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Abstract

The focus of this project consists of investigating when a ruled surface is a minimal 

surface. A minimal surface is a surface with zero mean curvature. In this project the 

basic terminology of differential geometry will be discussed including examples where the 

terminology will be applied to the different subjects of differential geometry. In addition 

to the basic terminology of differential geometry, we also focus on a classical theorem of 

minimal surfaces. It was referred as the Plateau’s Problem. This theorem states that a 

surface with the minimal area is a minimal surface and the proof of the theorem will be 

provided. To investigate when a ruled surface is minimal, we need to solve a system of 
differential equations. In conclusion, we find that only ruled surfaces that are also minimal 

are helicoids. Some graphs of minimal surfaces will also be provided in this project, using 
MAPLE and other computer programs.
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Chapter 1

Introduction to Basic Terminology 
of Differential Equations

This chapter will be divided in five sections, where the terminology of differential 

geometry will be discussed. The first section begins with the definition of a surface in 

a space R3. The other three sections will consist of the basic terminology of differential 

geometry, and the last section will applied the basic terminology of differential geometry to 

specific examples.

1.1 Surface in B?

In this section the following definition consists of the properties that a surface in 

space R3 must satisfy, where surfaces have no sharp point, edges, or self-intersection.

Definition 1.1.1. A surface in R3 is a subset S C R3 such that for each point p e S there 

are a neighborhood V ofpin R3 and a mapping x:U^VbS of an open set U CR2 onto 

V D S C R3 subject to the following three conditions. (Figure 1.1)

1. x is of class C3.

This states that x is differentiable and the mapping x has continuous invariant 

partial derivatives, (first, second, and third derivatives)

2. x is a homeomorphism.

This means that x is a bijection, x is continuous, and the inverse mapping x_1 

is continuous.
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3. x is regular at each point (u,v) E U.

This states that the differential mapping dx : R2 —*■  R3 is injective, for every 

(u, v) E U. In other words this is equivalent to the fact that the Jacobian matrix Jx 

has rank 2 at each point of (u, v) E U. This implies that at each (u, v) E U the 

vector product of

xw x xv 0,

where xu and xv are denoted by

_ /dx-y 6x2 dx3\ _ /dx± dx% dx3\
Xu \ du ’ du ’ du ) ’ Xv \ dv ’ dv ’ du )

and (u,v) E U. Thus, x is neither constant nor a function of u of v alone, so that 

the surface S is neither a point nor a curve.

The mapping x is called a parametrization or a local coordinate system either at a 

point p or in a neighborhood of the point p, and the neighborhood V l~l S of p in S is 

known as the coordinate neighborhood. [Hsi97]

Lemma 1.1.2. If f : U —> R is of class C3 function in an open set U of R2, then the 

graph of f, that is, the subset of R3 given by (xi, X2, f(xi,X2)) for (xi,X2) E U is a 

surface.

The argument of Lemma (1.1.2) states that if the function f is any differential 

function on the open set U of R2, then the function x : U —> R3 such that

x(u,v) = (u,v,f(u,vf) 
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is a proper patch. These patches are also known as Monge patches. The parametrization 

x is also called a Monge parametrization and the corresponding surface is a simple 

surface, where the general surface in R3 can be constructed by gluing together simple 

surfaces. [O’N66]

Figure 1.2: Tangent Vectors

Lemma 1.1.3. All tangent vectors of a surface S at a point p form a plane that is called 

the tangent plane of S at p and is denoted by TP(S).(Figure 1.2)

Proof Let x : U C R? —* S be a parametrization of a surface S, and let (u, v) e U and 

p = x(uo> ^o)- If the coordinate function of any curve C on S through p are given by u(t') 

and v(t), where t € I, then

uq = u(to),uo = ■u(to)) where to e I

By the chain rule, the tangent vector of the curve C at p is

= +*v(uo,v Q)v'(to'f

where the subscripts u, v denote the partial derivatives. Since xu x xv 0 and the vectors 

xu(uo, Vq'),xv(uo,vo') span a plane. Therefore, all tangent vectors of S at p are in the 

plane. [Hsi97]

□
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The tangent plane, which approximates a surface S near a point p 6 S is given by 

Tp(S) and we have the following definition,

Definition 1.1.4. The tangent plane of a surface S at a point p is given by

Tp(S) = {u|u is tangent to S at p}

TP(S) = Span{xu,x.v} = Tangent Plane

Notice that the tangent plane TP(S) is a plane through the origin and it does not 

necessarily contain point p. If we consider this plane and by adding the vector determined 

by p, then we have the “plane tangent to the surface S at point p”. In this case it is 

important to consider the tangent plane as a set of directions, where the operations of 

addition and multiplication by a scalar are satisfied. In the above definition {x^Xu} is a 

basis for Tp(S), where Tp(S) contains the directions of the tangent vectors to any regular 

curve on the surface S through point p.

IN

Figure 1.3: Unit Normal Vector

Definition 1.1.5. The line orthogonal to the tangent plane Tp(S') of a surface S at a 

point p is the normal to S at p. A normal vector field on S or on a region R of S is a 

function that assigns to each point p of S or R a normal vector of S at p.

The normal to surface is the line at p perpendicular to the tangent plane. Thus, N 

is the unit normal vector to the tangent plane Tp(S) given by (Figure 1.2)

y/(xu x xv)2

(1-1)
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where xu x xv denotes the determinant of the vectors xu and in R3 and is 

given by

9x2 9x3 9x3 9x2 9xi 9x3 9x3 9xi 9xi 9x2 9x2 9xi 
du dv du dv ’ du dv du dv ’ du dv du dv

Let x : U C R? —> S be a parametrization of a surface S, and let (u, v) E U. At a 

point x = x(u, v) on S, we can define two tangent vector wi,W2 such that; Wj(tz,v), 

i = 1,2, are of class R2 and the determinant of |wi, W2,N| > 0. Notice that in this case 

we cannot assume that wi, W2 are orthogonal unit vectors since the inner products

i,J = l,2,

are not necessary the Kronecker deltas. Since wi, W2 are linearly independent, then any 

vector of S' at a point x can be expresses as a linear combination, and it can be written as

xu = ajW] + a2w2,

Xy = bi_wi + b2w2,

where a/s and bi’s, i — 1,2 are functions of u,v.

Now we can use the the following differential notation

dx = xudu + Xydv. (1.2)

1.2 First and Second Fundamental Form

The first fundamental form is basically a way of expressing geometrically the 

measurement of the distance on a curve, angles, and areas on a surface. The following is 

an expression of the first fundamental form in a basis for Tp(S'), which consist on the 

vectors xu and xv associated to a parametrization x(u, u) at p E S. The vectors xu and xv 

are partial derivative with respect to u and v. Then the following equation can be 

expressed independently of the choice of parameter and is tangent to the surface S.

dx = xudu + xvdv.
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At a particular point p = x(uo, wo) the ratio dv/du determines the direction of 

the tangent to the surface S.

