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Abstract 14 

Marine macroalgae (seaweed) is a promising feedstock for producing biohydrogen and 15 

biomethane via dark fermentation and anaerobic digestion, respectively. However, one of the limiting 16 

steps in the biological process is the conversion of polymeric carbohydrates into monomeric sugars. 17 

Here hydrothermal pretreatments were assessed for hydrolysis and subsequent production of 18 

biohydrogen and biomethane from the brown seaweed Saccharina latissima. The solubilization of S. 19 

latissima improved with increasing temperatures from 100 to 180 °C, resulting in a maximum yield of 20 

0.70 g soluble chemical oxygen demand/volatile solid (sCOD/g VS); equivalent to an increase of 207.5% 21 

compared with untreated seaweed. However, the yield of the derived monomeric sugar mannitol 22 

peaked at 140 °C and decreased with increasing temperatures, likely due to production of 23 

fermentative inhibitors. Microstructural characterization revealed that the algal structure was 24 

significantly damaged, and the major chemical groups of carbohydrates and proteins were weakened 25 

after pretreatment. Regardless of hydrothermal temperatures, biohydrogen yield only slightly 26 

increased in dark fermentation, while biomethane yield significantly increased from 281.4 (untreated 27 

S. latissima) to 345.1 mL/g VS (treated at 140 °C), leading to the sCOD removal efficiency of 86.1%. 28 
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The maximum energy conversion efficiency of 72.8% was achieved after two-stage biohydrogen and 29 

biomethane co-production. In comparison, considering the energy input for 30 

pretreatment/fermentation/digestion, the highest process energy efficiency dropped to 37.8%. 31 

Further calculations suggest that a significant improvement of efficiency up to 56.9% can be achieved 32 

if the heat from pretreatment can be recovered. 33 

 34 

Keywords: Macroalgae; hydrothermal pretreatment; energy efficiency; biohydrogen; biomethane. 35 

  36 



3 

 

1. Introduction 37 

In a world concerned with climate change and poor air quality associated with excessive use of 38 

non-renewable fossil fuel, biofuels will play an increasingly more significant role in future energy 39 

systems [1]. The European Union (EU) encourages the optimization of renewable energy systems to 40 

meet more and more stringent sustainability criteria. The EU has introduced a cap on the contribution 41 

of food-based biofuels, starting at 7% of energy in the transport sector in 2021 and reducing 42 

progressively to 3.8% by 2030 [2]. Third-generation biofuel feedstocks are free from arable land use.  43 

These include advanced gaseous biofuels (biomethane and biohydrogen) derived from microalgae and 44 

macroalgae (seaweeds), which show significant potential to satisfy advanced biofuel targets [3-8]. The 45 

EU target for advanced biofuels has been set at a minimum share of 3.6% of the total fuel 46 

consumption by 2030 as compared to the target of just 0.5% for 2021 [2]. The advantages of using 47 

algae include for higher growth rates and production yields, higher rate of carbon dioxide fixation, 48 

negligible quantities of hemicellulose and lignin, versatile biofuel production and freedom from 49 

competition for agricultural land [9]. 50 

Biohydrogen and biomethane can be produced through biological technologies such as 51 

fermentation and anaerobic digestion, respectively. Seaweeds (including brown, green, and red) grow 52 

naturally and are cultivated worldwide. The harvest is greatest in Asian countries (China, Philippines, 53 

Japan, Korea). China annually harvests 3.2 million tonnes of seaweeds [4]. In the European context, 54 

Ireland is one of the largest seaweed producers, producing 29,500 tonnes per annum [4]. Typical 55 

brown seaweeds (such as Laminaria digitata and Saccharina latissima) and green seaweeds (such as 56 

Ulva lactuca) are rich in organic matter, including carbohydrates and proteins. Brown seaweeds are 57 

relatively high in carbohydrates in the form of polysaccharides (mannitol, laminarin and alginate) 58 

which are easily degradable [10]. Some species of green seaweeds may grow faster than brown 59 

seaweeds; however green seaweeds contain high levels of proteins, leading to unfavorable low carbon 60 

to nitrogen ratios [11]. Seaweeds have the capacity to produce a vast array of high-value liquid (such 61 

as bioethanol and biodiesel) and gaseous (such as biohydrogen and biomethane) biofuels [12-14]. It 62 

has been reported that gaseous biofuels may have certain advantages over liquid biofuels [9]: (1) the 63 

greenhouse gas (GHG) savings in producing and using gaseous biofuels is greater than that for liquid 64 
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biofuels; (2) the pollutant emissions using gaseous biofuels as transport fuels are much less than that 65 

using liquid biofuels; and (3) gaseous biofuels can take advantage of the existing natural gas grid 66 

system for low energy input distribution. 67 

Polymeric carbohydrates are the most important components in seaweeds for gaseous biofuel 68 

production employing biological processes. The main groups of carbohydrates found in seaweeds are 69 

laminarin, alginate, cellulose, fucoidan, and sugar alcohol mannitol [15]. Biohydrogen and biomethane 70 

can be produced through biological technologies via fermentation and anaerobic digestion, 71 

respectively. However, the rigid cell wall structure and high molecular weight organics in seaweeds 72 

may adversely affect cell disintegration and prolong fermentation time. Allen et al. assessed ten 73 

species of seaweeds for biomethane potential, and found that some species (such as Ascophyllum 74 

nodosum and Fucus serratus) exhibited biodegradability indices as low as 0.19−0.34 [16]; as such 66 to 75 

81% of volatile material did not degrade during digestion over 30 days. Similar to lignocellulosic 76 

feedstock, seaweeds in fermentation and anaerobic digestion require firstly the conversion of 77 

polymeric carbohydrates into readily available monomeric sugars (such as glucose and mannitol). The 78 

carbohydrate monomers derived from land-based biomass are dominating by glucose and xylose; 79 

biohydrogen and biomethane produced from these carbohydrates have been extensively investigated 80 

