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Abstract: Large areas in southern Kyrgyzstan are subjected to high and ongoing landslide activity;
however, an objective and systematic assessment of landslide susceptibility at a regional level has not
yet been conducted. In this paper, we investigate the contribution that remote sensing can provide to
facilitate a quantitative landslide hazard assessment at a regional scale under the condition of data
scarcity. We performed a landslide susceptibility and hazard assessment based on a multi-temporal
landslide inventory that was derived from a 30-year time series of satellite remote sensing data
using an automated identification approach. To evaluate the effect of the resulting inventory on the
landslide susceptibility assessment, we calculated an alternative susceptibility model using a historical
inventory that was derived by an expert through combining visual interpretation of remote sensing
data with already existing knowledge on landslide activity in this region. For both susceptibility
models, the same predisposing factors were used: geology, stream power index, absolute height,
aspect and slope. A comparison of the two models revealed that using the multi-temporal landslide
inventory covering the 30-year period results in model coefficients and susceptibility values that
more strongly reflect the properties of the most recent landslide activity. Overall, both susceptibility
maps present the highest susceptibility values for similar regions and are characterized by acceptable
to high predictive performances. We conclude that the results of the automated landslide detection
provide a suitable landslide inventory for a reliable large-area landslide susceptibility assessment.
We also used the temporal information of the automatically detected multi-temporal landslide
inventory to assess the temporal component of landslide hazard in the form of exceedance probability.
The results show the great potential of satellite remote sensing for deriving detailed and systematic
spatio-temporal information on landslide occurrences, which can significantly improve landslide
susceptibility and hazard assessment at a regional scale, particularly in data-scarce regions such
as Kyrgyzstan.

Keywords: landslide hazard; automated landslide mapping; multi-temporal landslide inventory;
southern Kyrgyzstan

1. Introduction

The eastern rim of the Fergana Basin in southern Kyrgyzstan is a tectonically active region that
experiences regular landslide occurrences. The threat to people and infrastructure posed by this high
landslide activity requires a systematic and objective assessment of the landslide hazard, which has not
yet been performed for this region. Although analyses of landslide susceptibility have been conducted
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by local experts, these analyses have been of a qualitative nature and concentrated on areas in the
vicinity of settlements and roads. Factors that complicate this task are the large size of the study area
(approximately 2300 km2) and the limited availability of spatially detailed and up-to-date information
on landslide occurrences and predisposing factors.

In such a setting, the use of satellite remote sensing has high potential for large-area detailed
characterization of predisposing factors and for the generation of improved landslide inventories.
Using time series of archived remote sensing data enables multi-temporal reconstruction of backdated
landslide occurrences for large areas covering a time period of several decades. However, such a task
requires analyzing large amounts of remote sensing data, which can only be accomplished using
automated methods. We have developed such a method for the automated object-based detection
of landslide occurrences using multi-sensor time series of optical satellite images [1,2]. This method
is based on the analysis of normalized difference vegetation index (NDVI) trajectories [3] and has
been successfully applied in this study area [2]. In this paper, we investigate the suitability of the
resulting systematic multi-temporal landslide inventory covering a 30-year time period for conducting
subsequent analyses of landslide susceptibility and hazard.

Landslide susceptibility analysis is the first step in the overall framework of landslide hazard
and risk assessment [4–7]. This analysis requires spatial information on past landslide occurrences
(landslide inventory) and spatial characterization of landslide predisposing factors to evaluate the
spatial probability of where landslides may occur in the future. The reliability of susceptibility mapping
is significantly influenced by the quality and completeness of the landslide inventory. To achieve
a high degree of completeness, different information sources have to be analyzed, thus resulting in
different types of landslide inventories.

Guzzetti et al. [5] distinguish between the following inventory types: archive inventory (based
on records in archives, newspapers, and so on), historical inventory (showing the cumulative effect
of landsliding over a long period of time without further temporal differentiation), event-based
inventory (landslides caused by a single triggering event, such as a strong earthquake), seasonal
inventory (landslides triggered within one active season) and multi-temporal inventory (continuous
monitoring of landslide activity over longer periods of time independent of particular triggering
events). The multi-temporal inventory is the most labor-intensive inventory type and the only one with
the potential for spatio-temporal completeness, and it generally requires the use of remote sensing [2].

The majority of the research on landslide hazard focuses on assessing landslide susceptibility,
often because of difficulties in obtaining the multi-temporal information on landslide occurrences
required for landslide hazard analysis [8]. At the methodological level, many papers compare results
obtained using different susceptibility calculation approaches, such as logistic regression, frequency
ratio, and neural networks, among others [9–12]. Since all of these methods are data-driven methods,
the resulting models also largely depend on the type and quality of the input data, although this
aspect generally receives less attention. However, several publications also discuss the influence
of the type and quality of the used landslide inventory information on the results of susceptibility
mapping [8,13–15].

In our investigation, we focus on the influence of the inventory properties on landslide
susceptibility and hazard analysis with special consideration of the contribution of satellite remote
sensing. For this purpose, we derived two landslide inventories: (i) a systematic multi-temporal
inventory generated by automated landslide detection from time series of satellite remote sensing
data and (ii) a historical inventory prepared by an expert based on the visual interpretation of
high-resolution satellite remote sensing data as well as incorporating already existing knowledge on
landslide occurrences. Detailed descriptions of the methodologies used for the derivation of these
two inventories can be found in [1,2,16,17].

