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Abstract 

As neonatal vitamin D status is determined by circulating maternal 25-hydroxyvitamin D 

[25(OH)D] concentrations, prevention of maternal vitamin D deficiency during pregnancy is 

essential for the avoidance of neonatal deficiency. However, a high prevalence of vitamin D 

deficiency has been extensively reported among gravidae and neonates from ethnic minorities 

and white populations resident at high latitude. Currently, regulatory authorities recommend 

vitamin D intakes for pregnant women that are similar to non-pregnant adults of the same age, 

at 10-15 µg/day [400-600 IU], to meet 25(OH)D thresholds of 25-50 nmol/L. The lack of 

pregnancy-specific dietary recommendations is due to inadequate data indicating whether 

nutritional requirements for vitamin D during pregnancy differ from the non-pregnant state. In 

addition, there are few dose-response studies to determine the maternal 25(OH)D response to 

vitamin D intake throughout pregnancy at high latitude. These data are also required to 

determine vitamin D requirements during pregnancy for prevention of neonatal deficiency, an 

outcome which is likely to require a higher maternal 25(OH)D concentration than prevention 

of maternal deficiency only. With regard to the impact of vitamin D on perinatal health 

outcomes, which could guide pregnancy-specific 25(OH)D thresholds, dietary intervention 

studies to date have been inconsistent and recent systematic reviews have highlighted issues of 

low quality and a high risk of bias as drawbacks in the trial evidence to date. Many 

observational studies have been hampered by a reliance on retrospective data, unclear 

reporting, suboptimal clinical phenotyping and incomplete subject characterization. Current 

investigations of vitamin D metabolism during pregnancy have potentially exciting 

implications for clinical research. This paper provides an update of current dietary 

recommendations for vitamin D in pregnant women and a synopsis of the evidence relating 

vitamin D status with maternal and infant health. 
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Introduction 

As well as promoting healthy perinatal and maternal outcomes, nutritional requirements during 

pregnancy also need to consider, where possible, whether the intrauterine nutritional supply 

will promote life-long health.1 In this context, vitamin D requirements during pregnancy are 

unknown. As fetal and neonatal circulating 25-hydroxyvitamin D [25(OH)D] concentrations 

are dependent on maternal vitamin D status, it is widely accepted that at minimum, vitamin D 

deficiency during pregnancy should be prevented to protect fetal skeletal development.2, 3 

However, vitamin D deficiency, albeit using various 25(OH)D cut-offs, has been reported 

extensively among gravidae from ethnic minorities4, 5 and white women resident at high 

latitude.6-8  

A recent systematic literature review by Saraf and colleagues9 reported that on a worldwide 

basis, 54% of pregnant women and 75% of newborns had 25(OH)D concentrations < 50 

nmol/L, a commonly-used threshold to describe vitamin D deficiency.10 The Institute of 

Medicine [IOM],11 the UK Scientific Advisory Committee for Nutrition [SACN]12 and the 

International consensus on prevention of nutritional rickets3 identified individuals with 

25(OH)D concentrations < 25-30 nmol/L as vitamin D deficient, due to a concomitant increase 

in the risk of metabolic bone disease. Although there were many limitations to the data 

available to Saraf et al., notably inconsistent reporting of unstandardized 25(OH)D data, they 

reported a global prevalence of 18% of pregnant women and 29% of newborns with 25(OH)D 

< 25 nmol/L.9 This evidence of endemic vitamin D deficiency among mothers and infants, 

particularly in low-resource countries, has serious implications for maternal and child health. 