[17-20]. However, the use of seaweeds as feedstock and their fermentation performance have 81 

received less attention, especially in two-stage fermentation systems for co-production of biohydrogen 82 

and biomethane. 83 

In order to convert polymeric carbohydrates to monosugars efficiently, an effective pretreatment 84 

process prior to fermentation and anaerobic digestion is necessary. To date, different pretreatment 85 

methods have been developed, including mechanical, chemical, thermal, and biological methods 86 

[21-27]. However, factors that influence pretreatment efficiency and, consequently, biofuel yields, are 87 

highly affected by seaweed composition (such as salts, polyphenols, polysaccharides type) [28]. Hu et 88 

al. found the different acids (such as H2SO4, HCl, H3PO4) can effectively damage the dense surface of 89 

algae and remove a small portion of protein and sulfate polysaccharide in seaweed Enteromorpha [29]. 90 

The thermal pretreatment of brown seaweed Nizimuddinia zanardini released more than 80% of 91 

components such as mannitol and led to a 22% higher methane yield compared to untreated seaweed 92 

[30]. Among those methods, mild acid treatment using sulfuric or hydrochloric acid was found to be 93 
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effective in hydrolysis of polysaccharides in seaweeds at relatively low temperatures. Acid is able to 94 

cleave the β-1-4-glycosidic bond of complex polysaccharides to associated monomers. Monosugars 95 

derived from hydrolysis can be readily used by acidogenic bacteria and methanogenic archaea for 96 

sequential biohydrogen and biomethane production. Yin et al. reported that the solubilization of 97 

Laminaria japonica increased 1.9 fold after microwave pretreatment in the presence of 1% sulfuric 98 

acid, thereby improving the sequential biohydrogen production from 15 to 28 mL/g dry weight [31]. 99 

However, the use of acid in pretreatment may inevitably lead to formation of fermentative inhibitors 100 

(such as furfural, and levulinic acid) as a consequence of sugar decomposition. Furthermore, alkaline 101 

addition is typically necessary in order to balance the pH value of the pretreated solution before 102 

biological processes. Jung et al. reported a negative correlation between hydrogen yield and the 103 

produced 5-(hydroxymethyl)furfural in hydrolysate [32]. The presence of furfural (15 mM) reduced the 104 

biohydrogen production rate by 28.9%, likely due to the competitive reduction reaction converting 105 

furfural aldehyde to alcohol, inhibiting the reaction of protons to hydrogen [33]. 106 

As an eco-friendly alternative, hydrothermal pretreatment may be applied to seaweeds to 107 

improve hydrolysis and increase the biodegradability index in fermentation and digestion. 108 

Hydrothermal pretreatment has been used for the fractionation of macroalgae biomass. The excellent 109 

solvent properties of water as a reaction medium and the high moisture content of macroalgal 110 

biomass make this technology promising for the direct use of algae in the production of biofuels and 111 

high added-value compounds [34]. For hydrothermal pretreatment, liquid hot water is used at 112 

temperatures from 100 to 374 °C under high pressure, corresponding to conditions below the water 113 

critical point [35]. The high hydrothermal temperatures can weaken H-bonding in water, allowing for 114 

autoionization of water into acidic hydronium ions (H3O
+
) and basic hydroxide ions (OH

-
) [7]. Acidic 115 

hydronium ions can act as catalysts that may facilitate the hydrolysis of biomass. Despite the 116 

advantages of hydrothermal pretreatments, some drawbacks may still present, particularly when 117 

employing high temperatures. For instance, Jard et al. investigated the effect of thermochemical 118 

pretreatment on the solubilization and anaerobic biodegradability of the red macroalgae Palmaria 119 

palmata, and found that higher temperatures resulted in a substantial decrease in methane potential 120 

(−13% at 160 °C and 180 °C, up to −31% at 200 °C) [36]. 121 

A previous study suggested that S. latissima has the highest specific methane yield of seaweeds 122 
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available in Ireland [16]. The potential energy yield from S. latissima may be up to 365 GJ ha
−1

 yr
−1

 [16]; 123 

this further leads to the calculation that at least 6124 ha of coastal area would be required to grow 124 

seaweed to satisfy Ireland’s 2020 target in advanced biofuels [4]. Minimisation of coastal area used is 125 

dependent on innovations in cultivation and harvesting of seaweed, but in terms of this paper more 126 

significantly in terms of increasing biofuel yield per unit of seaweed and optimisation of energy 127 

efficiency in the overarching bioenergy systems. Therefore, S. latissima was selected as the feedstock 128 

for further assessment in this study. To the best of our knowledge, there is a clear research gap on the 129 

use of hydrothermal pretreatment of brown seaweed (in this case S. latissima) for two-stage 130 

biohydrogen and biomethane production. Studies of such systems are very rare in the scientific 131 

literature. The research output can provide an answer as to how energy-efficient hydrothermal 132 

pretreatment is in terms of improving gaseous biofuel production from S. latissima. The objectives of 133 

this study are to: assess the effect of hydrothermal pretreatment on the physicochemical properties of 134 

S. latissima; evaluate the biohydrogen and biomethane potential from pretreated S. latissima; and 135 

assess the energy feasibility of the cascading two-stage fermentation system by calculating energy 136 

conversion efficiency and energy process efficiency. 137 

 138 

2. Materials and Methods 139 

2.1. Feedstock and inocula 140 

Feedstock: S. latissima was harvested in June in West Cork, Ireland. The collected algal samples 141 

were washed with tap water to remove sands and other impurities, and then cut to a particle size of 142 

approximately 5 mm by a mincer (Buffalo Heavy Duty Mincer CD400). The samples were then dried at 143 

105 °C in an oven and pulverized to 0.02 mm mesh size. The pulverized samples were stored at 4 °C 144 

before use. The physicochemical characteristics of dried biomass are presented in Table 1. 145 

Inoculum for hydrogen fermentation: Mixed fermentative bacteria used in biohydrogen potential 146 

