candidate

areas for parallelization, and thus the entire application suffers from potential parallel

work lost in a multi-core environment. An often overlooked cause of poor scaling is

35

an application that has exceeded the memory bandwidth of the system or is suffering

from memory-related issues, such as false sharing described earlier.

A recommended practice to diagnose scaling problems is to schedule periodic scal

ing studies using different processor configurations [5]. Performing tests using twice

the number of available processors on the common consumer system will help you

prepare and stay ahead of your customers.

36

5. MULTI-THREADED APPLICATION DEVELOPMENT

Now that we are familiar with multi-core processors and understand how multi

threading helps to take full advantage of this new hardware, we will be better prepared

to use it effectively when developing applications. Let us examine a simple application

using single and multiple threads.

5.1. Card Shuffling Example

In this example program, we will simulate the creation and shuffling of multiple

card decks. See Appendix A for the full C# source code listing. This program

has the ability to be executed in either a single-threaded or multi-threaded mode,

which is denoted by the first command-line parameter passed to the program. The

second command-line parameter is the number of times to shuffle each deck. For

this example, we will shuffle our decks an outlandish amount of times so that we can

observe activity on the cores. The last command-line parameter tells the program

how many decks to create. Therefore, the syntax for executing this program is:

CardShuffle.exe [0 or 1] ShufAmt NumDecks

When the program is executed in single-threaded mode it uses its main thread to

create the number of decks specified, then it shuffles each deck the number of tiriies

specified by the command-line parameter. Figure 5.1 shows the CPU utilization when

37

- Applications j Processes |P^forrnance!| Networking | Users |

|Q Windows Task Manager

File Options View Help

&CPU Usage CPU Usage History-

f Page File Usage HistoryPF Usage

“-Totals —
4 Handles
t Threads

Processes

^Physical Memory (K)
Total \ ‘ ‘!
Available ■

~ i System Cache

7195.
421
34

' r'Corrtmit Gwge (K)——
'ft 'SS^

Limit'
' Peak

/166220
18617808

> 430864

16775936
■ 16352920

. r,Kernel Memory (K)-------r--------- ;
Total
Paged .
Nonpaged

. 40116
26608
13508

pjbcesses: 34K<' jftPU Usage: 13% ;/. v/18181M:. v

Fig. 5.1: CPU Utilization of Shuffle Program in Single-Threaded Mode

the program is running in single-threaded mode. We can clearly see that the program

is utilizing only one of the available eight cores of the system, namely core six.

If we instruct the program to run in its multi-threaded mode, it creates an equal

number of decks and threads as there are cores in the system. It assigns one deck per

thread and then executes the Shuffle() method on each deck. For example, if we run

the program using the command “CardShuffle.exe 1 10000000 8”, it will create eight

decks, eight threads, then start each thread to shuffle its own deck ten million times.

If we inspect the CPU utilization now, we observe that the program is fully utilizing

all eight cores and is thus doing its work in parallel.

38

File Options View Help

Applications | Processes jlOormance] Networking | Users | z

r CPU Usage HistoryCPU Usage

ti

"PF Usage

av>,,

" -Totals —
. Handles

Threads
Processes

“ Page File Usage History

i

7357
432
34

““Physical Memory (k) “ ‘---------—-

Total 16775936
Available \ * 16349364
System Cache 822236

1

“Commit Charge (K)
Total
Limit

< Peak

t 177556
18617808

430864

Kernel Memory (K) —————q
Total , / 40200

’ 26688

13512
f Paged

NonpagOdju^]

Fig. 5.2: CPU Utilization of Shuffle Program in Multi-Threaded Mode

39

To even further observe parallel behavior by the program, we can inspect the

output from each thread to the console. Table 5.1 shows the typical output from

the program running in single-threaded mode. Notice how each deck is printed in

sequential order; this tells us that only a single thread is doing the work.

