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In a series of measurements, the sound power of 40 musical instruments, including all standard mod-

ern orchestral instruments, as well as some of their historic precursors from the classical and the

baroque epoch, was determined using the enveloping surface method with a 32-channel spherical

microphone array according to ISO 3745. Single notes were recorded at the extremes of the dynamic

range (pp and ff) over the entire pitch range. In a subsequent audio content analysis, audio features

were determined for all 3482 single notes using the timbre toolbox. In order to analyze the relative

contributions of timbre- and amplitude-related properties to the expression of musical dynamics in

different instruments, Bayesian linear discriminant analysis and generalized linear mixed modelling

were employed to determine those audio features discriminating best between extremes of dynamics

both within and across instruments. The results from these measurements and statistical analyses

thus deliver a comprehensive picture of the acoustical manifestation of “musical dynamics” with

respect to sound power and timbre for all standard orchestral instruments. VC 2018 Author(s). All arti-
cle content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/1.5053113

[AM] Pages: 1347–1355

I. INTRODUCTION

The sound power provides elementary information

about the strength and dynamic range that can be produced

by individual musical instruments. These data are important,

for example, in predicting the sound impact in musical per-

formance venues as a result of source power, stage design

and auditorium acoustics. In musical performance studies,

the sound power, in combination with other acoustical fea-

tures of the source signal, can be considered an acoustical

manifestation of the expressive potential of each instrument.

For the study of musical performance practice, it is of funda-

mental interest to what extent the sound power and the spec-

tral properties of musical instruments have changed as a

result of the historical development of their design and how

this might affect, for instance, the overall balance of orches-

tral groups. Future applications of this knowledge will arise

through the implementation of virtual acoustic environ-

ments, where an appropriate calibration of acoustic scenes

will only be able to be reached based on knowledge of the

sound power and the directivity of each individual source.

When dealing with the “dynamics” of music or musical

instruments, one should be aware of the fact that in a musical
context, dynamics is used in terms of the intended or per-

ceived sound strength, i.e., an absolute value indicated in the

score by marks usually ranging from pianissimo (pp) to for-
tissimo (ff), whereas in a technical context, dynamics is nor-

mally used to reference the available amplitude range which

can, for example, be given by the ratio of maximum to

minimum amplitudes available in a certain channel of com-

munication. In order to avoid confusion, we will use

the terms “dynamic strength” in a musical context, and

“dynamic range” for the technical domain.

There are different methods to determine the sound

power of musical instruments. In principle, the radiated

sound power can be numerically simulated if a complete

model of all constitutive parts of the instrument and their

coupling is available (Chaigne et al., 2004). However, the

resulting acoustical efficiency of the system has to be refer-

enced to a normalized excitation force rather than a human

force with its complex interaction between instrument and

musician. The same is true for sequential measurements of

sound intensity (Lai and Burgess, 1990; Garc�ıa-May�en and

Santill�an, 2011), from which the sound power can be deter-

mined according to ISO 9614-2 (1996), but which require a

reproducible excitation. Hence, for an ecologically valid

measurement with professional musicians, there remain the

classical approaches for “single-shot” sound power measure-

ments, i.e., the reverberation chamber method and the envel-

oping surface method according to ISO 3741 (2010) and ISO

3745 (2012).

Since a reliable determination of the sound power of

acoustic instruments depending on the intended dynamic

strength and the pitch of the notes played thus requires quite

a large experimental effort, only limited data are available so

far. Earlier studies on the power and the dynamic range of

musical instruments mostly relied on comparative measure-

ments of sound pressure values (Sivian et al., 1931). The first

comprehensive series of direct measurements of sound

power for all standard orchestral instruments according toa)Electronic mail: stefan.weinzierl@tu-berlin.de
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the reverberation chamber method was performed by Meyer

and Angster (1983). The data were later combined with ear-

lier measurements of the sound pressure and sound intensity

of musical instruments (Clarke and Luce, 1965; Burghauser

and Spelda, 1971), which were transformed to sound power

values based on assumptions about the acoustical conditions

of the room, the recording distance, and the directivity of the

sound source (Meyer, 1990). The results are given in the

classic reference book Acoustics and the Performance of
Music (Meyer, 2009). They include the recording of scales

over two octaves and of selected single notes played at pp
and ff in order to quantify the dynamic range of all standard

orchestral instruments. In order to specify a single value for

the dynamic range, Meyer selected the pp of the softest and

the ff of the loudest note.