(BHP) assays were originally sourced from a biogas plant treating pig slurry, dairy slurry and food 147 

waste at mesophilic temperatures. The digestate from the biogas plant was prepared by passing 148 

through a 1 mm sieve and was degassed for two weeks under anaerobic conditions to reduce any 149 

residual gas production. The digestate was then stored in a laboratory digester, and was fed cellulose 150 
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as a substrate to maintain the microbial activity. The obtained digestate was heat-treated at 100 °C for 151 

30 min in an autoclave (Sanyo MLS-3780, Japan) to deactivate methanogenic microorganisms. 152 

Subsequently, the pre-heated sludge was cultured in an anaerobic environment to enrich 153 

hydrogen-producing bacteria. The composition of the culture medium used was as follows (per liter): 154 

glucose, 20.0 g; tryptone, 3.0 g; yeast extract, 1.0 g; NaCl, 3.0 g; K2HPO4, 2.5 g; MgCl2, 0.1 g; FeCl2, 0.1 155 

g; L-cysteine, 0.5 g; vitamin solution, 10.0 mL; and trace element solution, 10.0 mL. The 156 

acclimatization procedure was repeated three times to ensure hydrogen-producing bacteria were fully 157 

activated. 158 

Inoculum for anaerobic digestion: The inoculum for the biomethane potential (BMP) assays was 159 

sourced from the laboratory digester, which was run at mesophilic temperature using cellulose as a 160 

substrate. Large particles in the original inoculum were removed through a 1 mm sieve. Prior to the 161 

BMP experiments, the sieved inoculum was degassed for two weeks. 162 

 163 

2.2. Hydrothermal pretreatment 164 

Fig. 1 presents the experimental schematic including hydrothermal pretreatment, dark hydrogen 165 

fermentation and anaerobic digestion. The hydrothermal pretreatment of S. latissima biomass was 166 

performed in a 500 mL batch reactor (Parr Instrument Company 4500, USA). The pretreatments were 167 

carried out under a stirring speed of 500 rpm for 30 min at 100, 120, 140, 160, and 180 °C. Our 168 

previous studies have demonstrated that the optimal pretreatment conditions for a wide range of 169 

feedstock (such as grass silage, cassava residue and food waste) were in the processing temperature of 170 

135–140 °C and time of 15–20 min [1, 2]. Deng et al. found that the optimal acid pretreatment was 171 

achieved at 135 °C for 15 min with a total reducing sugar yield of 0.33 g/g VS of grass silage [37]. 172 

When using food waste as feedstock, the optimal hydrothermal pretreatment condition was found to 173 

be 140 °C for 20 min in terms of the solubilization efficiency of organic components (namely 174 

carbohydrates and proteins) [38]. As compared to pretreatment time, hydrothermal temperature 175 

plays a more significant role in affecting the effectiveness of feedstock hydrolysis. Based on the results 176 

from the above studies, this study chose the temperature range from 100 to 180 °C and process time 177 

of 30 min.  178 
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In each run, 7.5 g volatile solid (VS) of S. latissima biomass was brought to the reactor along with 179 

a volume of 250 mL deionized water. The pretreatment time was precisely measured, starting from 180 

when the algal sample reached the set temperature. After each run, the reactor was allowed to cool 181 

down to room temperature and the treated samples were taken out for further processing. 182 

 183 

2.3. Two-stage dark fermentation and anaerobic digestion 184 

Dark hydrogen fermentation: The cascading fermentation system included two stages, namely, 185 

dark hydrogen fermentation followed by anaerobic digestion. The first stage dark fermentation for 186 

BHP assays was carried out in duplicate in the AMPTS II system (Bioprocess Control, Sweden). To 187 

analyse the effects of hydrothermal temperature on fermentative hydrogen production, five 188 

experimental groups were performed based on the hydrothermal conditions (100, 120, 140, 160, and 189 

180 °C). Untreated S. latissima biomass was used as a comparison group. In BHP assays, 3 g VS of algal 190 

hydrolysates were added into each glass fermenter. Subsequently, 30 mL of activated inoculum for 191 

dark fermentation was added to each fermenter. The total liquor volume was then adjusted to 300 mL 192 

with deionized water. The initial pH was adjusted to 6.5 ± 0.1 with 6 M NaOH and 6 M HCl solutions. 193 

The bottles were sealed and purged with nitrogen gas for 5 min to ensure anaerobic conditions. The 194 

bottles were then placed in a water bath at 35.0 °C and the dark hydrogen fermentation lasted for 48 195 

h. 196 

Anaerobic digestion: After dark fermentation for 48 h, the effluents from each bottle were 197 

inoculated with seed inoculum at an inoculum to substrate VS ratio of 2:1 (based on original VS before 198 

dark fermentation) for second-stage anaerobic digestion. The bottles were also sealed, purged with 199 

nitrogen gas for 5 min, and placed in a water bath at 35.0 °C. The anaerobic digestion trials ran for 11 200 

days to allow for maximum degradation of substrates. During dark fermentation and anaerobic 201 

digestion, carbon dioxide in the produced gas was removed by passing the biogas through a 3 M NaOH 202 

solution. The gas flow was measured, and the volume was automatically normalized to standard 203 

conditions (0 °C, 1 atm) and zero moisture content by the AMPST II system. 204 

 205 
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2.4. Analytic methods 206 

The differences of algal biomass surface microstructures before and after pretreatment were 207 

observed by a field emission Scanning Electron Microscope (SEM; Hitachi S3700, Japan). The biomass 208 

samples were processed by coating with a thin layer of gold under vacuum before the SEM 209 

observation. The changes in chemical composition and functional groups were assessed by a Fourier 210 

