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Abstract 

Wickerhamomyces anomalus Cf20 secretes the killer toxin KTCf20 that inhibits several 

wine spoilage yeasts of the species Pichia guilliermondii, P. membranifaciens, 

Brettanomyces bruxellensis and Dekkera anomala. KTCf20 binds cell wall extracts 

from the sensitive target P. guilliermondii Cd6; however, this capacity was lost when 

cell wall extracts were pre-treated with fungal β-glucanase. Pustulan and laminarin 

inhibited killer activity, suggesting that β-1,3 and β-1,6-glucans may be the putative 

binding sites for KTCf20 on the cell wall of sensitive cells. The toxin was produced and 

showed to be stable and highly active at physicochemical conditions suitable for 

winemaking process. In addition, the strain Cf20 is compatible with Saccharomyces 

cerevisiae in co-culture conditions being potential its application in a mixed starter 

culture. These data suggest that W. anomalus Cf20 and/or KTCf20 are promising 

biocontrol agents against spoilage yeasts during wine-making process. 

 

Keywords: killer toxin; Wickerhamomyces anomalus; spoilage yeasts; biocontrol; 

winemaking 
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1. Introduction 

Some yeast strains can produce killer toxins (KTs), which are antimicrobial proteins or 

glycoproteins that enable the producing organism to kill competing yeast species. Since 

their discovery in 1963 in Saccharomyces cerevisiae (Bevan and Makower, 1963), KTs 

have been isolated and studied in a wide number of genera including Candida, 

Hanseniaspora, Kluyveromyces, Pichia, Wickerhamomyces, Zygosaccharomyces, 

among others (Liu et al., 2013). KTs may be genetically encoded in chromosomal genes 

(KHR, KHS, PaKT), dsRNA plasmids (K1, K28, Klus) or dsDNA linear plasmids (PaT, 

zymocin). The modes of action of KTs are highly variable and include the formation of 

pores in the cytoplasmic membrane; the arrest of the cell cycle of the sensitive yeast in 

G1 or S phase; rRNA fragmentation and hydrolysis of β-1,3- and/or β-1,6-glucans of the 

cell wall (Friel et al., 2007; Jijakli and Lepoivre, 1998; Kast et al., 2014; Magliani et al., 

1997; Santos et al., 2013). Despite the variety of mechanisms involved, the first step of 

the killing process of all known KTs is the interaction of the killer toxin with a primary 

receptor located on the cell wall of the sensitive cells. For example, β-1,3-glucan has 

emerged as the primary target of some KTs produced by Wickerhamomyces and 

Williopsis species (Magliani et al., 2008).  

Microbiological contaminations by spoilage moulds and yeasts species such as 

Dekkera/Brettanomyces bruxellensis, P. membranifaciens and P. guilliermondii are 

frequent during winemaking (Fugelsang and Edwards, 2007; Garijo et al., 2015). In this 

context, it is a priority for the wine industry to modulate the growth of these undesirable 

microorganisms to avoid economic losses. Although killer yeasts have been widely 

studied as potential biological control agents (Liu et al., 2013; Santos et al., 2009; 

Villalba et al., 2016), only a few commercial starter cultures with antimicrobial 

properties are available. 
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The species W. anomalus (formerly P. anomala) has the ability to grow under high 

osmotic pressure, at low pH, and at a broad range of temperatures (Fredlund et al., 

2002). Due to its physiological robustness, W. anomalous killer strains are commonly 

found in the most diverse environments, including as resident yeast of wineries. 

Wickerhamomyces anomalus is classified as a biosafety Class-1 organism (Passoth et 

al., 2006) and many reports suggest their potential as biocontrol agents against plant 

pathogenic fungi and spoilage yeasts (Druvefors et al., 2005; Friel et al., 2007; Parafati 

et al., 2016). The aim of this work was to characterize the killer phenotype of W. 

anomalus Cf20, an autochthonous killer strain, previously isolated from wine cellars of 

the Northwest region of Argentina (Fernández de Ullivarri et al., 2011). The main 

biochemical properties of KTCf20 and its activity against different spoilage yeasts and 

S. cerevisiae were evaluated in order to validate its application during winemaking. 

 

2. Materials and Methods 

2.1 Yeast strains and growth media 

The yeast strains used in this study are described in Table 1. Wickerhamomyces 

anomalus Cf20 and all autochthonous yeast strains were isolated from wine cellars from 

Northwest and Cuyo regions of Argentina. Additional spoilage yeasts were kindly 

provided by the Yeast Collection of San Juan University (Argentina).  