The acoustical expression as well as the perception of

dynamic strength of musical instruments is, however, only

partly related to their absolute sound power. This was

already demonstrated by experiments where listeners were

able to identify the intended dynamic strength produced by

musicians, largely independently of the actual sound level

(Nakamura, 1987). Accordingly, there must be other per-
ceptual cues that encode a musician’s expression of

dynamic strength. By recording instrumental sounds at dif-

ferent pitches and intended dynamic strengths, and analy-

sing the influence of the factors pitch, timbre, and loudness

on the perceived musical dynamics in a full factorial

design, Fabiani and Friberg (2011) could show that loud-

ness and timbre have a similar impact on the perceived
dynamic strength, while pitch seems to exert only a com-

paratively minor influence. With a limited sample of only

five musical instruments, however, these authors were not

able to investigate which features of the acoustical signal

actually provided the expressive cues of dynamic strength.

Meyer (1993, p. 204 and 2009, p. 35ff.) suggested using

the decreasing difference in level between the strongest

partials and those with a frequency of about 3000 Hz as an

indicator for dynamic strength, without analyzing the

validity of this hypothesis systematically. Hence, apart

from a descriptive analysis of the sound power and the tim-

bral properties of all standard orchestral instruments, the

present study will analyse for which specific acoustical

cues the dynamic strength, as expressed by professional

musicians, becomes manifest.

As an empirical basis for these analyses, the study gen-

erated a comprehensive database of musical instrument

recordings using the enveloping surface method. For 40

musical instruments, including all standard orchestral instru-

ments of the classical and early romantic period, and differ-

ent historical construction methods, single notes were

recorded at pp and ff over the complete instrumental range in

semitone distance, and scales over two octaves were also

recorded. We then analysed the sound power for each instru-

ment, each pitch, and both dynamic levels. With respect to

the possible contribution of timbral properties to the expres-

sion of dynamic strength and to sound differences between

epochs, we used the recorded signals to calculate all audio

features available in the timbre toolbox (Peeters et al.,
2011). Based on a Bayesian linear discriminant analysis

(LDA, controlling for sound power and pitch), we selected

those features that discriminated best between recordings of

different dynamic. We then used a general linear mixed

model analysis (GLMM) in order to estimate the relative

predictive value of sound power and identified spectral fea-

tures for explaining the intended dynamic strength.

II. METHODS

A. Measurement setup and calibration

The sound power measurements were performed using

the enveloping surface method according to ISO 3745

(2012), using a quasi-spherical microphone array with a

radius of approximately r¼ 2.1 m, and 32 Sennheiser KE4-

211-2 electret microphones with a nearly uniform frequency

response from 20 Hz to 20 kHz [cf. Fig. 1(c)], located on the

faces of a truncated icosahedron (soccer ball shape). The

microphones were held in a framework by 90 lightweight

but robust fiberglass rods. The entire setup can be seen in

Fig. 2. The requirements defined by ISO 3745 (2012) regard-

ing the measurement conditions for precision method 1 were

met for all but a few measurements. With a free volume of

V¼ 1070 m3 the fully anechoic chamber at TU Berlin has a

lower limiting frequency of f¼ 63 Hz. None of the musical

instruments recorded exhibited a characteristic dimension of

the sound radiating parts of d0> r/2¼ 1.05 m. The criterion

r� k/4 is violated only for a few notes with a pitch below

E1, corresponding to a fundamental frequency of 41 Hz at a

tuning frequency of 440 Hz for A4. This applies to the lowest

notes of the contrabassoon, the bass trombone, and the tuba.

The recommended number of microphones was raised from

20 to 32 units in order to allow for a simultaneous acquisi-

tion of the directivity in higher spatial resolution (Shabtai

et al., 2017).

The frequency responses of the 32 microphones were

equalized individually in order to compensate for nonuni-

formities of the microphones as well as for the influence of

the pole structure holding the microphone array [Fig. 1(a)].

The individual sensitivities of all microphones were mea-

sured by means of a substitution measurement. A loud-

speaker with a broadband frequency response over the range

from 50 Hz to 20 kHz was used to produce a sine sweep sig-

nal, and a reference microphone (B&K 1/4 in. type 4939)

was used to measure the sound pressure created at a distance

of 1 m. All 32 microphones of the sphere were subsequently

placed at the position of the reference microphone, and the

measurement was repeated with the same signal. The result

was a set of the microphone transfer functions, derived by

complex spectral division of the microphone measurement

by the reference measurement [Fig. 1(c)].

