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Abstract 

Germanium tin (GeSn) has been proposed as a promising material for electronic and optical 

applications due to the formation of a direct band-gap at a Sn content >7 at.% and its 

compatibility with Si.  Furthermore, the ability to manipulate the properties of GeSn at the 

nanoscale will further permit the realisation of advanced mechanical devices.  Here we report 

for the first time the mechanical properties of Ge1-x Snx nanowires (7.1 – 9.7 at % Sn) and 

assess their suitability as nanoelectromechanical (NEM) switches .  Electron microscopy 

analysis showed the nanowires to be single crystalline, with surfaces covered by a thin native 

amorphous oxide layer.  Mechanical resonance and bending tests at different boundary 

conditions were used to obtain size-dependent Young’s moduli and to relate the mechanical 

characteristics of the alloy nanowires to nanowire geometry and Sn incorporation.  The 

mechanical properties of the GeSn alloy nanowires make them highly promising for 

applications in next generation NEM devices. 

 

Keywords 

Germanium tin alloy, nanowire, size dependence, mechanical behaviour 

 

Introduction 

Direct band-gap group IV semiconductors, such as Ge or Si, can be formed by alloying with 

elements such as Sn and Pb, 1,2 leading to numerous applications such as efficient band-to-

band tunnelling devices, e.g. tunnelling field effect transistors, 3,4 lasing platforms 5,6 and 

mid-infrared photonic devices, e.g. waveguide amplifiers. 7 Group IV alloys are compatible 

with current Si processing technology, an advantage over III-V materials, and recently there 

have been a number of reports on utilising GeSn and SiGeSn in films in electronic, 8,9 

optoelectronic 10,11 and photonic 6,12–14 devices.  
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However, the lattice mismatch between Ge, Sn and Si in thin films causes  significant strain 

within thin films.  One solution to overcome strain in group IV alloys, such as GeSn, is to 

produce one dimensional nanostructures; nanowires allow for increased strain relaxation 

compared to thin films due to free sidewall facets. 15  Recently, the growth of GeSn 

nanowires has been achieved by top down 16–19 and bottom up approaches, 20–25 including the 

bottom up grown Ge/GeSn core/shell nanowires. 15,20,26 GeSn nanowires (with > 7 at. % Sn) 

have also been reported to display a direct bandgap 20 photoluminescence.  We have 

previously reported the growth of direct band-gap GeSn nanowires using a three phase 

vapour-liquid-solid (VLS) process, resulting in uniform nanowires with a high Sn loading (≈ 

9 at. %) and good crystal quality. 21,23 

 

GeSn nanowires are also promising candidates for nanoelectromechanical and 

nanooptoelectromechanical systems. 27  We have previously reported the exceptional 

mechanical strength of Ge nanowires, with radii between 20 to 80 nm 28 and have utilised 

these nanowires to form voltage-controlled, two-terminal bistable NEM devices. 29–31  

Young’s modulus is a decisive property for the application of nanowires as NEM switching 

devices, as it defines the device operation parameters, such as speed and voltage, as well as 

influencing contact reliability and the lifetime of a device. 32  Previously reported Young’s 

moduli of crystalline Ge nanowires were derived from bending 28 and resonance 33 

measurements; the values obtained were comparable to bulk Ge material and did not exhibit 

size-dependence at radii below 100 nm. 

 

To the best of our knowledge, there have been no reports to-date on the mechanical properties 

of GeSn alloy nanowire.  However, the amount of Sn in GeSn can potentially influence the 



4 

mechanical  behaviour of the alloy. 34  A theoretical Young’s modulus of 82 GPa extracted 

from ab initio calculations for GeSn material with 50% atomic percentage of Sn 35 suggests 

that Sn may cause softening of the material, as has been observed for Ti-Nb-Sn alloy samples 

at higher Sn concentrations. 34 

 