However, a multi-threaded run gives us much more interesting output. Because

of the non-deterministic behavior of threading we see that the output to the console

is dynamic because each thread writes to the console at different points in time.

The solution to the interleaving of output statements could be handled simply by

synchronizing access to the console using standard conventions. Table 5.2 shows an

example console output from a multi-threaded run of the program.

I was fortunate to be given access to a variety of multi-core machines with differing

configurations. See Appendix B for a list of system configurations used in this study.

The following tables show data from executing the card shuffling program on those

different systems.

By reviewing the data, one can determine the benefit of having more processing

cores. System A, a dual-core machine, had an average of 50 percent improvement

gain while running in multi-threaded mode. System B, an eight-core machine using

AMD’s Opteron processor, saw an average of 87 percent performance gain. System

C, an eight-core machine using Intel’s Xeon processor, saw a similar average of 86

percent performance gain. It is worthwhile to note that even while quadrupling the

number of processing cores from System A to Systems B and C, we did not observe a

linear performance gain. This is likely the existence of diminishing returns at work.

40

Using single—threaded shuffle (3 decks)...

Player 0’s hand ...

Player 0 0: 7 of Spades

Player 0 1: Ace of Clubs

Player 0 2: 5 of Spades

Player 0 3: 10 of Clubs

Player 0 4: Jack of Clubs

Player 1’ s hand . . .

Player 1 0: 10 of Hearts

Player 1 1:: 4 of Hearts

Player 1 2: Queen of Clubs

Player 1 3:: King of Spades

Player 1 4: Ace of Clubs

Player 2'’s hand . .

Player 2 0: 9 of Clubs

Player 2 1: 2 of Spades

Player 2 2: 3 of Diamonds

Player 2 3: 5 of Spades

Player 2 4: 10 ol: Hearts

Process completed in 00:00:00.3042325 seconds.

Tab. 5.1: Single-threaded card shuffle’console output

41

Using multi—threaded shuffle (3 decks)...

Player 1’s hand . . .

Player 0’s hand . . .

Player 0: 4 of Clubs

Player 1: King of Hearts

Player 2: King of Clubs

Player 3: 2 of Hearts

Player 4: 4 of Diamonds

0

0

0

0

0

Player 1 0:: 4 of Clubs

Player 1 1:: .King of Hearts

Player 1 2: King of Clubs

Player 2 ’s hand . .

Player 2 0: 4 of Clubs

Player 2 1: King of Hearts

Player 2 2: King of Clubs

Player 2 3: 2 of Hearts

Player 2 4: 4 of Diamonds

1Player 3: 2 of Hearts

Player 4: 4 of Diamonds1

Process completed in 00:00:00.1125793 seconds.

Tab. 5.2: Multi-threaded card shuffle console output

42

Tab. 5.3: Execution data from card shuffle program running on System A

Run Multi-

Threaded

Decks Shuffle

Amount

Avg. Exec

Time(s)

MT Improve

ment

1 No 2 107 2.3112845 -

2 Yes 2 107 1.5468929 33.1%

3 No 2 108 23.0747055 -

4 Yes 2 108 11.6918898 49.3%

5 No 2 109 231.0912208 -

6 Yes 2 109 117.43444253 49.2%

Run Multi-

Threaded

Decks Shuffle Amt. Avg. Exec

Time(s)

MT Improve

ment

1 No 8 107 8.5817276 -

2 Yes 8 107 1.2418062 85.6%

3 No 8 IO8 84.9485922 -

4 Yes 8 108 10.8091182 87.3%

5 No 8 109 848.9395972 -

6 Yes 8 109 108.6855996 87.2% '

Tab. 5.4: Execution data from card shuffle program running on System B

43

Tab. 5.5: Execution data from card shuffle program running on System C

Run Multi-

Threaded

Decks Shuffle Amt. Avg. Exec

Time(s)

