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Abstract. A new class of multiple-follower bilevel problems has been
proposed. In this class of problems, the follower problems are allowed to
be nonlinear, do not share constraints or variables, and are only weakly
constrained. This allows the leader variables can be partitioned among
the followers. This new problem was formalised and compared with exist-
ing problems in the literature, and it was seen that approaches currently
in use for solving multiple-follower problems are not suitable for this new
problem. Evolutionary algorithms can be used to solve this problem;
however, these are computationally-intensive approaches which do not
scale up efficiently. An analytics-based approach was therefore proposed
in order to address this issue. Two example problems were solved using
the decomposition approach, as well as two evolutionary algorithms. The
decomposition approach is particularly useful for large-scale problems; it
was seen that time as the size of the bilevel problem got larger, the de-
composition approach produced much better results in a shorter amount
of time.

Keywords: Bilevel Optimisation · Multiple Followers · Analytics · De-
composition

1 A New Class of Bilevel Problems

Bilevel problems are problems in which an inner (or follower) optimisation prob-
lem is a constraint to an outer (or leader) optimisation problem. As these compo-
nent problems interact with and affect each other, the solution of bilevel problems
is difficult [5]. In some cases, there may be several inner (or follower) problems.
Such problems are are known as Bilevel Multiple-Follower (BLMF) problems.
For the BLMF problem with a single leader and Q multiple followers, let x
represent the leader decision vector, and yq the decision vector for follower q,
(q = 1 . . . Q). The leader chooses a strategy x, following which every follower se-
lects its own strategy corresponding to x. Depending on how much the problem’s
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decision variables, objectives and constraints are shared among the followers, the
multiple-follower bilevel problem may be either cooperative, partially coopera-
tive or uncooperative. Based on the type of interaction among the followers, nine
classes of linear bilevel multiple-follower problems have been identified in [13].
Problems in which the followers do not share objectives or constraints are known
as “independent” and are written as:

minx,y1...yQ
F (x,y1, . . . ,yQ)

s.t.
G(x,y1, . . . ,yQ) ≤ 0

where each yq (q = 1, . . . , Q) solves

minyq f(x,y1, . . . ,yQ)
s.t.

g(x,y1, . . . ,yQ) ≤ 0

(1)

Several researchers (e.g. [13, 26]) have worked on bilevel optimisation with mul-
tiple independent followers, however, we would like to strengthen this indepen-
dence condition to one called strong independence.

Definition 1. A Bilevel Problem with Multiple Strongly-Independent Followers
(BPMSIF) is one in which:

(i) the followers do not share each others’ follower or leader variables, so that
x can be partitioned into q parts: xq (q = 1 . . . Q).

(ii) follower problems fq(xq,yq) are allowed to be integer or non-linear.
(iii) variables from different follower problems are not tightly mutually constrained

(though weak constraints such as a weighted sum of the variables are al-
lowed).

Thus the BPMSIF has the form:

minx1...xQ,y1...yQ
F (x1, . . . ,xQ,y1, . . . ,yQ)

s.t.
G(x1, . . . ,xQ, y1, . . . ,yQ) ≤ 0

where each yq (q = 1, . . . , Q) solves

minyq fq(xq,yq)
s.t.

gq(xq,yq) ≤ 0
xq ∈ Xq, yq ∈ Yq

(2)

where F, fq may be any (possibly non-linear) objective functions, G, gq may
be any set of (possibly non-linear) constraints, the G constraints are weak, and
Xq, Yq may be vectors of any variable domains (real, integer, binary, or richer
Constraint Programming domains such as set variables). Problem (2) satisfies
the features of a BPMSIF in that:
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– Each follower problem here can be seen to be a function of only its variables
yq and a portion of the the leader’s variables xq.

– G(x1, . . . ,xQ, y1, . . . ,yQ) ≤ 0 is weak and may, for example, take the form
of a simple weighted sum such as

∑Q
q Bqyq ≤ b, where the Bq and b are

constants.