The distance of two point p and q on a curve can be found by integrating

3
ds2 = dxidxi = dx - dx (1.3)

1=1

along the curve.

Definition 1.2.1. The quadratic form I is called the first fundamental form of the 

surface S at the point x defined by,

I = dx2. (1.4)

Now we can express the first fundamental form in terms of the vectors xu and xv 

of the parametrization x(u, v) at p G S.

I = dx ■ dx

= (xudu + xvdv) ■ (xudu + xvdv) (by equation (1.2))

= (xu ■ Xu)du2 + 2(xu • xv)dudv + (xv ■ xv)dv2

= Edu2 + 2Fdudv + Gdv2,

where

E(u0,u0) = xu-xu,

F(uQ,vQ) = xu-xv, 

G (uq , Vq ) = Xv • Xv .

The coefficients E, F, and G are functions of u and v computed at t = 0. Thus, E, 

F, and G are the coefficients for the first fundamental form in the basis {xu,Xt,} of Tp(S).

The study of differential geometry of a surface leads to a number of quadratic 

forms on simple interpretations of geometry. The coefficients of the first fundamental form 

are important since they are used to calculate arc length, angles and areas of surfaces.

Let c(t) = x(u(t), v(t)), where a < t < b, be a simple curve (arc) on x(u,v) since 

the arc length is given by
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Now the distance between points p and q can be expressed as the following:

Therefore, the arc length on a surface is the integral of the square root of I, where I is 

called the element of the arc. Thus, the arc length is defined as the following,

Definition 1.2.2. The first fundamental form I is called the element of arc, for the arc 

length of a curve on S is given by the formula

There are two important properties that apply to the first fundamental form.

1. I is invariant under a parameter transformation, where I depends on the surface and 

not on a particular representation for a surface.

2. I is positive definite implies that I > 0 if and only if du = 0 and dv = 0. Since I is 

positive definite, it follows that the coefficients E > 0 and G > 0 must satisfy 

EG — F2 > 0. Note that xu and xv are independent and xux xv 0. Since

E = xu • xu > 0 and G = xu ■ x„ > 0, then
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EG — F2 = (xu • xu)(xt, • x^) - (xu ■ x„)(x1z ■ x„)

— (^U x xv)(xu X xj

= (xu x xv)2 > 0.

Since xu x x^ 0. [Str50]

The first fundamental form has been introduced and the following consist of the 

second fundamental form. Notice that both x and N are surface functions of u and v. 

Therefore,

dx — xudu + xvdv,

dN = Nudu + Nvdu. (1.6)

Definition 1.2.3. The second fundamental form on S at point p is the quadratic 

form II: defined by,

II = —dx • dN. (1.7)

The second fundamental form can be expressed in terms of the vectors x.u, xv 
and the unit normal vector N.

II = —dx • dN

= —(xudu + xvdv) • (Nudu + Nydv) (by equations (1.2) and (1.6))

= - [(xu • Nu)du2 + (x„ • Nv)dudv + (x„ • Njdudv + (x„ • N„)du2],

Since xu,xv are orthogonal to the unit normal vector N, then

xu-N = x„-N = 0, (1.8)

By differentiation with respect to u and v we generate

xuu • N + xu • Nu = 0, (1.9)

xuv ■ N + xu ■ N„ = 0, (1.10)

xvv ■ N + xv ■ Nv = 0. (1.11)
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Thus, we obtain

II = (xutt • N)dn2 + 2(xul) ■ N)dudv + (xvv • N)cffi2.

Thus,

II = Ldu2 + 2Mdudv + Ndv2.

where the L. M and N are the coefficient of the second fundamental form defined by,

L = xuu • N,

M = xuv ■ N,

N = Xyy • N.

N is the unit normal vector given by

N = x Xy
a/xuxu - (xu • xj2

Hence, by using the coefficients of the first fundamental form we obtain,

= xu x Xy 
VEG - F2 ’

where EG — F2 > 0.

1.3 Normal, Gaussian, and Mean Curvature

In the previous section we defined the first and second fundamental form which 

consist on calculating important coefficients that are useful to determine the metric 

properties of a surface such as line element, area element, normal curvature, Gaussian 

curvature, and mean curvature. Therefore, it is important to consider the coefficients of 

the second fundamental form which will be efficient to calculate the curvatures of a 

surface. In this section normal curvature, Gaussian curvature, and mean curvature will be 

difined.

Definition 1.3.1. The Gauss mapping g of the surface S is defined by g : S —> S2, where 

S2 is the unit sphere with center at point 0 G S'3, which sends each point p of S to the end 

point of the unit vector through 0 in the direction of the normal vector N of S at p.
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The geometrical interpretation of the normal curvature consist on the direction 
dx.of the unit tangent vector t — —. If any fixed point p G S is consider, then the values of 
as

the coefficient of the fundamental forms are fixed. Notice that in this case the choice of 

orientation on the curve passing through point p is independent. The meaning of this is 

that the curvature k of a curve at p depends only on the direction of the principal normal 

vector and on the unit normal vector. Therefore, it is important to consider all curves 

that have tangents at point p going in the same direction since the curvature of these 

curves consist on the angle 0 between the principal normal vector and the corresponding 

unit normal vector.

Let x : U C R2 —> S be a parametrization of the surface S and (u, v) G U. Let C 

be a curve passing through point p = x(u, v) with arc length s and t be the unit tangent 

vector (tangent to the surface S'). Let C G S be a regular curve passing through a point p 

and consider the curvature of C at p, where k is the curvature of C at p and cos 0 = n • N 

where 0 is the angle between the principal normal vector n to C and the corresponding 

unit normal vector N to S at p.

Let x(s) = c(s), where c(s) is any curve on S : x(u, t>). Then

c(s) = x(u(s),v(s)),

c(0) = p,

c(0) = t,

c = /tn, (1.12)

where k is the curvature of the curve C at point p. By taking the inner product of 

equation (1.12) with the unit normal vector N we obtain

/tn • N =

/tcos 0

c-N

c-N

—c-N

(since cos 0 = n • N)

(since c-N = 0=>c-N + c- N = 0)
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dx dN
= —— ■ -r- (since x(s) = c(sl) ds ds

—dx ■ dN
ds ■ ds

-dx • dN
ds2

= (by equations (1.4) and (1.7))

Therefore

. II Ldu2 + 2Mdudv + Ndv2 . .
KK,S<I= I = Edu2 + 2Fdudv + Gdv2 ‘ (L13)

Lemma 1.3.2. Curves on a surface S with the same tangent and osculating plane at a 

point p have the same curvature at p.