MT Improve

ment

1 No 8 .. 107 7.6190219 -

2 Yes 8 107 1.0773939 85.6%

3 No 8 108 77.7749434 -

4 Yes 8 ib8 11.1424368 85.7%

5 No 8 io9 765.6089332 -

6 Yes 8 109 97.8403878 87.2%

6. THE FUTURE OF COMPUTING WITH MULTI-CORE PROCESSORS

6.1 The Multi-Core Roadmap

It seems evident that the single processor days are over and multi-core architecture

is here to stay. Intel forecasts that more than 85 percent of its server processors and

more than 70 percent of its mobile and desktop processors will be dual-core by the

end of 2006 [21]. At the Spring 2005 Intel Developer Forum in San Francisco, Intel

senior fellow and CTO director Justin Rattner spoke of the company’s goal to deliver

chips with one-hundred or more processing cores by the year 2015 [17].

Intel is also planning to take multi-core to the next level by implementing special

ized cores for classes of computation such as graphics, artificial intelligence, speech

and handwriting recognition, image processing, and even communication protocol

processing [13]. In an interesting question and answer interview with Jerry Bautista,

who leads the Intel Microprocessor Lab, Bautista speculates that with enough cores,

the graphics processing commonly done by expensive GPUs will eventually be pulled

back onto the CPU [24]. Perhaps this is the same thinking from microprocessor com

petitor Advanced Micro Devices (AMD) as evident in their October 2006 acquisition

of graphics chipset manufacturer, ATI Technologies. AMD has also announced its

commitment to multi-core architecture progression in its line of server, desktop, and

mobile processors. Peter Buhr, a professor of computer science at the University of

45

Waterloo, states, “You won’t be able to buy a computer in five years that doesn’t

have a dual-core processor” [4]. If this is indeed the case, parallel computing will truly

become more mainstream then ever before. Instead of needing expensive hardware or

access to a large number of networked machines, every consumer-level processor will

be able to perform parallel computation.

6.2 Industry Adoption

Already, the software industry is preparing for the multi-core era by adapting multi

threading into their applications and reaping the benefits. In the future, users can

expect more performance and responsive applications which take advantage of multi

core processors. Companies are noticing the potential for parallel processing and are

eager to use multi-core to gain a competitive edge for their products. From digital

-content creation applications to computer games, multi-core is applicable to virtually

all industries.,

6.2.1 Digital Content Creation

Pixar Animation Studios has already been enjoying the benefits of multi-core pro

cessing as they recently multi-threaded their award-winning RenderMan rendering

software. Since its inception in 1984, Pixar has always been looking for ways to im

prove frame rendering which can speed up the film production cycle and results in

greater detailed scenes and realistic imagery. Adding more scene objects and detail

requires more computing power, but Pixar was reaching the limits of its data center

power and cooling capacity. A solution was needed to obtain more processing power

46

from the same amount of real estate. The solution was to choose multi-core and add

multi-threading to RenderMan.

RenderMan was originally designed to manage many independent servers operating

in parallel using its integrated network rendering dispatcher. However, it did not

incorporate multi-threading, which was needed to take full advantage of their multi

core processors. To guide them in this herculean effort, the RenderMan team was

educated on threading concepts and trained to use software development tools from

Intel. One developer noted that Intel’s Thread Checker tool helped him to find race

conditions in the threaded code which could have led to weeks of analysis to uncover

[io]-

Ultimately, the RenderMan team achieved their goal of a 75 percent improvement

when scaling up to four physical processors. RenderMan could now render up to

five times faster in threaded mode on a system with four dual-core processors than

when rendered in a non-threaded mode on a single processor system. Also, the team

found that two cores working from the same memory rendered at nearly the same

speed as two physical processors with distinct memories. According to Dana Batali,

director of RenderMan development, by adding threading to RenderMan, Pixar whs

able to pack more processing power capacity into their render farm while lowering

their RAM costs as well [10]. Batali noted that the threading expertise and software

tools from Intel were “extremely helpful” and essential for creating a stable, reliable

multi-threaded application [10].