We recently described the first CDC-accredited gold-standard 25(OH)D data in a large 

maternal-infant dyad in Ireland, at 51o N.8, 13 Overall, 11% and 17% of women at 15 weeks 

gestation and 35% and 46% of umbilical cord sera were < 25 and 30 nmol/L, respectively, 

comparable to the data reported by Saraf et al. in low-resource settings.9 
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The appropriateness of comparing 25(OH)D concentrations in pregnant women with thresholds 

established in non-pregnant adults is questionable2 and pregnancy-specific 25(OH)D cut-offs 

may be required. In addition, application of adult reference intervals to neonates [albeit using 

de facto measurements of 25(OH)D in umbilical cord blood] may be questionable, as neonatal 

status changes rapidly with infant-feeding and supplementation.3 As these uncertainties are still 

outstanding, we refer to vitamin D deficiency in the current review on the basis of 25(OH)D 

<30 nmol/L, acknowledging that higher thresholds may be desirable in pregnancy to meet fetal 

requirements. Here we provide a brief overview of the current dietary recommendations for 

vitamin D during pregnancy and the evidence relating vitamin D status with maternal and infant 

health. In the context of relatively new data on vitamin D and calcium metabolism during 

pregnancy, we have highlighted potentially under-researched areas for further exploration in 

clinical studies.  

Current dietary recommendations for vitamin D during pregnancy 

Table 1 provides a summary of the current evidence-based recommendations for vitamin D 

intake in pregnant women. In general, due to a profound lack of evidence on which to set 

recommendations for pregnancy specifically,11 most agencies have proposed the same 

adequacy thresholds for 25(OH)D and dietary recommendations for vitamin D for pregnant 

and lactating women as non-pregnant adults. Currently in the US and Canada, serum 25(OH)D 

< 30 nmol/L is the threshold below which there is an increased risk of vitamin D deficiency, 

40 nmol/L fulfills the role of an average or median requirement and vitamin D sufficiency is 

achieved at concentrations ≥ 50 nmol/L, on the basis of skeletal health outcomes.11 These 

thresholds correspond to vitamin D intake recommendations of an Estimated Average 

Requirement [EAR] of 10 µg/day to achieve a median population 25(OH)D concentration of 

40 nmol/L and a Recommended Dietary Allowance [RDA] of 15 µg/day to meet the 50 nmol/L 

sufficiency cut-off.11 In 2012, the Nordic Nutrition Recommendations for vitamin D, which 
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were also based on skeletal health outcomes, recommended an intake of 10 µg/day with a view 

to achieving an individual 25(OH)D target of 50 nmol/L.14  

Recently, SACN proposed a ‘population protective’ serum 25(OH)D concentration of 25 

nmol/L as the minimum concentration that should be met or exceeded by almost all individuals, 

for protection of musculoskeletal health.12 In line with the other agencies, SACN defined the 

vitamin D intake recommendation that would achieve this 25(OH)D target by conducting 

mathematical modeling of dose-response studies conducted in wintertime at high latitude, to 

minimise potential contributions from UVB exposure. These models provided an estimate of 

10 µg/day of vitamin D for almost all individuals [97.5%, corresponding to the Recommended 

Nutrient Intake [RNI]] aged 11 years and over, including pregnant women, to meet or exceed 

the target 25(OH)D of 25 nmol/L. To avoid confusion, the RDA, RI and RNI are presented in 

Table 1 as individual targets. (Table 1 near here) 

Table 1. Summary of the current dietary recommendations for vitamin D in pregnant 
women 

Agency Countries 25(OH)D threshold          

[nmol/L] 

Vitamin D intake 

[µg/day] 

 

  Deficiency Population 
Average 

Individual 
Target 

EAR RI AI 

IOM [2011]11 US/Canada <30 40 ≥50 10 15  

NORDEN [2012]14 Nordic <30 - ≥50 7.5 10  

SACN [2016]12 UK <25 - ≥25 - 10  

EFSA [2016]15 EU - - ≥50 - -         15  

25(OH)D, 25-hydroxyvitamin D; EAR, Estimated Average Requirement; RI, Recommended 
[Individual] Intake; AI, Adequate Intake; IOM, Institute of Medicine; NORDEN, Nordic 
Council of Ministers; SACN, Scientific Advisory Committee on Nutrition; EFSA, European 
Food Safety Authority. 