By equation (1.13) we have

NCOS 6 = Kn, (1-14)

where Kn is called the normal curvature and is the curvature of the normal section.

This is defined to be the curve of intersection of surface S by the plane through the unit 

tangent vector t and the unit normal vector. [Kre91]

Hence, the normal curvature in terms of the coefficient of the first and second 
fundamental form is given by

Ldu2 + 2Mdudv + Ndv2
Edu2 + 2Fdudv + Gdv2 ' (1-15)

Observing equation (1.14) let’s consisder the fact that if the angle 0 = 0 then 

k = Kn, which represents the radius of the curvature of the curve with unit tangent vector 

t. On the other hand, if 0 = % then k = —Kn, which means that |/tn| is the curvature of 

the intersection of the surface S with the plane passing through the tangent to the curve 

at point p and the normal vector to the surfade S at p. This curve is called the normal 

section. Notice that Kn / 0 and KfO because if it equal then the curvature of the normal 

section would vanish at p. [Kre91]
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Now we can obtain the directions for each of which the normal curvature is 

maximum or minimum. Lets denote the normal curvature Kn as k. Recall the equation 

(1.15) of normal curvature in direction (du,dv) is given by

Ldu2 + 2Mdudv + Ndv2
Edu2 + 2Fdudv + Gdv2 '

L + 2MX + NX2
E + 2FX + GX2 ’ (1-16)

where a function of A = —. Now we can find the extreme values of the normal curvature 
du

k by calculating the critical point of the following:

Then we have

dn (2M + 2NX) (E + 2FA + GA2) - (L + 2MX + NX2) (2F + 2GA)
dX ~ . (E + 2FX + GA2)2 _°

since

(E + 2FA + GA2)2 / 0.

Thus,

(2M + 2NX)(E + 2FX + GA2) - (L + 2MX + NX2)(2F + 2GA) = 0

=> (2M + 2NX) (E + 2FA + GA2) = (L + 2MX + NX2) (2F + 2GA)

(E + FX)(M + NX) = (L + MX)(F + GX)

or

E + FX L +MX

F + GX M + NX
= 0. (1-17)
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From equation (1.17) we obtain the following:

M + NX
F + GX

L + MX
E + FX' (1-18)

Hence,

(FN -- GM)X2 + (EN - GL)X + (EM -FL) = 0 (1-19)

dv2 —dudv du2

E F G = 0.

L M N

(1.20)

is the quadratic equation in terms of A with real roots and is obtain from equation (1.19).

The quadratic equation determines the two directions, where k, obtains an 

extreme value when the second fundamental form vanishes. On the other hand, if the 

second fundametal form and the first fundamental form are proportional, then one of the 

values must be a maximum and the other must be a minimum. Therefore, we have the 

following definition;

Definition 1.3.3. The roots of equation (1.17) are the principal directions of the 

normal curvature of the Surface S at a point p and the normal curvatures of the curvature 

directions is callled the principal curvatures and is denoted by Ki and k.2-

Now we can find the principal curvatures using equation (1.18). We can calculate 

the following:

(F + GX)k = M + NX,

(E + FX)k = L + MX.

Solving for A in terms of k, we obtain the following values for A respectively:
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Therefore, ,

x M-Fk
■ X ~ Gk-N’

L — Ek

Fk-M’

dv
where k satisfies the following equations since A = —.du

{L — EK)du + {M — F k)dv = 0,

{M — FK)du + {N — GK)dv = 0.

Hence,

M-Fk

Gk-N

= {M - Fk){Fk — M)

= {Fk — M){Fk — M)

or

Ek — L Fk — M

Fk-M Gk-N
= 0.

From equation (1.23) we obtain the following quadratic equation:

{EG - F2)k2 - {EN - 2FM + GL)k + {NL - M2) = 0

2 {EN - 2FM + GE) , {LN - M2)
K {EG - F2) K+ {EG-F2) ~ ’

The quadratic equation (1.24) in terms of k has Hq and «2 as roots.

(1-21)

(1.22)

(1-23)

(1-24)
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Definition 1.3.4. K is the Gaussian curvature and H is the mean curvature of a 

surface S at a point p defined by

K = «i«2,
H = |(«l + «2)-

(1-25)

(1.26)

Note:

(/t-«l)(«-K2) = 0,

=> K2 — («1 + K2® + = 0. (1-27)

By comparing equations (1-24) and (1.27) we can rewrite the Gaussian 

curvature and the mean curvature in terms of the coefficients of the first and second 

fundamental form.

Therefore, we obtain the following formulas

LN — M2
(1-28)K =

EG — F2 ’

H = 1 EN - 2FM + GL
2 EG-F2 (1.29)

Notice that if we use equation (1.24) in terms of H and K we obtain the 

following quadratic equation

k2 - 2Hk + K = 0.

The quadratic equation generates solutions of the two principal curvatures 

expressed in terms of the Gaussian curvature and mean curvature,

= H+ VH2 - K.

= H y/rf-K.
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From equations (1.25) we have some cases where it follows that a point on a 

surface could be elliptic, parabolic, hyperbolic, or planar. The following cases represent 

the behavior of a point on the surface.

1. LN - M2 > 0.

2. LN - M2 = 0.

In case two where the Gaussian curvature is zero, but the principal 

curvatures can be either «q > 0, /«2 = 0 or «q = 0, H2 < 0. Therefore, the point on 

the surface S is parabolic and all points lie on the same side of the tangent plane. 

(Figure 1.5) [McC94]

In case one the Gaussian curvature is positive, therefore the point on the 

surface S is elliptic. Since the principal curvatures have the same sign, which means 

that all curves passing through the point have the normal vector in direction 

towards one side of the tangent plane. (Figure 1./) [Alm66]

Figure 1.4: Elliptic
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Figure 1.5: Parabolic

3. LN - M2 < 0.

This case three where the Gaussian curvature is negative, which means 

that the principal curvatures have opposite signs. Hence, the point on the surface is 

hyperbolic since the curves passing through point p have a normal vector at p in 

direction on either side of the tangent plane. (Figure 1.6) [McC94]

Figure 1.6: Hyperbolic

4. L = M = N = 0

In this case the principal curvatures are zero, so Kq = «2 = 0. Thus, the 

point in the surface S is called planar and the behavior of S with respect to the 

tangent plane near a point p varies. [McC94]