The historical inventory represents the more conventional approach to landslide mapping,
and it requires the time-consuming involvement of an expert. This inventory allows the cumulative
assessment of landslide activity that has occurred in an area up to the time when the inventory
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is prepared. Since the historical inventory incorporates all available records, the quality of the
inventory also depends on the overall availability of historical information for a specific region.
Using high-resolution satellite remote sensing can partially compensate for missing historical
documentation as long as the morphological indicators for past landslide activity are still present
in today’s relief. Historical inventories are generally limited in terms of temporal information on
landslide occurrences. However, such information is needed to provide the temporal component
required for landslide hazard analysis [5].

Preparing the necessary multi-temporal inventories including multiple time steps—ideally after
each triggering event and/or period of landslide activation—imposes limits on manual approaches of
landslide mapping, particularly if large areas need to be analyzed. Therefore, remote-sensing-based
automated approaches become increasingly more important. In this study, we pose the question of
to what extent the use of an automatically derived multi-temporal remote-sensing-based landslide
inventory leads to different results in the susceptibility analysis compared to the historical inventory
prepared by an expert. Furthermore, we aim to investigate the potential of the multi-temporal nature
of the automatically derived inventory for assessing the temporal component of landslide hazard,
which to date has received less attention among the scientific contributions toward improved hazard
assessment because of the widespread lack of suitable multi-temporal data on landslide occurrences.

2. Study Area and Database

2.1. Study Area

The approximately 60-by-40-km-large study area is located in Osh Province (oblast) of Kyrgyzstan
(Figure 1) at the foothills of the Tian Shan. This territory is primarily composed of weakly consolidated
Mesozoic and Cenozoic rocks, which have been folded by subsequent tectonic deformations,
thus contributing to their instability. Loess cover of varying thickness is deposited in the folds,
which leads to particularly fast and dangerous slope failures. Rather than being associated with
individual triggering events, most landsliding in the study area occurs in the spring months with
significant variations in landslide intensity among the years. These variations have been linked to
snow accumulation in the winter months, intensity of snow melting and additional precipitation
during the snow melt [18,19].

Figure 1. Location of the study area.

Earthquakes contribute to the destabilization and can act together with the hydrometeorological
factor [20].



Remote Sens. 2017, 9, 943 4 of 22

The study area is a part of a larger region (approximately 12,000 km2 in size) that is affected by
intensive landsliding. If the hazard analysis is to be extended to the larger area, then the automated
detection allows the analysis to be extended with less effort compared to the expert identification,
which would be practically as labor intensive as it was in the smaller study area. In this case, it is
important to know whether the quality of the analysis based on the automated detection results is
different from that of the analysis based on the expert interpretation results.

2.2. Landslide Inventory

Regular landslide monitoring in southern Kyrgyzstan was conducted by the local authorities until
1991, with a substantial decrease in the 1990s followed by a gradual resumption. To characterize the
landslide activity in the region as fully as possible, multiple information sources need to be combined,
each with its strengths and limitations [16,17]. The landslide datasets used in this study were prepared
using two different methods:

• Automated detection. This dataset was obtained using an automated object-oriented landslide
mapping approach that utilizes multi-temporal satellite-based imagery acquired by different
optical sensors (Landsat E(TM), SPOT 1-5, ASTER, IRS-1C LISS III, and RapidEye) between
1986 and 2016 [1–3,21]. The resulting landslide dataset is composed of 1846 polygons.
Each polygon represents the spatial extent of an individual landslide failure. For each landslide
polygon, the date of occurrence was determined as the period between two consecutive image
acquisitions (before and after the slope failure). The temporal resolution depends on the length of
the period between the before and after images. The resolution varies between several years at
the beginning and a few weeks at the end of the time span covered by the multi-temporal remote
sensing database. The polygons overlap if multiple failures occurred within the same slope over
time, which makes it possible to reconstruct the history of landslide reactivations. The resulting
dataset is a systematic record of the landslides in the study area that occurred during the past
30 years. This may appear to be a short landslide record, particularly compared to some European
countries with very extensive spatial data on landsliding. However, for southern Kyrgyzstan,
this dataset is of unprecedented quality and completeness. The length of the period covered by
this dataset will increase as new high-resolution satellite images are acquired, but an evaluation
of the properties of the dataset and its influence on the susceptibility results can already be
performed with the 30-year coverage.

• Expert interpretation. Areas that experienced landsliding in the past and that still exhibit
morphological evidence of these past slope failures were mapped visually by an expert.
The mapping was based on RapidEye images acquired between 2012 and 2015, a digital elevation
model (DEM) and geological information. The resulting dataset represents the cumulative result
of landsliding with no information on the failure dates and without the differentiation of the
spatial extents of individual activations. Thus, in contrast to the automatically detected dataset,
the results of expert interpretation do not contain individual landslide objects but rather a mask
that shows whether the given location was affected by landsliding in the past.

The area covered by the expert interpretation dataset is seven times the size of the area covered by
the automatically detected dataset (Table 1). Approximately two thirds of the landslide-affected area
of the automatically detected dataset falls into the results of the expert interpretation. Figure 2 shows
the spatial distribution of the landslides in the study area and its two subsets. Subset S1 experienced
little landsliding over the past 30 years, whereas subset S2 was affected by high landslide activity.
Overall, large parts of the study area are subjected to ongoing landslide activity, which is particularly
high in several landslide hotspots.
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Table 1. Landslide area documented in the two landslide datasets.