47

Some applications were already posed to give immediate benefits with multi-core

processors to its users without the need for code changes. For over a decade, Adobe

Systems has been developing its line of video processing software, such as its Adobe

Premiere Pro line, for use with multi-processor systems [8]. This product uses threads

to process and render video frames for faster, even real-time, data manipulation.

By already utilizing threading in their design, the application currently supports

multi-core processors in the same way it already supports multiple processor systems.

What this means for the user is increased performance without the need for expensive

hardware systems or a software upgrade.

6.2.2 Computer Game Development

Multi-core processors even have benefits for the digital entertainment industry, bring

ing larger and richer experiences to gamers worldwide. One area in which multi-core

processing is already being used is for asynchronous background loading [11]. In

modern computer games, a “zone” is a section of the in-game universe which can be

explored by the player. As the player travels to different zones the player must wait

for different zones to be loaded into memory and rendered. Asynchronous background

loading allows the machine to pre-load nearby zones so as the player approaches therh,

the transition is seamless. What this could mean is the end of the dreaded “Loading”

screen for computer gaming.

Mark Rein, vice president at Epic Games is expecting big changes in the gaming

industry. “When the Intel folks first told us that they were taking a multi-core

approach, we cheered and clapped” [11]. Epic Games is already thinking ahead to

48

the time when multi-core is more pervasive and how they can leverage that extra

processing power in the form of user-to-user communication. Rein suggests multi

core will eventually allow for integration of real-time high-quality video in the game

itself.

Multi-core processors will allow game developers to effectively separate tasks be

tween the available cores. For instance, a photorealistic rendering algorithm could use

multiple cores for on-the-fly graphics. Expensive in-game physics calculations could

be dedicated to one core while artificial intelligence could be processed on another

core creating a more rich and immersive experience. As the gaming industry is known

for pushing the boundaries of hardware, it will be interesting to see the innovations

made possible by multi-core processors and how it will affect this ever-changing field

of computing.

6.3 Academic Acknowledgement

By recognizing the effect that multi-core will have on parallel computing potential,

education institutions are already adapting their courses to provide students with the

knowledge and skills necessary to succeed as computer scientist, system architects,

and programmers. The College of Computing (CoC) at the Georgia Institute of

Technology is starting to re-emphasize concurrency and parallelism to their students

in an effort to teach these important concepts. Over the next two years, Georgia

Tech expects to upgrade their core curriculum to convey the principles of multi

core processing and the techniques needed to take advantage of the architecture [9].

Professor Karsten Schwan at the CoC says, “we have to start educating and thinking

49

in terms of parallel” [9].

Through their efforts, Georgia Tech will be helping to educate and train the next

generation of engineers and architects who are ready for the parallel age of computing.

In light of this, I anticipate other academic institutions to follow Georgia Tech’s lead

and adapt their undergraduate, postgraduate, and doctoral programs to have an

increased emphasis on multi-core and parallel computing concepts.

6.4 The Next Revolution in Software: Concurrency

Every so often a technology comes around and shakes the software world to its foun

dation. Multi-core architecture and parallel computing enabled by this technology is

such a change. Analysts and experts are predicting the move to multi-core will be as

profound as the object-oriented paradigm shift of the 80s and 90s. Who knows, they

may be correct. If they are, software developers will likely be motivated to re-think

application design and implementation to support concurrency.

6.4.1 The “Free Lunch” Is Over

For years, applications gained a performance “free lunch” as better and faster proces

sors were released to the market. Improvements in clock speed, cache, and execution

optimizations such as pipelining, branch prediction and ILP, made applications run

faster without any code changes. It is interesting to note that a surprising eighty

percent of performance gained was simply due to the increased processor clock rates

[13]. Unfortunately, this trend will not continue. Due to the inherent problems wjth

heat consumption and current leakage that accompany clock speed increases, only

50

advances in the area of cache will continue to deliver performance benefits for the

time being. It seems as though the “speed wars” are over and most microprocessor

vendors are pursuing the multi-core direction.

