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Abstract

In recent years artificial neural networks are successfully
applied especially in the context of automatic speech
recognition. As information processing systems, neu-
ral networks are trained by, e.g., backpropagation or re-
stricted Boltzmann machines to classify patterns at the
input of the system. The current work presents the im-
plementation of a deep neural network (DNN) architec-
ture for acoustic source localization.

Introduction

Beside the detection of the 2-dimensional angle of sound
incidence, a reliable 3D-sound-source localization can im-
prove the performance of hearing aids and spatial filtering
algorithms (beamformers), for instance. The distance is
usually more difficult to estimate than the direction of
arrival using auditory motivated localization cues, i.e.,
interaural level difference (ILD), interaural phase differ-
ence (IPD), and interaural time delay (ITD), cf. e.g. [1]
[2] [3]. Auditory depth perception is rather imprecise,
cf. e.g. [4], pp 116-137. In addition, most studies are
limited to detect the direction of sound incidence, often
just for one dimension - the azimuth. We propose to
use a deep neural network (DNN) using multiple hidden
layers to estimate the position of a sound source in all
three spatial dimensions, azimuth ϑ , elevation ϕ and
distance r. In this contribution, different features and
feature combinations are evaluated as an input of the
DNN. Tested feature types are ILD, ITD, binaural spec-
tral magnitudes and phases, as well as real and imaginary
parts of the signal spectrum.

Signal Processing

Deep Neural Network

A DNN consists of many neurons that are organized in
multiple layers. A feedforward network connects each
neuron in one layer with each neuron of the next layer
in a single direction. Forward passing the network as
depicted in Fig. 1, for each layer the single set of input
values (out of a data set) θin is weighted and summed
up according to Eq. (1). Following this, the result θnet is
forwarded to the activation function, here chosen to be
the sigmoid logistic function in Eq. (2). The parameters
I,H,O in Fig. 1 denote the number of neurons in the
respective layer, vector w defines the weights of the
connections between neurons of neighboring layers and
b is the bias weight of a layer. All output values θout of

previous layer are either the set of input values for the
next one or the output of the network.

Fig. 1: Path of neural network with two hidden layers.

θnet =

A∑
a=1

(wa · θina ) + b (1)

A = I computing the output values of

the first hidden layer, otherwise A = H.

θout =
1

1 + exp(−θnet)
(2)

Eq. (1-2) calculated H respectively O times

for each neuron in the layer.

The training of the DNN is realized as follows: Firstly,
the weights are randomly initialized with values between
w = ±0.1. Secondly, for one input vector the forward
passing is done as described above for Fig. 1. Next, the
network output is compared with a target vector by com-
puting the error as absolute difference which is propa-
gated back to the DNN input. The used method is known
as error backpropagation by stochastic gradient descent
minimizing the error as a function of the weights. Due
to the minimization the last steps are the calculation of
weight adjustments (with momentum) and the update of
weights. The procedure is repeated for the epoch length1

multiplied by a given number of epochs2.

Feature extraction from binaural signal

Feature vectors containing spatial information and feed-
ing the DNN are calculated using a binaural time sig-
nal y{l,r}[n] Eq. (3). The left and right channel is de-

1The epoch length is the number of input vectors in the data
set feeding the DNN.

2The number of epochs is a rational number. Without a re-
placement of an input vector during the training and according to
a number of epochs of one, each vector is given to the DNN for one
time, for instance.
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noted by the subscripted letters l and r; n defines the
time index.

y{l,r}[n] = [y{l,r}[n], y{l,r}[n−1], ...y{l,r}[n−N+1]]T (3)

ILD and ITD are extracted as follows (fs - sampling fre-
quency):

ILD = 20 log10


√

1
N

N∑
i=1

y2l [i]√
1
N

N∑
i=1

y2r [i]

 [dB] (4)

ITD = max(

∞∑
m=−∞

y∗l [m]yr[n+m]︸ ︷︷ ︸
cross correlation

)/fs · 106 [µs] (5)

In detail ILD and ITD are applied to 30 binaural time
signals coming from a gammatone filter bank in a fre-
quency range of 0.1 to 8 kHz [5]. Therefore the length
of the input vector amounts to 30 for separate used
features and 60 for combined features. Further audio
representations are the binaural magnitude |F(y{l,r})|,
the phase arg(F(y{l,r})), the real Re(F(y{l,r})) and the
imaginary part Im(F(y{l,r})) computed using the short-
term Fourier transformation (STFT) of the time sig-
nal as well as combinations of these features. Assum-
ing a STFT-length of 512 samples at a sampling rate of
fs = 16 kHz, the half of the spectrum includes 257 bins
for the left or right channel of the signal. For example,
combining magnitude and phase, the number of input
neurons is long as four times the number of bins repre-
senting the half spectrum. Tab. 1 shows possible input
vectors to the DNN and their specific lengths.