Dataset Area, km2 Portion of Study Area, %

Landslide area according to the results of automated detection 28.5 1.23
Landslide area as interpreted by the expert 197.8 8.52
Overlapping landslide area of both datasets 19.8 0.86
Area not affected by landsliding in either dataset 2115.0 91.10

Figure 2. Landslides in the study area mapped by expert interpretation (black contours) and automated
detection (colored polygons and points). The points in the overview map are the centroids of the
automatically detected landslide polygons. The representation with points is for visualization purposes
only; the actual dataset contains polygons.

2.3. Predisposing Factors

The data on the landslide predisposing factors are available in the form of a geological map and the
Advanced Land Observation Satellite (ALOS) DEM World with a 30 m resolution [22]. The geological
map was created through expert reinterpretation of multiple digitized 1:200,000 geological paper
maps published prior to 1991. Because a lithological map of the study area is unavailable, we use the
structural geological units to characterize the lithology. The following structural units are distinguished
(following [23]):

• Basement: Metamorphic and igneous rocks;
• Jurassic (J1–J3): Sandstones, siltstones, and slates;
• Upper Cretaceous—Paleogene (Cr1–Cr2): red sandstones, conglomerates, gravels, gypsolytes,

limestones, clays, and siltstones;
• Lower Eocene—Oligocene (Pg1–Pg2): sandstones, gypsolytes, limestones, marls, clays,

and siltstones;
• Oligocene—Miocene (Pg3–N1): red sandstones, conglomerates, and clays;
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• Pliocene (N2): conglomerates, gravels, and loess-type loams;
• Lower Quaternary (Q1): gray conglomerates and loesses;
• Middle Quaternary (Q2): glacial moraines, loesses, and alluvial sediments;
• Upper Quaternary (Q3–Q4): alluvial sediments, glacial moraines, and loesses.

The open source software packages SAGA GIS (version 2.2.7) and QGIS (version 2.14.3) were used
to derive the following factors from the ALOS DEM for each raster cell using its 8-cell neighborhood:

• Aspect shows the exposition of the slope, classified into eight cardinal and intercardinal directions.
• Slope characterizes the steepness of the slope.
• Stream power index (SPI) is a function of the product of flow accumulation and the local slope

that describes the potential erosion power at a specific point of the surface [24,25].

3. Methods

Landslide susceptibility indicates how likely a landslide is to occur at a location with a certain
combination of predisposing factor values [4,7]. We calculate the landslide susceptibility for both
landslide datasets: the results of automated detection and expert interpretation. For the former dataset,
we perform the susceptibility analysis (i) using all of the landslide extents and (ii) using a single point at
the landslide initiation zone (cf. Section 3.4). We compare and validate the results. Finally, we calculate
the exceedance probability of landsliding using the multi-temporal inventory.

3.1. Frequency Ratio Method

In our study, we use the frequency ratio method [26,27]. This method calculates the frequency
ratio value for each factor class by comparing the landslide density within that class to the average
landslide density in the study area:

FRi =
Npix(Si)/Npix(Ni)

∑ Npix(Si)/ ∑ Npix(Ni)
, (1)

where
Npix(Si) is the number of landslide pixels in each class i;
Npix(Ni) is the total number of pixels that have class i in the study area;
∑ Npix(Si) is the total number of landslide pixels in the study area;
and ∑ Npix(Ni) is the total number of pixels in the study area.

The class boundaries for each factor are determined by the researcher prior to the calculation
based on expert knowledge and the data distribution. The landslide susceptibility index (LSI) is then
calculated by adding the frequency ratio of each factor for the given pixel. To ensure comparability
between susceptibility models with different numbers of factors, the sum is divided by the number
of factors:

LSI =
1
n

n

∑
i=1

FRi =⇒ LSI =
FR(geology) + FR(aspect) + FR(slope) + FR(absolute height) + FR(SPI)

5
. (2)

3.2. Validation of Susceptibility Assessment

To evaluate the susceptibility models, we use receiver operating characteristic (ROC) curves,
which plot the model sensitivity (i.e., the portion of known landslide pixels correctly classified as
susceptible) against its specificity (i.e., the portion of landslide-free pixels correctly classified as not
susceptible) [28,29]. The area under the curve (AUROC) varies between 0.5 and 1.0, with higher values
indicating a better fit of the model. The model is validated by comparing it to a landslide dataset that
is not used for calibrating the model [30,31]. The subdivision of the landslide data into the training
and validation parts is generally performed randomly or using non-overlapping temporal or spatial
subsets of the landslide inventory [30].
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We use the following pairs of training and validation datasets:

• The datasets obtained by automated detection (both the landslide highest points and the landslide
masses) are divided into training and validation parts. This is a standard approach for validating
the susceptibility results when a single landslide dataset is available [29,30]. We divide the
datasets into 50%/50% parts.

• The expert interpretation dataset is used for training the model, and the automated detection
dataset (landslide masses) is used for validating the model. The goal is to understand
whether the automatically detected dataset, which is based on a relatively short 30-year
observation period, is capable of producing results that are comparable to the labor-intensive
geomorphological mapping.