6.4.2 Paradigm Shift for Software Architects and Developers

So how then can we as software developers best utilize the performance improvements

available in multi-core processors? The answer, as you may have guessed by noxV,

lies in software multi-threading. In the future, it will be advantageous for software

engineers and designers to embrace and introduce multi-threaded designs into their

applications to truly benefit from TLP offered by multi-core processors. We’ll still

use the traditional “divide and conquer” methodology, but we’ll need to adopt the

“work smarter, not harder” mindset as well.

Unfortunately, as I have found from my research, only a small fraction of developers

have been doing concurrent programming regularly. Multi-threading is considered by

most programmers to be an advanced topic only useful if the application specifications

require it. The vast majority of applications today are single-threaded, most likely
i

due to the fact that the majority of target platforms did not have parallel hardware.

This fact is going to change; and change rapidly. Here is an example of the rate 'of

change we can expect. When I started my Masters Thesis research in July of 2006,

most major microprocessor manufactures had dual-core processors on the market.

At the time of this writing, only six months later, quad-core processors are already

available for purchase. An interesting fact comes from IDC, a market researcher

specializing in the information technology and telecommunications industries. IDC

51

makes an interesting claim for the server market and says that the future growth of

this market can be mapped directly to the similar growth we have seen in the storage

industry for the past five years [20]. As the number of cores per processor increases,

IDC predicts the power of the server market will increase at an exponential rate.

Like any major technology change, it may take some time for the majority of soft

ware developers to understand parallel programming concepts and have their applica

tions take full advantage of multi-core processors. For example, object-orientation of

code did not become mainstream until 30 years after its initial use with the SIMULA

language back in the mid 1960s [23]. Object-oriented concepts and principles ulti

mately became popular years after their debut simply due to application requirements

needing to consist of larger and larger systems. The powerful abstraction offered by

object-orientation became a natural fit and thus it began to pick up adoption by

the industry. A lack of motivation prevented object-orientation of code to hit the

mainstream, until there was a need.

Although parallel programming and object-orientation concepts may have a similar

complexity and learning curve, I estimate parallel programming will not take as long
I

to permeate into the software industry. Why do I believe this? Because the need fpr

more performance will always be present, and as user expectation rises through the

years as it has in the past, parallel programming will be the answer in utilizing the

new hardware given to us through multi-core architecture.

52

6.4.3 Stronger Reliance on Software Analysis Tools

Due to the inherent difficulty of parallel programming, I anticipate, as it becomes

a more prevalent part of software development, we will see a stronger reliance for

software analysis tools than ever before. These tools will provide helpful insight int'o

the use of parallel constructs and will aid developers to find and fix bugs before they

are introduced into production software. Analysis tools will help to remove the guess

work involved in locating candidate code for parallelism, striving for appropriate

load balancing, and minimizing issues revolved around parallel programming such ds

synchronization and efficient cache usage. :

If we as software developers understand the new architectural changes brought

about by multi-core processors, we can begin to take advantage of parallelism and

create the next generation of applications. These future applications will need to use

threading to fully exploit the architectural innovations from multi-core processors. A

single threaded application on a 100-core processor could be utilizing only l/100th of

the total processing throughput of the machine. The inherent benefits are too large

to ignore.

53

7. CONCLUSION

It seems that the future of microprocessor architecture has multi-core written all over

it. The major vendors are already shipping their dual and quad-core processors with

promise of many more cores in the coming years. Although it seems that clock rates

are stabilizing, transistor counts should continue to explode and it seems that CPUs

will exhibit Moore’s Law-like throughput gains for some years to come.

In this paper, we explored the current state of microprocessors today and showed

how multi-core is the natural progression of this technology. We defined exactly

what multi-core means, and the benefits we can obtain by utilizing it. We then

explored the topic of multi-threading and learned that threading is the single greatest

method for maximizing use of a multi-core processor. Concepts surrounding threaded

development were discussed which are important to keep in mind while implementing

a threaded solution. We then learned how the move to multi-core design in processor

architecture will affect software developers.