 

The European Food Safety Authority [EFSA] recently published Dietary Reference Values 

[DRVs] for vitamin D,15 which, although based on a similar risk assessment exercise to the 
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other agencies, are substantially different. Citing inadequate data availability as the basis for 

their decision, the EFSA panel did not publish average requirements or individual intake 

recommendations, but instead opted for an Adequate Intake [AI] for vitamin D of 15 µg/day to 

achieve a 25(OH)D concentration of 50 nmol/L. This intake value applies to all persons over 

1 year of age, including pregnant women, for maintenance of skeletal health. The option of 

setting an AI value is typically reserved for nutrients where there is much uncertainty in the 

data, where it is not possible to recommend an EAR or a RI. The process of setting dietary 

recommendations is an iterative one, based on the evidence available at that time. In the case 

of vitamin D, the availability of several published dose-response studies including several 

hundred individuals have enabled international agencies in recent times to estimate vitamin D 

recommendations that can be applied in the context of public health nutrition and clinical 

practice.11, 12, 14 In terms of public health nutrition policy, development and evaluation [e.g. 

fortification or supplementation programmes], the EAR, in particular, provides an established 

framework for assessing the adequacy of nutrient intakes in population groups. At this point, 

six years after an Average Requirement was proposed for the US and Canada, and in the same 

year that the UK proposed a RI, we believe that the EFSA decision to set an AI value for 

vitamin D is a missed opportunity for the European Community. This is because a framework 

to apply the AI in either the public health or clinical nutrition setting does not exist; by 

definition an AI value is inherently unreliable and therefore has limited utility.  

Implementation of the IOM, SACN and Nordic Council of Ministers [NORDEN] 

recommendations may protect pregnant women from vitamin D deficiency, if certain 

outstanding assumptions, for example that pregnancy does not increase the metabolic demand 

for vitamin D, are met. A recent dose-response trial in Canada16 showed that circulating 

25(OH)D did not decline < 30 nmol/L in pregnant and post-partum women taking 10 µg/day 

[400 IU] vitamin D3. However, a critical additional consideration is protection of fetal vitamin 
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D availability during pregnancy. Cord blood concentrations, while reflective of circulating 

maternal 25(OH)D, are usually 60-80% of maternal values collected at delivery.17, 18 Thus, 

prevention of maternal vitamin D deficiency at the lower 25(OH)D cut-off of 30 nmol/L will 

not ensure fetal protection at the same threshold. Notwithstanding the uncertainties around fetal 

and neonatal requirements, if maternal requirements for vitamin D during pregnancy were 

established on the basis of prevention of neonatal deficiency at the current minimum threshold 

of 25-30 nmol/L, a higher maternal 25(OH)D concentration would be required. A longitudinal 

study of maternal-infant dyads in Denmark, with maternal and cord samples measured at 

delivery, showed that infants born to women with a serum 25(OH)D concentration of at least 

50 nmol/L did not have serum 25(OH)D < 30 nmol/L.18 Achievement of at least 50 nmol/L 

required at least 25 µg/day in both the Canadian study16 and a dose-response trial in pregnant 

women from New Zealand.19 As part of the EC-funded ODIN project on vitamin D, we have 

completed a seasonally-balanced vitamin D dose-response study in pregnant women, which 

includes measurement of cord blood serum 25(OH)D [NCT 02506439], to estimate the vitamin 

D requirements during pregnancy and the neonatal period; this trial is now closed and will 

report in 2017. 

Vitamin D, pregnancy and infant health outcomes – an update 

Hypertensive disorders of pregnancy 

The question of whether maternal and infant health outcomes can be improved by optimizing 

vitamin D status is of intense interest as this addresses the persistent uncertainties around 

25(OH)D concentrations that meet the criteria for “optimal status”. Complicating ~ 5% of 

pregnancies worldwide,20, 21 preeclampsia [PE] is responsible for > 70,000 maternal and > 