• The automated results of 2009–2016 (landslide masses) are used to train the model, and the
automatic detection dataset of 1986–2009 is utilized to validate the model. This is an attempt to
evaluate the reliability of the susceptibility mapping in a scenario where only RapidEye satellite
images are available.

3.3. Temporal Probability of Landsliding

To explore the spatial variations in the landslide activity in time, we calculate the exceedance
probability of landslide occurrence using a binomial distribution, as follows:

P = 1− e−λt, (3)

where λ is the annual landslide frequency (per mapping unit) and t is the length of the period (in years)
for which the exceedance probability is calculated [4,32].

The completeness of a landslide inventory is crucial for the correctness of the exceedance
probability calculations because the omission of landslides from the underlying inventory leads
to an underestimation of the hazard. However, the completeness of landslide inventories is limited,
particularly in data-scarce regions. Landslide size-frequency behavior follows a power law distribution
with a roll-over for smaller events [33,34], which is a result of the incomplete mapping of landslides
below a certain size. Prior to calculating the exceedance probability of landsliding, we assess the
completeness of the automated landslide detection results based on their size-frequency distribution.

3.4. Mapping Units

Mapping units are a result of partitioning the space into non-overlapping parts that together
cover the territory of the study area in question. These units are used to transition from discrete and
possibly overlapping landslide objects to analyses at the scale of the study area, e.g., in the course of
the landslide hazard assessment (cf. [29,35,36]).

In this study, the susceptibility calculation is performed on the basis of 30-m pixels for both
landslide datasets. The complete extent of the landslide mass is rasterized and used as the input data
for the susceptibility analysis. Additionally, we calculate the susceptibility using a single point for
each landslide of the automatically detected dataset. The point representative of the landslide polygon
should be located in the landslide initiation zone. To automate the process, we use the highest point
within the landslide as an approximation of the landslide main scarp. The highest point is calculated
by clipping the DEM raster to the landslide polygon in question and using the center of the pixel
that has the highest elevation value. The procedure is automatically performed as a part of the QGIS
plugin Landslide Tools [37] implemented by one of the authors. The susceptibility calculation using
the highest points cannot be performed with the results of expert interpretation because this dataset
does not distinguish between individual landslide objects. The choice of the landslide representation
determines the interpretation of the resulting susceptibility model: the model based on the landslide
highest points indicates the likelihood of a pixel to initiate a landslide, whereas the model based on
complete landslide extents represents the likelihood of the given location to be affected by a landslide.
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It is possible to calculate the exceedance probability in a similar pixel-based manner.
However, a typical landslide-prone slope in the study area is characterized by recurring landslide
failures. Each slope failure may only occupy a part of the slope, whereby the multitude of such events
over the years eventually affects the entire slope. The differentiation in the landslide frequency on
such slopes is often a result of the short observation period. The absence of landslides in the inventory
in the presumably unaffected parts of such slopes does not imply that these areas are safe. In fact,
the opposite may be true in the short term. We solve this contradiction by introducing larger mapping
units. In this study, slope units have been used as mapping units because they reflect the physical
properties of the relief as a major landslide predisposing factor.

We derived the slope units from digital elevation data using an approach based on watershed
delineation in ArcGIS. A simplified overview of the approach is presented in Figure 3. We followed the
standard ArcGIS procedure, which consists of deriving the stream network by setting a threshold on
the flow accumulation raster and then using the branch-off points of the resulting streams to delineate
individual watersheds. However, the result of this procedure does not allow distinguishing between
opposite slopes of a river valley that touch the same stream segment. Therefore, an additional step was
introduced. This step subdivides the watersheds obtained in the previous step into two polygons by
intersecting them with the stream lines. For upstream watersheds, an additional third sub-watershed
is delineated that drains to the highest point of the stream and represents the uppermost part of
the river valley. This approach allows for a more consistent aspect within the resulting slope units.
This modified procedure includes two user-defined parameters: the flow accumulation threshold and
the area threshold. The flow accumulation threshold is used to vary the size of the resulting slope units
to account for the properties of the study area and the scale of the analysis. The area threshold serves
to remove resulting polygons that are too small to represent a slope by merging them with their larger
neighbors. We assign each landslide to a slope unit based on the location of the landslide highest point.

Figure 3. Workflow for the derivation of slope units.

In the final step, we combine the spatial and temporal aspects into a landslide hazard index,
which is done at the level of the slope units using the susceptibility map based on the automatically
detected landslide masses. We reclassify the susceptibility map into three classes of equal size
(tertiles). The “Majority” function of the QGIS Zonal Statistics tool is used to determine the prevalent
susceptibility tertile for each slope unit. From the slope units with the highest susceptibility tertiles,
we select the units that have experienced multiple (at least two) landslide failures since 1998.
We consider these slope units to have the highest landslide hazard index.
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4. Results

4.1. Landslide Susceptibility

4.1.1. Model Results

The frequency ratio values were calculated for all three of the landslide datasets (Table 2).
The predisposing factor datasets were reclassified according to these frequency ratio values. To evaluate
the ability of individual factors to differentiate between pixels with high and low susceptibilities,
the AUROC values of susceptibility models based on a single factor were calculated (Table 3). Geology
is the main factor determining the differentiation of landslide susceptibility in the study area in each of
the three models. This factor is responsible for the most global level of the study area zonation because
it is indicative of the different structural settings of its parts. In the northern part of the study area
in particular, the main differences between susceptibility values can be linked to the boundaries of
lithological units. Cretaceous deposits (Cr1–Cr2) are consistently the most affected geology class across
all three models. The model based on the results of expert interpretation assigns higher susceptibility
to Jurassic rocks (J1–J3). The model that uses the automatically detected landslide masses results in
high frequency ratio values for Middle Quaternary deposits (Q2). This result is due to the extensive
landsliding on the Uzgen slope, where the areas severely affected by landsliding were classified as Q2
in the geological map. The aspect factor behaves similarly among all three of the models. The model
based on the landslide highest points assigns higher frequency ratio values for steeper slopes and
higher terrain than the other models.