Tab. 1: Input vectors to the DNN and its length.
feature length

ILD 30
ITD 30

combined ILD, ITD 30+30
|F(y{l,r})| 257+257

combined Re(F(y{l,r})), Im(F(y{l,r})) 2·(257+257)

combined |F(y{l,r})|, arg(F(y{l,r})) 2·(257+257)

Preliminary experiments

Spatial speech signals

The binaural speech signals are obtained by convolu-
tion of head related impulse responses (HRIRs) [6] with
logatomes of the Oldenburg logatome corpus [7]. Used
logatomes were spoken by a male speaker without dialect.
The sampling rate is 16 kHz. Silent parts of the signals
are removed. HRIRs were measured using a KEMAR
mannequin by Thiemann et al. [6]. Seven directions
were chosen for the azimuth (ϑ ∈ {−30◦,−20◦, . . . 30◦})
and the elevation (ϕ ∈ {−10◦, 0◦, . . . . . . 50◦}). The cho-
sen angles are visualized in Fig. 2.

Fig. 2: Grid of used HRIRs, [ϑ; ϕ]

Due to the lack of measurements for different distances
just one feature for the distance is examined. For five
distances (r ∈ {10, 20 . . . 50}m) the atmospheric ab-
sorption is calculated based on ISO 9613-1 including for-
mulae for the pure tone attenuation coefficient [dB/m]
(cf. [8] Eq. (3-5)). This is not considered for speech be-
cause the frequency range of the logatomes is limited to
8 kHz. Instead the attenuation of sound is calculated for
monaural pink noise at a sampling rate of fs =44.1 kHz
in order to examine the sensitivity of the network for this
feature also for higher frequency ranges.

Comparison of input vectors for independent spa-
tial dimensions

For the evaluation of different input vectors parameters of
the network are chosen to be constant for all cases: Two
hidden layers are trained, whereby the learning rate is set
to a value of 0.1 and the momentum to 0.3. In each case
a set of input vectors calculated from 50 logatomes are
prepared for training and for testing purposes. Features
were calculated block-wise with a frame size of 25 ms, a
hop size of 10 ms and a STFT-length of 512 samples at
a sampling rate of fs =16 kHz. The runs of training and
testing for certain kinds of input vectors are conducted
independently for each spatial dimension.
As mentioned logatomes are used just for the horizontal
and median plane. Examining the atmospheric absorp-
tion for different distances the network is trained and
tested with the magnitude extracted from monaural pink
noise. Due to the changed sampling rate (fs =44.1 kHz)
the STFT-length is 2048 samples. Used input neurons
are all spectral values representing the frequency range
between 18 and 22.05 kHz.
Tab. 2 lists considered conditions whose results are shown
in this work. Seven cases of different kinds of input vec-
tors are examined for the horizontal and for the median
plane. One case is related to the distance. All cases are
numbered by Roman numerals. Furthermore, Tab. 2 in-
cludes the epoch length and the number of epochs as well
as the number of neurons I,H,O in the layers. The epoch
length differs occasionally for the reason that sometimes
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Tab. 2: First columns list tested cases and respective parameters. The last column contains the average hit rates of overall
performances (guessing rate: 14.3 for horizontal/median plane, 20% for distance).

Dim Kind of input Epoch length Trained epochs I H O average hit rate [%]
I [ϑ;0◦] ILD 19915 30.1 30 100 7 99.8
II [ϑ;0◦] ITD 20118 29.8 30 100 7 99.1
III [ϑ;0◦] ILD, ITD 18959 31.6 60 100 7 98.8
IV [ϑ;0◦] |F(y{l,r})| 19400 30.9 514 600 7 100

V [ϑ;0◦] Re(F(y{l,r})), Im(F(y{l,r})) 17633 34.0 1028 1100 7 100

VI [ϑ;0◦] |F(y{l,r})|, arg(F(y{l,r})) 20209 29.7 1028 1100 7 14.3

VII [0◦;ϕ] ILD 19330 31.0 30 100 7 100
VIII [0◦;ϕ] ITD 19351 31.0 30 100 7 37.1
IX [0◦;ϕ] ILD, ITD 19848 30.2 60 100 7 97.2
X [0◦;ϕ] |F(y{l,r})| 18788 31.9 514 600 7 94.2

XI [0◦;ϕ] Re(F(y{l,r})), Im(F(y{l,r})) 18315 32.8 1028 1100 7 23.5

XII [0◦;ϕ] |F(y{l,r})|, arg(F(y{l,r})) 17790 33.7 1028 1100 7 14.3

XIII r |F(noise)| 12000 50 190 200 5 71

more, sometimes less input vectors are generated for 50
randomly chosen logatomes of different signal lengths.
The varying (rounded) numbers of epochs arise from a
constant number of training iterations which were set to
(6 · 105).