7.1 Preparing for the Future

Many are expecting multi-core to bring a huge impact to the software industry. Herb

Sutter of Microsoft says, “[Multi-core processing is creating]... the biggest sea change

in software development since the object-oriented programming revolution...” [12].

54

James Reinders, director of marketing and business of Intel’s Software Development
■ ' . . ■ ' i

Products Division has been quoted as saying, “It strikes me that in terms of future

development, the magnitude of the change that software developers are going to

experience will be substantial” [12].

Whether they like it or not, parallelism has gone mainstream and software devel

opers need to keep their threading skills current and be prepared. We should utilise

this time now to get up to speed on our threading skills. No doubt, engineers who

possess the skills necessary to analyze, design, and debug multi-threaded applications

will be in high demand in the foreseeable future.

No matter the change, it is surely an exciting time to be a software developer. For

the first time in history, parallelism, for everyone, is going to be ubiquitous. The level

of performance we can expect from our applications will continue to soar. Even so,

software vendors are already putting multi-core processors to work as we saw. With

this age of parallelism, new applications will surface, and new methods of solvirig

current problems will emerge. I believe this is a wonderful time for opportunity. :

But it won’t be an easy change to cope with. Software developers will need to re

think how they design their applications to take advantage of threading; the real power

behind multi-core processors. Training and experience will be crucial to ensure that

correctness and efficiency are maintained in the implementation of multi-threaded

applications. If we know and understand the hardware, we will be more prepared tp

effectively utilize all the benefits that multi-core processors can provide.

55

Parallel computing has finally hit the mainstream. From the hardware engineer

to the end-user, multi-core will reach the masses and affect everyone. The time to

adapt to all that multi-core brings is now because this “wave of parallelism” isn’t on

the way, it’s already here.

56

APPENDIX A

CARD SHUFFLING EXAMPLE SOURCE CODE

57

// **

// File: Main.cs

// Single/Multi-Threaded Card Shuffling Example

// usage: CardShuffle.exe [0 | 1] #1 #2")

// 0 = Single Threaded Example (required)

// 1 = Multi-Threaded Example

// #1 = Shuffle Iterations (required)

// #2 = Number of Threads (optional)

// **

using System;

using System.Collections.Generic;

using System.Text;

using System.Threading;

using System.Diagnostics;

using System.Collections;

L

namespace CardShuffle {

class MainClass {

public static void Main(string[] args) {

double ShufAmt;

ArrayList myDecks, myThreads;

58

Deck deck;

Thread myShuffle;

int numDecks, useSingleThreading;

if (args.Length < 2)

Environment.Exit(0) ;

else {

useSingleThreading = Convert.Tolnt32(args[0]);

ShufAmt = Convert.ToDouble(args[1]);

if (args.Length == 3)

numDecks = Convert.Tolnt32(args[2]);

else

numDecks = System.Environment.Processorcount;

if (useSingleThreading == 0) {

// Single-Threaded Version

Console.WriteLine("Using single-threaded shuffle

(" + numDecks + " decks)...");

Stopwatch watch = new Stopwatch();

watch.Start();

59

deck = new Deck("Player 1", ShufAmt);

for (int i = 0; i < numDecks; i++)

deck.Shuffle();

watch.Stop (); // Stop the clock

Console.WriteLine("Process completed in " +

watch.Elapsed.ToString() + " seconds.");

}

else {

// Multi-Threaded Version

Console.WriteLine("Using multi-threaded shuffle

(" + numDecks + " decks) ...");

Stopwatch watch = new Stopwatch();

watch.Start();

myDecks = new ArrayListO;

myThreads = new ArrayListO;

// Create our decks and threads

for (int i = 0; i < numDecks; i++) {

deck = new Deck("Player " + i, ShufAmt);

