
GW150914: FIRST SEARCH FOR THE ELECTROMAGNETIC COUNTERPART OF
A GRAVITATIONAL-WAVE EVENT BY THE TOROS COLLABORATION

Mario C. Díaz
1
, Martín Beroiz

1,2
, Tania Peñuela

1,3
, Lucas M. Macri

4
, Ryan J. Oelkers

4,10
, Wenlong Yuan

4
,

Diego García Lambas
5
, Juan Cabral

5
, Carlos Colazo

5,6
, Mariano Domínguez

5
, Bruno Sánchez

5
, Sebastián Gurovich

5
,

Marcelo Lares
5
, Matías Schneiter

5
, Darío Graña

5
, Víctor Renzi

5
, Horacio Rodriguez

5
, Manuel Starck

5
,

Rubén Vrech
5
, Rodolfo Artola

5
, Antonio Chiavassa Ferreyra

5
, Carla Girardini

5
, Cecilia Quiñones

5
, Luis Tapia

5
,

Marina Tornatore
5
, Jennifer L. Marshall

4
, Darren L. DePoy

4
, Marica Branchesi

7
, Enzo Brocato

8
, Nelson Padilla

9
,

Nicolas A. Pereyra
1
, Soma Mukherjee

1
, Matthew Benacquista

1
, and Joey Key

1

1 Center for Gravitational Wave Astronomy, University of Texas Rio Grande Valley, Brownsville, TX, USA; mario.diaz@utrgv.edu
2 University of Texas at San Antonio, San Antonio, TX, USA

3 Ludwig Maximilian Universität Munich, Faculty of Physics, Munich, Germany
4 Mitchell Institute for Fundamental Physics & Astronomy, Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA

5 Universidad Nacional de Córdoba, IATE, Córdoba, Argentina
6 Ministerio de Educación de la Provincia de Córdoba, Córdoba, Argentina

7 Università degli studi di Urbino, Urbino, Italy
8 INAF—Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy

9 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile
Received 2016 June 29; revised 2016 July 25; accepted 2016 July 25; published 2016 September 1

ABSTRACT

We present the results of the optical follow-up conducted by the TOROS collaboration of the first gravitational-
wave event GW150914. We conducted unfiltered CCD observations (0.35–1 μm) with the 1.5 m telescope at
Bosque Alegre starting ∼2.5 days after the alarm. Given our limited field of view (∼100 arcmin2), we targeted 14
nearby galaxies that were observable from the site and were located within the area of higher localization
probability. We analyzed the observations using two independent implementations of difference-imaging
algorithms, followed by a Random-Forest-based algorithm to discriminate between real and bogus transients. We
did not find any bona fide transient event in the surveyed area down to a 5σ limiting magnitude of r=21.7 mag
(AB). Our result is consistent with the LIGO detection of a binary black hole merger, for which no electromagnetic
counterparts are expected, and with the expected rates of other astrophysical transients.

Key words: gravitational waves – techniques: image processing

1. INTRODUCTION

The network of advanced ground-based gravitational-wave
(GW) interferometers constituted by the LIGO observatories
(LIGO Scientific Collaboration et al. 2015), which started
operations in 2015 September and by the Virgo observatory
(Acernese et al. 2015), which will join before the end of 2016,
were designed to be capable of detecting GWs emitted by the
mergers of neutron stars and/or black holes in binary systems
out to distances of hundreds of megaparsecs (see Abbott
et al. 2016b and references therein). In anticipation of the
operation of this network, on 2013 June 6 the LIGO–Virgo
collaboration (LVC) issued a worldwide call11 to astronomers
to participate in multi-messenger observations of astrophysical
events recorded by the GW detectors, using a wide range of
telescopes and instruments of “mainstream” astronomy.

Initially, triggers will be shared promptly only with
astronomy partners who have signed a memorandum of
understanding (MoU) with LVC involving an agreement on
deliverables, publication policies, confidentiality, and report-
ing. It is expected that if the mergers of compact objects
contain at least one neutron star, electromagnetic (EM)
radiation will be emitted during the event. This EM counter-
part, originating in the ejecta and its interaction with the
surrounding environment could range from very short duration

