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Abstract In this article, we study the shadow produced
by rotating black holes having a tidal charge in a Randall–
Sundrum braneworld model, with a cosmological constant.
We obtain the apparent shape and the corresponding observ-
ables for different values of the tidal charge and the rotation
parameter, and we analyze the influence of the presence of
the cosmological constant. We also discuss the observational
prospects for this optical effect.

1 Introduction

The presence of extra dimensions plays an important role in
many gravity theories, within the context of the unification
of the physical forces and also in cosmology. Among them
are the braneworld cosmological models [1–3], motivated
by string theory (M-theory) and proposed in order to give
an explanation for the so-called hierarchy problem (why the
gravity scale is sixteen orders of magnitude greater than the
electro-weak scale). The ordinary matter is trapped on a three
dimensional space denominated the brane that is embed-
ded in a larger space dubbed the bulk, where only gravity
can propagate. The Randall–Sundrum [4,5] (second type)
model is the simplest of these theories, consisting of a pos-
itive tension brane in a bulk with only one extra dimension
and a negative cosmological constant. The occurrence of the
extra dimensions results in different properties of black holes
[6]. Primordial black holes formed in the high energy epoch
would have a longer lifetime, due to a different evaporation
law, and could have a growth of their mass through accre-
tion of surrounding radiation during the high energy phase,
increasing their lifetime, so they might have survived up to
the present [7,8]. High energy collisions in particle accel-

a e-mail: eiroa@iafe.uba.ar
b e-mail: cmsendra@iafe.uba.ar

erators or in cosmic rays could also create black holes [6].
In the Randall–Sundrum scenario, the field equations on the
brane [9] were obtained from five-dimensional gravity, with
the help of the Gauss–Codazzi equations. A spherically sym-
metric black hole solution on a three dimensional brane was
found [10], characterized by a tidal charge due to gravita-
tional effects coming from the fifth dimension. Non-singular
black holes on the brane are also possible [11,12]. A gen-
eral class of braneworld solutions, describing black holes
and wormholes with spherical symmetry was presented [13];
this work was then extended to the case with non-zero cos-
mological constant on the brane [14,15]. Rotating black hole
solutions of the effective field equations on the brane were
recently obtained with null [16] and also with non-zero cos-
mological constant [17].

The presence of the photon sphere surrounding the hori-
zon of a black hole results in some peculiar features in the
behavior of light in its vicinity. The deflection angle diverges
at the photon sphere; as a consequence, the light rays com-
ing from a distant source can perform several turns around
the black hole before emerging to reach a possible observer.
The strong deflection gravitational lensing by black holes
was firstly studied in some pioneering works [18–21] and for
the spherically symmetric case, a systematic approach was
developed in recent years [22–25], denominated the strong
deflection limit. This method is based on a logarithmic expan-
sion of the deflection angle for light rays passing very close
to the photon sphere, from which the positions, the magnifi-
cations, and the time delays corresponding to the two infinite
sets of the so-called relativistic images can be obtained ana-
lytically. The strong deflection limit was used in many cases
of interest; among them, non-rotating braneworld black holes
were analyzed as gravitational lenses [26–31]. Black hole
lensing can be also studied numerically [32,33]. Kerr black
holes were considered as lenses in other articles [34–36]; in
particular, the strong deflection limit was extended to this
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case. Another important aspect related to the behaviour of
photons in the neighborhood of a black hole is the shadow
or apparent shape as seen by a far away observer. The shad-
ows of non-rotating black holes are circles, but rotating ones
show a deformation produced by the spin [37,38]. Several
researchers have recently studied this topic [39–60], both in
Einstein theory and in modified gravity. There is strong evi-
dence of the existence of supermassive black holes at the
center of most galaxies, including the Milky Way [61] and
the closest one M87 [62]. It is expected that direct observa-
tion of black holes will be possible in the near future [63–66],
so that the analysis of the shadows will be an useful tool for
a better knowledge of astrophysical black holes and also for
comparing alternative theories with general relativity.

In this work, we investigate the shadow cast by rotating
braneworld black holes with a cosmological constant. The
paper is organized as follows: in Sect. 2, the metric of the
black hole with a tidal charge in the Randall–Sundrum sce-
nario is introduced, and the equations of motion for photons
are obtained. The apparent shape is presented in Sect. 3 for
different values of the parameters. In Sect. 4, the observables
are defined and analyzed. Final comments about the results
and the future observational possibilities are discussed in
Sect. 5. We adopt units such that G = c = 1, with G the
effective four-dimensional gravitational constant and c the
speed of light.