To estimate the influence of the pole structure, a recipro-

cal BEM simulation was performed. The geometry of the

microphone in the mounting situation, with either five or six

sticks originating from each node, was simulated with a

point source at the opening of the microphone membrane,

allowing us to calculate the transfer path from any point in

space to the microphone. The microphone and a part of

either the five-bar or six-bar node were modeled as a com-

pact and rigid body placed at the microphone array’s radius.

1348 J. Acoust. Soc. Am. 144 (3), September 2018 Weinzierl et al.



Assuming that most musical instruments are extended sound

sources, and that sound therefore arrives at the microphone

from different angles, centered around the frontal incidence

(0�) pointing at the center of the microphone array, the

acoustic transfer functions were simulated for different

positions within a sphere with radius 1 m from the origin of

the (reciprocal) source. A weighted average transfer function

was then calculated with weights wi ¼ 1� ðDri
2Þ, based on

the distance Dri between the specific position i and the ori-

gin. Since any attempt to measure the transfer functions

accordingly would have been affected by the nonuniform

frequency response and the non-ideal directivity of the mea-

surement loudspeaker, the simulation was considered to be a

more reliable approach.

As can be seen in Fig. 1(b), the regular structure of the

pole construction causes a comb filter-like ripple of the fre-

quency response for frequencies above 1 kHz. The ripple is

slightly larger for the six-bar node. Depending on the mount-

ing position of each microphone, the measured transfer func-

tion Hmic was multiplied with either the five-bar or six-bar

node transfer function HBEM5;6. The resulting transfer function,

H ¼ Hmic � HBEM5;6; (1)

was inverted while preserving the phase, thus yielding the

raw compensation filter Hinv in the frequency domain. After

subsequent inverse FFT, all 32 impulse responses hinv were

windowed around their individual peak, using a

Dolph�Chebyshev window with 140 dB stopband attenua-

tion and 8193 taps and a subsequent rectangular window

FIG. 1. (Color online) Compensation of the frequency responses of the spherical microphone array. (a) Mesh used for a boundary-element-method simulation

of the influence of the pole structure holding the microphone array, with either five or six sticks originating from each node. (b) Averaged frequency responses

of the diffraction patterns caused by the five-bar or six-bar node used in the surrounding spherical microphone array. (c) Frequency responses of the 32 individ-

ual microphones resulting from a substitution measurement. (d) Resulting compensation filters for the individual microphones. Additional bandpass weighting

not shown here.

FIG. 2. (Color online) Spherical 32-channel microphone array surrounding

a musician in the anechoic chamber of TU Berlin.

J. Acoust. Soc. Am. 144 (3), September 2018 Weinzierl et al. 1349



with 4097 taps. The resulting compensation filters are shown

in Fig. 1(d). Except for some of the lowest notes with a fun-

damental of f< 60 Hz, a minimum-phase bandpass filter

(63 Hz, 20 kHz, with fourth order Butterworth slopes) was

additionally applied by default to suppress low- and high-

frequency noise.

Four 8-channel RME OctaMic microphone preampli-

fiers and A/D converters connected to an audio workstation

were used in order to record the microphone signals with

24 bit resolution at a sampling frequency of fS¼ 44.1 kHz. A

calibration process was performed each time the gain factor

of the measurement chain was changed. To measure all indi-

vidual 32 gain factors, a sine sweep signal generated in

MATLAB was fed to all the 32 input ports simultaneously, and

the impulse response of the entire measurement chain was

captured. The gain values were changed during the record-

ing, taking into consideration the loudness of each instru-

ment, to ensure that neither overload nor low modulation of

the inputs would occur. After the calibration of the electrical

measurement chain (microphone input), a pistonphone cali-

brator (B&K 4230, 94 dB @ 1 kHz) was used with the most

accessible microphone in the sphere to obtain the absolute

sensitivity of the measurement setup. These transfer func-

tions were used to normalize the recordings of each individ-

ual microphone.