Transform Infrared Spectroscopy analyser (FTIR; Nicolet 5700, USA) equipped with a universal 211 

attenuated total reflection accessory. The total solid (TS), VS and ash content of the inoculum were 212 

analyzed by using the standard method of drying of the sample for 24 h at 105 °C and subsequent 213 

heating for 2 h at 550 °C [39]. A spectrophotometer (Hach DR890, USA) coupled with a Hach DRB200 214 

reactor was employed to determine the chemical oxygen demand (COD) of algal samples. The 215 

concentration of soluble metabolic products (SMPs; such as acetic acid and butyric acid) was analyzed 216 

on a gas chromatography system (GC; Agilent 7820A, USA) equipped with a flame ionization detector 217 

and a DB-FFAP column. The temperatures of the injection port and the flame ionization detector were 218 

both set at 250 °C. The initial column temperature was set at 100 °C, increased to 200 °C at a heating 219 

rate of 10 °C/min, and then held for 2.5 min. Before injecting to the GC, the liquid samples were first 220 

centrifuged at 5000 rpm for 5 min and then adjusted with hydrochloric acid to ensure an acidic pH. 221 

The quantification of each component was determined by comparing with a standard SMP solution. 222 

The concentrations of mannitol, glucose, xylose, galactose, and arabinose were determined on a 223 

high-performance liquid chromatography (HPLC) system (Agilent 1200, USA) using refractive index 224 

detector and Aminex HPX-87P column at 85 °C with H2O as mobile phase at 1 mm/min. 225 

The severity factor of the hydrothermal pretreatment under different conditions was calculated 226 

based on Eq. 1 [40]. Severity factor is an expression of the combined effect of temperature and time of 227 

the hydrothermal pretreatment. 228 

                         
     

                (Eq. 1) 229 

where t is the time of the hydrothermal pretreatment in min and T is the temperature of the 230 

pretreatment in °C. For each pretreatment condition, the severity factor was determined as 1.48 231 

(100 °C, 30 min), 2.07 (120 °C, 30 min), 2.65 (140 °C, 30 min), 3.24 (160 °C, 30 min), and 3.83 (180 °C, 232 

30 min). 233 
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The biodegradability index (BI) was defined as the ratio of actual methane yield in batch trial to 234 

the calculated theoretical methane yield. The theoretical methane yield was calculated using the 235 

Buswell equation on the basis of elemental C, H, O and N content. Biomethane yield was simulated by 236 

the modified Gompertz equation as described in Eq. 2. The derived kinetic parameters (Hm, maximum 237 

methane yield potential, mL/g VS; Rm, peak methane production rate, mL/g VS/d; and λ, lag-phase 238 

time of methane production, d) were calculated using Origin 8.5 software. 239 

              
   

  
                     (Eq. 2) 240 

 241 

2.5. Energy balance 242 

Process energy input: The process energy input involved in the cascading system comprises 243 

includes for hydrothermal pretreatment, dark fermentation and anaerobic digestion. The total energy 244 

needed (   ; kJ/g fresh weight) can be estimated as per Eq. 3 [41]: 245 

                                 (Eq. 3) 246 

Where       is the energy input for hydrothermal pretreatment,      is the energy input for 247 

fermentation, and     is the energy input for anaerobic digestion. 248 

The energy input in each step can be determined using Eq. 4: 249 

                                                                        (Eq. 4) 250 

Where the liquid fraction in the reactor (     ) is assumed to be water with a specific heat (   ) of 4.2 251 

kJ/kg·K. The hydrothermal pretreatment temperature (     ) varies based on each experimental run, 252 

while the ambient temperature (    ) is assumed as 25 °C. The temperature of dark fermentation and 253 

anaerobic digestion is 35 °C as per the experimental conditions. The          is the fresh weight of S. 254 

latissma fed into the reactor, and          is the corresponding specific heat based on the fresh mass. 255 

The specific heat of fresh S. latissima is averaged from the data presented for three seaweed species 256 

by Wang et al. over different temperatures [42]. No change in the heat capacity with pretreatment or 257 

fermentation is assumed. Minimum loss in mass between the different stages is neglected [41].  258 

Process energy efficiency and energy conversion efficiency: The process energy out is associated 259 

with the energy yield of hydrogen and methane produced in dark fermentation and anaerobic 260 

digestion; and can be estimated specific to the input substrate as per Eq. 5 & 6 [43]: 261 
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             (Eq. 5) 262 

     
               

            (Eq. 6) 263 

       and         is the volumetric yields of hydrogen and methane per unit VS substrate used, 264 

respectively. 265 

The energy conversion efficiency (    ) is defined as the ratio of the heating value in hydrogen 266 

and methane to the total heating value of the added substrate. Calculations are conducted based on 267 

the lower heating values (LHV) of hydrogen (242 kJ/mol) and methane (801 kJ/mol) [44]. 268 

                                       (Eq. 7) 269 

The energy value of algal biomass is calculated based on the modified Dulong Formula as shown 270 

in Eq. 8 [45]: 271 

                                           (Eq. 8) 272 

where C, H, O, and N represent the weight percentages of each element in total VS. 273 

In contrast, taking into account the energy input in relation to hydrothermal pretreatment, dark 274 

fermentation and anaerobic digestion, the overall process efficiency (   ) can hence be represented 275 

based on Eq. 9: 276 

                                                        (Eq. 9) 277 

In which        is the potential heat recovered from hydrothermal pretreatment (this becomes 0 as 278 

per the experimental set-up). The potential heat recovery was evaluated considering cool-down of the 279 

hydrolysates from process temperatures to 50 °C with an efficiency of heat transfer of 90% [46, 47]. As 280 

per the batch experimental set-up, no heat was recovered. However, due to the operation at elevated 281 

temperatures, cooling down of the pretreated algal hydrolysates can provide an interesting 282 

opportunity for heat recovery with subsequent use in providing heat for fermentation and anaerobic 283 

digestion. 284 

 285 

3. Results and discussion 286 

3.1. Saccharina latissima characterization before and after hydrothermal 287 

pretreatment 288 

S. latissima primarily contains a high amount of carbohydrates (such as mannitol, alginate, 289 
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laminarin, low concentration of cellulose and negligible lignin), the content which varies significantly 290 

with seasons [48]. As a structural component of the cell wall, alginate is the most abundant 291 

carbohydrate and may account for 40% of dry weight in some species; structural cellulose has been 292 

reported at concentrations of approximately 10% of dry weight; the storage carbohydrates (including 293 

laminarin and mannitol) vary considerably between 5–32% and 2–25% of dry weight, respectively [48, 294 