This problem is different from multiple-leader problems such as those in [20,
12], and [7] in that those problems have multiple leader objectives and solutions,
whereas the BPMSIF has only a single leader with its single objective function.
The constraint region of the BPMSIF is:

Ω = {(x1, . . . ,xQ,y1, . . . ,yQ) ∈ X1 . . .×XQ × Y1 × . . .× YQ :
G(x1, . . . ,xQ,y1, . . . ,yQ) ≤ 0, g(xq,yq) ≤ 0, q = 1, . . . , Q}

(3)

The projection of Ω onto the leader’s decision space is:

Ω(X) = {xq ∈ Xq :∃yq ∈ Yq : G(x1, . . . ,xQ,y1, . . . ,yQ) ≤ 0,
g(xq,yq) ≤ 0, q = 1, . . . , Q} (4)

The feasible set for follower q is affected by a corresponding part xq of a given
leader decision vector so that:

Ωq(xq) = {yq : (xq,yq) ∈ Ω} (5)

Each follower’s rational reaction set is given as:

Ψq(xq) = {yq ∈ Yq : yq ∈ argminfq(xq,yq) |yq ∈ Ωq(xq)} (6)

Finally, the inducible region (IR) is:

IR = {(x1, . . . ,xQ,y1, . . . ,yq) :(x1, . . . ,xQ,y1, . . . ,yq)
∈ Ω, yq ∈ Ψq(x), q = 1, . . . , Q} (7)

As in standard bilevel programming min and argmin have been used without
loss of generality: either problem or both could involve maximisation. In fact
for all intents and purposes, the follower problems need not be linear, or even
optimisation problems at all: follower q can be any algorithm that computes yq

from xq.
As with single-follower bilevel problems, both classical and evolutionary ap-

proaches have been used for solving multiple-follower problems. Although [13]
presents a general framework and solutions for nine classes of multiple-follower
problems however, these are not applicable to our problem, as our problem is
structurally different from those identified in [13]. Classical methods for solving
multiple-follower problems include Kuhn-Tucker (KT) approaches (e.g. [15] [21]
[14] and branch-and-bound algorithms [16]. There is also literature on apply-
ing the Kth-best approach (or some modification) to solving multiple-follower
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problems [22], [23], [27] and also [26]. The authors in [4] reformulate a problem
with multiple followers into one with one leader and one follower by replacing
the lower levels with an equivalent objective and constraint region. This method
also cannot be applied to the BPMSIF, as neither its objectives nor its inducible
region are equivalent to those of the problem class addressed in [4]. Additionally,
the methods proposed in [4] and [13] function on the condition that the follower
problems are linear, which is not the case with the BPMSIF. In fact, most clas-
sical methods for handling bilevel problems require assumptions of smoothness,
linearity or convexity, however, the BPMSIF is not restricted to being linear or
having linear follower problems.

A number of evolutionary and meta-heuristic techniques have been developed
which do not require assumptions of linearity or convexity [2], [11] and also [9],
but most of these are computationally intensive nested strategies. Consequently,
while these strategies may be efficient at solving smaller problems, they do not
lend themselves to the efficient solution of large-scale problems. In addition to
being able to handle non-linear objectives and constraints, the decomposition
approach proposed in this thesis is very suitable for solving large-scale prob-
lems faster and more efficiently than evolutionary approaches (see section 3 for
examples). An alternative approach not restricted by conditions of linearity or
convexity will therefore be a useful contribution to the literature.

2 An Analytics-Based Decomposition Technique for the
BPMSIF

For each follower q, large number S of feasible solutions for the leader vector
xq associated with that follower are generated. This is done using Monte Carlo
simulation. In order to avoid bias, the xq are generated using Hypersphere Point
Picking [18, 19]. This enables us to uniformly sample from a vector space, as
opposed to simply randomising each component of xq. This results in a set Xsq

(s = 1 . . . S, q = 1 . . . Q).
Once this is done, the associated follower problems are solved using the Xsq

to obtain a corresponding set of follower vectors Y sq. We now have multiple
potential leader solutions, together with their corresponding follower solutions
for each follower problem fq(xq,yq).