500,000 infant deaths annually on a global basis.22 PE is defined as a multisystem complication 

with the development of hypertension on at least two occasions, four hours apart, after 20 
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weeks of gestation but before the onset of labor, or postpartum, with proteinuria or any multi-

system complication in a previously normotensive woman.23 Gestational or pregnancy induced 

hypertension is the de novo development of high blood pressure after 20 weeks of gestation, 

without any of the abnormalities that define PE; however up to 25% of women with gestational 

hypertension go on to develop PE.23 Risk factors for PE include a previous history, multiple 

pregnancy, primiparity, underlying metabolic disorders such as pre-existing diabetes, family 

history, African American race, advanced maternal age and obesity.23 However, its aetiology 

is not understood and the existence of several subtypes of the disorder challenges the 

development of clinical prediction models. In the longer term, hypertensive disorders during 

pregnancy [as well as gestational diabetes] predispose mothers to cardiovascular and metabolic 

disorders in later life.24 Whether increased risk of cardiovascular disease following PE is a 

direct cost to maternal life-long health or whether the metabolic stress of pregnancy aggravates 

a pre-existing risk of metabolic dysfunction is unclear. A quarter of the babies born to mothers 

with PE are growth restricted and a third are preterm, accounting for up to 20% of neonatal 

intensive care unit admissions. Gestational hypertension, with or without PE, itself predisposes 

to fetal growth restriction [FGR] and small for gestational age [SGA] birth, with immediate 

and potentially life-long consequences.  

Potential role of vitamin D in the prevention of hypertensive disorders of pregnancy  

In their updated Cochrane review of vitamin D supplementation and maternal and infant health 

outcomes, De-Regil et al. included 15 trials, assessing a total of 2,833 women.25 Nine trials 

compared the effects of vitamin D versus no supplementation or a placebo and 6 trials 

compared the effects of vitamin D and calcium with no supplementation. Data from two trials 

involving 219 women, both of which were of low quality, suggest that women who received 

vitamin D supplements may have a lower risk of PE than those receiving no intervention or 

placebo. A systematic review and meta-analysis of observational studies of 25(OH)D and 
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pregnancy outcomes by Aghajafari et al. included 31 studies, of which 9 focused on PE.26 

Heterogeneity in the studies was a limiting factor in the meta-analysis, but there was a 

substantial difference in serum 25(OH)D concentrations between women who subsequently 

developed PE and those who did not. The authors were persuaded that, given the mechanistic 

underpinning and biological plausibility of the associations between vitamin D and metabolic 

abnormalities including hypertension, plus the relative consistency in the observational data 

and the likelihood that low 25(OH)D preceded the adverse outcome [therefore reducing the 

likelihood of reverse causation], intervention studies with defined outcomes were warranted.  

Although gestational hypertension is clinically managed in high resource settings and 

perceived as a ‘softer’ outcome than PE, it is a meaningful indicator of an unhealthy pregnancy. 

In their systematic review of observational studies, Harvey et al. identified 11 studies [6 case-

control, 4 cohort, 1 cross-sectional] that examined the effect of maternal serum 25(OH)D 

concentration during pregnancy on gestational hypertension, with inconsistent findings.27 

Similarly, Thorne-Lyman and Fawzi concluded from their systematic review and meta-analysis 

that the evidence for a benefit of vitamin D on maternal outcomes was insufficient to draw firm 

conclusions.28 A recently conducted economic analysis of the burden of vitamin D deficiency 

in pregnant women in the UK concluded that despite uncertainties in the data, there was enough 

evidence to propose that addressing vitamin D adequacy in pregnant women in England and 

Wales would reduce PE cases by a margin sufficient to have a positive impact on the national 

health budget.29 

From the perspective of infant health, Aghajafari et al. identified a significant association 

between maternal 25(OH)D levels and risk of SGA birth.26 More recently, we reported a 36% 

lower risk of combined PE and SGA birth at 25(OH)D concentrations > 75 nmol/L among a 

large cohort of well-characterized, low-risk nulliparous women.8 A low birth weight, in 

conjunction with asymmetric growth and a reduced amniotic fluid index, distinguishes FGR 
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from SGA. FGR is coupled with an increased risk of preterm birth,30 which was ranked seventh 

in the leading causes of global years of life lost.31 Several investigators have described an 

association of preterm birth with low maternal vitamin D status.28, 32, 33 The series of events 

that initiate preterm birth, including induced uterine contractions, membrane rupture and 

subsequent dilation and effacement of the cervix,33 are potentially accompanied by systemic 

inflammation, which is associated with low 25(OH)D status.32 It is likely that 25(OH)D 

concentrations measured at time-points closest to delivery, reflecting maternal vitamin D status 

at that time, are better predictors of preterm birth than those taken in early gestation.34  