2 Null geodesics on the brane

In the Randall–Sundrum braneworld model, with one brane
and a five-dimensional anti-de Sitter bulk with Z2 symmetry,
the induced four-dimensional vacuum field equations on the
brane read [9]

Gμν = −�4Dgμν − Eμν, (1)

where Gμν is the four-dimensional Einstein tensor asso-
ciated with metric gμν of the brane, �4D is the effective
four-dimensional cosmological constant on the brane, and
Eμν is proportional to the projection of the five-dimensional
Weyl tensor, which expresses the bulk influence on the brane.
An axially symmetric solution of the field equations on the
brane, with a non null effective cosmological constant, was
obtained in Ref. [17], by assuming a Kerr–Schild–(anti-)de
Sitter ansatz.

We start by introducing the metric of the rotating black
hole with a cosmological constant found in Ref. [17], which
in the Boyer–Lindquist coordinates (t, r, θ, φ) has the form

ds2 = − 1

�

(
�r − �θa

2 sin2 θ
)
dt2

− 2a

��

[(
r2 + a2

)
�θ − �r

]
sin2 θdφdt + �

�r
dr2

+ �

�θ

dθ2 + 1

�2�

[(
r2 + a2

)2
�θ − �r a

2 sin2 θ

]

× sin2 θdφ2, (2)

with

� = r2 + a2 cos2 θ, (3)

�r =
(
r2 + a2

)(
1 − �4D

3
r2

)
− 2Mr + q, (4)

�θ = 1 + �4D

3
a2 cos2 θ, (5)

and

� = 1 + �4D

3
a2, (6)

where M is the mass,a is the rotation parameter (i.e. the angu-
lar momentum per unit mass, a = J/M),q is an induced tidal
charge on the brane, and �4D is the four-dimensional brane
cosmological constant. This metric is equivalent to the Kerr–
Newman–(anti-)de Sitter one in general relativity, but now
the quantity q that replaces the square of the electric charge
can be either positive or negative, reflecting the influence of
the bulk on the brane. It has been argued that a negative value
of q is the physical more natural case [10]. There is a null
energy–momentum tensor at the brane and no electromag-
netic fields are present there. For this spacetime, the radii of
the horizons are determined by the positive solutions of the
equation �r = 0; for given M �= 0 and a �= 0, the number
of them depend on the sign of �4D and also on the value
of q. In the case that �4D < 0, when q < q1 the geometry
has only an event horizon and when q1 < q < q2 it has
both an internal Cauchy horizon and an external event hori-
zon. The values of q1 and q2, where the number of horizons
change, are determined by M , a and �4D . In the case that
�4D > 0, the spacetime has a cosmological horizon with
the largest radius, in addition to the event one when q < q1,
or to the Cauchy and the event ones when q1 < q < q2.
It is worthy to note that, for any �4D , the horizon radius is
larger when the tidal charge is negative, so the gravitational
effects form the bulk on the brane are amplified in this case.
The geometry always presents a ring singularity which is
covered by the event horizon when q is not larger than the
critical value qc = q2, corresponding the extremal case; if
this value is exceeded, there is a naked singularity instead of
a black hole. For more details, see Ref. [17].

In the situation where a black hole is interposed between
an observer and an extended background source, not all the
photons emitted by the source can reach the observer after
being deflected by the black hole gravitational field. The ones
with small enough impact parameter, end up falling into the
black hole, and give place to a dark region in the sky called the
shadow. The contour of the shadow gives the apparent shape
of the black hole and it is related to the geodesics of massless
particles in the black hole spacetime structure. The geodesics
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for a given geometry are determined by the Hamilton–Jacobi
equation:

∂S

∂σ
= −1

2
gμν ∂S

∂xμ

∂S

∂xν
, (7)

where σ is an affine parameter along the geodesics and S is
the Jacobi action. In the case where S is separable, the Jacobi
action can be written in the simple and general form