If the principal curvatures are the same, but do not equal to zero = kq 0), 

then the point is called an Umbilic point. This consists on taking any pair of orthogonal 

directions at such a point as principal directions. For instance, a plane or a Sphere 

consists entirely on umbilical points.
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1.4 Fundamental Equations

In the previous section the coefficients of the first and second fundamental form 

were applied to the important field of curvature. Now these coefficients have a relationship 

on certain formulas that are derived from a moving trihedron, where this trihedron 

depends on two parameters (u. v). The coefficients of the first and second fundamental 

form have differential relations, where E, F and G depend on xu and xv and L, M and N 

also depends on xuu, xuv and xvv. The Theory of a surface is to express xuu, xuv, xvv, 

Nu, and as linear combinations of the basis {xu,Xy,N}, where x : U C R2 S is a 

parametrization of a surface S and N is the unit normal vector. Consider the three 

linearly independent vectors xu, xv and N, where xu and xv lie on the tangent plane 

normal to N, then the following equations are obtained for every vector that can be 

linearly expressed in terms of the basis {x^x^N}:

Ti xXu + Ti jx,, + LN,

Xuv = rj 2xu + Tj 2xv + MN,

1?2 2XU + 2xv + 2VN,

where the functions of T? k are the Christoffel Symbols. In this case [i, j, k] are called 

the Christoffel Symbols of the first kind while the functions of T? fe are known as the 

Christoffel Symbols of the second kind. Notice that the Christoffel Symbols depends on 

the coefficient of the first fundamental form and their derivatives. The functions of P? fe 

for i,j,k = 1,2 are given by,

GEU - 2FFU + FEV 
2{EG - F2)

OPP _  _  p'p',J/ J-j'n

2{EG — F2)

GEV - FGU
2(EG - F2')

EGU - FEV
2{EG - F2)

2GFV - GGu - FGV
2(EG - F2")
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Now if we take the partial derivative of the unit normal vector N with respect to 

u and v we obtain the following;

Nu = dXa + ilXj,

N1; = cxu + dxv.

(1.30)

(1-31)

The coefficients a, b, c, and d of these two equations can be obtained by doing 

some basic calculations. By taking the inner product of the first equation (1.30) with xu 

and x„ we get

Xu ■ = a(xu ■ Xu) + b(xu ■ xv)

-L = a(xu) + b(xu ■ xv)

= aE + bF.

and

x^ • = a(xv ■ Xu) + b(xu ■ x^)

=> -M = a(xv ■ Xu) + b(x%)

= aF + bG

Similarly, we take the inner product of the second equation (1.31) with xu and 

xv.
Then

xu • N„ = c(xu ■ Xu) + d(xu ■ Xp)

=> —M = c(xl) + d(xu -xv)

= cE + dF.

and

x,; • Nv = c(xu ■ Xu) + d(x.v ■ Xu)

=> -N = c(x.v ■ xu) + d(x2)

= cF + dG.
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Therefore

—L — aE + bF (1.32)

—M = aF + bG (1.33)

and

-M = cE + dF (1-34)

—N = cF + dG (1.35)

Using systems of differential equations, we can focus on equation (1.32) and

(1.33) to solve for coefficients a and b.

Therefore

-L = aE + bF

—M = \ aF + bG

GL = —aEG — bFG

-FM = aF2 + bFG

GL — FM = -a(EG-F2)

a
FM — GL
EG - F2 ’

By substitution we can replace our solution for coefficient a in equation (1.32) 

which gives the following solution for coefficient b.

FL-ME 
EG - F2 ’

Similarly, using equation (1.34) and (1.35) and system of equations we can 

calculate the solutions for the coefficients c and d we obtain

-M = cE + dF

—N cF + dG
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GM = —cEG - dFG

-FN = cF2 + dFG

=> GM - FN = ^—c(EG - F2)

FN -GM
=> c =

EG — F2 ’

d =
FM — EN
EG — F2 ‘

Now that we have calculated the coefficients a, b, c and d lets substitute these 

results in equations (1.30) and (1.31). We obtain the following equations which are called 

the Weingarten formulas.

(FM - GL)xu + (FL - EM)xv
EG - F2

(NF - MG)xu + (FM - NE')xv
v EG - F2

1.5 Examples

The following examples consists of calculating the coefficients for the first and 

second fundamental form, Gaussian Curvature and Mean curvature of different surfaces. 

The first example is on a sphere and the second is a Torus.

Example 1.5.1. Find the coefficients of first and second fundamental form, the Gaussian 

curvature and the mean curvature of a sphere given by: (figure 1.7)

aq = a sin 9 cos ip,

a?2 = a sin# sin <p,

a?3 = a cos#.

The parametrization of a sphere is given by

x(#, y>) = (a sin # cos a sin # sin ip, a cos #).
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Figure 1.7: Sphere

The partial derivative with respect to 6 and p are given by

X# = (a cos# cos cp, a cos# sin <p, — a sin 9), 

x^, = (—asin#sin<p,asin#cos<p, 0).

x0 x x^ =
i

a cos # cos p

—a sin # sin p

j
a cos # sin p

a sin # cos p

k

—a sin# ,

0

x# x x? = (a2 sin2 # cos <p, a2 sin2 # sin p, a2 sin # cos #).

The unit normal vector N of S at point p is given by

N= xe x xy
y/(xg X x^)2

Thus,

(a2 sin2 # cos p, a2 sin2 # sin p, a2 sin # cos #)
y/(a2 sin2 # cos p)2 + (a2 sin2 # sin <p)2 + (a2 sin # cos #)2

(a2 sin2 # cos p, a2 sin2 # sin p, a2 sin # cos #)
a2 sin #
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Now lets find the coefficients of the first fundamental form of a sphere.

E = x0 • x5

= (a cos 0 cos p, a cos 0 sin p, —a sin 0) ■ (a cos 0 cos p, a cos 0 sin p, —a sin 0)

= a2 cos2 0 cos2 p + a2 cos2 0 sin2 p + a2 sin2 0

= a2 cos2 0(cos2 p + sin2 p) + a2 sin2 0

= a2 cos2 0 + a2 sin2 0

= a2 (sin2 0 + cos2 0)

= a2.

F = x0 ■

= (a cos 0 cos p, a cos 0 sin p, —a sin 0) ■ (—a sin 0 sin p, a sin 0 cos p, 0)

= —a2 sin 0 cos 0 sin p cos p + a2 sin 0 cos 0 sin p cos p + 0

= 0.

G = x^ -xv

= (—a sin 0 sin p, a sin 0 cos p, 0) • (—a sin 0 sin p, a sin 0 cos p, 0)

= a2 sin2 0 sin2 p + a2 sin2 0 cos2 p

= a2 sin2 0(sin2 p + cos2 p)

= a2 sin2 0.