gamma-ray bursts to longer-duration emission at optical, near-
infrared (kilonova and short GRB afterglows) and radio
wavelengths (e.g., Li & Paczyński 1998; Nakar & Piran 2011;
Metzger & Berger 2012; Barnes & Kasen 2013; Berger 2014;
Cowperthwaite & Berger 2015). Simultaneous detection of the
event by GW and EM observatories could provide a more
integrated astrophysical interpretation of the event and would
be instrumental in producing better estimates for the distance
and energy scales of the event.
Motivated to participate in these observations, we formed a

collaboration named “Transient Optical Robotic Observatory
of the South” (TOROS; Benacquista et al. 2014), which seeks
to deploy a wide-field optical telescope on Cordón Macón in
the Atacama Plateau of northwestern Argentina (Renzi
et al. 2009; Tremblin et al. 2012). The collaboration planned
to utilize other resources independently of the construction of
this facility. On 2014 April 5, the TOROS collaboration signed
an MoU with LVC and participated during the first scientific
run of the GW interferometers from 2015 September through
2016 January. Two facilities were available to TOROS during
this campaign: a Schmidt–Cassegrain 0.4 m telescope at
Cordón Macón and a 1.5 m telescope at Estación Astrofísica
Bosque Alegre (EABA) in Córdoba, Argentina.
On 2015 September 14 at 09:50:45 UT, the two U.S.-based

detectors of the Advanced LIGO interferometer network
detected a high-significance candidate GW event designated
GW150914 (Abbott et al. 2016a). This unexpected detection—
observed four days before the first scientific run of the detectors
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was scheduled to start—constituted the first detection of the
merger of a binary black hole (BBH) system and the first direct
detection of GWs. Due to the unexpected timing of the event,
LVC provided spatial location information two days later, in
the form of probability sky maps via a private GCN circular
(Singer 2015, GCN #18330). TOROS was one of 25 teams
that participated in the search for an electromagnetic counter-
part in the southern hemisphere. We report here on the optical
follow-up of this event by the TOROS collaboration during
2015 September 16–17 using the 1.5 m EABA telescope (the
smaller telescope at Macón was not operational at the time).

This Letter is organized as follows: Section 2 discusses
target selection and observations; Section 3 describes the data
reduction, image differencing algorithms, and the bogus/real
classification; Section 4 presents our results; and Section 5
summarizes our findings. Throughout this Letter, we express
magnitudes in the AB system and adopt a ΛCDM cosmology
based on results from the Planck mission (Planck Collaboration
et al. 2015).

2. OBSERVATIONS

For the first run of the LIGO detectors (O1) several low-
latency analyses were prepared to receive and process signals
from GWs. On 2015 September 16, the LVC provided two all-
sky localization probability maps for the event, based on them.
Both the coherent Wave Burst (cWB; Klimenko et al. 2016)
and the Omicron+LALInference Burst (oLIB; Lynch
et al. 2015) search for un-modeled signals. The first one, a
rapid localization analysis just searches for coherent power
across both detectors while the second one, more refined,
assumes Sine-Gaussian content. The maps provided initial
spatial localization of 50% and 90% confidence regions
encompassing about 200 and 750 deg2, respectively
(Singer 2015, GCN #18330).

We started our imaging campaign immediately after
receiving the GCN circular and acquired the first epoch of
observations on 2015 September 16 and 17. We obtained a
second epoch of imaging (to serve as templates for the
differencing pipelines) on 2015 December 5 and 6. We used an
Apogee Alta U9 camera with a field of view (FOV) of
¢ ´ ¢12.7 8.5 and an effective plate scale of  -0. 75 pix 1 after

3×3 binning. Since we wished to maximize our sensitivity,
we conducted unfiltered (“white light”) observations spanning

l m< <0.35 m 1. We obtained individual exposures of 60s
with a median seeing (FWHM) of  2.8 0.6( ) . We typically
obtained 10 images per field, reaching s5 limiting magnitudes
of = r 21.7 0.3 mag (see Section 3 for details).

The LIGO localization regions span several hundred square
degrees (see Figure 1) and vary depending on the algorithm.
For instance, the 90% credible localization area for cWB covers
to 310 deg2 while others span up to 750 deg2 (see Table 1 in
Abbott et al. 2016c). Regardless, all sky maps are consistent
with a broad long arc in the southern hemisphere and a smaller
extension in the northern hemisphere. The algorithm utilized
for the CWB estimations produces reasonably accurate maps
for BBH signals, but underestimates the extent of high-
confidence regions (Essick et al. 2015). As seen in Figure 1, the
adoption of maps from alternative algorithms (not available at
the time our observations started) significantly reduces the
fraction of the high-confidence region probed by our
small FOV.