Longer-term child health outcomes have been examined in several prospective birth cohort 

studies. Evidence for an inverse association between impaired skeletal development in 

children35, 36 and maternal 25(OH)D concentrations throughout gestation have been extended 

to offspring skeletal health in young adulthood.37 Maternal vitamin D supplementation during 

pregnancy significantly reduces the risk of infantile rickets and hypocalcaemia.38 However, 

results from the recent Maternal Vitamin D Osteoporosis Study [MAVIDOS] suggest there is 

no beneficial effect on offspring whole body bone mineral content [BMC] when expectant 

mothers are supplemented with 25 µg/day [1000 IU] vitamin D3 compared with placebo.39 In 

a pre-specified secondary analysis, the authors noted a significant treatment-by-season 

interaction, where supplementation had a positive effect on neonatal bone area, BMC and bone 

mineral density [BMD] for infants delivered during late winter and early spring. Nonetheless, 

interpretation of such findings are cautioned and clarification of the long-term implications on 

offspring bone health will be expected following completion of the MAVIDOS childhood 

study.39 It should be noted that the incidence of vitamin D deficiency was very low in 

MAVIDOS, as women were only eligible for randomization if their 25(OH)D was between 25 

and 100 nmol/L at screening, and the placebo arm received 10 µg/day [400 IU]. 

Vitamin D metabolism during pregnancy 
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Acquisition of a deeper understanding of vitamin D metabolism during pregnancy is an area of 

intense research interest,40, 41 because the physiologic adaptations of pregnancy alter maternal 

vitamin D metabolism, thereby influencing fetal availability, which may have a pronounced 

effect on vitamin D requirements during pregnancy. Beginning late in the first trimester and 

continuing until after delivery, circulating levels of both vitamin D binding protein [DBP]42 

and serum 1,25-dihydroxyvitamin D [1,25(OH)2D]43 increase. DBP levels begin to rise as early 

as 8-10 weeks’ gestation, preceding the steady increase in serum 1,25(OH)2D, which 

commences approximately 2 weeks later. The mechanism controlling the elevation of 

circulating DBP in pregnancy is undefined, however, oestrogen regulation has been suggested.2 

At term, expectant mothers have approximately twice the concentration of circulating 

1,25(OH)2D as non-pregnant women,43 which is generated by increases in renal synthesis of 

1,25(OH)2D plus placental and/or decidual tissue production.2, 44, 45 A surge in 1a-hydroxylase 

[CYP27B1] expression, the enzyme that catalyses conversion of 25(OH)D to 1,25(OH)2D, is 

accompanied by decreased expression of the catabolic enzyme, 24-hydroxylase [CYP24A1].44, 

46 In this way, placental/decidual tissues have the potential to generate significant amounts of 

1,25(OH)2D without undergoing catabolic inactivation.47 The purpose of these steep increases 

in placental-decidual production in 1,25(OH)2D is not clear. While metabolic adaptations to 

pregnancy that facilitate fetal calcium accretion, outlined in the following section, are not likely 

to be the target effect, some investigators have proposed an immunomodulatory function for 

vitamin D within the placenta and maternal decidua. This relies on local availability of 

25(OH)D for paracrine production of 1,25(OH)2D,47 which has implications for maternal 

25(OH)D thresholds and vitamin D requirements. 