B. Recording, musical instruments, musicians

All instruments of a typical Beethovenian orchestra

(violin, viola, violoncello, double bass, flute, oboe, clarinet,

bassoon, French horn, trumpet, trombone) were recorded

both in their modern form and with instruments typical for

the period around 1800 (some originals, some copies). Some

popular orchestral instruments without an older historical

predecessor (tenor saxophone, alto saxophone, bass clarinet,

contra-bassoon, tuba) were also recorded; for some instru-

ments, also a baroque precursor of the modern instrument

was measured, such as a baroque bassoon, or a baroque

transverse flute as a precursor of the classical keyed flute and

the modern Boehm concert flute. Finally, a modern guitar, a

modern harp, and a soprano singer were recorded. The mod-

ern instruments were played by members of the Deutsches

Sinfonieorchester Berlin (https://www.dso-berlin.de/) and

other professional orchestras in Berlin, and the historical

instruments were all played by members of the Akademie

f€ur Alte Musik (http://akamus.de/), one of the most

renowned ensembles for historically informed performance

practice in Germany. The modern instruments were tuned to

443 Hz and the classical instruments to 430 Hz, the assumed

tuning for an orchestra of the Viennese classical period;

most baroque instruments were tuned to 415 Hz. Details of

the recorded instruments, such as the maker as well as the

strings, bows, mouthpieces, etc. can be found in the docu-

mentation of the database of all recorded tones, which is

accessible online (Weinzierl et al., 2017).

An adjustable chair was used in order to place the musical

instrument as close as possible to the geometrical center of the

array, and the musicians were asked to perform in a playing

position that remained as constant as possible. Each musician

was asked to play single notes in ff (instruction: “play as loud

as possible without sounding unpleasant”) and in pp (instruc-

tion: “play as soft as possible without allowing the sound to

break up”) in semitone steps over the entire pitch range

required in the standard orchestral repertoire. The musicians

were asked to play without vibrato for approximately 3 s per

note, which was considered to be sufficient for the steady-state

analysis of each note. Of three notes played for each pitch and

each dynamic level, the softest or loudest and at the same time

musically convincing version was selected manually.

C. Sound power analysis

For the sound power analysis, the stationary parts of all

single note recordings were selected manually using a �3 dB

criterion for the beginning and the end of the stationary

phase. In the case of all examined instruments, this resulted

in durations between 200 and 4400 ms. The sound pressure p
was averaged within the steady sound boundaries for each

microphone position as

Lp ¼ 10 log10

1

N

XN

n¼1

p n½ �2

p2
0

0
BB@

1
CCA
; (2)

where N corresponds to the number of samples in the station-

ary phase and p0¼ 2 � 10�5 Pa.

The resulting individual microphone pressure levels

were averaged over the spherical enveloping surface as

�Lp ¼ 10 log10

1

M

XM

m¼1

100:1Lp;m

 !
dB½ �; (3)

where M¼ 32, thus yielding a sound power level of

LW ¼ �Lp þ 10 log10

S1

S0

� �
dB½ �; (4)

with S1 ¼ 54:63 m2 and S0 ¼ 1 m2:
To obtain perceptually meaningful values for the tran-

sient sounds (plucked guitar, harp), the sound pressures p[n]

in Eq. (2) were subject to time-weighted filtering (“fast”)

according to IEC 61672-1 (2013) prior to averaging:

LsðtÞ ¼ 20 log10 ð1=sÞ
ðt

�1
p2ðnÞe�ðt�nÞ=sdn

� �1=2�
p0

( )

� dB½ �; (5)

with s as the time of the exponential function for time

weighting F (fast, s¼ 0.125 s) and n used for the integration

from �1 to the observation time t.
Finally, the ISO 3745 (2012) correction factors C1

¼ �0:17 dB and C2 ¼ �0:13 dB were applied, considering

the meteorological conditions inside the anechoic chamber

with temperature h ¼ 17 �C, static pressure pS ¼ 101:3 kPa,

and a relative humidity of 60%. The correction factor C3 was

ignored, with values <0:1 dB for the most relevant part of the

spectrum with f � 5 kHz.
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D. Dynamic range indicators

The sound power values were calculated for each of the

3482 notes recorded, as described above. For string instru-

ments, the values varied from note to note within a typical

range of 6 6 dB, whereas for most wind instruments, there

was a systematic increase with pitch, as illustrated in Fig. 3.

To quantify the dynamic range of an instrument, we indi-

cated the highest value for the ff (LW_ff_max) and the lowest

value for the pp (LW_pp_min), following the procedure of

Meyer (2009). From a musical point of view, however, these

values are of limited practical relevance. This is first because

the maximum and minimum values belong to very contrast-

ing pitch regions, and the ranges for one specific pitch are

typically much narrower. For the flute, for example, we

obtain a dynamic range of 28 dB by contrasting the softest

pp with the loudest ff, whereas the dynamic range is hardly

more than 6 dB for one specific pitch over most of the tonal

range (Fig. 3). The second reason is that the extreme values

are often reached in pitch regions that are hardly used in the

musical repertoire. Taking again the example of the flute, the

highest sound power values are reached for the notes above

B[6, which are never used in the symphonies of Mozart,

Haydn, and Beethoven (cf. Fig. 3 and Quiring and

Weinzierl, 2016b).