S = 1

2
m2σ − Et + Lφ + Sr (r) + Sθ (θ), (8)

with m the mass of the test particle, E the energy, and L the
angular momentum in the direction of the axis of symmetry.
The quantities E and L are constants of motion, related to
the symmetries of the spacetime and the associated Killing
vectors. Considering null geodesics, i.e. m = 0, and solving
the Hamilton–Jacobi equation, the equations of motion for
photons propagating in the geometry (2) result

�
dt

dσ
= r2 + a2
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with
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(L − aE)2+κ
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(14)

where κ is the Carter constant of separation. These equations
determine the propagation of light in the spacetime of the
rotating black hole on the brane. From the constants of motion
E , L and κ , the impact parameters for general orbits around
the black hole are defined by the quantities ξ = L/E y
η = κ/E2. The silhouette of the shadow of the black hole is
obtained from the orbits of constant r = rp, which satisfy the
conditions R(r) = 0 = dR(r)/dr . Solving this system of
equations, the impact parameters that determine the contour
of the shadow for the braneworld black hole result

ξ(rp) = ϒ(rp)

�(rp)
(15)

and
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and
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For simplicity, all quantities in further calculations are adi-
mensionalized with the black hole mass, i.e. by taking
M = 1.

3 Black hole shadow

In order to obtain the boundary curve of the shadow of the
braneworld black hole, we fix the observer position in the
domain of outer communication, with Boyer–Lindquist coor-
dinates at (r0, θ0), as it was presented in Ref. [52]. At this
position, we define the orthonormal tetrad

e0 =
(
r2 + a2

)
∂t + a�∂φ√

�r�

∣∣∣∣∣
(r0,θ0)

, (20)
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√
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, (21)

e2 = − �∂φ + a sin2 θ∂t√
�θ� sin θ

∣∣∣∣
(r0,θ0)

, (22)

and

e3 = −
√

�r

�
∂r

∣∣∣∣∣
(r0,θ0)

, (23)

where e0 represents the four velocity of the observer, e3

corresponds to the spatial direction towards the center of
the black hole and the combination e0 ± e3 is tangential
to the principal null congruences of the metric. Let λ(s) =
(r(s), θ(s), φ(s), t (s)) be the coordinates for each light ray,
its tangent vector is given by

λ̇ = ṙ∂r + θ̇∂θ + φ̇∂φ + ṫ∂t , (24)
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which at the observation event and in terms of the celestial
coordinates α and β results [52]

λ̇ = γ (−e0 + sin α cos βe1 + sin α sin βe2 + cos αe3) .

(25)

The scalar factor γ can be easily calculated from Eqs. (24)
and (25):

γ = g(λ̇, e0) = −E
(
r2 + a2

) + a�L√
�r�
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, (26)

and by comparing the corresponding terms in these expres-
sions, we have that
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where ṙ = dr/dσ and φ̇ = dφ/dσ . From Eqs. (10) and (11),
and by substituting the impact parameters (15) and (16), we
finally obtain
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√[(
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]
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(30)

In order to plot the boundary curve of the shadow, we con-
sider the stereographic projection from the celestial sphere
onto a plane, where the Cartesian coordinates are written in
the form

x(rp) = −2 tan

(
α(rp)

2

)
sin

(
β(rp)

)
, (31)

y(xp) = −2 tan

(
α(rp)

2

)
cos

(
β(rp)

)
. (32)

In Fig. 1, the shadow of the rotating black hole with cos-
mological constant �4D = 10−7 is presented, as seen by
an observer placed at r0 = 50 and θ0 = π/2, for different
values of the rotation parameter a and the tidal charge q. For
a fixed value of a, the radius of the shadow decreases and
the deformation of the silhouette grows with q; the smallest
and most deformed case corresponds to the extremal value
qc. Negative values of q enlarge the shadow with respect

to the Kerr–(anti-)de Sitter black hole case (which is recov-
ered if q = 0), while positive ones diminish it. For a fixed
value of the rotation parameter and the charge, the apparent
shape changes with the value of the cosmological constant,
as is shown in Fig. 2, in which �4D = −10−4 (dotted line),
�4D = 10−7 (dashed line), and �4D = 10−4 (full line).
In this case, the size of the shadow increases as �4D gets
smaller, resulting in larger shadows for negative �4D .