49]. 295 

Table 1 presents the compositions of dried seaweed S. latissima used in this study. The ultimate 296 

analysis showed that the energy value of S. latissima was 17.1 kJ/g VS, which is comparable to that of 297 

monosaccharide (for example glucose with an energy value of 15.6 kJ/g VS). S. latissima used in this 298 

study presents a carbon to nitrogen ratio of 14.3. However, large variations were observed in carbon 299 

to nitrogen ratios depending on the harvest seasons and locations [16, 50]. As a brown seaweed S. 300 

latissima is rich in carbohydrate mannitol, which is a sugar alcohol with a variety of applications [51]. 301 

Mannitol can be readily used by microorganisms to produce biofuels. Typical amino acids derived from 302 

proteins in S. latissima include glutamic acid, aspartic acid, and glycine [15]. The fermentable sugars 303 

and amino acids are originally in the form of slowly biodegradable high-weight molecular 304 

polysaccharides. To improve biofuel production, it is beneficial to pretreat to effectively release 305 

monomers from S. latissima. 306 

SEM images of untreated and pretreated S. latissima biomass with different magnification are 307 

shown in the supplementary material (Fig. S1). Hydrothermal pretreatment had a critical impact on 308 

the surface morphology of seaweed. The untreated S. latissima biomass showed a flat surface with 309 

sharp edges and some cracks (Fig. S1 a and b). The surface of hydrothermally treated seaweed was 310 

observed to be more uneven and eroded (Fig. S1 c and d). The algal structure was loosened and 311 

formed a rugged surface; more internal structure of the samples was exposed. With more ridges and 312 

grooves formed, the roughness of the algal surface increased greatly. The damaged surface structure 313 

could facilitate diffusion of the hydrolytic enzymes and the degradation of algae by methanogenic 314 

archaea. 315 

Fig. 2 shows the FTIR spectra of S. latissima biomass before and after hydrothermal pretreatment, 316 

which exhibits similar peaks at different wave numbers. This is because the process of hydrothermal 317 

pretreatment does not introduce new chemical groups to the solid fraction of seaweed after 318 

https://www.sciencedirect.com/topics/engineering/c-n-ratio
https://www.sciencedirect.com/topics/engineering/c-n-ratio
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pretreatment, due to the fact that only water is used during pretreatment. It indicates that there are 319 

two absorption peaks existing in the hydrogen bonding area ranging from 2500 to 4000 cm
−1

. The 320 

major peak located at 3454 cm
−1

 is assigned to the stretching vibrations of hydrogen bonded O−H 321 

groups and N−H groups, indicating the presence of carbohydrates and proteins in S. latissima biomass 322 

[52]. The weak peak at 2923 cm
−1

 is derived from the vibration of C−H group in the polysaccharides in 323 

the S. latissima biomass. The peak at 1640 cm
−1

 is assigned to the C=O group of amides [53], which 324 

arises due to the presence of proteins. The peak around 1415 cm
−1

 may attribute to the C−C stretching 325 

vibration of aromatic structure [54]. The peak at 1058 cm
−1

 is characteristic of the C−N stretching 326 

vibration of aliphatic amines [55], which confirms the presence of proteins. 327 

As shown in the FTIR spectra, raw seaweed had strong stretching vibration peaks related to the 328 

O−H and N−H groups (3454 cm
−1

), while these absorption intensities decreased in the pretreated 329 

seaweed, suggesting decomposition of carbohydrates and proteins. In a similar trend, the vibration 330 

peaks corresponding to the C−H and C−C groups (2923 and 1415 cm
−1

) also decreased, which was due 331 

to hydrolysis of polysaccharide substances after hydrothermal pretreatment. The decrease of C=O and 332 

C−N vibration peaks (1640 and 1058 cm
−1

) further confirmed the degradation of proteins in treated 333 

seaweed. 334 

The complex structural components of S. latissima can be partially transformed from 335 

water-insoluble fraction (macromolecular polymers) to water-soluble fraction (low molecular weight 336 

organics), thereby increasing the soluble COD production during hydrothermal pretreatment. Fig. 3 a 337 

presents the soluble COD yield from S. latissima after pretreatment at different temperatures. The 338 

untreated seaweed contained a certain amount of soluble organics, which resulted in a yield of 0.23 g 339 

sCOD/g VS. By increasing the hydrothermal temperature to 180 °C, the COD yield significantly 340 

increased with the highest value of 0.70 g sCOD/g VS (equivalent to an increase of 207.5%). This 341 

significant increase in soluble COD production indicates that hydrothermal pretreatment could 342 

significantly promote the solubilization of S. latissima.  343 

However, the monomer sugars (such as mannitol and glucose) may be further degraded to 344 

inhibitory by-products (such as furfural and levulinic acid), especially at high hydrothermal 345 

temperatures. Fig. 3 b shows the mannitol yield from S. latissima at varying temperatures. The 346 

mannitol yield from raw S. latissima was 17.8 mg/g VS. With increasing temperature from 100 °C to 347 
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140 °C, the mannitol yield increased from 23.0 to 32.2 mg/g VS. Further increasing temperature led to 348 

decreased mannitol yield with the lowest yield of 21.8 mg/g VS obtained at 180 °C. The decrease in 349 

mannitol yield was ascribed to the fact that higher hydrothermal temperatures favoured the 350 

degradation of mannitol to inhibitory by-products. This phenomenon has been previously observed 351 

when pretreating other substrates (such as trehalose) [56]. 352 

 353 

3.2. First-stage dark fermentation for hydrogen production 354 

The solubilized S. latissima biomass under different hydrothermal conditions were subject to 355 

first-stage dark hydrogen fermentation, as shown in Fig. 4. The biohydrogen yield from untreated 356 

seaweed was obtained as 11.7 mL/g VS after fermentation of 48 h. The pretreatment at 100 °C slightly 357 