Table 2. Frequency ratio values of the predisposing factors by landslide data source. Classes with
frequency ratio values > 1 are more favorable for the development of landslides than the study area
on average.

Factor Class

Automated
Detection
1986–2016,

Highest Points

Automated
Detection
1986–2016,

Landslide Masses

Expert
Interpretation

Geology

Basement 0.281 0.131 0.228
J1–J3 0.588 0.289 1.345

Cr1–Cr2 2.134 2.309 2.070
Pg1–Pg2 1.214 0.956 1.370
Pg3–N1 1.325 0.646 0.507

N2 0.622 0.443 0.129
Q1 0.176 0.030 0.053
Q2 0.478 1.923 0.954

Q3–Q4 0.426 0.806 0.973

Aspect

North 1.415 1.382 1.479
Northeast 1.742 2.108 1.668

East 1.242 1.423 1.343
Southeast 0.750 0.705 0.847

South 0.431 0.423 0.659
Southwest 0.463 0.435 0.483

West 0.616 0.542 0.558
Northwest 1.250 0.964 0.991

Slope, <5 0.079 0.395 0.518

degrees 5–<10 0.259 1.035 1.395
10–<15 0.490 1.283 1.640
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Table 2. Cont.

Slope,

15–<20 0.938 1.347 1.376

degrees

20–<25 1.474 1.137 0.998
25–<30 1.832 0.968 0.704
30–<35 1.872 0.760 0.424
35–<40 1.456 0.610 0.244
40–<45 1.689 0.796 0.198
≥45 1.601 0.998 0.152

Absolute

<1200 0.243 0.767 0.694

height,

1200–<1400 0.305 1.277 0.860

m

1400–<1600 0.760 1.658 1.040
1600–<1800 1.500 1.929 1.492
1800–<2000 1.706 1.686 1.393
2000–<2200 1.400 0.749 1.228
2200–<2400 0.935 0.316 0.962
2400–<2600 0.433 0.161 0.366
≥ 2600 0.104 0.027 0.042

SPI

<4 0.044 0.183 0.297
4–<6 0.456 0.579 0.901
6–<7 0.889 0.812 0.989
7–<8 1.412 1.129 1.015
≥8 1.609 1.887 1.349

Table 3. Discrimination ability of predisposing factors: area under the receiver operating characteristic
(AUROC) curve values of susceptibility models based on a single factor.

Factor Automated Detection 1986–2016, Highest Points Automated Detection 1986–2016, Landslide Masses Expert Interpretation

Geology 0.6960 0.7232 0.7221
Aspect 0.6265 0.6615 0.6303
Slope 0.6820 0.5876 0.6486

Absolute height 0.6560 0.6912 0.6270
SPI 0.6354 0.6318 0.5605

4.1.2. Comparison of Susceptibility Maps: Automated Detection vs. Expert Interpretation

Figure 4 shows the susceptibility maps produced for both landslide datasets. Both susceptibility
maps are similar in subset S2. In subset S1, the model based on the automatically detected landslides
shows lower susceptibility levels than the model based on the results of expert interpretation.

To compare the susceptibility values of both maps, their difference was calculated (Figure 5).
The differences between the two maps can be linked to the frequency ratio values of the predisposing
factor classes in both susceptibility models (see Table 2). For example, the automatically detected
landslides are more rare in Jurassic and Paleogene deposits than landslides mapped by the expert.
Consequently, these areas received lower susceptibility in the model based on the automated detection
results (see highlighted areas A and B in Figure 5). The very active slope near the town of Uzgen in
the very northwest of the study area (highlighted area C in Figure 5) has a substantial influence on
the susceptibility model based on the automatically detected landslides. The consequence is a large
frequency ratio value for northeastern slopes in the susceptibility model based on automatically
detected landslides. This reflects not only on the Uzgen slope itself but also in other parts of the study
area, e.g., highlighted area D in Figure 5. No landslides have been recorded in highlighted area D,
but a visual assessment of the satellite imagery from Google Earth (by Google Inc., Mountain View,
California) indicates that landsliding is plausible here.
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Figure 4. Results of susceptibility assessment produced using automatically detected landslide masses
(1986–2016) and landslides obtained by expert interpretation: study area and two subsets.
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Figure 5. Difference between susceptibility maps produced using the results of automated detection
(landslide masses, “model A”) and expert interpretation (“model E”).