The intrinsic mechanical properties of a material at the nanoscale may also significantly 

differ from that of the bulk material.  Commonly observed size-dependent mechanical 

properties at the nanoscale are influenced by factors such as crystalline structure 36 and 

defects. 37  These size effects are expected to become more prominent as dimensions are 

reduced to the nanoscale. 36 However, size dependence of the mechanical properties have 

been observed also for nanowires with diameters comparable to 100 nm. 38 Commonly, size-

dependent mechanical properties of crystalline nanowires are interpreted in terms of surface 

effects 39, which can be attributed to surface elasticity and surface stress. 40–42 One of the 

factors decisive for surface effect is the bonding type of material. For example, decrease of 

the Young’s modulus with decreasing diameter, i.e. softening effect, has been previously 

reported for Si nanowires with covalent bonds. 39,43 In the case of GeSn, which has a similar 

diamond cubic structure as silicon,  similar effect is expected. Nanowires can exhibit 

stiffening, softening or no size effect under different loading modes (e.g. dynamic resonance, 

static bending or tension) 44 and boundary conditions (e.g. single- or double-clamped) due to 

surface effects. 44–46  Typically observed nanowire morphological features, like tapering 37,47 

and surface oxidation, 28,29,48 can also impact their mechanical performance, since even a thin 

oxide layer could affect the surface stress. For oxide thicknesses comparable with nanowire 

radii, a core-shell model can be used to explain the size-dependence. 38,41  
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This article reports for the first time the mechanical properties of bottom-up synthesised 

GeSn nanowires, with up to 9 at.% Sn atoms distributed throughout the crystal structure of 

the nanowires. 23,49  The mechanical properties of the nanowires were assessed by various 

experimental approaches, such as mechanical resonance 37,38,51,52 and bending tests 28,33,53 , 

which can be performed with either atomic force microscopy 28 or in-situ electron 

microscopy 31,50,51. The mechanical properties of these novel nanowires were compared to 

previously reported properties of pure Ge nanowires. 28,33,50  The physical properties of the 

GeSn nanowires were analysed in the context of assessing their suitability for future NEM 

devices. 32 

 

Experimental 

GeSn nanowires (with 7-9 at.% Sn inclusion) were synthesised by a liquid-injection chemical 

vapour deposition technique, where the growth of the nanowire follows the vapour-liquid-

solid (VLS) paradigm. 21,23   

GeSn nanowires (with 7-9 at.% Sn inclusion) were synthesised by a liquid-injection chemical 

vapour deposition technique, as previously reported.21 Dodecanethiol-stabilised Au 

nanoparticles were used as growth seeds, which were spin-coated onto a Si (001) substrate 

containing a native oxide. The substrate was loaded into a metal reaction vessel which was 

then left under vacuum at 180 °C overnight to ensure a moisture free growth atmosphere and 

the desorption of the surfactant molecules. 

Solutions of diphenylgermane (DPG) and allyltributylstannane (ATBS) in anhydrous toluene 

were prepared in an N2 filled glove box with a typical Ge and Sn precursor concentration of 

0.025 mL and 0.0075 mL respectively in 10 mL toluene. A solution containing both Ge and 

Sn precursors was loaded into a Hamilton sample-lock syringe inside the nitrogen-filled 

glovebox. Prior to injection, the coated Si substrate was further annealed for 15 min at 440 ºC 
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under a flowing H2/Ar atmosphere inside a tube furnace. The precursor solution was then 

injected into the metal reaction vessel using a high-pressure syringe pump at a rate of 0.025 

mL min-1. A H2/Ar flow rate of 0.6 sccm was maintained during the entire growth period. A 

typical nanowire growth time was 2 h. 

 

The morphology and structure of the nanowires were assessed by scanning and transmission 

electron microscopy (SEM Hitachi S-4800, TEM JEOL ARM-200F Probe corrected). Prior 

to the resonance and bending measurements by in-situ SEM, individual GeSn nanowires were 

attached to sharp electrochemically etched Au tips using Smaract and Attocube 

nanomanipulation systems inside an SEM.  To ensure rigid nanowire-tip contacts 31,54, the 

nanowires were clamped with Pt strips deposited by a focused e-beam technique (SEM-FIB 

Tecnai Lyra). 