increased the biohydrogen yield to 13.7 mL/g VS. Further increasing the temperature resulted in the 358 

decrease in biohydrogen yield; this decrease in yield is postulated to be due to the decreased 359 

concentration of monosaccharides (such as mannitol) and the presence of potential inhibitors. This 360 

result suggests that the seaweed S. latissima may not be a good candidate to produce hydrogen 361 

through dark fermentation. As a major monosaccharide derived from S. latissima, mannitol has been 362 

previously investigated for biohydrogen production [57-59]. The theoretical hydrogen yield from 363 

mannitol was calculated as 615.4 mL/g mannitol following the acetate pathway (see Eq. 10). The 364 

practical hydrogen production from mannitol achieved ranged from 209.2 to 224.2 mL/g [57-59]. This 365 

suggests the efficiency of hydrogen production is less than 40%. Comparatively, the theoretical 366 

hydrogen yield from glucose was determined as 498.0 mL/g glucose (see Eq. 11). Previous studies have 367 

achieved hydrogen production efficiencies of up to 90% [57]. 368 

Mannitol: C6H14O6 + 4H2O = 2CH3COO
-
 + 4H

+
 + 2HCO3

-
 + 5H2, ΔG’0 = –180.6 kJ/mol   (Eq. 10) 369 

Glucose: C6H12O6 + 2H2O = 2CH3COO
-
 + 2HCO3

-
 + 4H2, ΔG’0 = –215.7 kJ/mol    (Eq. 11) 370 

Where ΔG′0 as indicated in Eq. 10 and 11 is the free energy change under the standard condition. The 371 

free energy change of glucose reaction (−215.7 kJ/mol) is more negative than that of mannitol 372 

reaction (−180.6 kJ/mol), suggesting that the fermentative metabolism of glucose is 373 

thermodynamically more favourable than that of mannitol. This result implies that fermentative 374 

bacteria thermodynamically prefer to consume glucose as compare to mannitol, which thereby 375 
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provides a clue as to why mannitol resulted in a less efficient hydrogen production. 376 

Table 2 presents the SMPs profile after dark hydrogen fermentation of S. latissima biomass. SMPs 377 

primarily consisted of acetate, butyrate, and small amounts of propionate, iso-butyrate, valerate, 378 

iso-valerate and caproate. The untreated S. latissima yielded SMPs of 5.73 g/L, of which the sum of 379 

acetate and butyrate comprised 86.0% of total SMPs. This indicates that the degradation of mannitol 380 

mainly followed the acetate and butyrate pathways during hydrogen fermentation, as shown in Fig. 5. 381 

The pretreated S. latissima exhibited similar levels of SMP production, which is in accordance with the 382 

minor change of hydrogen production after pretreatment. No significant change on the metabolic 383 

pathways was observed using pretreated seaweed as the substrate, as acetate and butyrate were still 384 

the dominant SMPs, comprising 82–90% of total SMPs. 385 

 386 

3.3. Second-stage anaerobic digestion for methane production 387 

The hydrogenogenic effluents from the first-stage fermentation contain a significant amount of 388 

SMPs (such as acetate and butyrate), which are favourable substrates for methanogens in anaerobic 389 

digestion. The effects of hydrothermal pretreatment on subsequent biomethane production are 390 

shown in Fig. 6 a. The biomethane yield from the effluent of untreated S. latissima was 281.4 mL/g VS 391 

after digestion of 11 d with a biodegradability of 63.4% (see Table 3). When increasing the 392 

hydrothermal temperature to 140 °C, the highest biomethane yield of 345.1 mL/g VS was achieved, 393 

corresponding to an increase of 22.6% as compared to that without pretreatment. The 394 

biodegradability of S. latissima significantly increased to 77.7%. It was noted that the pretreatment at 395 

180 °C reduced the biomethane yield to 278.7 mL/g VS. This was ascribed to the toxic effect caused by 396 

inhibitory by-products. A previous study demonstrated that thermal treatment of algal substrate, 397 

which contained abundant sugars and amino acids, could cause binary interactions between the 398 

carbonyl group (–C=O) and amino group (–NH2), leading to the generation of various fermentative 399 

inhibitors (such as methylfurfural, pyrazine compounds, and nitrogen-containing Maillard compounds) 400 

[60]. The presence of these inhibitors decreased biomethane production by 43.8% as compared to 401 

that in the absence of inhibitors [60]. Therefore, this finding suggests that the optimization of 402 

hydrothermal pretreatment is necessary considering the competitive reactions between hydrolysis of 403 
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polysaccharides and decomposition of mono-sugars. 404 

The soluble COD removal efficiency after second-stage anaerobic digestion is shown in Fig. 6 b. 405 

The trends of COD removal were similar to that of biomethane production. The COD removal 406 

efficiency of the untreated seaweed was 79.5%; this increased to 86.7% and 86.1% when the seaweed 407 

was pretreated at 120 and 140 °C, respectively. Further increasing temperature to 180 °C resulted in 408 

the lowest COD removal efficiency of 67.4%. This indicates that anaerobic digestion was not capable of 409 

removing all the produced COD during hydrothermal solubilization. A higher hydrothermal 410 

temperature contributed to a higher generation of COD, but inevitably generated more inhibitory 411 

by-products. This, in return, resulted in a lower COD removal efficiency after fermentation and 412 

anaerobic digestion. 413 

Table 3 shows the kinetic parameters of biomethane production from S. latissima by employing 414 

the modified Gompertz model. The parameters of biomethane production were evaluated in terms of 415 

methane yield potential (Hm), peak methane production rate (Rm), lag-phase time (λ), and peak time 416 