In order to determine a more musically relevant value,

indicating the actual contribution of an instrument to the

orchestral balance, we have calculated a weighted average of

the pp and ff values over pitch, using a typical distribution of

pitch in the classical repertoire. This distribution was derived

from symphonies no. 1–9 of L. v. Beethoven for each indi-

vidual instrument, based on an analysis of the authors

(Quiring and Weinzierl, 2016a), which is available online

(Quiring and Weinzierl, 2016b). Beethoven’s symphonies

belong to the most popular orchestral works. In the

Repertoire Reports of the League of American Orchestras

2002–2013, no composer appears more often than L. v.

Beethoven (League of American Orchestras, 2018), and with

about 593 000 individual notes, the sample seems sufficiently

large to give a representative picture of how the different

instruments are actually used in the classical-romantic orches-

tral repertoire. The weighted average values for the sound

power in ff (LW_ff_av) and in pp (LW_pp_av) were thus calcu-

lated using the frequencies by which each pitch appears in the

symphonies of L. v. Beethoven as weights.

E. Timbral features

All audio data in the set was recorded at a sampling fre-

quency of 44.1 kHz in M¼ 32 channels from the spherical

microphone array. For further processing, only one of the 32

channels was used for the calculation of audio features per

instrument. Calculating a sum of the channels was not con-

sidered to avoid comb filter effects. Instead, we selected the

channel which most often exhibited the highest root-mean-

square (RMS) signal level of the 32 channels over all notes

played by each instrument as the principal channel, i.e., as

the principal direction of sound radiation.

For this channel, we extracted audio features using the

timbre toolbox (TTB, Peeters et al., 2011). The toolbox is

divided into global descriptors, referring to the temporal energy

envelope, and time-varying descriptors, which extract spectral

features using a sliding-window approach. Time-varying fea-

tures were calculated as trajectories with a Hamming window

of 23.2 ms duration and a hop size of 5.8 ms, as defined by the

TTB. Two statistical single-value descriptors across time,

namely, the median and the interquartile range (IQR) were

obtained for each feature trajectory from each recording.

The not-so-common use of tristimulus features (Pollard

et al., 1982) was tested, drawing on the TTB implementa-

tion, as well as on a custom implementation of the same

formulae, in order to increase robustness. For this, a sliding-

window analysis with a window size of 9.29 ms and a hop

size of 4.64 ms was applied for the partial tracking. The YIN

algorithm (de Cheveign�e et al., 2002) was used for estimat-

ing the fundamental frequency f0 of each window. The f0

boundaries were set to 20 and 4000 Hz, since the highest

pitch in the data lies at 2793.83 Hz (ISO pitch F7) and the

lowest pitch has a fundamental frequency of 21.82 Hz (ISO

pitch F0). The FFT was calculated with an additional zero

padding to a length of 213 samples. For each window, the

parameters of the first 30 partials were measured using qua-

dratic interpolation (Smith and Serra, 2005). Median and

IQR across time windows were subsequently calculated for

each tristimulus feature recording.

F. Statistical analysis

Initially, the available information on pitch, sound
power and all 141 TTB features of the 3482 audio recordings

(1764 pp-recordings and 1718 ff-recordings) were z-

standardized to reduce possible later problems with scaling,

multi-collinearity and comparative interpretation. New cate-

gorical variables were created to code intended dynamic
strength (pp vs ff), instrument (see Table I for instrument

FIG. 3. Sound power levels for a modern violin (a) and for a flute (b) over

pitch.
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list), instrument group (brass, string, woodwind, plucked
strings, and voice) and epoch (classical vs modern).

Two stepwise LDA were performed as data-mining pro-

cedures to identify the best informationally nonredundant

predictors for dynamic strength contained within the dataset.

While the first analysis included (and thereby controlled for)

sound power, pitch, and all available spectral features, the

second LDA left out the sound power variable to simulate a

scenario without any loudness information. During the anal-

yses, the overall Wilks Lambda coefficient was employed as

the primary variable inclusion/exclusion criterion. Feature

selection was stopped when either no significant decrease in

Wilks Lambda was achievable or when tolerance values for

single predictors fell below 0.1, thereby signaling an intoler-

able degree of multi-collinearity within the chosen predictor

set.