4.1.3. Comparison of Susceptibility Maps: Landslide Masses vs. Highest Points

The differences between the susceptibility models based on the landslide highest points and
the landslide masses reflect the nature of the input data. The model calculated using the highest
points assigns higher susceptibility values to upper parts of the slope (e.g., subset S4 in Figure 6).
Furthermore, it results in lower susceptibility for Middle Quaternary (Q2) deposits (e.g., the Uzgen
slope in subset S3 in Figure 6) and higher susceptibility for areas with more consolidated rocks due to
the higher elevation and slope values there. Landslides in the areas with more consolidated rocks are
small, but because the landslide size has no influence on the susceptibility model based on landslide
highest points, small landslides receive more weight in this model.

4.1.4. Validation

After selecting the best susceptibility models, we assess their predictive power in a validation
procedure. We also use this opportunity to analyze how the input landslide data quality affects the
susceptibility assessment results.
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Figure 6. Results of susceptibility assessment produced using landslide masses (model A) and landslide
highest points (model HP) of automatically detected landslides (1986–2016): study area and two subsets.

The AUROC values presented in Table 4 suggest that the susceptibility mapping results are
acceptable for all the landslide datasets. The highest values were achieved using the landslide masses
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detected automatically in 1986–2016. Even the shorter dataset covering the period between 2009 and
2016 with high-resolution RapidEye images results in an AUROC value of 0.8. This result implies that
the susceptibility assessment can be extended to the territory adjacent to our study area, provided that
RapidEye images are available.

Table 4. Validation results.

Row Training Dataset Validation Dataset AUROC *

1
Automated detection 1986–2016,

highest points (50%)
Automated detection 1986–2016,

highest points (50%) 0.7998

2
Automated detection 1986–2016,

landslide masses (50%)
Automated detection 1986–2016,

landslide masses (50%) 0.8142

3 Expert interpretation Automated detection 1986–2016 0.7730

4
Automated detection 2009–2016,

landslide masses
Automated detection 1986–2009,

landslide masses 0.8053

* area under the receiver operating characteristic curve.

4.2. Temporal Probability of Landsliding

We calculated the exceedance probability of landsliding using the results of automated landslide
detection. This dataset covers the 30-year period between 1986 and 2016. According to data
from the local authorities, the year 1994 experienced an exceptional number of landslides in
southern Kyrgyzstan: a third of all slope failures registered from 1986–2010 occurred in 1994 [18].
However, this exceptional landslide activity is not reflected in the automated detection results.
The automatically detected landslide dataset contains 1846 landslides, but only 164 of them failed in
1986–1998. One reason for this result is that the statistics from the local authorities refer to a territory
that is larger than our study area, and the hotspot of landslide activity in 1994 was north of the study
area. However, a more important reason is the low temporal resolution of the imagery used for the
automated detection. The earliest image acquisition dates were in 1986, 1990 and 1998. The interval
between 1990 and 1998 is so long that some of the slope failures could not be detected using remote
sensing due to revegetation and/or subsequent failures on the same slope during the same time period.
This is, e.g., the case for the landslide in the Kandava river valley next to the village of Komsomol
that failed on 26 March 1994 and caused 28 fatalities [18]. Furthermore, the spatial resolution of the
images available for the early periods is lower and thus simply does not enable smaller landslides to
be detected. To avoid an underestimation of landslide hazard, we only use landslide data of 1998–2016
in the following analysis of the temporal component.

The assessment of the size-frequency distribution for these landslides (Figure 7) shows a roll-over
effect in the probability density curve for landslide areas under 10,000 m2. Therefore, the available
data permit the calculation of the exceedance probability only for landslides of this size or larger.

Figure 7. Size-frequency distribution of automatically detected landslides in 1998–2016.
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The exceedance probabilities of the occurrence of landslides larger than 10,000 m2 for periods of
5 and 10 years are presented in Figure 8a,b. The exceedance probability of landslide occurrence for the
period of 5 years is over 80% on the Uzgen slope, in parts of the basins of left tributaries of the Tar river,
around the village of Gulcha and in the Budalyk river valley. Large landslides over 100,000 m2 are
particularly likely on the Uzgen slope (Figure 8c,d).

Figure 8. Exceedance probability of the occurrence of a landslide with an area over 10,000 m2 (a,b) and
over 100,000 m2 (c,d) by slope unit.

After combining the exceedance probability map with the susceptibility map based on the
automated landslide detection results (landslide masses), we select the slope units with the highest
landslide index (Figure 9). They largely coincide with the distribution of the main landslide hotspots
in the study area.
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Figure 9. Slope units with the highest landslide hazard index, i.e., slope units where (i) more than one
landslide failure occurred since 1998 and (ii) the highest susceptibility tertile occupies a larger area
than any other tertile.

5. Discussion

We have calculated landslide susceptibility for the study area in southern Kyrgyzstan using
two versions (highest points of landslide initiation and complete landslide masses) of a multi-temporal
landslide inventory and a historical landslide inventory and five predisposing factors (geology, aspect,
slope, absolute height and stream power index). The multi-temporal inventory was generated by
automated landslide detection from time series of optical satellite images covering the period between
1986 and 2016. The historical inventory was derived by expert mapping using a combination of satellite
remote sensing interpretation and already existing knowledge on landslide occurrence.

The good performance (AUROC values between 0.77 and 0.81) of the models for all three types
of landslide input data and a visual assessment of the resulting maps indicate that the automated
landslide detection method is a valid and more precise alternative to the labor-intensive manual
mapping. Although the quantitative AUROC metrics are commonly accepted for quality assessment
within landslide susceptibility studies, they need to be complemented with an assessment of the
potential biases contained in the input landslide and factor data and of geomorphic plausibility
checks [38]. Moreover, the results of susceptibility analysis should be compared to independent
landslide occurrences, e.g., slope failures of 2017.