(Tm). The modelling results confirmed that hydrothermal pretreatment at 100–160 °C could improve 417 

methane yield potential from S. latissima by 14.2%–23.7%. Similarly, the peak methane production 418 

rate was also enhanced by 8.9%–22.6%. By applying hydrothermal temperature at 180 °C, both 419 

methane yield potential and methane production rate decreased to some extent. These results are in 420 

agreement with the experimental data. 421 

 422 

3.4. Energy balance of Saccharina latissima biomass in dark fermentation and 423 

anaerobic digestion 424 

The results of the energy conversion efficiency are compared to the different process energy 425 

efficiencies under three different scenarios, which include: (1) process energy efficiency as per 426 

experimental conditions; (2) process energy efficiency with potential heat recovery; and (3) process 427 

energy efficiency with reduced water use for hydrothermal pretreatment by 30%, as shown in Fig. 7. 428 

The energy conversion efficiency at all conditions shows the higher value compared to the energy 429 

process efficiency. The reason for that is obviously due to the fact that the calculation of energy 430 

conversion efficiency excludes the external energy supply for pretreatment, dark fermentation and 431 
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anaerobic digestion. The total energy conversion efficiency of untreated seaweed was calculated as 432 

59.6%, of which the efficiency of hydrogen was only 0.7% and the efficiency of methane was 58.8%. 433 

The hydrothermal pretreatment at 140 °C led to the highest energy conversion efficiency of 72.8%, 434 

due to the fact that the highest methane yield was obtained under this condition. It is noted that not 435 

all the energy of S. latissima was transformed into hydrogen and methane; around 27.2%–41.3% of 436 

total energy was still unexploited. This result could be attributed to the following reasons: (1) the 437 

degradation efficiency of seaweed substrate was not 100%; (2) a minority of energy was consumed for 438 

supporting microbial growth and reproduction; and (3) the formation of unfermentable byproducts 439 

during hydrothermal pretreatments. 440 

Taking into account the external energy to supply heat for pretreatment, fermentation and 441 

anaerobic digestion, the highest process energy efficiency was achieved as only 37.8% when no 442 

pretreatment was applied. Unlike the energy conversion efficiency which peaked at 140 °C, the 443 

process efficiency continued to drop with increased temperatures, due to a higher need for external 444 

heat. This suggests that the additional methane generated was not sufficient to overcome the added 445 

heat required to maintain the temperature of pretreatment. Even with reducing the water use by as 446 

much as 30%, the process energy balance showed minimal improvement. However, a significant gain 447 

in process energy efficiency was obtained if the heat from the hydrolysates was recovered. A new 448 

peak of process energy efficiency was obtained at 160 °C of 56.9%. Thus, the use of waste heat is of 449 

importance, whereby the easiest use is to maintain the heat for fermentation and anaerobic digestion. 450 

Upon further system optimisation and integration, the reported cascading system may open a 451 

valuable approach for seaweed processing and valorisation. 452 

 453 

3.5. Comparison of gaseous biofuels production from macroalgae with literature 454 

Table 4 provides relevant studies on the pretreatment of various macroalgae and the resulting 455 

biohydrogen and biomethane production. Macroalgae including brown (such as Laminaria japonica 456 

and Sargassum sp.) and red (such as Gelidium amansii) algae have been investigated for one-stage 457 

biohydrogen production and two-stage biohydrogen and biomethane co-production. There are many 458 

pretreatment methods that have been studied in the literature, including thermal, thermal acid and 459 
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microwave acid pretreatments [61]. These pretreatment methods could lead to an increase in biofuel 460 

production to different extents. For example, biohydrogen yield from L. japonica was significantly 461 

enhanced (by 143%) after combining thermal and hydrochloric acid pretreatment [62]. Yin et al. 462 

investigated the effect of combined microwave-acid pretreatment on fermentative hydrogen 463 

production from L. japonica [31]. The results showed that pretreatment at 140 °C with 1% H2SO4 for 464 

15 min increased biohydrogen yield from 15 to 28 mL/ g dry weight [31]. In comparision, the research 465 

on two-stage fermentation using pretreated macroalgae has seldom been investigated. Costa et al. 466 

demonstrated the feasibility of biohydrogen and biomethane co-production from thermally pretreated 467 

Sargassum sp., which could greatly improve the energy conversion efficiency from macroalgae [63]. In 468 

the present paper, hydrothermal pretreatment has been successfully applied to improve biofuels 469 

production from brown seaweed S. latissima. The biomethane yield was enhanced by 22.6% under 470 

optimal condition. The biodegradability of untreated S. latissima was 63.4%, and raised to 77.7% with 471 

hydrothermal pretreatment at 140 
o
C for 30 minute in a two stage system. Coupled with methane 472 

fermentation, the two-stage fermentation process achieved the highest overall energy efficiency from 473 

seaweed, demonstrating the feasibility for future commercial applications. 474 

 475 

4. Conclusions 476 

Hydrothermal pretreatment of seaweed S. latissima could significantly break down the 477 

recalcitrant macro- and micro-structures of seaweed and was proven to be effective to produce 478 

gaseous biofuels. The major findings are as follows: 479 

1) The first-stage biohydrogen yield only slightly increased via dark fermentation after pretreatment, 480 

while the second-stage biomethane yield significantly increased by 22.6% under the optimal 481 

pretreatment temperature of 140 °C. The maximum energy conversion efficiency of 72.8% was 482 

achieved after two-stage biohydrogen and biomethane co-production. 483 

2) When considering the extra energy input for pretreatment, fermentation and digestion, the 484 

highest process energy efficiency obtained was 37.8% using untreated seaweed. This efficiency 485 

continued to drop with increasing pretreatment temperature, suggesting the additional methane 486 

generated was not sufficient to overcome the energy required to maintain the pretreatment 487 
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temperature. 488 