All strains were cultured in YPD (Yeast Peptone Dextrose) broth containing 10 g/l yeast 

extract, 20 g/l peptone, 20 g/l glucose. If required, the pH was buffered with 0.1 M citric 

acid/dibasic sodium phosphate. For killer activity assay, YPD-MB (methylene blue) 

agar (YPD supplemented with 30 mg/l methylene blue and 20 g/l agar) buffered at pH 

4.5 was used. All strains were maintained in YPD supplemented with 20 % glycerol at -

20 ºC. 
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2.2 Killer activity  

Killer activity (KA) of W. anomalus Cf20 was tested against a panel of yeasts by the 

diffusion plate assay. The plate was seeded with sensitive strain at a final concentration 

of 1x106 cells/ml (50 µl, OD600nm 2) in YPD-MB agar pH 4.5. An exponential culture of 

W. anomalus Cf20 (30 µl, OD600nm 2) was spotted by triplicated on the agar plates. After 

48-72 h of incubation at 20 ºC, strains were designated as sensitive when the spot grew 

surrounded by a clear zone of inhibition. The assays were repeated twice in triplicate. 

Also, KA of crude extract was quantified by a diffusion plate method (Fernández de 

Ullivarri et al., 2014). The diameter of the inhibition zones was measured with a caliber. 

KA was defined as arbitrary units (aU) per ml and was calculated using the formula: 

KA (aU/ml) = 10(D+5.64)/6.64. D is the diameter of the inhibition zone in millimeters and 1 

aU is the amount of toxin capable of producing a clear inhibition zone of 1 mm in 

diameter.  

 

2.3 Production and purification of KTCf20 

Wickerhamomyces anomalus Cf20 was inoculated at 1×106 cells/ml in YPD broth pH 

3.0 and incubated at 25 ºC during 96 h. The culture was centrifuged at 10 000 ×g for 10 

min and sterilized by filtration with 0.22 µm PVDF filters (Millipore). Glycerol was 

added to the cell-free supernatant to a final concentration of 10%. 

For purification, 1 liter of crude extract was concentrated by ultrafiltration (Amicon 

YM30, 50 kDa, Millipore) to a final volume of 5 ml. The concentrated fraction was 

purified by size exclusion chromatography (SEC) through a 10×300 mm Sephadex G-

75 column with 0.1 M citric acid/dibasic sodium phosphate pH 3.0 (BCF) at a flow of 

0.9 ml/min. Active fractions were pooled and concentrated 10× at 30 ºC for 7 h in a 
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SpeedVac Savant SPD 121P (Thermo Scientific, Thermo Electron Corporation, Ohio, 

USA). For experiments, dilutions of the concentrated KT were prepared in BCF pH 3.0. 

Protein concentration was quantified by the Bradford method. 

Purified KTCf20 was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) using silver staining technique (Chevallet et al., 2006). 

In native electrophoresis, samples were analyzed in a 5% continuous acid 

polyacrylamide gel soaked in a 0.375 M acetic acid-KOH solution, pH 4.0 (Bollag and 

Edelstein, 1991).  

 

2.4 Characterization of KTCf20 

2.4.1 Sensitivity to proteases 

To confirm the protein nature of KTCf20, 50 µl of aqueous solutions of trypsin, 

chymotrypsin and pepsin (0.1 mg/ml each) were added to 450 µl of KTCf20 (5,000 

aU/ml) and incubated at 20 ºC for 4 h. KA was quantified after treatment. 

2.4.2 Stability of KTCf20 

For pH stability assays, the pH of the KTCf20 dilution was adjusted for 1 h from 1.0 to 

7.0 with 1 M HCl or 1 M NaOH. Then, the pH was readjusted to 3.0. To study 

thermostability, KTCf20 (5,000 aU/ml) was treated for 1 h at -20, 4, 10, 15, 20, 25, 30, 

37, 50, 72 and 98 ºC. After treatments, residual KA was measured by the diffusion plate 

method. 