In order to estimate the relative predictive value of

sound power and the spectral features identified in the LDA,

GLMM analyses (Skrondal and Rabe-Hesketh, 2004) with

robust maximum likelihood estimation were performed. In

both models (GLMM 1, GLMM 2), dynamic strength was

implemented as the binominal dependent, employing a logis-

tic link function. Furthermore, both models estimated ran-

dom intercepts for instrument clusters and thereby

accommodated for instrument-specific dynamic and spectral

ranges, but did not contain fixed intercepts due to z-

standardization. In GLMM 1, pitch, sound power and the

timbral features identified by the first LDA where introduced

stepwise as fixed predictors, with pitch acting as a control

variable. The GLMM 2 was realized in a similar fashion,

drawing on spectral features identified in the second LDA,

but here sound power was left out to simulate a scenario

without loudness information. For each modeling step in

both models, cumulative and incremental marginal and con-

ditional R2 (Nakagawa and Schielzeth, 2013), as well as a

likelihood-ratio-test of model improvement, were

calculated.

III. RESULTS

A. Sound power and dynamic range of orchestral
instruments

The results of the sound power measurements are shown

in Table I. They include the minimum and maximum values

LW_pp_min and LW_ff_max reached for pp and ff over the entire

pitch range, as well as the weighted averages for pp and ff,
based on the pitch distribution of each instrument in the

classical-romantic orchestra repertoire (see Sec. II D).

The dynamic range, derived from the difference

between the sound power in pp and in ff, is remarkably dif-

ferent for the various instruments. It ranges from a minimum

of 18 –22 dB for the double reed instruments (oboe, bassoon,

contrabassoon, dulcian) to a maximum of 57 dB for the clari-

net. When taking the distribution of pitch into account, i.e.,

how the instruments are actually used in the orchestral reper-

toire, the averaged values range from 9 to 15 dB for the dou-

ble reed instruments to 33 dB for the clarinet.

TABLE I. Sound power levels for 40 musical instruments, determined for

single notes played at pp (“as soft as possible”) and ff (“as loud as possible”)

over the entire chromatic range of each instrument. The level LW_pp_min

shows the minimum value, and LW_ff_max shows the maximum value reached.

The levels LW_pp_av and LW_ff_av show the average of the pp and ff values for

the entire tonal range of each instrument, with the pitch distribution within

the symphonies of L. v. Beethoven used as weights. These values could only

be calculated for the modern and classical instruments that appear in these

symphonies. The sound power values for each individual note (pitch) is avail-

able in the electronically published database of all recorded notes, as well as

details of the recorded instruments, such as the maker as well as the strings,

bows, mouthpieces, etc. (Weinzierl et al., 2017).

Instrument LW_ff_max LW_pp_min LW_ff_av LW_pp_av

Violin

Classical 95 56 90 62

Modern 95 52 91 56

Viola

Classical 94 57 91 62

Modern 97 53 93 62

Violoncello

Classical 102 57 96 62

Modern 97 63 93 70

Double bass

Classical 100 66 96 73

Modern 100 56 96 70

Flute

Baroque transverse 101 69

Keyed flute (classical) 106 68 101 84

Modern 105 77 101 89

Oboe

Romantic 99 78 94 83

Classical 100 81 97 86

Modern 101 80 99 84

Cor anglais 101 79

Clarinet

Basset horn (F) 102 59

Classical (Bb) 105 57 97 65

Modern (Bb) 110 53 102 69

Bass Clarinet (Bb) 102 65

Bassoon

Baroque 98 77

Classical 101 82 99 86

Modern 104 82 101 86

Contrabassoon 98 80 94 85

Dulcian 98 77

French horn

Natural horn (A) 111 74 107 86

Double horn (F/Bb) 114 71 112 85

Trumpet

Natural trumpet (D) 107 81 104 83

Modern (C) 112 74 107 83

Trombone

Alto (Eb) 104 67

Tenor (classical, C) 106 79 106 78

Tenor (modern, Bb/F) 113 68 112 82

Bass (classical, F) 109 78

Bass (modern, Bb/F/G) 112 72

Tuba 122 71
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B. The contribution of sound power and timbre to the
expression of dynamic strength

The stepwise LDA 1 (incorporating sound power) was

able to identify sound power, spectral skewness (ERBfft,

median), and decrease slope as the best significant and non-

redundant predictors for intended dynamic strength, resulting

in the correct classification of 92% of the recordings.