 

The clamped nanowire diameters were measured from SEM images with a diameter precision 

of ∆𝑑𝑑= 5 nm and length of ∆𝐿𝐿= 0.1 µm.  Their mean radii were calculated as 𝑟𝑟 ± ∆𝑟𝑟=

0.5(𝑟𝑟0 + 𝑟𝑟1) ± 5 nm, where 𝑟𝑟0 = 0.5𝑑𝑑0 and 𝑟𝑟1 = 0.5𝑑𝑑1, were measured at the clamped and 

free end.  Nanowire tapering parameter 𝜎𝜎 = (𝑟𝑟0 − 𝑟𝑟1)/𝐿𝐿 was calculated to be less than 0.01, 

which corresponds to facet taper angles 𝛼𝛼 of less than ~1.1°. 

 

Nanowire resonance was excited by applying an oscillating electric AC/DC signal between 

the nanowire and electrode and detected visually by SEM.  The excitation signal was 

powered by an AC sweep function generator (Agilent N9310A) and a DC voltage supply 

(Keithley 6487), monitored by an oscilloscope (TDS 1012).  For each individual nanowire, 

resonance occurring at the first mode fundamental frequency was distinguished from the 

higher modes and parametric resonances by analysing nanowire vibration profiles and the 
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amplitude dependency on the AC and DC excitation signal amplitude.  Resonance amplitude 

was determined from SEM images with an accuracy of 0.1 μm. The resonant frequency and 

quality factor Q were determined from Lorentzian fits of the acquired vibration amplitude-

frequency plots. 

 

The relative uncertainties of the experimental resonance Young’s moduli 𝑟𝑟𝐸𝐸 were estimated 

from the relative uncertainties for the experimentally measured nanowire diameter (𝑟𝑟𝑑𝑑 =

∆𝑑𝑑/𝑑𝑑), length (𝑟𝑟𝐿𝐿 = ∆𝐿𝐿/𝐿𝐿) and resonant frequency (𝑟𝑟𝑓𝑓 ≈ 1 %) measurements, similarly to 

error analysis previously described in 55.  Relative uncertainty 𝑟𝑟𝐸𝐸 ≈ 2𝑟𝑟𝑓𝑓 + 4𝑟𝑟𝐿𝐿  + 2(𝑟𝑟𝑑𝑑0 + 𝑟𝑟𝑑𝑑1) 

resulted from classical Euler-Bernoulli beam theory formula for a cantilever, where 

𝐸𝐸~𝑓𝑓2𝐿𝐿4𝑑𝑑−2. 56,57  The calculated 𝑟𝑟𝐸𝐸 were in agreement with the bounds for the Young’s 

moduli, calculated by finite element method (FEM) by varying modelling parameters of the 

nanowire geometry and frequency within their uncertainty range.  Uncertainty from FEM 

data was assumed to be less than 1 % and had only had a minor contribution to 𝑟𝑟𝐸𝐸. 

 

In the bending tests by in-situ SEM, the GeSn nanowires were bent using the edge of an 

atomic force microscope (AFM) chip.  The deflection shape of the nanowires were 

determined from real-time SEM videos and images. 

 

For the three point bending tests, the nanowires were mechanically transferred to a Ted-Pella 

AFM calibration grating.  The sample surface was visualised by SEM to determine the 

appropriate configuration of the nanowires for performing the three point bend test.  Further 

mechanical characterisation of individual suspended nanowires was conducted by atomic 

force microscopy (AFM) (Bruker Dimensions Edge).  A number of force-displacement 

curves were taken for each measured nanowire and the mean Young’s modulus and standard 
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deviation were calculated from the gradient of force-displacement plots. The Young’s moduli 

calculated analytically were in agreement with the values obtained from FEM simulations (deviation 

less than 2%). The precision of the AFM was relatively high (XY and Z position sensor noise 

level is <0.5 nm and <0.2 nm, respectively) and compared to the uncertainties related to the 

actual measurements, can be neglected.  There are a number of sources of error in the AFM 

three point bending measurements and they cannot be taken into account directly.  Firstly, in 

each measurement, the AFM tip might not be in the same contact point as in the last 

measurement; as the tip is lifted between measurements and then lowered again to generate 

force-displacement curves.  Secondly, thermal drift can affect the measurements resulting 

from different contact points on a nanowire with the AFM tip.  Thirdly, during the 

measurement, as the force increases, the AFM tip might slip on top of the nanowire and again 

generate uncertainties.  Those are the reasons, why the Young’s modulus for each nanowire 

was measured several times, so that statistical analysis of the results could be performed.  