3) However, a significant increase in efficiency (to 56.9%) can be achieved through heat recovery 489 

from hydrothermal pretreatment at 160 °C. Upon further system optimisation, this enables the 490 

possibility of combining thermochemical and biological treatments for seaweed exploitation and 491 

can promote circular bioeconomy concepts. 492 
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Fig.1. Schematic for two-stage dark hydrogen fermentation and anaerobic digestion. Green boxes 721 

indicate materials, and grey boxes indicate processes. SMPs: soluble metabolic products. 722 
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Fig. 2. FTIR spectra of Saccharina latissima before and after hydrothermal pretreatment. 727 
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Fig. 3. Soluble COD and monosaccharic mannitol yield after hydrothermal pretreatment of Saccharina 731 

latissima: (a) soluble COD yield; and (b) mannitol yield. Data are presented as mean ± standard 732 

deviation. 733 
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Fig. 4. Biohydrogen yield from Saccharina latissima after hydrothermal pretreatment. Data are 736 

presented as mean ± standard deviation. 737 
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Fig. 5. Schematic of dark fermentation and anaerobic digestion of Saccharina latissima. 740 
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Fig. 6. Biomethane yield and soluble COD removal after anaerobic digestion: (a) Biomethane yield; and 744 

(b) COD removal efficiency. Data are presented as mean ± standard deviation. 745 
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Fig. 7. Energy conversion efficiency (    ) and process energy efficiency (   ) of the cascading dark 748 

fermentation and anaerobic digestion.       : Considering heat recovery from cooling down of 749 

pretreated hydrolysates.       : Considering 30% less water use than that in hydrothermal 750 

pretreatment without heat recovery. 751 
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Table 1 Compositional analysis of dried seaweed Saccharina latissima. 753 

Parameter S. latissima 

Proximate analysis (wwt%)  

  TS 99.9 

  VS 66.0 

  VS/TS (%) 66.1 

Ultimate analysis (%TS)  

  Carbon 31.5 

  Hydrogen 4.0 

  Oxygen 28.4 

  Nitrogen 2.2 

  C/N mass ratio 14.3 

  Energy value (kJ/g VS) 17.1 

  Theoretical biomethane yield 

(mL/g VS) 

443.9 
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Table 2 Soluble metabolite products (SMPs) profile after dark hydrogen fermentation of Saccharina 755 

latissima biomass. 756 

Compositions (g/L) Untreated 100 °C 120 °C 140 °C 160 °C 180 °C 

Acetic acid 3.58 3.30 3.67 3.82 3.76 3.70 

Propionic acid 0.30 0.14 0.12 0.21 0.19 0.43 

Iso-butyric acid 0.21 0.20 0.14 0.20 0.17 0.18 

Butyric acid 1.33 1.13 0.78 1.25 0.43 0.81 

Iso-valeric acid 0.14 0.15 0.09 0.15 0.10 0.13 

Valeric acid 0.14 0.18 0.14 0.20 0.20 0.20 

Caproic acid 0.02 0.02 0.02 0.02 0.01 0.06 

Total SMPs  5.73 5.12 4.96 5.84 4.87 5.51 
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Table 3 Kinetic parameters of biomethane production from Saccharina latissima biomass. 758 

Pretreatme

nt 

Experiment

al methane 

yield 

(mL/gVS) 

Peak 

production 

rate 

(mL/gVS/d) 

Kinetic model parameters 

Biodegrad

ability (%) 

Hm
 a

 

(mL/gV

S) 

Rm
 b

 

(mL/gVS/

d) 

λ
 c
 

(d) 

Tm 
d

 

(d) 
R

2
 

Untreated 281.4±4.2 58.5±4.1 294.1 59.4 1.1 2.9 0.991 63.4 

100 °C 318.8±9.1 71.9±1.9 336.1 64.7 0.9 2.8 0.982 71.8 

120 °C 344.6±3.9 74.4±3.8 363.7 70.5 1.2 3.1 0.985 77.6 

140 °C 345.1±6.3 78.1±3.1 363.5 72.4 1.2 3.0 0.983 77.7 

160 °C 337.8±15.5 76.3±3.6 355.4 72.8 1.4 3.2 0.984 76.1 

180 °C 278.7±2.4 54.9±1.7 293.7 52.6 1.0 3.1 0.993 62.8 

Note: 
a
 Hm is maximum methane yield potential; 

b
 Rm is peak methane production rate; 

c
 λ is lag-phase 759 

time of methane production; 
d
 Tm is peak time of methane production (calculated as: Tm = Hm/Rm/e + 760 

λ). 761 
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Table 4 Biohydrogen and biomethane production from macroalgal biomass with various pretreatments. 

Macroalgae species Pretreatment Hydrogen yield Methane yield Increases in hydrogen and 

methane production 

Ref. 

Laminaria japonica Thermal; T=150–180 °C; t=5–40 min 69.1–109.6 mL H2/g CODadded / From –10.7% to +63.9% (H2) [62] 

Laminaria japonica Combined acid + thermal; T=60, 110, 

160 °C; t=5, 22.5,40 min; HCl dosage=0, 

6, 12% (w/w) 

9.5–163.1mL H2 g/ dry algae / From –86% to +143% (H2) [32] 

Laminaria japonica Combined microwave-acid + thermal, 

T=140 °C; t= 15 min, H2SO4 dosage=0, 0.5, 

1 and 2% (v/v) 

15.0–26.8mL H2/g dry algae  / From –0.6% to +77.5% (H2) [31] 

Laminaria digitata and 

Arthrospira platensis 

Combined acid + thermal, T= 95, 115 and 

135 °C; t=15 min; H2SO4 dosage=2.5 and 

5% (v/v) 

60.5–70.6 mL H2/g VS  / From –7.2% to +16.7% (H2) [64] 

Gelidium amansii Combined acid + thermal, T=120, 150, 

180 °C; t=15 min; H2SO4 dosage=0.5, 1, 

1.5% (w/w) 

0–37.0 mL H2/g dry algae / N.A. [65] 

Sargassum sp. Thermal, T=121 °C; t=15 min 60.8–91.3 mL H2/g VS  345–541 mL CH4/g VS N.A. [63] 

Saccharina latissima  Hydrothermal, T=100, 120, 140, 160, 

180 °C; t=10 min 

6.9–13.7 mL H2/g VS 278.7–345.1 mL CH4/g VS From –41.0% to +17.0% (H2) 

From –9.6% to +22.6% (CH4) 

This 

study 

 