The coefficients of the first fundamental form are the following:

E = a2,

F = 0,

G — a2 sin2 0.

and the first fundamental form is given by

I = a2d02 + a2 sin2 0dp2.

Now lets find the coefficients for the second fundamental form by using the 

second partial derivatives with respect to 0 and p.
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x00 = (—a sin 0 cos — asin0cos<p, — a cos 0), 

x9ip = (—acos0sin<p, acos0cos<p, 0), 

xw = (—asin0cos<p, — asin0sin<p, 0).

L = x99 ■ N

. n (a2 sin2 0 cos ip, a2 sin2 0 sin <p, a2 sin 0 cos 0)
= (—a sin 0 cos <z>, —a sin 0 cos ip, —a cos 0)  ------------------------ ;—---------------------------

a2 sin 0

—a3 sin3 0(sin2 ip + cos2 <p) — a3 sin 0 cos2 0
a2 sin 0

—a3 sin3 0 — a3 sin 0 cos2 0
a2 sin 0

_ —a3 sin 0 (sin2 0 + cos2 0)
a2 sin 0

—a3 sin0
a2 sin 0

= —a.

M = x9lfi ■ N
(a2 sin2 0 cos <p, a2 sin2 0 sin cp, a2 sin 0 cos 0)

= (—a cos 0 sin ip, a cos 0 cos (p, 0) •------------------------ ------------------------------
a2 sin 0

—a3 sin2 0 cos 0 sin <p cos <p + a3 sin2 0 cos 0 sin <p cos ip + 0
a2 sin 0

0.
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N = • N
, . . . n . (a2 sin2 9 cos <z>, a2 sin2 9 sin <p, a2 sin 9 cos 0)

= (—a sin 9 cos <p, —a sin 9 sin <p, 01 • ------------------------ 5----- ------------------------
a2 sin 9

_ —a3 sin3 9(sin2 92 + cos2 92)
a2 sin 9

—a3 sin3 9
a2 sin 9

= —a sin2 9.

Thus, the coefficients for the second fundamental form are:

L = —a,

M = 0,

N = — a sin2#.

and the second fundamental form is given by

II = —ad92 — a sin2 9&p2.

Using the coefficients of the first and second fundamental form we can calculate

the Gaussian curvature of the sphere. Recall the coefficients for the first and the second

fundamental form. Coefficients of the first fundamental form:

E = a2,

F = 0,

G = a2 sin2#.

and the coefficients of the second fundamental form:

L = —a,

M = 0,

N = — a sin2#.

Using equation (1.28) and the results of the coefficients of the first and second

fundamental form for a sphere we can calculate the Gaussian curvature.
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_ (—a)(—a sin2 0 — 02)
(a2) (a2 sin2 0) — 02

_ a2 sin2 0
of sin2 0

1 
a2

Therefore, the Gaussian curvature for the sphere is constant, where a > 0.

By using equation (1.29) and the coefficients of the first and second fundamental 

form we can calculate the mean curvature of the sphere.

_ 1 o2(—a sin2 0) — a(a2 sin2 0)
2 a2 (a2 sin2 0)

_ 1 2a3 sin2 0
2 a4 sin2 0

_1
a

Thus, the mean curvature of a sphere is constant, where a > 0.

Example 1.5.2. Find the coefficient of the first and second fundamental form, the 

Gaussian curvature and the mean curvature of the Torus given by: (Figure 1.8)

Xi = ucosv,

X2 = u sin v,

x3 = y/b2 — (u — a)2, where a > b.

The parametrization of a Torus is given by

x(u, v) = (u cos v, u sin v, y/b2 — (u1— a)2).

To find the coefficients for the first fundamental form, we want to calculate the 

firt partial derivate with respect to u and v. xu and xv are the partial derivatives with 

respect to u and v denoted as,
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I ■ (u-a)xu = cos v, sinu,-----.
’ y/b2 -(u- a)2

xv = (—usinv,ucosv,0).

i 3 k

Xu xxv = cos V sinv 'u-a)
jb2 — (u — a)2

—usinv ucosv 0

Xu x xv (u — a) 
y/b2 — (u — a)2

ucosv
(u — a) 

y/b2 — (it — a)2
u sin v, u

So, the normal unit vector is given by

N

/ (u — a) (u — a) . \
—. -----ucosv,—. =usmv, u\y/b2 — (u — a)2 yjb2-(u-a)2 J

17 (u ~ °) V 7~^ (u ~ °) • V 9
y \y/b2 - (u- a)2/ \y/b2 - (u- a)2 J
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(u — a) 
y/b2 — (u — a)2

ucosv,
(u — a) 

y/b2 — (u — a)2
ub

y/b2 — (u — a)2

The following consists of calculating the coefficients for the first fundamental

form.

Xu ■ xu

(u — a) 
y/b2 — (u — a)2

(u — a) \ 

y/b2 — (u — a)2 J

E =

? . 9 — U)= cos v + sin v + -x---- --------- 7:
b2 — (u — ay

(u - a)2 
b2 — (u — a)2

b2
b2 — (u — a)2

E — xu • xv

(u — a) 
y/b2 — (u — a)2

(—usinv, ucosv, 0)

= — u sin v cos v + u sin v cos v + 0

0.
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G = xv -xv

= (—u sin v, u cos v, 0) • (—u sin v, u cos v, 0)

= u2 sin2 v + it2 cos2 v + 0

= tz2(sin2 v + cos2 v)

= u2.

Thus, the coefficients for the first fundamental form are the following:

b2
b2 — (u — a)2 ’

F = 0,

G = u2,

and the first fundamental form is given by,

b2
I = -x---- --------To du2 + u2dv2.

b2 — (u — a)2

Now to calculate the coefficients for the second fundamental form we must

calculate the second partial derivatives with respect to u and v.

( —b2 \
XUU [0,0, - 3 I )\ (52-(u-a)2)^

xui> = (—sinu,cosu,0),

xw — (—ucosu,— usinu,0).

Therefore, the following shows the calculation for the coefficients of the second 

fundamental form.
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L — ~^-uu ■ N

-b2
(b2 — (u — a)2)^

/ (u — a) (u — a) . \
—, =*u  cos v, —. u sm v, n I
y/b2 — (u — a)2 y/b2 — (u — a)2 '

ub
y/b2 — (u — a)2

—b2u
(b2-(u-a)2^

\/b2 — (u — a)2 
ub

(—sinv,cosv,0) •

( (u — a) (u — a) . \—. -----u cos v, —. ==u sin u, u
'y/b2 — (u — a)2 y/b2 — (u — a)2 '

ub
y/b2 — (u — a)2

(u — a) . (u — a)— usinv cos v + . nsrnv cos v + 0
y/b2 -(u- a)2____________ y/b2 — (u — a)2_____________

ub
y/b2 — (u — a)2

0.