In order to model and solve this BPMSIF as an Integer Linear Program
(ILP), the large number of potential solutions Xsq needs to be reduced to a
more manageable size. This is done using k-medoids clustering [1]. Unlike in
k-means where the centroids are made up of the means of the data points, k-
medoids allows us to select actual data points as the centroids. Once the large
set Xsq has been clustered using K clusters, the medoids from each cluster
are selected to represent the large generated set. The corresponding Y kq are
then selected from Y sq so that we now have a smaller but representative set of
assignments Xkq and Y kq. The most common algorithm for k-medoid clustering
is the Partitioning Around Medoids (PAM) algorithm [1], however it is not as
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efficient on very large datasets. Consequently, the CLARA algorithm, which is
a combination of PAM and random sampling, is used [10, 25].

The original bilevel problem can now be transformed into a standard opti-
misation problem:

minx1...xQ
F (x1 . . .xQ,y1 . . .yQ)

s.t. G(x1 . . .xQ, y1 . . .yQ) ≤ 0
xq = Xkq → yq = Y kq (q = 1 . . . Q, k = 1 . . .K)
xq ∈ {Xkq | k = 1 . . .K} (q = 1 . . . Q)
yq ∈ {Y kq | k = 1 . . .K} (q = 1 . . . Q)

(8)

The constraint xq = Xkq → yq = Y kq is used to ensure that if xq is
assigned a value in Xkq then yq must be assigned the corresponding value in
Y kq. This constraint can then either be linearised using the big-M approach, or
implemented directly using CPLEX’s indicator constraints [8].

3 Numerical Examples

In order to illustrate and evaluate the decomposition approach, two example
problems are considered below. Monte Carlo simulation and clustering were done
in Java and R (using the CLARA package [17]) respectively. The CPLEX 12.6
solver was also used on a 3.0 GHz Intel Xeon Processor with 8 GB of RAM.

3.1 A Benchmark Problem

The first problem considered is Example 2 from [3], and is a two-follower problem:

max F (x,y1,y2) = (200− y11 − y21)(y11 + y21)
+(160− y12 − y22)(y12 + y22)

s.t.
x1 + x2 + x3 + x4 ≤ 40
0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 15, 0 ≤ x4 ≤ 20

min f1(y1) = (y11 − 4)2 + (y12 − 13)2

s.t.
0.4y11 + 0.7y12 ≤ x1
0.6y11 + 0.3y12 ≤ x2
0 ≤ y11, y12 ≤ 20

min f2(y2) = (y21 − 35)2 + (y22 − 2)2

s.t.
0.4y21 + 0.7y22 ≤ x3
0.6y21 + 0.3y22 ≤ x4
0 ≤ y21, y22 ≤ 40

(9)

This problem fits the problem class proposed in section 1 as the followers are
strongly independent. The followers do not share each others’ follower or leader
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variables, and the follower problem variables are not mutually constrained. The
leader vector x = (x1, x2, x3, x4) is partitioned among the followers with vari-
ables (x1, x2) occurring in follower 1 and (x3, x4) in follower 2. The variables
y1 = (y11, y12) and y2 = (y21, y22) are also computed by followers 1 and 2
respectively.

To solve this problem using the analytics-based decomposition method, de-
note (x1, x2) by a vector λ1 and (x3, x4) by a vector λ2. A large number S of
assignments for λ1 and λ2 which satisfy the bounds of the x’s are generated
([18, 19]), and denoted by Λs1 and Λs2 (s = 1 . . . S) respectively. For each λ1
in Λs1 the corresponding follower problem f1 is solved as an ILP, obtaining
assignments Y s1; similarly for Y s2. Next, the Y s1 vectors are clustered using
k-medoids to get the most diverse set of assignments Y k1, (k = 1 . . .K). The
Λk1 vectors that correspond to the Y k1 are then selected. The same is done for
Y s2 to obtain Y k2 along with its corresponding Λk2. Using this decomposition,
problem (9) can now be rewritten as a standard optimisation problem:

max F (x,y1 . . .y2) = (200− y11 − y21)(y11 + y21)
+(160− y12 − y22)(y12 + y22)

s.t.
λ11 + λ12 + λ21 + λ22 ≤ 40
uk = 1→ λ1 = Λk1 k = 1 . . .K
uk = 1→ y1 = Y k1 k = 1 . . .K∑K

k uk = 1
vk = 1→ λ2 = Λk2 k = 1 . . .K
vk = 1→ y2 = Y k2 k = 1 . . .K∑K

k vk = 1

(10)

where λ11 = x1, λ12 = x2, λ21 = x3 and λ22 = x4. This model can be
linearised using the big-M approach, however this ILP is solved faster when
CPLEX’s indicator constraints are used 4. The binary variables uk and vk ensure
that only one assignment each is selected from Λk1 and Y k1, and from Λk2
and Y k2 respectively. The λ11 + λ12 + λ21 + λ22 ≤ 40 constraint ensures that
an (x1, x2) and an (x3, x4) that satisfy the original constraints on the x’s are
selected.