4 Observables

The co-rotating photons can get closer to the black hole, so
the resulting shadow is displaced and compressed on this
side, while the other side corresponding to counter-rotating
photons is elongated. In order to characterize the apparent
shape of the spinning black hole with a cosmological con-
stant, we define two observables Rs and δs , analogously as
it was done in Ref. [43]. The parameter Rs gives the approx-
imate size of the shadow and is determined by the radius of
a reference circle passing by three points: the top position
(xt , yt ), the bottom position (xb, yb), and the point corre-
sponding to the unstable retrograde circular orbit as seen by
an observer on the equatorial plane (xr , 0). The distortion
parameter δs measures the deformation of the shadow with
respect to the reference circle; it is defined by δs = D/Rs ,
with D the difference between the endpoints of the circle and
of the shadow, both of them at the opposite side of the point
(xr , 0), i.e. corresponding to the prograde circular orbit. In
the case of the black hole in the Randall–Sundrum brane, for
a given inclination angle θ0, the observables Rs and δ are
determined by four quantities: �4D , M , a, and q. The gravi-
tational effects on the shadow, which grow with θ0, are larger
when the observer is situated in the equatorial plane of the
black hole, i.e. when θ0 = π/2. In this case, the observables
take the form

Rs = (xt − xr )2 + y2
t

2|xt − xr | (33)

and

δs = |x̃ p − xp|
Rs

, (34)

where (x̃ p, 0) and (xp, 0) are the points where the reference
circle and the contour of the shadow cut the horizontal axis
at the opposite side of (xr , 0), respectively. We have replaced
the celestial coordinates adopted in Ref. [43] by the Cartesian
coordinates introduced in the previous section.

As an example, we obtain the observables for an observer
at r0 = 50 with inclination angle θ0 = π/2. In Fig. 3, the
observables are shown as a function of q, for a fixed value of
the cosmological constant �4D = 10−7 and different values
of the rotation parameter: a = 0 (full line), a = 0.5 (dashed-
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Fig. 1 Apparent shape of the black hole, as seen by an observer at
r0 = 50 and θ0 = π/2, with �4D = 10−7, for different values
of the rotation parameter a and the tidal charge q. Upper row, left:
a = 0.83, q = qc ≈ 0.30 (full line), q = 0.1 (dashed-dotted line),
q = −0.1 (dashed line), and q = −0.3 (dotted line). Upper row, right:
a = 0.7, q = qc ≈ 0.51 (full line), q = 0.2 (dashed-dotted line),

q = −0.2 (dashed line), and q = −0.5 (dotted line). Lower row, left:
a = 0.5, q = qc ≈ 0.75 (full line), q = 0.4 (dashed-dotted line),
q = 0 (dashed line), and q = −0.4 (dotted line). Lower row, right:
a = 0.3, q = qc ≈ 0.91 (full line), q = 0.5 (dashed-dotted line),
q = −0.5 (dashed line), and q = −0.9 (dotted line). All quantities are
adimensionalized with the mass of the black hole

dotted line), a = 0.7 (dashed line), and a = 0.83 (dotted
line). We see a weak dependence of the radius size Rs with
a, being a decreasing function of the charge, as can be seen
in the frame inside, where a subrange of q was taken. The
distortion parameter δs is an increasing function of the charge
and gets maximal when the charge reaches the limiting value
qc. For a fixed q, the observable δs increases with a. There is
no distortion of the shadow for the static case, as expected.
Negative values of q lead to larger shadows (and then Rs) and
smaller distortions with respect to the Kerr–(anti-)de Sitter
black hole (corresponding to q = 0). In Fig. 4, Rs and δs
are presented as functions of q for a = 0.83 for three values
of the cosmological constant: �4D = −10−4 (dotted line),
�4D = 10−7 (dashed line), and �4D = 10−4 (full line).
In this case, the radius of the apparent shape diminishes as
�4D gets larger. The variation in the distortion δs are not
noticeable for a fixed q, being slightly larger in the case of

the smaller value of �4D , with differences of order 10−5, as
shown in the frame inside the figure.