2.4.3 Effect of oenological conditions on KTCF20 

At optimal pH and temperature, stability of KTCf20 under conditions present during 

wine fermentation was evaluated. The effect of different concentrations of ethanol (8, 

12, 16%), SO2 (25, 50, 100 mg/l) and sugars (100, 200, 300 g/l using a ratio 1:1 of 

glucose:fructose) was studied by treatments during 2 h. Later, residual KA was 
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measured by the diffusion plate method and cell growth of sensitive strain P. 

guillermondii Cd6. In addition, the activity and stability of KTCf20 was assayed in wine 

produced by S. cerevisiae Cf8. 

2.4.4 Binding of KTCf20 to polysaccharides 

To study competitive inhibition of KA by cell wall components, 180 µl of KTCf20 

(10,000 aU/ml) and 20 µl of different polysaccharides (1% each; >99.5%, Sigma) were 

mixed as shown in Table S1 and incubated at 20 ºC for 30 min. After incubation, the 

KA relative to an untreated control was quantified. 

2.4.5 Glucanase activity 

To investigate the possible mechanism of action of KTCf20, glucanase activity was 

determined according to the method described by (Bara et al., 2003) using laminarin 

(0.3%, pH 3.0, Sigma) as substrate. Glucanase from Trichoderma harzianum (3 mg/ml, 

Sigma) was used as a control at dilution that showed the same KA than KTCf20. 

Samples were incubated at 25 and 37 ºC for KTCf20 and glucanase, respectively, and 

concentration of released glucose was determined enzymatically (Glicemia kit, Wiener 

Lab., Argentina, code 1400070).  

2.4.6 Location of KTCf20 receptor 

2.4.6.1 Cell wall extracts preparation from sensitive yeast strain 

Purified cell wall extracts were obtained according to a standardized protocol (Prillinger 

et al., 1993). A stationary culture of P. guilliermondii Cd6 (500 ml) was prepared in 

YPD pH 5.5 at 30 ºC for 72 h with agitation (100 rpm). It was centrifuged at 8000 ×g 

and washed three times with sterile distilled water until the supernatant had no color. 

Cells were suspended in 10 ml of sterile distilled water and disrupted in a French press 

until no whole cells were observed under optic microscope (100×). The cell lysate was 

centrifuged at 5000 ×g for 5 min and the pellet was washed repeatedly with distilled 
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water at 0 ºC until the discarded supernatant was clear. In order to remove the 

cytoplasmic remnants, the pellet was washed repeatedly with 1% sodium deoxycolate 

(pH 7.8) in constant stirring. Between each wash with sodium deoxycolate, the pellet 

was washed with distilled water at 0 ºC. The extract was freeze-dried, pulverized and 

stored at 4 ºC. 

2.4.6.2 Interaction of KTCf20 with cell wall extracts 

A reaction mix containing 270 µl of purified toxin (10,000 aU/ml) and 30 µl of cell wall 

suspension (3% w/v) in BCF pH 3.0 was incubated at 20 ºC for 10 min. As control, 

KTCf20 was incubated with a cell wall suspension previously treated with fungal β-

glucanases. Enzymes were inactivated at 100 ºC for 5 min before incubation with 

KTCf20. After incubation, samples were centrifuged at 13,000 ×g for 5 min and the 

supernatants were separated from the cell wall pellet. To confirm that KTCf20 was 

bound to the cell wall, we evaluated the toxin desorption as follows: 300 µl of BCF + 

1.5 M NaCl were added to the pellet; the suspension was incubated for 5 min at 20 ºC, 

then centrifuged at 13,000 ×g for 5 min and the supernatant was collected. The cell wall 

pellet was suspended in 300 µl of BCF pH 3.0. The KA of the different fractions was 

quantified. 