N = xvv • N

(—u cos v, —u sin v, 0) ■

/ (u — a) (u — a) . \
—. -----.u cos v, —. ? ==u sinv.u

' y/b2 — (u — a)2 y/b2 — (u — a)2 '
ub

y/b2 — (u — a)2

(u- a) 2 2 (u- a) 2 • 2 , n■— v 7 ur cos2 v----- . v u sm2 v + 0
y/b2 — (u — a)2 y/b2 — (u — a)2

u2b2
b2 — (u — a)2
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Thus, the coefficients for the second fundamental form are the following:

L =
—b

b2 — (u — a)2 ’

M == o,

N = —u(u — a) 
b

and the second fundamental form of a Torus is given by,

Using the results of the coefficients of the first and second fundamental form we 

can calculate the Gaussian curvature using equation (1.28).

K

-b \ (-u(u-a)\ _ 2 
b2 — (u — a)2 J \ b J 

2b2
i2 — (u — a)2

u(u — a) b2 — (u — a)2 
b2 — (u — a)2 u2b2

u — a
ub2

Hence, the Gaussian curvature depends on the parameter u.
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Now we can calculate the mean curvature of a Torus using equation (1.29).

H

/ b2 \f—u(u — a)\ u2b
1 \b2 - (iz - a)2 J \ b ) b2 — (u — a)2

2 u2b2
b2 — (u — a)2

1 ub(a — 2u) b2 — (u — a)2
2 b2 — (u — a)2 u2b2 

a —2u
2ub

Thus, the mean curvature of a Torus depends on the parameter u.
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Chapter 2

Ruled and Minimal Surfaces

This chapter introduces the definition of a minimal surface and a complete proof 

for The Plateau’s Problem, then this information will be applied on investigating when a 

ruled surface is a minimal surface.

2.1 The Plateau’s Problem

Definition 2.1.1. A surface S of class r > 2 whose mean curvature H is zero at every 

point of S is called a minimal surface.

The Plateau’s Problem states: Let C be a simple closed curve in R3, there exists 

a surface So bounded by C with the smallest area (i.e. So has the minimal area among all 

the surfaces baunded by C).

Theorem 2.1.2. The surface So in Plateau’s Problem has zero mean curvature, therefore 

is a minimal surface.

Proof. Let x : U c R2 —> R3 be a paremetrization of the surface So, where (u,v) E U. 

Then a small normal variation of the surface So with respect to a differentiable function A 

on So, which vanishes on C, is a mapping x*  : U x (—e, e) —> R3 defined by

x*(u,v,t)  = x.(u,v) + tX(u, v)N(u, v),

where N is the unit normal vector of So and e is small for each t E (—e, e), the mapping 

: U —> R3 is defined by
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xt(u,v) = X*(u,V,t)

= x(u,v)+tA(u, v)N(u, v).

Then, we have the following partial derivatives with respect to u and v.

4 = xu + tAuN + tANu, (2.1)

xlv = x„ + tA-yN + tAN„. (2.2)

area of a surface over the region D by

Assume that the given surface Sq has minimal area. Recall that we denote the

A = Surface area = J J \xu x xv\dudv.

Then,

A — |xu x xv\dudv

| Xu | sin Odudv

(since |xu x xv| = |xu| |xu|sin0)

■\/l — cos2 9dudv

(since sin2 0 + cos2 9 = 1)

(by the dot product definition: xu ■ xv = |xu||xu| cos 0 )
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Recall from section. 1.2. the coefficients of the first fundamental form;

E = xu- xu, F = xu ■ xv and G = xv ■ x„.

Thus,

(2-3)

By using the Weingarten formulas we can obtain the following equations:

x„ -xu + tAnN + _ ^_,2 [(FM — GL)xu + (FL — EM)xv],

xt = xv + tA„N + - GM)xu + (FM - EN)x^],

where N.u and N„ are the Weingarten formulas see equations (1.36) and (1.37).

Let EJ, G*  and Ff be the coefficients of the first fundamental form of the surface 

x^iqv), then

E = xu-xu

= (xu + tAuN + tANu) • (xu + tAuN + tANu) (by equation (2.1))

= (x^ ■ xu) + 2tA(xu • N) + 2tA(xu • Nu) + 2t2AuA(N ■ Nu)

+t2A2(N-N)+t2A2(Nu-Nu)

= (xu • Xu) + 2tX(xu ■ Nu) + O(t2)

(by equation (1.8) and since N • N = 1 and Nu • Nu = 1 )

= (xu ■ Xu) - 2tX(xuu ■ N) + O(t2) (by equation(1.9))

= E — 2tXL + 0(t2). (since L = xuu • N)

where O(t2) is in terms of degree > 2.



36

By interchanging u and v we obtain the following:

t
V

pt

— (xu + tAuN + tANj • (xv + tA^N + tANj (by equation (2.1) and (2.2))

= (Xu-Xy)+tX(XU-Ny)+tX(Xy-NU) + O(t2') (by equation (1.8))

= (XU ■ Xy) - tX(XUy ■ N) - tX(XyU ' N) ffi 0^) (by equation (1.10))

= (xu • xv) - 2iA(xu1, • N) + O(t2)

= F — 2tXM + O(t2). (since M = xuv ■ x^)

Similarly we can obtain Gk

= (xv + tAvN + tANj • (xv + tA^N + tANv) (by equation (2.2))

= (x„ ■ xv) + 2tA(x1, ■ N) + 2tA(x1J • N„) + 2t2A„A(N ■ Nv) 

+t2A2(N • N) + t2A2(Nv • NJ

= (xv ■ Xy) + 2tX(xv ■ NJ + O (t2) (by equation (1.8))

= (xv ■ xj — 2tA(xw • N) + O(t2) (by equation (1.11)) 

= G — 2tXN + 0(t2). (since N = xvv • N)

Thus, we have the following coefficients for the first fundamental form of the 

surface xt(u, v):

E*  == E-2tXL+ O(t2),

Ft == F -2tXM + O(t2),

and

Gt == G — 2tXN + O(t2).
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F4G4 _ (Fy

(Since

Then,

Therefore,

Now using the above coefficient we can compute the following:

= (E - 2tAL + O(t2))(G - 2tXN + O(t2)) - (F - 2tXM + O(t2))2

= EG - F2 - 2tX(EN - 2FM + GL) + O(t2) 

1EN- 2FM + GL
~ 2 EG — F2

=> 2H(EG - F2) =EN- 2FM + GL)

= EG — F2 — 2tX(2H(EG - F2)) + O(t2)

= (EG-F2)(1-4tXH+ O(t2)).