The differences in the susceptibility values of individual factor classes between the historical
and multi-temporal inventories can be traced back to the fact that the landslides mapped by the
expert occupy a larger area and span over a wider range of natural conditions and a longer time
period of occurrence. This explains why some factor classes (e.g., Jurassic and Paleogene rocks) are
represented with a higher significance in the model based on the landslide inventory derived by the
expert compared to the inventory derived by automated remote sensing analysis. We conclude that the
recurrence intervals of landslides in such areas exceed the 30-year-long time period for which satellite
remote sensing time series data of sufficient spatial resolution are available for the study area.

The spring of 2017, which is not yet covered by the inventory used in this study, represents
an extraordinary period of landslide activity caused by a threefold increase in winter precipitation
between October and March compared to the long-term average [39]. These extraordinary
meteorological conditions led to the activation of a high number of landslides of partially very large
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extent. Within our study area, a 4.3-km-long landslide occurred at the end of April 2017 near the village
of Kurbu-Tash, destroying approximately 60 houses whose residents had been evacuated prior to the
main failure (Figure 10) [40,41]. The landslide occurred on a slope within subset S1 of the study area
(Figure 4), which had not been affected by landsliding over the past 30 years. However, the expert-based
landslide mapping had revealed morphological indicators of ancient landsliding, which were included
in this inventory. Nevertheless, both susceptibility maps depict the highest susceptibility values for
similar regions and are characterized by acceptable to high predictive performances.

Figure 10. The 4.3-km-long Kurbu-Tash landslide that occurred in April 2017 (extent determined
by automated detection) overlaid over a false-color near-infrared RapidEye image acquired on
2 May 2017 (top left). Overlay with the susceptibility map based on the highest points of automatically
detected landslides (top right), masses of automatically detected landslides (middle right) and expert
interpretation (middle left). (Bottom left): a video frame by AKIpress [40] acquired in the first half of
May 2017 showing the landslide mass. Elevation data: Google Earth.

Overall, the multi-temporal landslide inventory results in a susceptibility assessment that
better reflects the landslide properties observed in recent decades. Whether this is an advantage
or a disadvantage also depends on the ratio between the length of the observation period and the
landslide recurrence intervals in the study area. The model based on the inventory derived by
automated detection underestimates the susceptibility of predisposing factor combinations that are
only activated under conditions not observed over the past 30 years. However, the automated
approach does not require the involvement of a landslide expert who is capable of performing the
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manual landslide mapping. Therefore, it can be used to generate an inventory that is suitable for
an initial susceptibility assessment, which can then be further evaluated.

Moreover, in the case of a large area of interest, the derivation of a historical inventory may be too
labor intensive to perform. In contrast, the detailed analysis of a smaller area may require a spatially
more focused inventory incorporating all available information sources, whereas the automated
inventory allows outlining those parts of the study area that are characterized by the highest recent
landslide activity. Therefore, we consider both types of inventories as valuable information sources on
landslide occurrence that complement each other, and both need to be considered in a comprehensive
susceptibility analysis.

When comparing the susceptibility models resulting from incorporating different landslide
properties—polygon-based whole landslide masses versus the point-based approximation of landslide
initiation zones—a spatial shift of higher susceptibility values toward the more elevated parts of the
slope is observed. Moreover, the susceptibility model based on highest points is biased toward small
landslides because they receive the same weight in the model as very large slope failures. In the study
area, small landslides are mostly found in more consolidated rocks (which are less likely to experience
highly hazardous slope failures), whereas the weakly consolidated sediments produce the largest and
most dangerous landslides. Thus, the approach based on highest points effectively underestimates
the hazard in the most affected areas. Therefore, the susceptibility model based on whole landslide
masses also needs to be considered. The two susceptibility models can complement each other
and should both be taken into account for comprehensively characterizing the different aspects of
landslide susceptibility. This also points to the advantage of GIS-based landslide susceptibility and
hazard assessment over conventional expert-based mapping approaches consisting of the flexible
consideration of different input information for deriving a variety of complementary models that can
be further evaluated by landslide experts.

This situation is also illustrated by the example of the Kurbu-Tash landslide. For both susceptibility
models (expert and automated) that are based on the use of landslide masses, the susceptibility values
within the area of the Kurbu-Tash landslide are rather high: a large part of the area covered by the
landslide belongs to the 20% of the study area that is characterized by the highest susceptibility.
In contrast, the model that uses the highest point of landslide initiation results in lower susceptibility
values for the area of the Kurbu-Tash landslide. This example shows the effect of using different
landslide properties on the model results, leading to an underestimation of the susceptibility originating
from large landslides. Moreover, the high landslide activity in 2017 indicates that there is a considerable
need for future continuation of systematic large-area landslide monitoring in southern Kyrgyzstan to
further improve the susceptibility and hazard assessment.