Using S = 10, 000, figure 1 shows how the objective value varies with K.
The red line shows the optimal value of 6600. As K increases, the value of
the objective trends upwards, with the highest value of 6594.05 obtained when
K = 160 giving x = (8.13, 3.80, 11.23, 16.82), y1 = (0.74, 11.20) and y2 =
(28.04, 0.00) (rounded to 2 decimal places).

The clustering time when K = 160 is 234.53 seconds. This solution is 0.09%
less than the optimal, however the strength of this approach is in its ability to
handle large-scale problems. This is demonstrated next.

4 Indicator constraints are a way of expressing if-else relationships among variables
[8].
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Fig. 1: Objective value as K increases

3.2 A Large-Scale Problem

In this experiment, a problem with arbitrarily many followers is evaluated. The
problem is also evaluated for the optimistic case in which the followers’ solutions
lead to the best objective function value for the leader.

max
∑Q

q aqxq +
∑Q

q bqyq

s.t. xq ∈ RN ∀q
xqn ≤ xmax

qn ∀q, n

q = 1 . . . Q



yq ∈ argmin cqxq + dqyq

s.t.
N∑
n

yqn ≤
N∑
n

xqn

yqn ≥ eqnxqn n = 1 . . . N
yq ∈ Rn

yqn ≤ ymax
qn n = 1 . . . N

(11)

where
∑

q aqxq =
∑

q

∑
n aqnxqn, x and y are the variables controlled by the

leader and followers respectively, and Q is the total number of followers. Both
the x and y are vectors of real numbers. The leader variables are partitioned
among the followers such that each follower contains one xq each, and each xq

is of size n. Each component of the vector xqn is constrained to be ≤ a given
upper bound xmax

qn . aq, bq, cq, dq and eq are vectors of constants.



8 Adejuyigbe Fajemisin , Laura Climent, and Steven D. Prestwich

The decomposition approach outlined in section 2 was used to decompose
the problem, which is then written as:

max
∑Q

q

∑N
n aqnxqn +

∑Q
q

∑N
n bqnyqn

s.t. xqn −Xkqn ≤M(1− ukq) k = 1 . . .K, q = 1 . . . Q, n = 1 . . . N
Xkqn − xqn ≤M(1− ukq) k = 1 . . .K, q = 1 . . . Q, n = 1 . . . N
yqn − Ykqn ≤M(1− ukq) k = 1 . . .K, q = 1 . . . Q, n = 1 . . . N
Ykqn − yqn ≤M(1− ukq) k = 1 . . .K, q = 1 . . . Q, n = 1 . . . N∑K

k ukq = 1 q = 1 . . . Q
ukq ∈ {0, 1} k = 1 . . .K, q = 1 . . . Q

(12)

where M is a sufficiently large constant.

Evaluation The values used for the problem are N = 6, xmin
qn = 0, xmax

qn = 10,
ymax

qn = 10, (∀q, n). aqn, bqn, cqn, and dqn are Gaussian random real variables in
[0.0, 15.0), [0.0, 20.0), [−10.0, 10.0) and [−12.0, 12.0) respectively. eqn is a uni-
form random real variable in [0.0, 1.0). The number of followers Q was varied
between 10–1000, and the problem was solved using both the decomposition ap-
proach (using S = 1000, K = 30 for each follower) and two genetic algorithms,
and the results are shown in figures 2 and 3. The first genetic algorithm is the
Nested Bilevel Evolutionary Algorithm (N-BLEA) used in [24]. The second is
the Multiple-Follower Genetic Algorithm (MFGA) described in Algorithm 1, and
was custom-built for this problem.