Stepwise LDA 2 (without incorporating sound power) was

able to identify spectral skewness (ERBfft, median), spectral
flatness (STFTmag, median), and attack slope as the best

nonredundant predictors for intended dynamic strength,

resulting in correct classification of 85% of cases.

The GLMM 1 employing pitch, sound power and the

spectral features identified in LDA 1 was able to achieve a

marginal R2 of 80% and a conditional R2 of 96%. Inspection

of incremental R2 gains implies that sound power is able to

explain 69% of dynamic strength and the timbre feature

spectral skewness is able to explain an additional 9%. When

accommodating for the different dynamic ranges of instru-

ments with the help of random intercepts, however, sound
power is able to explain 96% of dynamic strength alone,

with only minor additional gains through spectral features

(see Table II).

The GLMM 2 employing pitch as control and the spec-

tral features identified in LDA 2 was able to achieve a mar-

ginal R2 of 72% and a cumulative R2 of 89%. Inspection of

incremental R2 gains implies that spectral skewness is able to

explain 35% of dynamic strength and spectral flatness an

additional 29%. When accommodating for the different spec-

tral ranges of instruments with the help of random intercepts,

however, spectral skewness is able to explain 48% of dynamic

strength alone with 38% additional gains in predictive power

with the help of spectral flatness (see Table III).

Scatterplots (Fig. 4) illustrate the interplay of the predic-

tors identified by both model variants in discriminating

between instrumental recordings of differing dynamic

strengths. Table IV demonstrates the intercorrelations of

sound power, pitch, and the spectral features used in the final

models.

IV. DISCUSSION

The current investigation presents a comprehensive

dataset of sound power measurements for 40 musical instru-

ments, including all standard orchestral instruments. With

professional musicians instructed to play as softly and as

loudly as possible, and covering the whole chromatic range

of the individual instruments, these values describe the phys-

ical potential of each instrument with respect to the produc-

tion of sound within the aesthetical limitations of musical

practice. At the lower end of the dynamic range, when the

tone can only just be steadily produced (pp), the sound

power levels range from 53 dB for the violin to 82 dB for the

bassoon and saxophone (tenor and alto). At the upper end of

the dynamic range, where the tone can still be produced in

an aesthetically acceptable manner (ff), these values range

from 88 dB for the guitar up to 122 dB for the tuba. The

dynamic ranges, determined by the difference between the

minimum pp level and the maximum ff level, lie between

18 dB for the contrabassoon and 57 dB for the clarinet.

Since these extreme values are often only reached for

certain notes (pitches), which sometimes lie outside the stan-

dard pitch range used in the orchestral repertoire, they bear

only limited relation to musical practice. Earlier studies tried

to address this by measuring not only single tones but scales

or specific musical excerpts (Meyer, 2009). Since the result-

ing values, however, depend on the selected excerpt and the

chosen register of the instrument and are thus not very repro-

ducible, we chose another approach by calculating a

weighted average of the individual notes and using the distri-

bution of pitch of each instrument in the symphonies nos.

1–9 of L. v. Beethoven as weights. These distributions are

publicly available (Quiring and Weinzierl, 2016b), so they

can also be used for future investigations. Using these

weighted averages to determine the mean dynamic range of

each instrument gives values ranging from 9 dB for the con-

trabassoon to 33 dB for the clarinet.

TABLE II. Results of a generalized linear mixed model (GLMM 1, binomial target with logit-link), predicting dynamic strength by pitch, sound power and

timbre features. Marginal R2 values provide the estimated explained variance in dynamic strength (as cumulative sum and incremental contribution of each

predictor) when considering fixed effects only. Conditional R2 values provide the estimated explained variance in dynamic strength when also taking into

account instrument-specific dynamic strength thresholds in terms of estimated random intercepts. The BIC and Deviance are information theoretical measures

of the overall model fit when a predictor is included. The F and p values verify the significance of the model, and the Sign shows whether the predictor is posi-

tively or negatively correlated with dynamic strength.