2.4.7 Transmission Electron Microscopy (TEM) 

Mid-exponential-phase cells of P. guilliermondii Cd6 were grown in 5 ml of YPD broth 

and harvested by centrifugation at 10,000 ×g for 10 min. Cells were suspended in 1 ml 

of KTCf20 (10,000 aU/ml) and incubated for 10 h. KTCf20 treated at 100 ºC for 15 min 

was used as control. Samples were further processed for TEM in CIME (Integral Center 

of Electron Microscopy, National University of Tucuman, Argentina) using a Zeiss 

EM109 transmission electron microscope (Oberkochen, Germany). 
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2.5 Co-culture of W. anomalus Cf20 with S. cerevisiae strains 

Pure and mixed cultures of W. anomalus Cf20 with S. cerevisiae Cf8 or M12 were used 

as starter cultures for alcoholic fermentation. Flasks containing 100 ml of Malbec red 

must were aseptically inoculated with the different cultures to obtain an initial cell 

density of 5 x 106 CFU/ml. Mixed fermentation trials were simultaneously inoculated 

with: I) 106 cells/ml of W. anomalus Cf20 and 106 cells/ml of the S. cerevisiae Cf8. II) 

106 cells/ml of W. anomalus Cf20 and 106 cells/ml of the S. cerevisiae M12.Samples 

were incubated at 28 °C during 10 days. Enumeration of W. anomalus was carried out in 

YNB added with glycerol (2%) since S. cerevisiae is not capable to grow in this 

medium, whereas yeast total count was performed in YPD medium. Moreover, ethyl 

acetate concentration in pure and mixed cultures was evaluated by gas chromatography 

following the protocol described by Mendoza et al. (2011). 

 

2.6 Statistical analyses 

One-way analysis of variance (ANOVA) was applied to the experimental data and the 

Tukey’s test was performed for multiple comparisons with the software Infostat. 

Differences were considered statistically significant for p-value < 0.05. 

 

3. Results and discussion 

3.1 Inhibition spectrum of KTCf20 

Wickerhamomyces anomalus Cf20 was able to inhibit 27 out of 35 strains assayed 

(Table 1). Species belonging to the genus Pichia were the most sensitive to W. 

anomalus Cf20. Strains of the genera Cryptococcus, Filobasidium, Hanseniaspora, 

Metschnikowia and Torulaspora were also sensitive, while S. cerevisiae strains were 

only slightly sensitive or resistant to the presence of W. anomalus Cf20. These results 
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are in agreement with the wide inhibitory spectrum of toxins produced by different 

strains of W. anomalus described in the literature (Friel et al., 2007; Parafati et al., 

2016). In contrast to other killer yeasts, this species shows activity against both fungi 

and bacteria (Druvefors et al., 2005; Guo et al., 2013; Muccilli et al., 2013). In addition, 

the inhibitory activity of KTCf20 against six spoilage yeasts as well as two S. cerevisiae 

strains (potential starter cultures) isolated from Argentinian wines and wineries was 

quantified. B. bruxellensis Ld1, D. anomala BDa15, P. guilliermondii Cd6 and P. 

membranifaciens BPm481 showed high sensitivity to the KTCf20 (3,022; 8,552; 24,204 

and 34,237 aU/ml, respectively), while strains Ld2 and BZb317 of Z. bailli and Sch. 

pombe BSp399 were only slightly inhibit. S. cerevisiae Cf8 and M12 were slightly 

sensitive to Cf20 crude extract (369 and 738 aU/ml, respectively) as compared to the 

sensitive spoilage yeasts described previously.  

 

3.2 Characterization of KTCf20 

3.2.1 Purification 

KTCf20 was concentrated by ultrafiltration (cut-off 50 kDa) and purified by SEC. After 

purification, the specific KA increased 237-fold and the yield was 20% (Table 2). The 

purified KT was used for further characterization. 

 

3.2.2 Evaluation of biochemical properties of KTCf20 

KTCf20 was sensitive to the activity of the three proteases tested, confirming its 

proteinaceous state (data not shown). The highest concentration of KTCf20 in cultures 

was reached at stationary phase (96 h), as is shown in Table 3. Regarding 

thermostability, the toxin was stable until 35 °C and it lost 90% of its KA after 1 h at 37 

ºC. Its thermosensitivity is similar to others toxins such as Kh-II (35 ºC, 30 min) and K5 
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(35 ºC, 55 min) (Izgü and Altinbay, 2004; Kagiyama et al., 1988). The pH stability was 

also similar to other KTs produced by W. anomalus (Kagiyama et al., 1988; Muccilli et 

al., 2013) which showed activity and stability at acidic pH (2-4.5). 

Incubation of KTCf20 with different concentrations of sugars, ethanol and SO2 did not 

affect its KA (Table 4). In addition, this toxin was stable in wine produced by S. 

cerevisiae Cf8 and the high levels of activity persisted after 72 h.  