EtGt _ = (EG _ F2^ _ 4tXH +

By taking the square root to both side we have the following:

- (F4)2 = a/(FG - F2)(l - 4tAH + O(f2))

= v/FG-F2(l - 4tAH+ O(t2))i

( by using the binomial expansion for a square root we obtain,)

' = \/-EG-F2(l - 2tAH+ 0(t2)).

Hence,

y/EtG*  - (F4)2 = a/fG-F2(1 - 2tXH+ O(t2)). (2.4)
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Then the area of the surface xt(u, v) over the region D for (u, v) is obtain by

A1 = JJ y/WGt - (F^dudv

= J / VEG — F2(l — 2tXH + O(t2))d,udv (by equation (2.4))

= y y Veg - F2 - 2tXHy/EG - F2 + O(t2)VEG - F2dudv

= A- y y 2tXH\/EG - F2dudv + J J O(t2)VEG - F2dudv 

(By equation (1.24))

= y XH\/EG - F2dudv + O(t2).

Thus,

lt=o = _2/ y XHVEG - F2dudv

\dtj 1*=°  ~ °

A1 = A — 2t J J XHy EG — F2dudv + O(t2). (2.5)

Surface So to have minimal area means A0 is the minimal value for A1 and the

derivative of A*  at t must be zero.

dAl
dt

dA*
dt

hVeg -F2 = Q

H=0. (since EG - F2 > 0)

=>

□
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2.2 Ruled Minimal Surfaces

Definition 2.2.1. A ruled surface is a surface with a parametrization given by

x(u,v) = y(u)+vz(u), (2.6)

which consist on a surface formed by lines with direction vector z(u) along the curve y(u), 
where y(u) is called the directrix of the ruled surface and the line with direction z(u) is 

called a ruling on the surface.

The proof of the following theorem consist on the main result of this project.

Theorem 2.2.2. The right helicoid x(u, v) = (vcosu, vsinu, au), where 0 < u < 2tt, 

—oo < v < oo, a = constant is the only minimal surface, other than the plane, that is 

also a ruled surface.

Proof. Let S' be a ruled surface with the parametrization given by

x(u, v) = y(u) + vz(u).

We are going to show that: If S' is a minimal surface then S' is either a plane or a 

right helicoid. Since z(u) represents the direction we may assume

z(u) • z(u) = 1

=> (z(u) ■ z(u))z = 0

=> z'(u) ■ z(u) + z(u) • z'(u) = 0

=> 2zz(u) ■ z(u) = 0.

Therefore,

zz(u) • z(u) = 0. (2.7)

We may also assume that the curve z(u) is parametrized by the arc length.

Therefore,

z'(u) • z'(u) = 1

=> zz/(u)-zz(u) = 0.
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Since the partial derivatives of the parametrization x(u, v) with respect to u and 

v are given by

Xu = y'(u) + vz'(u),

Xu = z(u).

Then the dot product of xu and xv is given by

Xu • Xu = (y'(u) + vz'(uy) ■ z(u)

= y'(u) • z(u) + vz'(u) • z(u)

= y'(u) ■ z(u) (since z'(u) ■ z(u) = 0).

If we choose the orthogonal parametrization for the surface x(u,u)), then

xu • Xu = U

=> y'(u) ■ z(u) = 0.

Now we consider a ruled surface with the following conditions.

z(u) • z(u) = 1 => z'(u) • z(u) = 0,

z'(-u) • z'(u) = 1 => • z'(u) = 0,

and

y'(ti)±z(u) => y'(u)-z(u) = 0.

Recall the first partial derivatives of equation (2.6) with respect to u and v. 

Recall that the equation (2.6) is given by

x(u,v) = y(u) + uz(u),

where the following are the first partial derivative for equation (2.6) with respect to u and 

u:

Xu = y'(u) + vz'(u),

Xu = z(u).

and the second partial derivative with respect to u and v are generate

xuu = y"(u) + vz"(u),

xuv =

^■vv 0.
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The normal unit vector N is given by

xu x xv
y/(Xu X Xv)2

Now we can calculate the coefficients of the first fundamental form of the

parametrization x(u, v):

E — Xu • xu

= (y'(u) + vz'(u)) ■ (y'(u) + vz'(u)).

F = xu • xv

= (y!(u) + vz'(u)) ■ z(u)

= y/u) • z(u) + vz'(u) ■ z(u)

= 0 + 0

= 0.

notice that the coefficient F for the first fundamental form is zero, since z' is orthogonal

to z and y' is orthogonal to z. (by assumptions)

And the coefficient G for the first fundamental form is

G = x^- Xu

= z(u) • z(u)

= 1.

Since z(iz) is the unit vector.

The following results are the calculations for the coefficients of second

fundamental form.
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L — Xy^ * N

1 EN - 2FM + GL
~ 2 EG — F1 2

S is a minimal surface, then H = 0

Then,

EN - 2FM + GL = 0 (2.8)

Since the coefficient F of the first fundamental form and the coefficient N of the 

second fundamental form are equal to zero, then equation (2.8) becomes

= ^y"(u) + vz"(u^ ■ ([y'tu) + vz'(u')') x z(u)^.

M = xuv • N

= z'(u) • ^(y'(n) + vz'(u)) x z(u)^ .

N = xvv ■ N

= 0-N

= 0.

The coefficient N is zero since xvv = 0.

Now we can calculate the mean curvature using the coefficients of the first and 

second fundamental form. Recall the mean curvature
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+ y"(u) ■ (y'(u) x z(u)).

Thus,

+ y"W'(y'(«)xz(u)).

We can observed the coefficients of the quadratic equation in terms of v, where

the coefficients must be zero.

Therefore, we have the following three differential equations:

z"(u) • (z'(u) x z(u)) = 0, (2.9)

y"(u) ■ (zz(u) x z(u)) + z"(u) • (y'(«) X z(u)) = 0, (2.10)

y"(n) ■ (y'N x zM) = (2-n)

From equation (2.9) we obtain

=> zzz(u) is a linear combination of {z(u), z'(u)}. 

=> z/z (u) = az(u) + bz' (u)

By taking the dot product with z'(u), then 

=> z/z(u) ■ zz(u) = az(u) • zz(u) + bz'(u) ■ z'(u)

=> z/z(w) • z'(u) = bz'(u) ■ z'(u)

(Since z(it) ■ zz(u) = 0

and by assumption z"(u) ■ z'(u) = 0)
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=> 6 = 0 (since zz (u) • zz (-u) = 1 by assumption)

Since 6 = 0 then,

zzz(u) = az(u)

=> zz'(u)||z(u).