Results and Discussion

The last column of Tab. 2 presents achieved average hit
rates and a summary of results. Moreover, each single
case is shown as a confusion matrix in Fig. 3. The cap-
tions include the Roman numerals as seen in Tab. 2 as-
signing a certain panel with the related feature and spa-
tial dimension.
In the horizontal plane the hit rates are high as expected
for ILD and ITD and their combination (cf. Fig. 3, panels
a, b). A perfect confusion matrix could be reached with
longer time frames for ILD and ITD calculation or a time
recursive smoothing of these values. The combination of
magnitude and phase could not reveal the same result
(cf. Fig. 3, panel c). Perhaps another set of network pa-
rameters or a different representation of the magnitude
and phase information could change this performance. In
contrast, the binaural magnitude and the combination
of the real and imaginary part show maximal hit rate
(cf. Fig. 3, panel b). Hence, the DNN probably extracts
the spatial information by itself. This fact is promising
for the median plane.
In the median plane the DNN is expected to extract the
monaural spectral coloration that is induced by changing
the elevation. Considering rather high precision for the
binaural magnitude it could be assumed that the DNN
learned to extract the mentioned coloration (cf. Fig. 3,
panel e). Since the ILD and the combination of ILD and
ITD show high accuracies in median plane (cf. Fig. 3,
panels d, e), it is possible that the DNN has detected a
cue in the narrowband ILD features, which is not char-
acterized by the actual ILD itself. The reason is that
the ILD should remain constant for all elevation angels,
i.e., was expected to be insensitive to the median plane.
Also the performance of the ITD only is above guessing
rate (cf. Fig. 3, panel f). Conceivably, a small but sys-

tematic deviation of the azimuth ϑ at each elevation is
the reason for changing characteristics of the ILD and
ITD (approx. 40 µs distributed over the whole range of
all used elevation angles). This could be caused by a
minimal and nearly imperceptible unbalance of the mea-
surement setup for the HRIR data set, respectively a
slight inclination od the median plane. A different ex-
planation for the precise localization using the ILD in
the median plane focus the directivity of recording mi-
crophones while the HRIR measurement. Without an
omni-directional characteristic deviations in the ILD are
plausible if the microphone membrane is changed in its
orientation while measuring the reference signal3 (cf. [9]).
In this case the deconvolution to extract the HRIR can-
not eliminate the influence of directivity which supports
the localization performance of the DNN, here.
For localizing the distance, the atmospheric absorption
cannot be considered for speech but potentially for broad-
band acoustic events. The DNN is able to detect dis-
tances by the attenuation of sound within the frequency
range of 18 – 22.05 kHz (cf. Fig. 3, panel i). Lower fre-
quency ranges were tested but could just reach results
near the guessing rate. With decreasing frequency the
training becomes more difficult because attenuation co-
efficients become smaller which leads to a blurred pattern
for the DNN.

Conclusion, Outlook

To conclude, the localization of speech signals by a DNN
is possible for the horizontal and median plane. In the
horizontal plane the use of ILD and ITD features should
be preferred for the smaller size of the input vectors sup-
porting an efficient training. For the median plane, spec-
tral features that contain additional monaural informa-
tion are theoretically expected to perform better. A di-
rectivity of recording microphones could support the lo-
calization performance using the ILD.
In future, experiments with a set of measured HRIRs for

3A reference signal without KEMAR mannequin is measured
for a deconvolution of the recorded signal in order to extract the
pure HRIR. Hereby, the excitation signal and fault effects, like
reflections or the influence of the speaker, are eliminated.
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(a) case I
(b) almost identical looking
plots for cases I - V

(c) case VI (d) case VII

(e) almost identical looking
plots for cases VII, IX, X

(f) case VIII

(g) case XI (h) case XII

(i) case XIII

Fig. 3: DNN performance of the testing. The average of
100 ms (10 frames) is rated as one decision of the network.

different distances and smaller ranges are planned. Long-
term, it is intended to implement a DNN architecture for
a spherical localization and a parallel estimation of the
source distance. Attention should be paid to the fact
that cues for azimuth and elevation are not independent
[10]. The system will be evaluated for robustness against
changes in room acoustic conditions and additional dif-
fuse noise.
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