Calcium metabolism during pregnancy and the PTH-axis 

Recently, Scholl and colleagues have described the concept of “calcium metabolic stress”, the 

result of a low calcium-containing diet and/or low serum 25(OH)D. This causes secondary 
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hyperparathyroidism in pregnancy, which increases the risk of PE as well as other adverse 

perinatal outcomes such as SGA.48, 49 Pregnancy-specific adaptations to vitamin D metabolism 

parallel alterations in the broader calcium homeostatic system, invoked to meet the demands 

of the developing fetus. As summarised above, maternal increases in 1,25(OH)2D, which 

increase calcium absorption and reduce calcium excretion, occur independently of the classical 

parathyroid hormone [PTH]-vitamin D endocrine system.50 PTH levels fall early in pregnancy 

and remain low, before rising late in gestation to reach pre-pregnancy levels post-partum.51 A 

decrease in serum calcium likely reflects the hemodilution associated with pregnancy.11 

Although the majority of fetal calcium is accrued in the final trimester, maternal calcium 

absorptive capacity increases markedly early in pregnancy and remains high throughout.52 To 

facilitate fetal mineral demands an increase in bone resorption and formation occurs in 

pregnancy, leading to a transitory reduction in BMD.53 Special consideration should be given 

to pregnancy in adolescence, a period associated with active bone accretion, in which additional 

maternal skeletal adaptation may be required.  

Fetal calcium homeostasis differs considerably from that of the mother, uniquely adapted to 

facilitate skeletal mineralization. Calcium and phosphorous are actively transferred through the 

placenta but this does not determine fetal levels, which are maintained at higher concentrations 

than in maternal circulation.54 1,25(OH)2D circulates at low levels in the fetus, likely due to 

suppression of 1a-hydroxylase by the high levels of calcium and phosphorous. Although fetal 

PTH concentrations are relatively low, PTH-related protein [PTHrP], the origins of which 

remain unclear, is present at high concentrations. As summarised from Kovacs,55 both PTH 

and PTHrP play crucial roles in fetal bone and mineral metabolism; maintaining serum calcium 

and phosphorous levels and regulating endochondral bone development, with PTHrP [and 

possibly PTH] also aiding placental mineral transfer. Such observations, largely from animal 

data, have led some to suggest that alterations to PTH/PTHrP activity, such as those caused by 
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calcium metabolic stress, may give rise to a programming effect on bone development.56 

Although PTH and PTHrP exhibit additive effects and utilise the same receptor, they are not 

interchangeable, having distinct modes of regulation and action.55, 57  

Despite the many adaptations in the vitamin D/calcium metabolic system during pregnancy, 

the inverse 25(OH)D/PTH relationship is retained, if slightly weakened.58, 59 More 

controversial is the threshold relationship between 25(OH)D and PTH, reflecting the 25(OH)D 

level at which PTH stops increasing or below which PTH increases rapidly. While many studies 

identify a plateau level of 25(OH)D, others suggest a negative exponential relationship which 

is linear when the data is expressed as log values and as such has no threshold value.60 Such 

heterogeneity likely results from inter-study population and methodological differences. 

Challenges in consistent measurement of PTH include the bimodal, pulsatile secretion of 

PTH,61 with large sample sizes perhaps the only feasible choice to overcome such inherent 

biological variability. There is considerable scope for exploring these dynamics in large, well-

characterized pregnancy-specific cohorts. Although the interplay between calcium and vitamin 

D is well established in terms of bone health, the combined effects of vitamin D and calcium 

are not often considered in pregnancy and perinatal studies. Dairy intake, a proxy for calcium 

and vitamin D intakes, has been associated with birth weight and fetal femur growth.62, 63 

Interactive effects, in which the detrimental effect of a deficit in one nutrient may be mitigated 

by sufficiency of the other, should also be considered; such a phenomenon is seen in pregnant 

adolescents.64  

Elevated PTH reflects stress in the calcium metabolic system, which may be caused by either 

insufficient calcium intake or low 25(OH)D status [secondary hyperparathyroidism]. In 

pregnant Pakistani women, PTH was negatively correlated with crown-heel length and birth 

weight, neither of which were related to 25(OH)D.65 This, in combination with a positive 

relationship between serum ionised calcium and crown-heel length, led the authors to conclude 
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that any effect of maternal vitamin D deficiency was indirect, through alteration of maternal 