Furthermore, the binding capacity of KTCf20 to polysaccharides with different 

structural characteristics was studied. Activity of KTCf20 decreased 90 and 100% after 

the incubation in presence of laminarin (β-1,3-glucan) and pustulan (β-1,6-glucan), 

respectively, whereas the presence of polysaccharides with other structures (e.g. 

mannan or quitin) did not affect KA (Fig. 1). These results suggest that KTCf20 binds 

to β-1,3 and β-1,6-glucans, components in  the cell walls of yeast species. The binding 

of KT produced by W. anomalus to these types of polysaccharides has been widely 

reported (Izgü et al., 2005; Magliani et al., 1997;).  

In order to confirm that a possible mechanism of action of KTCf20 is glucanase 

activity, this toxin was co-incubated with laminarin (β-1,3-glucan) and the glucose 

concentration was determined. After incubation, 15% (0.46 mg/ml) of the laminarin was 

hydrolyzed. According to Jijakli and Lepoivre, (1998) who defined 1 unit (1 U) of β-

1,3-glucanase as the amount of enzyme releasing 1 µg of glucose per min per ml of 

enzyme solution, 1 aU of KTCf20 is equivalent to 3.5 × 10-7 U of β-1,3-glucanase.  

 

3.2.3 Location of KTCf20 receptor 

In studies of the interaction between KTCf20 and the cell wall fraction of the sensitive 

strain P. guilliermondii Cd6, only 5% of the toxin remained in the supernatant after 

incubation during 30 min at 20 ºC (Fig. 2). A subsequent washing with BCF (pH 3.0) 
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was not able to separate the toxin from the cell wall of P. guilliermondii Cd6. After 

increasing the ionic strength of the media using 1.5 M NaCl, 35% of the initial amount 

of toxin was desorbed. Remnant KA of the cell wall suspension was quantified after 

treatments. Only 14% (907 aU/ml) of the non-recovered toxin (6421 aU/ml) could be 

detected. KTCf20 was unable to bind to cell wall pre-treated with fungal β-glucanases.  

The results shown above point out that KTCf20 is a glucanase that interacts with a 

receptor located in the cell wall of the sensitive strain P. guilliermondii Cd6. In 

agreement with our results, several KTs (PaKT, K5 and PKT) produced by W. anomalus 

are proteins with glucanase activity that degrade β-1,3- and/or β-1,6-glucans of the cell 

wall as primary target in sensitive cells (Izgü and Altinbay, 2004; Jijakli and Lepoivre, 

1998; Polonelli et al., 2011).  

 

3.2.4. Transmission electron microscopy (TEM) 

The effect of the activity of KTCf20 on sensitive cells of P. guilliermondii Cd6 was 

studied by TEM. As compared to the control treated with heat-inactivated KTCf20, cells 

treated with active KT showed decreased cell wall thickness in many zones, a collapse 

cytoplasmic membrane, nuclear fragmentation and apparition of electrodense regions 

and apoptotic bodies (Fig. 3). Also, the plate counts confirmed the loss of viability 

(decrease of 2.5 log CFU/ml) after treatment with active KT. Cytotoxic effects similar 

to those observed in cells of P. guilliermondii Cd6 have been previously described for 

C. albicans cells treated with killer peptides derived from PaKT (Magliani et al., 2008; 

Polonelli et al., 2011). Several authors have reported that sensitive cells treated with low 

doses of KT, unlike when they are treated with high doses, presented typical markers of 

apoptotic processes (Breinig et al., 2006; Reiter, 2005; Santos et al., 2013). Possibly, the 

effect of KTCf20 at the low concentration studied (10,000 aU/ml, 3.5×10-3 U of β-1,3-
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glucanase) on the sensitive cells may be due to an activation of apoptotic mechanisms 

initiated as a response to cell wall degradation. 