Previous work in the field (Nuttall & Sutton 2010; Abadie
et al. 2012; Hanna et al. 2014) has shown that using a galaxy
catalog can greatly increase the probability of finding an EM
counterpart in the case of binary neutron star (BNS) and
neutron star black hole (NSBH) merger events.
As the LIGO analysis was still ongoing at the time our

observations had begun and the nature of the binary was
unknown, we optimized the use of our small FOV by targeting
nearby galaxies with the highest probability of hosting the
event. The probabilities were based on the values of the pixel in
the initial cWB map that contained the coordinates of a given
galaxy.
We used the Gravitational Wave Galaxy Catalog (GWGC;

White et al. 2011), which is a compilation of catalogs
homogenized into a list of ∼53,000 galaxies within 100 Mpc
(with incompleteness starting at ~D 40 Mpc). The GWGC
provides reliable distances, blue magnitudes, and other
properties.
Table 1 lists the galaxies targeted in our search. They were

selected using an in-house “scheduler” (a Python module of the
TOROS pipeline). The scheduler set a list of criteria: (1)
observability from our location ( d > > - 30 70 ), (2) appar-
ent magnitude B 21 mag, and (3) distance <D 60 Mpc. We
plan to add for future observations absolute magnitude

 -M 21B mag as an additional criterion. This cut in absolute
magnitude is motivated by the expectation that in the nearby
universe the distribution of BNSs and BHs should follow
recent star formation due to the short merger timescales (see,
e.g., Phinney 1991; Belczynski et al. 2002). Once we cross-
matched the LIGO sky maps with the filtered galaxies, we
ranked the results by assigning individual probabilities Pg i,
(with i being the sky map pixel that contained the gth galaxy).
This enabled us to prioritize targets according to their location
within the sky maps and their observability. Finally, we
ensured that all targets were mapped out to ∼5 kpc, which
corresponds to the median offset distance of short GRBs from
hosts galaxies measured from the optical afterglow observa-
tions (Church et al. 2011; Fong & Berger 2013; Berger 2014).
This required tiling to cover the appropriate area for some
targets. A total of 21 fields covering 14 galaxies were observed.
These correspond to ∼4.4% of the potential host galaxies listed
in the GWGC that met selection criteria (2) and (3). We note
that at ~D 60 Mpc, the GWGC is estimated to be complete at
the ∼80% level (White et al. 2011).

3. DATA ANALYSIS

The initial data reduction followed the standard steps of bias
and dark subtraction, flat-fielding using twilight sky frames,
and illumination correction, based on common routines
available in PyRAF and independent Python modules that
constitute the TOROS data processing pipeline. Astrometric
solutions were derived using the Astrometry package
(Lang 2009), a very robust algorithm based on geometrical
hashing of asterisms and Bayesian decision trees that uses all-
sky catalogs such as USNO-B (Monet et al. 2003), 2MASS
(Skrutskie et al. 2006), and GALEX (Martin & GALEX Science
Team 2003).
Flux calibration was obtained by performing aperture

photometry with DAOPHOT (Stetson 1987) and matching
the resulting star lists against the APASS catalog (Henden
et al. 2016); we found 208 stars in common with

< - <B i0.4 3.2. The photometric solution was based on
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the r band since it exhibited the smallest color term for our
unfiltered observations, yielding a zeropoint uncertainty of
0.054mag. We used the reported photometric errors from
DAOPHOT and our photometric calibration to estimate a
median s5 limiting magnitude of = r 21.7 0.3 mag for our
fields.

3.1. Difference-imaging Analysis

We carried out two independent implementations of
difference-imaging analysis (DIA) to identify transients. Most
DIA routines use a kernel defined as a combination of two or
more Gaussians to match and scale the point-spread function
(PSF) between two epochs (Alard & Lupton 1998), which

leads to difficulties in fitting irregular shaped PSFs. Our
implementations go beyond this simple approach.
Our first method (hereafter “Method I”), described in

Oelkers et al. (2015), uses a Dirac δ-function kernel fit across
the entire frame. We selected the epoch with the smaller PSF to
act as the reference frame. Additionally 13×13 pix stamps
were taken around isolated stars with photometric precision
better than 0.05 mag to solve for the kernel coefficients using
the least-squares method. We modeled the spatial variation in
the PSF with a 9×9 pix first-order kernel (Alard 2000; Miller
et al. 2008) if there were at least 20 stars to solve for the
coefficients; otherwise, we adopted a constant PSF.
The second algorithm (hereafter “Method II”) relies on an

independent pixel-by-pixel fit of the convolving kernel
(Bramich 2008) with a simultaneous polynomial local