 

Results and Discussion 

Morphological Characterisation 

GeSn nanowires with radii between 25-130 nm and lengths between 3-16 µm were selected 

for mechanical testing.  From SEM measurements, the nanowires showed high length-to-

radius aspect ratios of between 60-230, straight morphologies without any bend or kink and 

uniform circular cross-sections throughout the length of the nanowires (Figures 1(a) and (b)), 

as expected for AuAg-catalysed VLS grown GeSn nanowires. 23  The crystalline structure of 

the nanowires was confirmed by high resolution transmission electron microscopy (HRTEM) 

images.  The amorphous shell (Figure 1(c)) was formed of Ge and Sn oxides. 58  Energy 

dispersive X-ray (EDX) analysis from different nanowires confirmed Sn inclusion between 7 

to 9 at.% (Figure S1 in ESI).  EDX analysis also confirmed the prevalence of oxygen in the 
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shells compared to the nanowire core, whilst Ge and Sn showed uniform radial and axial 

distributions (Figure 1(d)). 

 

Figure 1: (a) SEM image of GeSn nanowires grown on a Ge substrate; (b) TEM image of a 

GeSn nanowire with a radius 𝑟𝑟 = 100 nm; (c) HRTEM image of a GeSn nanowire with a 

crystalline core and amorphous shell structure; (d) EDX elemental analysis mapping data of 

a nanowire core and shell. 

 

The observed shell thickness of between 1-2 nm (Figure 1(c)) on the GeSn nanowires was 

smaller than the previously reported thickness (2-7 nm ) of the oxide shell previously 

observed on pure Ge nanowires 28,29 and could be assumed negligible compared to the core 

thickness of nanowires studied.  Previous reports on Ge nanowires have emphasised the 

impact of oxidised surfaces on their electrical characteristics, 48 rather than on their 

mechanical  properties. 28,33,50 

 

A proportion of the nanowires present on the substrate (Figure 1(a)) were found to be slightly 

tapered along their lengths.  A small amount of tapering of long GeSn nanowires may result 

from competing diffusion-based mechanisms, where the radial growth is instigated by 

homoepitaxy and vapour-solid growth during the bottom-up VLS synthesis process. 23,49  One 
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thing to note is that the tapering in the GeSn nanowire was very minimal compared to 

conventionally tapered Ge nanowire. 59  HRTEM analysis also confirmed that there were no 

significant defects in the crystal structure of the GeSn nanowires synthesised (Figure 1(c)). 

 

Mechanical Characterisation 

The mechanical properties of GeSn nanowires were assessed by a combination of in-situ 

SEM resonance and bending tests of single-clamped nanowires (Figures 2(a) and (c)), and 

AFM three-point bending tests of nanowires suspended on trenches (Figures 3(a) and (b)). To 

extract information about Young’s moduli and bending strengths of individual GeSn 

nanowires, experimentally obtained nanowire geometries, resonant frequencies and forces 

were simulated by the finite element method (FEM) (Figures 2(d), 3(c) and 3(d)). 
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Figure 2: (a) SEM image of a single-clamped GeSn nanowire; insets show nanowire end 

shape captured at a frequency far from and near resonance (white arrow indicating the 

vibration amplitude is added for clarity); (b) nanowire vibration amplitude measured near 

resonance and its Lorentzian fit (solid line); (c) Sequential (1→2→3) in-situ SEM images 

illustrating the GeSn nanowire shape during the bending process (indicative white arrow 

shows the direction of tip movement); (d) example of a FEM simulation of the stress 

distribution in the nanowire (for the shape on c3), used for determination of nanowire 

bending strength. 
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Figure 3: (a) SEM and (b) AFM images for a GeSn nanowire suspended on a trench for 

three-point bending tests (top view); (c) FEM simulation of the bending test (cut plane 

through centre axis of the nanowire and three-dimensional model); (d) Force-displacement 

curves obtained during nanowire bending (black dots) and from FEM simulation (red 

circles), used for determining nanowire Young’s modulus of the nanowire. 