Predictor F Sign p (Wald) Deviance BIC R marg. R2 D marg. R2 R cond. R2 D cond. R2

Pitch 51.4 � 0.023 8888 8896 0% 0% 0% 0%

Sound power 5.2 þ <0.001 29466 29474 69% 69% 96% 96%

Spectral skewness (ERBfft, median) 178.7 � <0.001 19237 19244 77% 9% 96% 0%

Decrease slope 17.2 � <0.001 21312 21320 80% 3% 96% 0%

TABLE I. (Continued)

Instrument LW_ff_max LW_pp_min LW_ff_av LW_pp_av

Saxophone

Alto 111 82

Tenor 113 82

Timpani

Hand crank 108 60

Pedal 108 58

Harp 91 54

Guitar 88 59
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Since the measurements were conducted with only one

musical instrument and one performer per instrument, they

can, of course, not be straightforwardly generalized. There are

certainly differences between individual instruments and the

individual performers playing them. An indication of these

person- and instrument-related individual differences might be

given by comparing the results with previous results of Meyer

(1990). For the 12 instruments measured in Meyer’s study, the

values for the sound power at ff lie within 64 dB of our values,

with a mean absolute difference of 2 dB, except for the tuba,

for which Meyer’s value is 10 dB lower than ours. The values

for the sound power at pp lie within 610 dB of our values,

with a mean absolute difference of 6.8 dB. The ff values are

thus quite reproducible, whereas the values for pp seem to

depend much more on the instrument as well as the perception

and technical abilities of the individual performer.

Based on an extraction of timbral features (Peeters

et al., 2011) for each of the 3482 recorded notes, we have

attempted to quantify the relative contribution of sound

power and timbre to the expression of dynamic strength. The

results of a generalized linear mixed model analysis can be

interpreted from the perspective of a hypothetical listener

drawing on this information. If this listener had musical

experience (knowing the dynamic potential of individual

musical instruments) and room acoustical experience (being

able to estimate the sound power of a musical instrument in

a reverberant sound field), virtually no additional cues would

be necessary to identify the tone of a musical instrument

being played at pp or ff. If the individual properties of the

musical instruments are not known, the reliability decreases

considerably, as can be seen by comparing the estimated

marginal R2 with the conditional R2 (69% vs 96%), i.e., by

comparing a model for all musical instruments (marginal

R2) with a model, where the dynamic thresholds are allowed

to vary between the instruments (conditional R2). In such

situations, spectral properties can be used as additional cues

to compensate for the loss of information. The most infor-

mative feature in this context is spectral skewness, with a

left-skewed spectral shape indicating high dynamic

strength, i.e., with the mode of the spectral distribution

shifted towards higher partials. This cue, however, has to

be weighted by the pitch of the tone in question, due to the

general correlation between pitch and spectral skewness in

most instruments.

We then considered a hypothetical situation where for

some reason, no sound power information is available at all.

This could happen for example when listening to audio

recordings of instrumental music at arbitrary volume, or

when the influence of the room and the source-receiver dis-

tance cannot be reliably estimated to extrapolate from sound

pressure to sound power. As it turns out, even in such scenar-

ios listeners are still quite reliably able to identify the

intended dynamic strength by combining several dimensions

of timbral information. This is again the spectral skewness
of the tone, combined with spectral flatness and attack slope,

again weighted by the pitch of the played note. Low spectral
flatness provides a valuable cue for high dynamic strength,

because the amplitude difference between the partials and

the instrumental noise floor generated by wind or bow noise

increases (and the flatness decreases) with dynamic strength,

FIG. 4. (a) Sound power and spectral skewness (ERBfft, median) as predictors of dynamic strength. (b) Without sound power, spectral skewness (ERBfft,

median) and spectral flatness (STFTmag, median) are the best predictors of dynamic strength.

TABLE III. Results of a generalized linear mixed model (GLMM 2, binomial target with logit-link), predicting dynamic strength by pitch and timbre features

only. For the statistical measures see Table II.

Predictor F Sign p (Wald) Deviance BIC R marg. R2 D marg. R2 R cond. R2 D cond. R2

Pitch 8.1 � 0.005 13966 13974 0% 0% 0% 0%

Spectral skewness (ERBfft, median) 65.9 � <0.001 15605 15613 35% 35% 48% 48%

Spectral flatness (STFTmag, median) 111.2 � <0.001 25369 25377 64% 29% 86% 38%

Attack slope 20.6 þ <0.001 23785 23793 72% 9% 89% 3%
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and so does the slope of the attack of the tone. With a combi-

nation of these timbral features, a level of determinancy of

72% can be reached with an instrument-unspecific model

(marginal R2), and 89% with an instrument-specific model

(conditional R2).

Taken together, the present results indicate the acousti-

cal features on which listeners can draw in order to identify

the intended dynamic strength when listening to classical,

instrumental music. Even when sound power is difficult to

estimate in the concert situation and even more when listen-

ing to recorded music, timbre-related temporal (attack slope)

and spectral (spectral skewness, spectral flatness) features

can be used to fill the information gap, and to still decode

the dynamic expression in the acoustical signal almost

reliably.
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