Figure 1. Localization probability maps for GW150914 generated by various LIGO pipelines, indicating the location of the TOROS targets (red dots).
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background fit on the grid of an image. One of the advantages
of this method is that the basis functions are removed, so the
user does not need to choose a kernel (which in some cases
could become inappropriate). Moreover, the basis functions are
constructed around the origin of the kernel coordinate system,
which requires a very good alignment of the images for an
optimal result. However, the strongest caveat of this method is
the type of grid used to cover the image, as kernels may change
abruptly from site to site, due to the fact that there is no kernel
interpolation applied between image subsections. Although an
overabundance of spurious subtraction artifacts (“bogus”
detections) is obtained with this method, both methods appear
to be very effective and have shown similar results.

3.2. Real/Bogus Classification and Detection
of Potential Transients

We trained a supervised machine-learning algorithm to
discriminate between bona fide astrophysical transients and
“bogus” detections arising from DIA artifacts. In order to do so,
we injected 100 artificial stars on each of the 21 science
images, repeating the procedure 10 times to improve our
statistics, and subjected the resulting 210 frames to the same
DIA methods described above. The injections followed the
same magnitude distribution as the point sources detected by
DAOPHOT in the reference images.

We ran SExtractor (Bertin & Arnouts 1996) on the
differenced image products from both methods to detect
objects with a significance of s>2 and with >5 connected
pixels and extract their defining characteristics (such as
magnitude, magnitude error, ellipticity, and sharpness). We
identified the objects that corresponded to known injected
sources and labeled them accordingly. We used a Random-
Forest algorithm with ´5 cross validation to identify any other
sources exhibiting properties similar to the injections, as
potential astrophysical transients. We rejected all other
remaining sources, hereafter identified as “bogus.”

4. RESULTS

SExtractor detected ∼10,400 and ∼34,000 objects on the 210
frames processed with Methods I and II, respectively; of these,
5441 and 5824 were recovered artificial stars. We used these

recovered injections to define the set of features needed to
identify “real” detections and remove “bogus” candidates.
Figure 2 shows the results of the Random-Forest classifica-

tion, including model accuracy versusconfidence and the
Receiver Operating Curve (ROC) for the set of transients
obtained through Method I (defined in Section 3.1). The upper
panel also shows the average accuracy (upper dashed line) and
the probability of obtaining the same result by chance (dashed–
dotted line). The latter is computed using the Pe statistic,
defined as the sum of the probabilities of the model for either
predicting a “real” transient (Pr) or a “bogus” event (Pb):

= +P P Pe r b. The respective probabilities are calculated as
follows:

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
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where Ar and Ab are the number of injections and unknowns
and N is the total number of objects in the sample.
We used the ROC to calculate Youden’s statistic (Youden

1950) or informedness = J 0.91 0.0039max , where the
quoted error represents the 95% confidence level
(Powers 2011). Jmax gives the maximum performance of the
model and is defined as the maximum distance between the
ROC and the 1:1 line that represents the probability of
obtaining the result by chance. The observed value of Jmax

corresponds to a cutoff of 0.49 in terms of the confidence value.
It is in good agreement with the maximum accuracy of 0.96
reached by the classifier, as seen in Figure 2. We therefore
selected a cutoff value of 0.5 for our final analysis and the
resulting confusion matrix is presented in Table 2.
Following these procedures, we identified 229 and 200

objects in all the images processed by Methods I and II,
respectively, as having probabilities greater than 50% of being
real. As a final discrimination against spurious detections, we
required an object to be detected in at least 5 of 10 realizations
of a given field in order to be considered a bona fide
astrophysical transient. None of the objects in either set passed
this requirement. Further visual inspection revealed most of
them to be subtraction residuals or cosmetic defects in the
detector. We therefore conclude that no transients were present
in the 21 fields we targeted, to a s5 limiting magnitude of

Table 1
Targeted Host Galaxies

Date (1) ID (2) R.A. Decl. texp Tile # D
(degree) (s) (Mpc)