5 Final remarks

We have investigated the shadow of a rotating black hole
in the Randall–Sundrum type II brane, with the presence of
an effective four-dimensional cosmological constant [17], so
the geometry is not asymptotically flat. The rotating solu-
tion on the brane without cosmological constant was found
a few years before [16] and the corresponding shadow was
also studied [50,51]. These geometries are characterized by
the presence of a tidal charge, resulting from the influence
of the bulk on the brane, which can be positive or nega-
tive, with the negative sign being more natural [10]. Here
we have considered both de Sitter and anti-de Sitter asymp-
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Fig. 2 Shadow of the rotating black hole in the extremal case, for dif-
ferent values of the cosmological constant: �4D = −10−4 (dotted line),
�4D = 10−7 (dashed line), and �4D = 10−4 (full line). The observer

is placed at r0 = 50 and θ0 = π/2. Upper row, left: a = 0.83 and
qc ≈ 0.30. Upper row, right: a = 0.7 and qc ≈ 0.51. Lower row, left:
a = 0.5 and qc ≈ 0.75. Lower row, right: a = 0.3 and qc ≈ 0.91

Fig. 3 Observables Rs (left) and δs (right) as functions of q for �4D = 10−7: a = 0 (full line), a = 0.5 (dashed-dotted line), a = 0.7 (dashed
line), and a = 0.83 (dotted line). In all cases, the observer is placed at r0 = 50 and θ0 = π/2
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Fig. 4 Observables Rs (left) and δs (right) as functions of q for a = 0.83, considering the observer placed at r0 = 50 and θ0 = π/2: �4D = −10−4

(dotted line), �4D = 10−7 (dashed line), and �4D = 10−4 (full line)

totics, and we have analyzed the effects produced by the
cosmological constant and the tidal charge. Because of the
presence of the cosmological constant, the observer cannot
be at infinity and the apparent shape depend on the posi-
tion of the observer, which is always in a non-flat region of
spacetime. As a consequence, we have adopted the recently
introduced approach for the shadow of the Kerr–Newman–
NUT–(anti-)de Sitter black hole [52]. We have presented two
observables, one related to the apparent size and the other to
the deformation of the shadow. For a given fixed position of
the observer, by analyzing these observables, we have seen
that larger values of the cosmological constant decrease the
radius of the reference circle and diminish the distortion of
the shadow. When fixing the value for the cosmological con-
stant, the radius is a decreasing function of the tidal charge
and increases with the rotation parameter. In contrast, the
distortion increases with both the tidal charge or the rotation
parameter. A negative tidal charge enlarges the shadow of
the black hole, but reduces the distortion due to the rotation.
In our model there is vacuum in vicinity of the black hole,
but if it is surrounded by a plasma, photons undergo various
effects, such as absorption, scattering, and refraction, which
depend of the specific characteristics of the medium involved.
The influence of the presence of plasma in the shadow was
recently analyzed for the Kerr spacetime [60], the size and
the shape of the shadow in this case depend on the photon
frequency. Then, if the black hole considered in our work is
surrounded by a plasma, chromatic effects on the shadow will
appear.

The size and shape of the shadow depends directly on the
properties of the black hole geometry involved, so it will serve
to test general relativity and alternative theories. Nowadays,
much attention is paid to observing the closest supermas-
sive black holes. The instrument GRAVITY will examine
in the near-infrared band the vicinity of the supermassive

black hole in the center of our galaxy (Sgr A*) [61], fol-
lowing with high precision the orbits of the stars close to it.
Through this monitoring, the measurement of the black hole
mass will be improved, and the determination of the spin and
the quadrupole moment may be also possible. The observa-
tion of the shadow associated to Sgr A* is one of the main
goals to be reached in the near future, because of its large
size and proximity [63–66]. Among the different projects for
this purpose, one is the Event Horizon Telescope, which uses
very long baseline interferometry to combine existing radio
facilities into a telescope with very high angular resolution
(of about 15 µas). The Event Horizon Telescope has already
made observations of the center of the Milky Way and also
of the nearby giant elliptic galaxy M87 [62], and the first
image of the shadow of a black hole is expected in short. Mil-
limetron is a planned space-based mission operating from far
infrared to millimeter wavelengths, with expected resolution
of 0.05µas. Forthcoming x-ray instruments will also have an
improved resolution that will allow a detailed exploration of
the Galactic center. For more details about the observational
prospects, see Ref. [63–66] and the references therein. The
comparison between the observed apparent shape of black
holes and the different theoretical models will be a useful
tool in future astrophysics, but the subtle effects analyzed in
our work seems to require a more advanced generation of
instruments.
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