N-BLEA Parameters In order to select the parameters to use, the problem
with 100 followers (Q = 100) was first solved while varying some algorithm pa-
rameters. The number of parents µ and number of offspring λ (µ = λ) were varied
from 3 to 8. For each of these values, the number of generations (maxGens) was
also varied from 50 to 200 in steps of 50. This operation was run 10 times for
each value of µ, λ and maxGens, and the average objective value was recorded.

It was seen that the following settings produced the best solutions on average:
µ = λ = 8, number of generations maxGens = 150, tournamentSize = 5,
number of random individuals added to pool r = 2, crossoverProbability = 0.9
and mutationProbability = 0.1. The constraint handling method used by the
algorithm is given in [6], and the variance-based termination criteria was set to
0.000001.

MFGA Parameters In order to select the parameters to use, the problem
with 100 followers (Q = 100) was also first solved while varying some algorithm
parameters. The population size (popSize) was varied from 30 to 90, while also
varying the maximum number of generations maxGens from 50 to 500. The
MFGA parameters selected were therefore: maxGens = 500, popSize = 50.
This population size was selected because although there is not much of a
difference between its objective value and the best objective at popSize =
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Algorithm 1 Genetic Algorithm for multiple follower bilevel problems
1: Generate initial population of size popSize of leader individuals xq ∀Q
2: for each follower q:
3: for each leader individual in population:
4: Solve follower problem to get a population of follower solutions
5: end for
6: end for
7: Calculate fitnessF unction for each member of the population
8: while g < maxGens:
9: Evolve Population:

10: Select elite leader individuals from population
11: Generate new leader individuals using selection, crossover, mutation
12: Add elite and newly generated individuals to create new population
13: for each follower q:
14: for each leader individual in new population:
15: Solve follower problem to get a population of follower solutions
16: end for
17: end for
18: Evaluate fitness of new population
19: g ← g + 1
20: end while
21: Return xq ∀Q with best fitness

80, the difference in time taken is almost 50% less. Uniform crossover, with
a crossover rate of 0.5 (50%) was used. Other parameters are elitePercentage =
0.20, tournamentSize = 5, mutationRate = 0.015 and fitnessFunction =∑Q

q

∑N
n aqnxqn +

∑Q
q

∑N
n bqnyqn.

Comparing all 3 approaches For both N-BLEA and MFGA, each problem
size was solved 10 times, and the average objective values and solution times
were recorded. It should be noted that the poor performance of N-BLEA is
due to the operation of its crossover operator which is additive in nature, and
frequently violates the bounds of the vectors. This crossover operator results in
offspring which are frequently infeasible, and are thus heavily penalised by the
constraint handling scheme. For this reason, MFGA was custom-made for this
problem to avoid the heavy penalties seen with N-BLEA. Since vector generation
is done usingHypersphere Point Picking [18, 19] with the appropriate boundaries,
MFGA always produces feasible offspring.

For 10–100 followers, the solution found by the MFGA was better in 7 out
of 10 of the cases, though the decomposition approach finds a close solution in a
fraction of the time (figure 2). However, as the problems get larger, (Q from 100–
1000) the decomposition approach is much better in terms of both the solution
quality and the runtime (figure 3), especially as Q gets larger.
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Fig. 2: Comparing Approaches: Objectives and Timings for Q = 10 to 100

Fig. 3: Comparing Approaches: Objectives and Timings for Q = 100 to 1000

This experiment demonstrates the usefulness of the analytics-based decom-
position approach for large-scale problems. Reduction of the very large set of po-
tential solutions to a much smaller, but highly representative set using medoids
allows the ILP to choose the best solution from a vast number of possibilities.

4 Conclusions

In this paper, a new class of multiple-follower bilevel problems, the BPMSIF,
was proposed. Here, none of the followers share each others’ variables, so that
the leader variables can be partitioned among the followers. Also, the follower
problems are also allowed to be integer or non-linear, and variables from different
follower problems are only connected through weak constraints. An analytics
based decomposition approach was then developed in order to solve this new
class of problems. Two numerical examples were solved, and the first example
showed that the decomposition approach is competitive even for small bilevel
problems. More importantly, the second example showed that the decomposition
approach produced significantly better results (in a shorter amount of time) than
evolutionary algorithms, particularly as the size of the problem got larger.
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