 

Figure 2(a) illustrates a SEM image of the first mode mechanical resonance for a typical 

single-clamped GeSn nanowire with length 𝐿𝐿 = 15 µ𝑚𝑚 and mean radius 𝑟𝑟 = 115 𝑛𝑛𝑚𝑚.  The 

resonant frequency 𝑓𝑓 = 674 kHz and quality factor 𝑄𝑄 ≈ 1000 of the nanowire were 

extracted from a Lorentzian fit of the vibration amplitude-frequency plot (Figure 2(b)).  The 

tendency of having a higher 𝑄𝑄 value for thicker nanowires was observed (Figure 4(a)). The 

size-dependent resonance quality factor of 100-600 has previously been reported for single-

clamped Ge nanowires with radii of 25-70 nm, 33 which is close to the values observed in this 

work for GeSn nanowires (Figure 4(a)).  Such size-dependence can be explained by the 

increased surface-to-volume ratio for smaller radii nanowires, supporting the idea that at low 

pressure energy losses of such resonators are dominated by surface dissipation. 37,60 
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Figure 4: (a) Experimental resonance quality factors 𝑄𝑄 vs. nanowire average radii 𝑟𝑟.  Dotted 

black line is an empirical linear fit of experimental data (discs); (b) Experimental Young’s 

moduli derived from resonance (squares) and 3-point bending tests (red crosses) for 41 

individual GeSn nanowires vs. their average radii.  Linear (dashed black line) and 

exponential (solid red line) extrapolation curves of the data are added as eye guidelines.  

 

Size-dependent Young’s moduli were observed for the GeSn nanowires from the resonance 

and bending experiments (Figure 4(b)).  From the resonance experiments, a slight increase of 

Young’s modulus with increasing nanowire radius was observed (Figure 4(b), dashed black 

line), which contrasted with the experimental data from three point bending experiments of 

similar GeSn nanowires.  An empirical exponential fit of the size-dependent bending 

Young’s modulus (Figure 3(b), solid red line) shows an assymptotic increase at radii below 

30 nm, where the highest measured Young modulus values (227-287 GPa) were twice as high 

as for bulk Ge (109 GPa).  At radii above 30 nm, the mean Young’s moduli with standard 

deviations extracted from the resonance (61 ± 24 GPa) and bending (59 ± 30 GPa) modes 

are in the same range.  This is smaller than experimental Young’s modulus values previously 

obtained for pure Ge nanowires by resonance (106 ± 19 GPa 33) and bending (112 ± 43 GPa 

28) experiments, being closer to theoretical 82 GPa calculated for GeSn. 35 
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A number of different error sources were considered to understand the accuracy of the 

extracted Young’s moduli data. For example, measuring fundamental frequency and 

evaluating the boundary condition in the resonance tests, eliminating nanowire tension and 

sliding in the 3-point bending tests, are needed for accurate extraction of the Young’s 

modulus from simple beam model. 39 The fundamental frequencies of the tested GeSn 

nanowires were measured from small amplitude linear vibrations. As the nanowires had high 

quality factors (Figure 4(a)), the shifts in their resonant frequencies due to damping can be 

assumed negligible. A fixed boundary condition was ensured by the clamp widths exceeding 

nanowire diameters, 54 thus enabling accurate determination of the Young’s moduli from the 

measured experimental resonant frequencies. In the 3-point bending test, sliding of the 

nanowire can be a source of error. 39 This was ruled out for the measurements since there was 

high contact pressure at nanowire-tip interface and smooth force-displacement curves without 

observable hysteresis for loading-unloading (Figure 3(d)). The nanowires showed linear 

elastic behaviour, confirmed by AFM imaging after loading-unloading cycles. Numerical 

calculations performed by FEM also revealed that the strain in the nanowire during a typical 

mechanical bending test does not exceed 3% at displacements below 200 nm, confirming that 

the nanowire is in the elastic regime. The main contribution to uncertainty of the obtained 

values (error bars in the Figure 4(b)) was considered to be from measurements of the 

nanowire dimensions by SEM and AFM. 