 

3.3 Microfermentations of W. anomalus Cf20 in co-culture with S. cerevisiae strains 

In order to evaluate the potential application of the killer strain Cf20 as a starter culture 

in a mixed formulation with S. cerevisiae, microfermentations were performed in 

Malbec must. Pure cultures of W. anomalus Cf20, S. cerevisiae Cf8 and M12 showed 

cell populations of about 5x108 CFU/ml at day 1 of fermentation and they stayed at 

similar levels (108 CFU/ml) during 10 days (Fig. 4A). In fermentations conducted by 

mixed cultures of W. anomalus Cf20-S. cerevisiae Cf8 (Fig. 4B) or W. anomalus Cf20-

S. cerevisiae M12 (Fig. 4C), it was observed that Saccharomyces strains were not 

inhibited by presence of killer strain. However, in both mixed fermentations W. 

anomalus showed lower levels of cell population than in pure culture, with a marked 

decrease of cell counts after 4 days (Fig. 4B and 4C). These results are in agreement 

with other studies of non-Saccharomyces yeasts and S. cerevisiae in mixed culture 

which reported that different non-Saccharomyces species only grow during early stages 

of fermentation (Domizio et al., 2011; Padilla et al., 2017). Additionally, W. anomalus 

is not tolerant to high concentrations of ethanol (Passoth et al., 2006).  

Moreover, W. anomalus is a strong producer of ethyl acetate in pure culture (Suarez-

Lepe and Morata, 2012). For this reason the concentration of this volatile compound 

was determined at the end of fermentation. Figure 5 shows that the strain Cf20 produced 

high levels of ethyl acetate (434.34 mg/l) in pure culture. However, in mixed cultures 

with S. cerevisiae, the production of ethyl acetate was moderate. Thus, W. anomalus 

Cf20 is a candidate to formulate a mixed culture with S. cerevisiae to conduct alcoholic 

fermentation and control wine spoilage yeasts. 
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4. Conclusion 

In conclusion, KTCf20 of W. anomalus is a potential biocontrol agent that is active 

against a broad spectrum of wine yeasts, mainly spoilage yeast strains. Also, strain W. 

anomalus Cf20 and its killer toxin are compatible with autochthonous starter cultures of 

S. cerevisiae. KTCf20 is a glucanase that interacts with β-1,3 and β-1,6 glucans of the 

cell wall of the sensitive strain. The optimal activity, stability and production conditions 

of KTCf20 suggest that W. anomalus Cf20 could be used to control undesirable yeasts 

and to accomplish controlled fermentations during wine production. 
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Figure captions 

Figure 1. Relative killer activity (rKA) of KTCf20 pre-treated with different 

polysaccharides.. Values represent the mean of two independent experiments performed 

in triplicate. Values of each column marked by different letters are significantly 

different (p < 0.05) according to Tukey’s test. Linear vertical bars represent standard 

deviation.  

Figure 2. KTCf20 adsorption and desorption from cell wall of Pichia guilliermondii 

Cd6. TC, untreated toxin control; AC, adsorption control; BCF, cell wall with KTCf20 

incubated with BCF; BCF+NaCl, cell wall with KTCf20 incubated with BCF+NaCl 1.5 

M; CW, remnant cell wall suspension; CW+ZG, cell wall pretreated with fungal β-

glucanases and incubated with KTCf20. Values represent the mean of two independent 

experiments performed in triplicate. Values of each column marked by different letters 

are significantly different (p < 0.05) according to Tukey’s test. Linear vertical bars 

represent standard deviation.  

Figure 3. Transmission electron microscopy (TEM) showing the cytotoxic effects of 

KTCf20 on Pichia guilliermondii Cd6. Yeast cells were treated with KTCf20 (A) and 

heat-inactivated KTCf20 (B).  

Figure 4. Cell counts during microfermentations of W. anomalus Cf20, S. cerevisiae 

Cf8 and S. cerevisiae M12 in pure (A) and mixed cultures of Cf20 with Cf8 (B) and 

Cf20 with M12 (C). Values represent the mean of two independent experiments 

performed in triplicate. Linear vertical bars represent standard deviation.  

Figure 5. Ethyl acetate production by W. anomalus Cf20 in pure and mixed cultures 

with Saccharomyces strains during microfermentations. Values represent the mean of 

two independent experiments performed in triplicate. Values of each column marked by 
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different letters are significantly different (p < 0.05) according to Tukey’s test. Linear 

vertical bars represent standard deviation. 
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Table 1. Killer spectrum of Wickerhamomyces anomalus Cf20. 