60

myDecks.Add(deck);

myShuffle = new Thread(new Threadstart(

(myDecks[i] as Deck).Shutfle));

myThreads.Add(myShuffle) ;

}

// Start all the threads

for (int i = 0; i < numDecks; i++)

(myThreads[i] as Thread) . Start () ;

// Wait for all threads to complete

for (int i = 0; i < numDecks; i++)

(myThreads[i] as Thread).Join();

watch.Stop(); // Stop the clock

Console.WriteLine("Process completed in " +

watch.Elapsed.ToString() + " seconds.");

}

}

}

}

61

// File: Deck.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace CardShuffle {

public class Deck {

private string[] oCards;

private string oDeckOwner;

private double oShufAmt;

public Deck(string deckOwner, double ShufAmt) {

oCards = new string[52];

oShufAmt = ShufAmt;

oDeckOwner = deckOwner;

int thisCard;

int cnt = 0;

for (int suit=0; suit < 4; suit++) {

for (int num=0; num < 13; num++) {

cnt = (suit * 13) + num;

// Which card are we on?

62

switch(num) {

case 0:

oCards[cnt] = "Ace";

break;

case 10:

oCards[cnt] = "Jack";

break;

case 11:

oCardsfcnt] = "Queen";

break;

case 12:

oCards[cnt] = "King";

break;

default:

thisCard = num + 1;

oCards[cnt] = thisCard.ToString();

break;

}

// Append the suit

switch(suit) {

case 0:

oCards(cnt) += " of Spades";

63

break;

case 1:

oCards[ent] += " of Hearts";

break;

case 2:

oCards[ent] += " of Clubs";

break;

case 3:

oCards[ent] += " of Diamonds

break;

}

}

}

}

public void Shuffle() {

int cardl, card2;

string tmpCard;

Random Randomclass = new RandomQ;

for (int i=0; i < oShufAmt; i++) {

cardl = RandomClass.Next(0,52);

card2 = RandomClass.Next(0,52);

tmpCard = oCards[cardl];

64

oCards[cardl] = oCards[card2];

oCards [card2] =■ tmpCard;

}

Console.WriteLine(oDeckOwner + ”'s hand...");

Print(5);

Console.WriteLine();

}

public void Print(int numCardsFromStart) {

for (int i=0; i < numCardsFromStart; i++)

Console.WriteLine(oDeckOwner + "" +

i.ToStringO + ": " + oCards[i]);

}

}

}

65

APPENDIX B

MULTI-CORE SYSTEM CONFIGURATIONS

66

• SYSTEM A

PROCESSOR(S): Intel Core 2 Duo

L2 CACHE: 2MB

FSB: 1066 MHz

MEMORY: 1 GB

OPERATING SYSTEM: Windows XP Professional w/ SP2

• SYSTEM B

PROCESSOR(S): Dual-Core AMD Opteron 2.6 GHz x 4

L2 CACHE: 4MB x 2

FSB: HyperTransport Technology (1GHz true, 2GHz effective)

MEMORY: 16GB DDR400 ECC Registered

OPERATING SYSTEM: Windows Server 2003

• SYSTEM C

PROCESSOR(S): Quad-Core Intel Xeon 2.67 GHz x 2

L2 CACHE: 4MB x 2

FSB: 1066 MHz

MEMORY: 4GB FBDIMM DDR2 533 MHz

OPERATING SYSTEM: Windows Vista

67

REFERENCES

[1] Shameem Akhter and Jason Roberts. Multi-Core Programming. Intel Press,

2006.

[2] Avi Mendelson Simcha Gochman Rajshree Chabukswar Karthik Krishnan

Arun Kumar Alon Naveh, Efraim Rotem. Power and thermal management in

the intel core duo processor. Intel Technology Journal, 10(2), May 2006.

[3] AMD. Power and cooling in the data center. Technical report, AMD, 2005.