So, (z(u),zz(u),yz(u)} is linearly independent.

If not, then yz(u) is a linear combination of {z(u), zz(u)}.

=> yz(u) = az(u) + 6zz(u)

by taking the dot product with z(u), then

=> yz(u) ■ z = az(u) ■ z(u) + bz'(u) • z(u)

=> y'(u) ’ z = az(u) ■ z(u)

(Since z'(u) ■ z(u) = 0)

=> a = 0 (since z(u) • z(u) = 1)

Since a = 0,

=> N = xu x x„

= (yz(u) + vz'(u)) -z(u)

= (bz'(u) + vz'(u)) ■ z(u) (since yz(u) = bz'(u))

= (6 + v)zz(u) x z(u)

since
xu
■Xu

x Xu
X X-y

N =

Therefore,
N = zz(u) x z
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=> N' = (z'(u) x z)z

= z"(u) x z(u) + z'(u) x z'(u)

= z"(u) x z(u) (since z'(u) X z'(u) = 0)

= az(u) x z(u) (since z"(u) = az(u))

= 0 (since z(u) x z(u) = 0)

=> N is a constant.

=>■ Surface is a plane.

From equation (2.10):

=4*  y"(u) ■ (z'(u) x z(u)) = 0

=> y"(u) is a linear combination of {z(u),z'(u)}.

=> yz/(«) = az(u) + bz'(u).

From equation (2.11):

=> y"(u) is a linear combination of {z(u), y^u)}.

=> y"(u) = cz(u) + dy'(u).

From equation (2.10) and (2.11) we have the following differential equations:

y"(u) = az(u) + bz1 (it),

y"(u) = cz(u) + dy>(u).

Then,

az(u) + bz'(u) = cz(u) + dy'(u)

=> (a — c)z(u) + bz'(u) — dy'(u) = 0. (2.12)

Since {z(u),z/(u),y/(u)} is linearly independent, then the coefficients (a — c),b and d of 

equation (2.8) are equal to zero.

Therefore,

y"(u) = az(u) and y"(u) = cz(u).

Since a = c, b = 0 and d = 0.
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Thus,

y"(u)||z(u).

Recall that a ruled surface is defined as a surface generated by the motion of a

straight line, which we refered to ruling. By observing the three coefficients of the

quadratic equation in terms of v we concluded the following:

z"(n)||z(n), (2.13)

and

y"(®llz« (2-14)

By equations (2.9) and (2.10) implies the following:

(yz(u) ■ z'(«))' = y"(n) • z' (n) + y' (u) ■ z" (u)

= 0 (since z_Lz7 and z_Lyz)

=> y'(iz) ■ z'(u) = a. (2-15)

where a = constant.

Now we reparametrize the surface S as the following;

x*(u,  v) = y(u) — az(u) + (v + a)z(u)

= yi(«*)  + v*zi(u*),

where

u*  = u,

v*  = (u + n),

yi(«*)  = y(u)-az(u),

and

zi(n*)  — z('ir).

Then, the following conditions still satiesfied for this reparametrization:
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1,

0,

where

y'l(«*)  = y'{u)-az'(u),

and

z'(u).

Now consider the orthagonal reparametrization of the surface x.*(u,v).  Then,

y'1 («*)  • z'i («*)  = (y' (u) - az' (u)) • (z' (u))

= (y' (u) ■ z'(u)) — a(z' (u) • z'(u))

= a — a (by equation (2.15) and z'(u) ■ z'(u) = 1).

Therefore,

y/1K)-z'1K) = 0. (2.16)

Now if we take the first derivative of yi(u*)  • zi(u*)  = 0 using the product rule

we obtain

(y'i(Z) -zj/u*))'  = 0

Yi(u*)  ■ zi(u*)  = 0 (by equation (2.16))

yi(«*) = o

yi(a*)  is linear.

Hence,

yi(u*)  is a straight line.
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We may assume

yi(u*)  = (0,0>*)

Then,

zi(u*)  = (cos it* , sin u* , 0)

=> x*(u,v)  = (0,0, bn*)  + u*(cosu*,sinu*,0)

Thus, we have a right helicoid. (Figure 2.1)

□

Figure 2.1: Right Helicoid



49

Appendix A

Maple

The majority of the geometrical figures provided in this project are created using 

MAPLE. The following information consist on the comands that provides the geometrical 

figures on MAPLE. Moreover, other figures are provided that represents minimal surfaces. 

The figure of a Sphere (1.7) can be executed using the following comands on MAPLE.

Figure 1.7: Sphere

> with(plots):

> sphereplot(l,theta=0..2*Pi,phi=0..2*Pi,color=black,  style=wireframe, axes=none);

Figure 1.8: Torus

> with(plots): > setoptions3d(style=wireframe,color=black, axes=none, 

scaling=CONSTRAINED);

> plot3d([cos(y) * (10.0 + 4.0 * cos(x)), sin(y) * (10.0 + 4.0 * cos(x)), -6.0*sin(x)j,  

x=-Pi. .Pi,y=-Pi. .Pi);

Figure 2.1: Right Helicoid

> with(plots):

> setoptions3d(scaling=constrained) :

> a:=2;

> Helicat (x,y,t) —>

[((1/a) * (sqrt(l + (a * x)2)) * t + (1 — t) * x) * cos(a * y), 

((1/a) * (sqrt(l + (a*  x)2)) * t + (1 — t) * x) * sin(a * y), 

((1/a) * arcsinh(a * x)) * t — (1 — t) * y];
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> Surface := plot3d(Helicat(x,y,0.0), x=-l..l, y=0..2*Pi/a,color=black,style=wireframe):

> display (Surface);

Catenoid.

> with (plots):

> setoptions3d (scaling=constrained):

> a:=2;

> Helicat := (x,y,t) —>

[((1/a) * (sqrt(l + (a * x)2)) * t — (1 — t) * x) * cos(a * y),

((1/a) * (sqrt(l + (a*  x)2)) * t + (1 — t) * x) * sin(a * y),

((1/a) * arcsinh(a * x)) * t + (1 — t) * y];

> Surface := plot3d(Helicat(x,y,l), x=-2..2, y=Pi..2*Pi,style=wireffame,  color=black, 

axes=none):

> display (S urface);
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Surface of Revolution

> with(plots):
> setoptions3d(scaling=constrained); f:= (x) —> sin(x) + 2;

> f := x —> sin(x) + 2; plot3d([u, f(u)*cos(v),  f(u)*sin(v)],  u=0..2*Pi,  v=0..2*Pi,  

style=wireframe, axes=none, orientation= [180,-180], color=black);
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