Due to the availability of the remote-sensing-based multi-temporal inventory, we were able to
assess not only the landslide susceptibility but also the exceedance probability of landsliding. This is
the first step in analyzing the temporal aspect of the landslide hazard in this region. Further research
is needed to link the differences in landslide frequency between the years to changes in the potential
triggering factors, such as the hydrometeorological conditions. Once high-resolution multi-temporal
imagery are available for a period of several decades for southern Kyrgyzstan, landslide hazard
assessments can focus more on the temporal analyses derived from the landslide frequencies. In this
case, the analyses will no longer be affected by the scarcity of data on predisposing factors.

For this purpose, future continuation of systematic landslide monitoring in the study area
is crucial. It will extend the observation period and possibly include landslide locations with
a combination of predisposing factors that have not yet been represented in our susceptibility
model [42]. More importantly, the landslide activity in the study area is characterized by occasional
very intensive years with a dramatic increase in landslide activity. In such intensive years, landslides
may become activated on slopes that have been stable for the past decades and possibly have not been
accounted for by the susceptibility model based on the automatically detected data. The results of
automated landslide detection have captured the peak in landslide occurrence in 2003–2004 [2], but the



Remote Sens. 2017, 9, 943 19 of 22

landslide activity of the even larger peak of 1994 could not be adequately reconstructed because of the
lack of suitable satellite remote sensing data. The continuation of monitoring including the most recent
peak year of 2017 and beyond provides an opportunity to improve our understanding of the landslide
processes in the study area and is thus the basis for subsequent susceptibility and hazard assessments.

The results of this study show that landslide susceptibility and hazard assessments based
on satellite remote sensing are particularly suitable for regions with high process activity and,
at the same time, for limited information on landslide occurrence and predisposing factors due
to insufficient means for landslide mapping and subsequent hazard analysis. Remote-sensing-based
hazard assessment allows the efficient identification of the particularly hazardous areas, which can
then be subject to more concentrated monitoring and mitigation efforts. In this context, the recent
launches of the Sentinel-2A and 2B satellite remote sensing missions are of crucial importance since
they provide satellite imagery of suitable spatial and temporal resolutions at the global scale free of
charge, enabling multi-temporal landslide monitoring worldwide. We have already performed the first
preliminary investigations on the potential of Sentinel 2A/B to automatically derive landslide failures
that occurred during the most recent period of high landslide activity of spring 2017 in southern
Kyrgyzstan. The first results indicated a great potential for landslide detection with high spatial detail
and completeness over large areas, which will even further increase when the full temporal resolution
of the 2A/B Sentinel constellation is enabled worldwide. However, even under the condition of
thus far limited revisit time of data acquisition, the principal suitability of these data as a basis for
automated derivation of multi-temporal landslide inventories has already been proven.

6. Conclusions

Our investigations have shown that satellite remote sensing can support landslide susceptibility
and hazard analysis in multiple ways, particularly for large data-scarce regions such as southern
Kyrgyzstan. We have utilized remote sensing at every stage of the investigation, whereas the
main emphasis has been placed on the influence of landslide inventory properties on the results
of susceptibility and hazard assessments. In our work, we have shown that satellite remote sensing
methods can greatly support the expert-based derivation of historical landslide inventories and the
derivation of multi-temporal inventories for the entire time period of suitable satellite remote sensing
data availability. However, the latter requires the use of automated methods to analyze multi-temporal
time series data covering several decades. The resulting systematic spatio-temporal inventories are the
main prerequisite for analyzing the temporal component of landslide hazard.

Since both of the derived landslide inventories contain object-based information on past landslide
occurrences, we were able to calculate different susceptibility models that emphasize different
aspects of landslide activity in the study area. However, for all of these models, AUROC values
of approximately 0.8 were achieved. Hence, we conclude that, in our study area, the different
models can be used in a complementary way to perform a comprehensive characterization of
landslide susceptibility.

The shorter 30-year observation period of the automatically derived multi-temporal inventory
results in a susceptibility map with a stronger representation of the properties of the recent landsliding.
In contrast, the inventory derived by expert mapping contains a longer time span of landslide
occurrence. However, in both susceptibility maps, the highest susceptibility values are observed
for similar areas. We conclude that the results of the automated landslide detection provide a suitable
landslide inventory for a reliable large-area landslide susceptibility assessment.

We also used the temporal information of the automatically derived multi-temporal landslide
inventory to assess the temporal component of landslide hazard in the form of the exceedance
probability. Both versions of the susceptibility assessment are useful for showing that the slopes
that are more likely to produce a landslide under today’s conditions, as well as areas that may have
a high hazardous potential in the future when natural conditions might arise again that have already
caused intense landsliding in the past.
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Moreover, our investigations have shown that the specific landslide properties used in the
susceptibility analysis have a significant influence on the results. If the model is based on the highest
point covered by the mapped landslide representing an approximation of the main scarp, then the
resulting susceptibility model indicates where landslide initiation is most likely to occur. In contrast,
using the complete landslide polygons results in a map that emphasizes the areas that are most
likely to be covered by landslide masses. Ideally, both maps should be available to provide a better
understanding of both aspects of landslide susceptibility analysis.

The presented approach is based on the extensive use of remote sensing and GIS methods,
enabling an objective, quantitative and comprehensive characterization of the different aspects of
landslide susceptibility and hazard. The temporal component of landslide hazard can only be assessed
if a multi-temporal inventory is available. Our investigations have shown that multi-temporal satellite
remote sensing has great potential for deriving such inventories, which will further increase upon the
global availability of Sentinel-2A/B data.
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