2015 Sep 16 IC 1933 51.416101 −52.78547 600 1, 2, 3, 4 17.45
2015 Sep 16 NGC 1529 61.833301 −62.89993 600 5, 6, 7, 8 54.76
2015 Sep 16 IC 2038 62.225246 −55.99074 600 9, 10, 11, 12 7.00
2015 Sep 16 IC 2039 62.259901 −56.01172 600 9, 10, 11, 12 7.63
2015 Sep 17 ESO 058-018 102.593850 −71.03123 1020 13 52.23
2015 Sep 17 ESO 084-015 65.550449 −63.61097 1140 14 14.99
2015 Sep 17 ESO 119-005 72.072451 −60.29376 1080 15 9.73
2015 Sep 17 NGC 1559 64.398901 −62.78358 900 16 12.59
2015 Sep 17 PGC 016318 73.728898 −61.56747 1020 17 9.54
2015 Sep 17 PGC 269445 100.209150 −71.33026 1140 18 54.83
2015 Sep 17 PGC 280995 96.382499 −69.15257 1140 19 55.08
2015 Sep 17 PGC 128075 64.859998 −60.53844 720 20 63.71
2015 Sep 17 PGC 381152 63.584547 −58.20726 1200 21 13.26
2015 Sep 17 PGC 075108 63.670349 −58.13199 1200 21 13.29

Note. (1) Local date of observation; (2) from White et al. (2011).
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r=21.7 mag. Similar results were obtained for Method II,
albeit with a higher fraction of “bogus” sources, a result leading
to a less balanced sample to merit further analysis.

The fact that we did not find any genuine transient in
our search is not surprising given the small area surveyed
(∼0.62 deg2) and the low cadence of the observations (with
only two epochs per target, separated by 73± 3 days). Based

on our temporal sampling and photometric precision, we scaled
the results of Oelkers et al. (2015, 2016) to estimate that only 1
in ∼3030stars in our fields would exhibit variability detectable
at the s5 level over this timescale. Given that only ∼4200 stars
were detected across all fields by DAOPHOT, we would only
expect to detect ∼1 variable star. Regarding extragalactic
transients, based on supernova (SN) Ia rate for <R 21 mag of
10 events per square degree per year (Pain et al. 1996;
Garnavich et al. 2004) and a 30% fraction of SN Ia among local
SNe (Guillochon et al. 2016), we estimate an 11% probability
of finding such an object across all our fields. Finally, our result
is consistent with the LIGO detection of a BBH merger, for
which no optical EM counterpart is expected.

5. SUMMARY

The TOROS collaboration conducted a prompt search for the
electromagnetic counterpart of the first GW event reported by
LIGO using the 1.5 m telescope of EABA in Córdoba,
Argentina. Our search spanned two nights, during which we
targeted 21 fields containing 14 nearby ( <D 60 Mpc) galaxies
with high probabilities of hosting the event. We covered
0.62 deg2 and reached a s5 limiting AB magnitude of
r=21.7. We used a combination of difference-imaging
techniques and machine-learning procedures to detect and
classify potential transients. No bona fide events were found, a
result that is consistent with the low probability of detecting
stellar or extragalactic variability given our temporal and areal
coverage, and with the later classification of the GW event as a
merger of two stellar-mass black holes.
Our host-galaxy ranking approach serves as a complemen-

tary strategy to the wide-field surveys for these transients, such
as those conducted by the Dark Energy Survey (Annis
et al. 2016; Soares-Santos et al. 2016), the intermediate
Palomar Transient Factory (Kasliwal et al. 2016), MASTER
(Lipunov et al. 2016), Pan-STARRS (Smartt et al. 2016), and
the VLT Survey Telescope (E. Brocato et al. 2016, in
preparation). Given the incompleteness of local galaxy
catalogs, the rapid dissemination of possible counterpart
candidates by the wide-field surveys would enable detailed
photometric coverage to be contributed by many modest-
aperture, narrow-field telescopes throughout the world. Addi-
tionally, unfiltered CCD observations may be desirable at this
stage given the large uncertainties in the possible colors of
these counterparts.

The TOROS collaboration acknowledges support from
Ministerio de Ciencia, Tecnología e Innovación Productiva
(MinCyT), and Consejo Nacional de Investigaciones Científi-
cas y Tecnológicas (CONICET) from Argentina, grants from
the National Science Foundation of the United States of
America, NSF PHYS 1156600 and NSF HRD 1242090, and
the government of Salta province in Argentina.
Facility: EABA.
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