calcium homeostasis. Thus, investigation of PTH concentrations in pregnancy as a proxy for 

maternal calcium stress may help clarify the roles of vitamin D and calcium in maternal and 

fetal health, as disruption to homeostasis in the calcium metabolic system may have non-

skeletal effects. Scholl et al. found a 2-3 fold increase in SGA risk, along with lower birth 

weight, birth length and head circumference, in women who exhibited dysregulation of 

maternal calcium homeostasis.49 PTH, but not 25(OH)D, was associated with β-cell 

dysfunction and dysglycemia in pregnancy, with incident gestational diabetes progressively 

increasing across the tertiles of PTH.66 Secondary hyperparathyroidism [defined by elevated 

PTH in conjunction with low 25(OH)D] increased the risk of PE three-fold, with no increase 

in risk in those with low 25(OH)D or elevated PTH only.48 Given that PE is indicative of 

uteroplacental dysregulation and thus results in FGR, an indirect effect on bone growth must 

also be considered. Taken in totality, the evidence indicates that further studies addressing 

calcium metabolic stress, alongside vitamin D, and birth outcomes may be warranted. 

Conclusions and future directions 

Recent high-profile systematic reviews of vitamin D trials and observational studies have 

highlighted poor quality and significant heterogeneity in the observational data.26-28 In their 

updated Cochrane review of vitamin D [and/or calcium] intervention studies in pregnancy, De-

Regil et al. found limited evidence for a role of vitamin D supplementation in preventing PE, 

low birth-weight and preterm birth, all of which impact fetal and neonatal growth, but urged 

caution in the clinical interpretation of the data due to low quality, absent reporting of adverse 

effects and a high risk of bias in most studies.25 In addition to common design, implementation 

and analytical differences, some of the discrepancies in study outcomes may be due to 

incomplete characterization of study populations. For example, nutritional assessment, 

including a dietary analysis, is often not included in many protocols. Calcium intake is typically 
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ignored, despite its intimate metabolic connection with vitamin D and documented potential 

for reducing blood pressure in some women with PE.67 Clinical risk factors, such as 

overweight, and indicators of a healthy lifestyle such as smoking, supplement use and physical 

activity levels, are also relevant confounders implicated in adverse perinatal outcomes,23 as 

well as predictors of vitamin D status,8 and should always be included in clinical assessment 

protocols.  

Thus, at present, there are insufficient trial data to justify setting pregnancy-specific 

recommendations for vitamin D. Currently, the dietary intake for vitamin D recommended for 

non-pregnant individuals is 15 µg/day [600 IU] in the US and Canada11 and 10 µg/day [400 

IU] in the UK12 and the Nordic countries14. Two vitamin D dose-response studies in pregnancy 

indicate that while 10 µg/day will protect against maternal deficiency at the 30 nmol/L 

threshold, a higher dose is required to protect against neonatal deficiency at the same 

threshold.16, 19 Among calls for larger and better trials, investigators need to consider a further 

challenge. The minimum individual recommendation for vitamin D intake currently proposed 

by the regulatory agencies is 10 µg/day. Therefore, as the MAVIDOS trial has shown,39 it is 

highly unlikely that ethical review boards will consider randomization to a true [zero] placebo 

in pregnancy trials with vitamin D. In an intervention study, where the “placebo” is 10 µg/day, 

the minimum of the range of 25(OH)D concentrations among participants will be 30 nmol/L. 

This will present significant design and resource challenges in implementing sufficiently 

powered studies to detect a reduction in the incidence of serious outcomes, such as PE, that 

may be dependent on achieving target 25(OH)D concentrations within a narrow range.  

Finally, in the absence of maternal and cord reference ranges for 25(OH)D, different thresholds 

describing “vitamin D deficiency” are used. In common with Saraf and colleagues,9 we urge 

the international community to adopt a policy of transparent data reporting, describing serum 
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25(OH)D concentrations across a range of debated thresholds, to enable international 

comparison.  
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