Indicator strain WaCf20 

culture 

WaCf20 crude 

extract (aU/ml) 

Characteristics 

B. bruxellensis Ld1 1+* 3,022 K-/spoilage 

Cryp. albidus Cf16 1+ ND K-/autochthonous 

Cryp. laurentii. Cf12 1+ ND K-/autochthonous 

D. anomala BDa15 2+ 8,552 K-/spoilage 

F. capsuligenum Cb3 - ND K-/autochthonous 

F. capsuligenum Cb7 2+ ND K-/autochthonous 

F. capsuligenum Cb11 3+ ND K-/autochthonous 

H. uvarum Cd8 3+ ND K-/autochthonous 

H. uvarum Cd14 1+ ND K-/autochthonous 

H. uvarum Cd17 1+ ND K-/autochthonous 

H. uvarum Cd18 1+ ND K-/autochthonous 

H. uvarum Cd21 1+ ND K-/autochthonous 

Metschnikowia sp. Cf2 2+ ND K-/autochthonous 

P. guillermondii Cd4 4+ ND K-/spoilage/autochthonous 

P. guilliermondii Cd6 5+ 24,204 K-/spoilage/ autochthonous 

P. kudriavzevii Cd23 2+ ND K-/autochthonous 

P. membranifaciens BPm481 7+ 34,237 K-/spoilage 

P. mexicana Cf7 3+ ND K-/autochthonous 

S. cerevisiae Cf8 - 369 K+/starter/autochthonous 

S. cerevisiae M12 - 738 K+/starter/autochthonous 

S. cerevisiae Cf10 - ND K-/autochthonous 

S. cerevisiae Cf13 1+ ND K+/autochthonous 

S. cerevisiae Cf15 1+ ND K-/autochthonous 

S. cerevisiae Cf17 1+ ND K-/autochthonous 

S. cerevisiae Cf18 1+ ND K-/autochthonous 

S. cerevisiae M7 - ND K-/autochthonous 

S. cerevisiae M11 1+ ND K-/autochthonous 

Sch. pombe BSp399 - - K-/spoilage 

T. delbrueckii M1 1+ ND K-/autochthonous 

T. delbrueckii M2 3+ ND K-/autochthonous 

T. delbrueckii M4 1+ ND K-/autochthonous 

T. delbrueckii M9 1+ ND K-/autochthonous 

T. delbrueckii M10 1+ ND K-/autochthonous 

Z. bailli Ld2 - - K-/spoilage 

Z. bailli BZb317 - - K-/spoilage 

*Number next to “+” represents inhibition zone in mm. “-“ no inhibition ND: not determined 
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Table 2. Purification of KTCf20 

  
Total 

Volume 

(ml) 

Total 

Protein 

(mg) 

Total 

Activity  

(10
6
aU) 

Specific 

Activity  

(10
4
aU/mg) 

Purification 

(fold) 

Yield 

(%) 

Crude 

extract 
1,000 1,550 20.1 1.3 1 100 

UFa 5 355 15.2 43.0 3.3 76 

SEC (G-75)
b
 3 1.3 4.0 307 237 20 

aUltrafiltration (50 kDa MWCO) 
bSize exclusion chromatography 
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Table 3. Physicochemical features of KTCf20 production, activity and stability. 

Production  Activity  Stability 

Time (h) pH T (°C)  pH T (°C)  pH T (°C) 

R O R O R O  R O R O  R R 

24-96 96 2.0-4.5 3.0 10-30 25  2.0-5.0 3.0 10-25 20  2.0-4.5 -20-35 

R: range 

O: optimal 
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Table 4. Residual activity of KTCf20 under winemaking conditions. 

Oenological parameters Conditions Residual activity
*
 

Ethanol 8% 100% 

12% 98% 

16% 97% 

SO2 25 mg/l 100% 

50 mg/l 100% 

100 mg/l 99% 

Sugars 100 g/l 100% 

200 g/l 99% 

300 g/l 98% 

Wine 2h 98% 

24h 95% 

72h 90% 

*Values of residual activity represent the mean of two independent experiments performed in triplicate. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Highlights 

 

W. anomalus Cf20 produces the toxin KTCf20 active against wine spoilage yeasts 

KTCf20 binds to β-1,3 and β-1,6-glucans on the cell wall of sensitive cells 

KTCf20 shows optimal activity, stability and production under wine conditions  

W. anomalus Cf20 and/or KTCf20 are promising biocontrol agents for wine production 

 