The two opposite trends of the resonance and bending Young’s moduli can be explained by 

the influence of surface effects on the dynamic and static behaviour of the GeSn nanowires 44.  

Additionally, the nanowires had different boundary conditions during resonance (fixed-free, 

Figure 2(b)) and three-point bending tests (fixed-fixed, Figure 3(d)), which presumes an 

inequal contribution of the surface on their elastic properties. 44–46  Our experimental data 

supports the idea that the Young’s modulus, which is assumed to be an intrinsinc material 
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property at the macroscale, becomes very sensitive to the measurement approach at the 

nanoscale. 45 A theoretical model considering all effects contributing to the mechanical 

properties of nanowires is yet to be developed. 61  One factor which is likely to contribute to 

the size-dependence and reproducibility of the experimentally obtained Young’s moduli for 

individual nanowires, would be the oxide shell (Figures 1 (c) and (d)).  Previously reported 

Young’s moduli of Ge and Sn oxides vary between ~50 GPa for Ge oxide 28,62 and 60-368 

GPa for Sn oxide. 63  Amorphous oxide can have lower Young’s modulus than the nanowire 

core due to lower density. However, the influence of a 1-2 nm thin oxide shell (Figure 1(c)) 

on the effective Young’s modulus is expected to become noticeable only for the nanowires 

with radii comparable to the shell thicknesses. A simple core-shell model can be used for 

estimation of the composite Young’s modulus if core and shell  moduli and sizes are known. 

38,41 An examination of the influence of an oxide shell is described in ESI. Depending on the 

real Young’s modulus values this can lead to either stiffening or softening effect, however it 

is not sufficient to explain the discrepancy between the two measurement methods. 

We consider that the overall size-effects in experimental Young’s moduli can result from a 

combination of nanowire structural properties, such as bonding type, defects in crystalline 

structure core, presence of amorphous oxide shell, as well as the surface effects sensitive to 

the experimental conditions. Thus the experimental values represent effective Young’s 

moduli, which characterise behaviours of nanomaterials at certain geometries and conditions. 

45   

 

From our experimental results, the addition of 9 at.% Sn in Ge nanowires with radii above 30 

nm causes a slight decrease the mean Young’s modulus, as expected for GeSn. 35  However, 

this value is still comparable to other materials used in NEM devices. 32  Another important 

characteristics which should be considered for an active element of a NEM switch is the 
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ability to withstand bending deformation.  Breaking strengths of 5-7 GPa were determined for 

the GeSn nanowires from bending experiments employing in-situ SEM (Figure 2(b)). These 

values reached 8-12 % of their Young’s moduli, pre-determined for each nanowire in 

resonance tests. The breaking of GeSn nanowires occurred typically below 7% of strain, as 

was calculated from the FEM modelling, indicating, that the bending was elastic. The 

obtained relative breaking strength values were close to the previously reported value of ~13 

% for pure Ge nanowires 28 and the theoretical limit for crystalline materials (10-16 % of 𝐸𝐸 

28,50,53,64).   

 

Conclusions 

The resonance quality factors of GeSn nanowires correlated with their radii, reaffirming the 

increased role of surface effects on energy dissipation in nanowire resonators.  Size-

dependent Young’s moduli of GeSn nanowires were determined by resonance and bending 

methods.  The differences between the experimentally determined Young’s moduli obtained 

by the two techniques became prominent at radii below 30 nm, highlighting the importance 

of choosing the appropriate measurement method and consideration of  boundary conditions 

for characterising the mechanical properties of the nanowires.  The bending stresses 

measured at the point of fracture for the GeSn nanowires reached 8-12 % of their Young’s 

moduli, which is comparable to the theoretical limit 𝐸𝐸/2𝜋𝜋. 
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Footnotes 

Electronic Supplementary Information (ESI) containing EDX analysis of GeSn nanowires 

and calculation example for composite Young’s modulus from core-shell model is available.  
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