[4] Thomas Burger. Intel multi-core processors: Quick reference guide, webpage,

Sep 2006. http://www.intel.com/cd/ids/developer/asmo-na/eng/231914.htm.

[5] Charles Congdon. Multithreaded programming quickstart, webcast, May 2006.

[6] Max Domeika and Lerie Kane. Optimization techniques for intel multi-core

processors, webpage, Aug 2006. http://www.intel.com/cd/ids/developer/asmo-

na/eng/261221.htm.

[7] John L. Hennessy and David A. Patterson. Computer Architecture A Quantitative

Approach.

[8] Intel Software Insight. For adobe, foresight brings immediate benefit to users.

Intel Software Insight, Aug 2006.

68

http://www.intel.com/cd/ids/developer/asmo-na/eng/231914.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/261221.htm

[9] Intel Software Insight. Geogia tech takes a parallel path. Intel Software Insight,

Sep 2006.

[10] Intel Software Insight. The inside story from hollywood: How pixar multi

threaded renderman. Intel Software Insight, Aug 2006.

[11] Intel Software Insight. Multi-core changes the game for epic. Intel Software

Insight, Aug 2006.

[12] Intel Software Insight. Sea change in the software world: Multi-core processing

opens innovative business possibilities. Intel Software Insight, page 6, Sep 2006.

[13] Intel. Evolution of parallel computing. webpage, Oct 2006.

http://www.intel.com/platforms/parallel.htm .

[14] Brent Kerby. Managing data center power and cooling with amd operton pro

cessors and amd powernow! technology. Dell Power Solutions, page 5, February

2007.

[15] Geoff Koch. Discovering multi-core: Extending the benefits of moore’s law,

July 2005. http://www.intel.com/technology/magazine/computing/multi-core-

0705.pdf.

[16] Geoff Koch. Intel multi-core processor architecture: Faq. webpage, Sep 2006.

http://www.intel.com/cd/ids/developer/asmo-na/eng/221188.htm.

[17] Geoff Koch. Intel’s road to multi-core chip architecture, webpage, Sep 2006.

http://www.intel.com/cd/ids/developer/asmo-na/eng/220997.htm.

69

http://www.intel.com/platforms/parallel.htm
http://www.intel.com/technology/magazine/computing/multi-core-0705.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/221188.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/220997.htm

[18] Geoff Koch. Transitioning to multi-core architecture, webpage, Sep 2006.

http: / / www.intel.com/cd/ids/developer/asmo-na/eng/recent /221170.htm.

[19] Intel Software Network. Multi-core capability. webpage, Aug 2006.

http://www.intel.com/cd/ids/developer/asmo-na/eng/235413.htm.

[20] Kelly Quinn and et al. The next evolution in enterprise computing: The conver

gence of multicore x86 processing and 64-bit operating systems, webpage, Aug

2006. http://multicore.amd.com/Resources/IDC_Convergence_en.pdf.

[21] R.M. Ramanathan. Intel multi-core processors leading the next digital rev

olution. webpage, Aug 2006. http://www.intel.com/cd/ids/developer/asmo-

na/eng/strategy/trends/234550.htm.

[22] Mukesh Singhal and Nirajan G. Shivaratri. Advanced Concepts in Operating

Systems: Distributed, Database, and Multiprocessor Operating Systems.

[23] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s Journal, March 2005.

[24] Computer Power User. Q&a with jerry bautista. Computer Power User Maga

zine, 6(9), Sep 2006.

[25] Ofri Wechsler. Inside intel core microarchitecture: Setting new standards for

energy-efficient performance. Technical report, Intel, 2006.

70

http://www.intel.com/cd/ids/developer/asmo-na/eng/recent
http://www.intel.com/cd/ids/developer/asmo-na/eng/235413.htm
http://multicore.amd.com/Resources/IDC_Convergence_en.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/strategy/trends/234550.htm

	Multi-core processors and the future of parallelism in software
	Recommended Citation

